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1 Introduction

In this paper, we develop a manifestly diffeomorphism invariant Wilsonian exact RG

(Renormalization Group) for classical gravity. Such a construction involves a diffeomor-

phism invariant generalisation of a momentum cutoff Λ, allowing short distance modes with

wavelength . 1/Λ to be ‘integrated out’ exactly (in a manner that will be made precise

later) while respecting diffeomorphism invariance at all stages, resulting in an effective

action S that incorporates these short-distance fluctuations. S can then be used as an

exact alternative action to describe the dynamics of gravity on distance scales larger than

1/Λ. Even at the classical level such a construct may be important, for example applied

to “cosmological back-reaction” (see e.g. [1–4], and since the transformation is exact may

help settle some recent controversy [5–7]). However our main motivation is that this is a

stepping stone to a fully quantum manifestly diffeomorphism invariant exact RG for use in

quantum gravity. On the one hand the renormalization group structure of quantum grav-

ity is surely of importance [8–11] and on the other hand one would hope that conceptual

and computational advances would result from a framework which allows computations to

be done while keeping exact diffeomorphism invariance at every stage, i.e. without gauge

fixing. Furthermore, as we will see, the framework allows these computations to be done

without first choosing the space-time manifold and in particular without introducing a

separate background metric dependence.

The framework we propose is an adaptation of the methods developed in gauge theo-

ries over a number of years, which allow continuum computations without fixing the gauge.

This is achieved by utilising the freedom to design manifestly gauge invariant versions of the

continuum realisation of Wilson’s renormalization group (christened exact RG in ref. [12]).

Such manifest gauge invariance was first incorporated into the exact RG in ref. [13], however

in the limited context of pure U(1) gauge theory. Following ref. [14] it was generalised and

extensively studied first for SU(N) Yang-Mills theory, then QCD [15] and QED [16, 17].

For these gauge theories, regularisation is based on gauge-invariant higher derivatives sup-

plemented by gauge invariant Pauli-Villars fields [18], which it was later realised could be

simply understood as arising from a spontaneous breakdown of an SU(N |N) super-Yang-

Mills theory [19, 20]. The regularisation structure was separately studied in refs. [21–23]

and proven to work to all orders in perturbation theory. The computational methods were

generalised in refs. [24–28] so that universal results could be extracted in a way which was

manifestly independent of the detailed form of the regularisation structure, and such that

general group invariants could be handled [29]. Using these techniques, the initial computa-

tion of the one-loop β function at infinite N [14] was generalised to finite N [25, 28, 30, 31],

then to two loops [29, 32–35], extended to all loops in refs. [36, 37] and to computation of

gauge invariant operators in refs. [38, 39]. For reviews and further advances see refs. [40–42].

When these ideas are applied to gravity a further advantage of the formalism is im-

mediate. In continuum approaches to quantum gravity, the first step has been to express

the full metric gµν in terms of a background metric ḡµν in a fixed coordinate system (for

example flat ḡµν = δµν) and fluctuations hµν about this, essentially so that a propagator

can be defined for hµν after appropriate gauge fixing. This means that, from the beginning,
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the formulation actually depends on two metrics gµν and ḡµν . Extra conditions are then re-

quired in order to ensure that ultimately results are background-independent. But these can

be difficult to implement exactly and may be too restrictive (for example requiring hµν to be

on shell to obtain background-independence through gauge fixing independence).1 Since, in

the manifestly gauge invariant exact RG, the rôle of the propagator is played by a gauge in-

variant kernel whose form is part of the freedom allowed in designing the Kadanoff blocking,

the problem of inverting a propagator does not arise. As we will see this allows computa-

tions to be done entirely in terms of the full quantum metric gµν . In this way a background

metric ḡµν is never introduced and the issue of background independence thus never arises.

In fact, since the flow equation is designed to ensure that the Wilsonian action remains

quasi-local, i.e. such that the effective Lagrangian can be expanded in powers of space-time

derivatives, we will see that (to any finite order in this expansion) it is not necessary to

make any a priori assumptions about the space-time manifold (beyond its smoothness).

The entire computation can be phrased in terms of manipulations of covariant derivatives.

The resulting Lagrangian can be computed iteratively in terms of (covariant derivatives

of) curvature invariants of increasing dimension, as we will see explicitly in this paper at

the classical level.

Nevertheless, more insight can be gained by organising the result as an expansion in

n-point vertices for fluctuations hµν about a particular background. As an example, we

choose ḡµν = δµν and show that in this way the full momentum dependence of the n-point

vertices can be computed iteratively about this background (i.e. from the already-solved

m < n point vertices). It will be clear that the same Lagrangian is being computed in these

alternative approaches, however we also confirm this through some consistency checks.

When expanded in fluctuations in this way the diffeomorphism invariance is obscured, but

is nevertheless present and verified through exact Ward identities that we also derive.

As we will recall, an infinitessimal step in the flow of the exact RG is just an exact

change of field variables. At the quantum level, the partition function is unchanged by the

exact RG. At the classical level the effective action satisfies the same equations of motion

as the original (bare) action, albeit now in terms of effective field variables.

The current paper is limited to classical computations. If we were to attempt quantum

corrections with the current set-up we would find ultraviolet divergences. A research direc-

tion for furnishing the extra structure necessary to provide full regularisation is described

in section 10.

One aspect of a fully quantum flow is necessarily anticipated in the structure of the

flow equation itself. Yang-Mills theory (in four space-time dimensions) has a well defined

continuum limit given by constructing the theory around the Gaussian fixed point (i.e. with

vanishing Yang-Mills coupling). Therefore the flow equation should be adapted for use

around this fixed point, as was done in our earlier papers. Gravity as described with the

Einstein-Hilbert action is not perturbatively renormalisable as a quantum theory, meaning

in Wilsonian language that Newton’s constant G is irrelevant, and that the continuum

limit results in non-interacting (linearised) gravitons. Nevertheless much can be learned

1From the asymptotic safety literature see for example refs. [43–45].
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from the effective field theory description organised in terms of increasing powers of G ∼
1/M2

Planck [46], therefore in this paper we construct a manifestly diffeomorphism invariant

flow equation that naturally develops such an expansion while allowing for the fact that G

becomes a running coupling in general.

If an asymptotically safe fixed point exists [10, 11, 47] both the classical and quantum

parts of the flow equation would be equally important. Since we keep only the classical

part, it is not entirely clear what the best adapted structure for the flow equation is in this

case. Instead we supply a form of the flow equation adapted to the renormalisable O(∂4)

gravity as developed in refs. [8, 9], which has problems with unitarity, but which might

reasonably be expected to be a closer classical analogue.

The paper is structured as follows. In the next section we review the elements of the

construction of manifestly gauge invariant flow equations that we will need, and then in

section 3 adapt these to the construction of a diffeomorphism invariant and background-

independent flow equation for gravity. We see that as well as introducing the differentiated

“effective propagator” ∆̇(−∇2) part of the kernel, which we choose to take the simple

covariantisation indicated, we need to introduce two trace structures and a corresponding

DeWitt parameter j. We point out the special cases associated with conformally reduced

gravity and unimodular gravity. In section 3.1 we use dimensional analysis firstly in D

dimensions for further insight into why the (now dimensionful) gauge coupling g appears

as discussed in section 2.3. We then adapt this to discuss the rôle of Newton’s coupling

(and the cosmological constant) in the gravity case and their relation to couplings in the

effective action. We also provide a first discussion of the two schemes: the Weyl scheme

and the Einstein scheme, and constrain the form of ∆ in these two schemes. This in turn

leads us to introducing classical Lagrangians with dimension ` = 4 and 2 respectively.

In section 4 we describe in general terms how the classical effective action can then be

computed iteratively as an expansion in local diffeomorphism invariant scalar operators

Od. In sections 4.1 and 4.2 we then apply this to the computation of the fixed point

effective action and determination of the seed action in the Weyl and Einstein schemes.

In both schemes renormalisation conditions are required to define them precisely; these fix

certain couplings. In sections 4.1.1 and 4.2 we also point out the relevant operators at the

classical level, and compute the exact classical flow equations for these. The seed action is

determined by the requirement that it and the fixed point effective action have the same

two-point vertex when expanded around a flat background. This also determines the form

of the kernel and fixes the value of j (up to a further discrete choice in the Einstein case). In

section 5 we introduce the expansion around flat background, which means that the actions

are best expressed in terms of n-point vertices in momentum space. Exact diffeomorphism

invariance still governs the equations but through exact Ward identities, which we derive for

the action in section 6.1 and for the kernel in 6.2. We provide a consistency check on these

equations in section 6.3, and in section 7 demonstrate how to compute the n-point kernel

vertices. In section 6.1 we also derive the differential Ward identities to demonstrate that

the classical effective action can be computed iteratively in terms of increasingly higher

n-point vertices, and to demonstrate that the two-point vertex splits into a momentum

independent cosmological constant part (with support by the expansion in appendix A)
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and a transverse part. In section 8 we provide the linearly independent transverse two-point

momentum structures, and finally these are put to use in section 9 to compute the form

of the classical fixed-point two-point vertices in the two schemes, thus finally determining

also the effective propagator and the simplest form for the seed action in the two schemes.

Section 10 further discusses the construction, in particular where there are choices and

where there are not (with support from appendix B), and outlines a possible route to a

fully quantum manifestly diffeomorphism invariant exact RG.

2 Mini review of manifestly gauge invariant exact RGs

In this section we review the main ideas that we will need to adapt for construction of a

manifestly diffeomorphism invariant exact RG.

2.1 Kadanoff blockings

We begin the derivation of the exact RG with a Kadanoff blocking procedure [48]. Kadanoff

blockings are averaging schemes used to infer the macroscopic behaviour of a system from

its microscopic physics. The original formulation envisages a large lattice of spins. The

method assumes that correlations between spins can be completely attributed to interac-

tions between close neighbours. This notion of locality is an essential feature of the scheme.

The blocking scheme groups lattice sites into blocks, with each block averaged to

a single spin state. In general, these spins have different interaction strengths with their

neighbours than the original, microscopic spins do with theirs. There are an infinite number

of different Kadanoff blockings, and so in turn there are an infinite number of different

Wilsonian RGs [49].

Adapting the method from statistical mechanics to field theory requires a continuum

definition of Kadanoff blockings for continuous fields [50, 51]. Instead of averaging blocks

of spins, one integrates out momentum modes down to some smooth cutoff set by some

Lorentz invariant momentum scale, Λ [12, 52, 53]. Actually, an immediate requirement

to maintain a notion of locality is that the metric should be rotated into a Euclidean

signature. This is because light-like separations in a Lorentzian metric can have arbitrarily

large coordinate separations for a zero invariant interval.

Consider an effective (i.e. macroscopic) scalar field ϕ whose physics is described by an

effective action S[ϕ]. Given a bare (i.e. microscopic) field ϕ0 and a bare action Sbare[ϕ0],

the standard definition for a Kadanoff blocking is via

e−S[ϕ] =

∫
Dϕ0 δ [ϕ− b [ϕ0]] e−Sbare[ϕ0]. (2.1)

The blocking functional is, in turn, a scalar field with a position argument. A simple linear

example of a blocking functional in a D-dimensional field theory is

b[ϕ0](x) =

∫
y
B(x− y)ϕ0(y), (2.2)

where B(z) is a kernel that provides a smooth infrared cutoff such that B(z) decays rapidly

towards zero once |z|Λ > 1. This allows us to integrate out the higher momentum modes
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while keeping our effective action as an expansion in local operators. We use a shortened

notation for a D dimensional integral over a set of spatial coordinates, x, such that
∫
x ≡∫

dDx for convenience.

From equation (2.1), we can integrate the effective Boltzmann factor over the effective

field to obtain the partition function. On the right hand side, because of the delta function,

we can integrate out the effective field to get the same partition function we would obtain

using the bare field and the bare action i.e. the partition function is invariant under change

of cutoff scale and the blocking procedure has not changed the physics:

Z =

∫
Dϕ e−S[ϕ] =

∫
Dϕ0 e

−Sbare[ϕ0]. (2.3)

To obtain an exact RG, we differentiate the effective Boltzmann factor with respect to

‘RG time’:

Λ
∂

∂Λ
e−S[ϕ] = −

∫
x

δ

δϕ(x)

∫
Dϕ0 δ [ϕ− b [ϕ0]] Λ

∂b[ϕ0](x)

∂Λ
e−Sbare[ϕ0] (2.4)

In the above equation, the functional integral over the bare field thus yields some function

of x and functional of ϕ, which we write as −Ψ(x)e−S[ϕ], where −Ψ(x) can be thought of

roughly as the rate of change of the blocking functional with respect to RG time. We thus

have:

Λ
∂

∂Λ
e−S[ϕ] =

∫
x

δ

δϕ(x)

(
Ψ(x)e−S[ϕ]

)
, (2.5)

from which we of course obtain

Λ
∂

∂Λ
S =

∫
x

Ψ(x)
δS

δϕ(x)
−
∫
x

δΨ(x)

δϕ(x)
. (2.6)

This is now the general form for constructing an exact RG flow equation for a single

scalar field. Since there are infinitely many blocking functionals, there are infinitely many

possible flow equations that leave the partition function invariant under change of cutoff.

The invariance can now be seen simply by noticing that this form is a total functional

derivative in ϕ, which can be functionally integrated with respect to ϕ to give the rate of

change of partition function, and which is zero for suitably well behaved Boltzmann factor.

Furthermore for later purposes note that the change in the effective action δS induced by

flow from Λ to Λ− δΛ is just the result of the change of field variable ϕ to ϕ−ΨδΛ/Λ, the

δΨ/δϕ term coming from reparametrising the measure in (2.3).

It will be convenient from now on to represent differentiation with respect to RG time

by an over-dot such that, for some function f(Λ), ḟ(Λ) := Λ ∂
∂Λf(Λ). It is also conventional

to introduce the following notation, as used e.g. in refs. [40, 54]:

f ·W · g :=

∫
x
f(x)W

(
−∂2

)
g(x), (2.7)

where W is a (Lorentz invariant) momentum kernel, and as we will see, usually is related

to a term that can be thought of as an effective propagator at a fixed point. As such,

by dimensions it can be written as a dimensionful part depending on −∂2 only, times a

dimensionless function of −∂2/Λ2. (To simplify notation, we will usually leave implicit the

dependence of the kernel and effective action on Λ.)
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2.2 Flow equations for massless scalar fields

We now wish to specialize (2.5) to give us the Polchinski form for the flow equation of a

scalar field [55]. The rate of change of the blocking functional can in this case be expressed

as

Ψ(x) =
1

2

∫
y

∆̇(x, y)
δΣ

δϕ(y)
, (2.8)

where ∆ = c(p2/Λ2)/p2 is indeed the effective propagator, which has been regulated with

an ultraviolet cutoff function, c(p2/Λ2), and Σ is in the form of an action. More specifically,

Σ = S− 2Ŝ, where Ŝ is a functional of fixed form, called the ‘seed action’, and is an action

whose only scale is Λ. There is a great deal of freedom in the choice of the seed action,

without changing the underlying physics. This is part of the freedom of choice of how we

implement Kadanoff blocking. As we will see shortly, the required notion of locality in

this context is implemented by insisting that c(p2/Λ2) has a Taylor expansion to all orders

and that Ŝ similarly has a derivative expansion to all orders, i.e. is quasi-local [18]. As

will become apparent, a useful choice for Ŝ is simply the regularized kinetic term in the

effective action; it is given in position representation by

Ŝ =
1

2
∂µϕ · c−1 · ∂µϕ, (2.9)

where we use the notation introduced in (2.7) and there is an implicit summation over the

index, µ, remembering that the metric has been rotated into Euclidean signature. This

choice of seed action leads us to the Polchinski form of the flow equation. However, we

can add further 3-point and higher corrections to this seed action without altering the

continuum physics [24, 27, 40].

For canonical normalisation of the effective propagator and the kinetic terms (2.9),

we require c(0) = 1. Actually, as we will see, requiring that we can canonically normalise

simultaneously both the kinetic terms and ∆, determines the factor of half in (2.8); saying

it differently the integrated kernel turns out to be normalised as 1/2p2 for small p, which

we then express as 1
2∆ so that ∆ has the canonical normalisation of the propagator. This

observation will be useful later for the gravity flow equation.

Substituting (2.8) into (2.5), we obtain the flow of the action in position representation

with respect to RG time:

Ṡ =
1

2

δS

δϕ
· ∆̇ · δΣ

δϕ
− 1

2

δ

δϕ
· ∆̇ · δΣ

δϕ
. (2.10)

Since ∆̇ = −2c′(p2/Λ2)/Λ2 has a Taylor expansion and Ŝ has a derivative expansion, we

see that an effective action S that is quasi-local to begin with, remains quasi-local under

the flow for any finite RG time [18].

One obtains the flow equations for n-point functions from this by taking n functional

derivatives with respect to ϕ of both sides and taking the ϕ → 0 limit. This can be

illustrated digrammatically as in figure 1, adapted from [40].

In figure 1, n-point functions are represented by solid circles labelled with the name

of the action inside, effective propagators and external legs are represented by solid lines
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Figure 1. Diagrammatic illustration of a generalised flow equation for scalar fields.

coming out of the n-point functions, and the over-dots represent differentiation of individual

actions and propagators with respect to RG time. An advantage in this diagrammatic view

is that it provides an intuitive picture of the flow equation. For example, while the first

term on the right hand side has a classical part, it is clear that the second term has no

classical part, since there is a propagator linked to Σ at both ends, forming a loop. Thus

the tree-level part of the RG flow equation does not require the second term.

Let us now consider the 2-point part of the tree-level flow equation in momentum

representation for a single component scalar field theory invariant under ϕ → −ϕ. Since

this scalar theory has no 1-point functions and both the action and the seed action have

the same 2-point function, the tree-level 2-point flow equation is easily expressed only in

terms of the tree-level 2-point function, denoted here by Sϕϕ,

Ṡϕϕ = −Sϕϕ∆̇Sϕϕ. (2.11)

We see that this is consistent with the choice ∆ = (Sϕϕ)−1 that we already made. Later

we will use such an equation to determine the form of ∆ given the form of the effective

two-point vertex. Since ∆ inverts the 2-point function, it can be identified as the effective

propagator. For massless scalar fields, the classical 2-point function comes purely from the

kinetic term, which is the same in S as in Ŝ. Higher-point modifications to Ŝ do not impact

on the 2-point function at the classical level and indeed do not affect any physics at the

classical or quantum level, as has been checked explicitly in [24, 27]. This is because these

modifications are nothing more than reparametrizations of the field as the high energy

modes are integrated out [49].

Since we are working with dimensionful quantities, a fixed point action is characterised

by the fact that the only scale appearing in it is Λ. To see this, note that if we had

also performed the rescaling step part of the Wilsonian RG by redefining all dimensionful

quantities to be dimensionless, using the appropriate power of Λ, the action would then no

longer contain any functional dependence on Λ. In other words it would indeed be a fixed

point action under evolution in Λ.

By choosing Ŝ to be only the kinetic term as in (2.9), we have enabled a closed solution

S = Ŝ for the fixed point action. According to the standard Wilsonian construction,

the continuum limit is then constructed by adding relevant perturbations to this (see for

example ref. [54]). One then discovers the infamous triviality problem, namely that all

interactions are either irrelevant or marginally irrelevant. However nevertheless it is useful

to work with the effective theory with a marginally irrelevant four-point coupling (the Higgs

sector of the Standard Model being just one example).

– 8 –
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2.3 Application to Yang-Mills theories

Now let us put aside the scalar field ϕ and consider a gauge field Aµ (valued in some Lie

algebra). Manifest gauge invariance requires that the connection can have no wavefunction

renormalization. The gauge field itself inherits this property if the covariant derivative is

defined as:

Dµ := ∂µ − iAµ. (2.12)

To see that we require there to be no wavefunction renormalization, note that the gauge

transformation of the field is

δAµ = [Dµ, ω(x)]. (2.13)

Changing our variable to a renormalized field, ARµ = Z−1/2Aµ, the transformation becomes

δARµ = Z−1/2∂µω − i[ARµ , ω]. (2.14)

Thus gauge invariance is preserved only if we fix Z = 1. This conclusion cannot be made

in the more conventional approach, which fixes a gauge, because ω is replaced by a ghost

field [56–59] thus the second term becomes a composite operator which requires its own

renormalisation. The field strength is Fµν := i[Dµ, Dν ]. The action is written in a form

where the coupling is seen as an overall scaling factor:

S[A](g) =
1

4g2
tr

∫
x
Fµν c

−1

(
−D

2

Λ2

)
Fµν +O(A3) + · · · (2.15)

We have organised the expansion in terms of the minimum number of fields. Without

loss of generality, we can write the higher-covariant derivative terms in the O(A2) term as

above, defining what we mean by the cutoff profile c. Note that quasi-locality then requires

that c is Taylor expandable and c(0) 6= 0. In fact it is natural to insist c(0) = 1 again,

this time as the renormalisation condition to define g. The g expansion is covered in more

detail in the literature highlighted in the introduction, and it and the analogous issues for

gravity will be also be discussed in more detail later in sections 3.1 and 4.2. Notice also

that, like in massless scalar field theory, only the regularized kinetic term then contributes

to the 2-point function. The effective action can be expanded out loopwise as

S =
1

g2
S0 + S1 + g2S2 + · · · (2.16)

where Si is the contribution at the i-loop level and the factors of g2 also count powers of

~. Similarly, the β functions can be written as the following loopwise expansion:

β := Λ∂Λg = β1g
3 + β2g

5 + · · · (2.17)

We wish to ensure that our flow equation is gauge invariant, but this property would

be broken by the kernel, ∆̇(−∂2). To restore gauge invariance, we need to covariantize the

kernel. There are an infinite number of ways to do this, but a simple method is to replace

the partial derivatives with covariant derivatives, modifying the kernel to ∆̇(−D2). For

some choice of covariantization, we can write a gauge invariant flow equation as

Ṡ =
1

2

δS

δAµ
· {∆̇} · δΣg

δAµ
− 1

2

δ

δAµ
· {∆̇} · δΣg

δAµ
. (2.18)
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Figure 2. Diagrammatic illustration of a gauge invariant flow equation for gauge fields.

where we use the notation in (2.7), except that the braces indicate some fixed choice for

how to covariantize the kernel, and as a consequence of scaling out the coupling as in (2.15),

we now have Σ replaced by

Σg = g2S − 2Ŝ . (2.19)

Covariantizing the kernel has introduced a series expansion in the field into the kernel and

thus the kernel has non-zero functional derivatives with respect to the field. Diagrammati-

cally, this means that the kernel can now have external legs. This property is now important

when calculating the n-point functions of Ṡ. This can be illustrated digrammatically as in

figure 2, adapted from [40].

Again, the classical level only uses the first term in (2.18), which corresponds to the first

diagram on the right hand side of figure 2. Since g2 now also counts ~, equivalently it can be

obtained by taking the g → 0 limit. At the risk of causing some confusion, we now drop the

subscript 0 on the classical action, thus returning to Σ ≡ S − 2Ŝ notation as in the scalar

case, but retain only the first term in (2.18). As before, we set the 2-point part of Ŝ equal to

the 2-point part of S at the classical level. It can be written in momentum representation as

SAAµν = (δµνp
2 − pµpν) c−1

(
p2

Λ2

)
. (2.20)

Gauge invariance and Poincaré invariance are sufficient to force the 2-point function to

take this form, which is transverse. The flow equation now reads

ṠAAµν = −SAAµα ∆̇SAAαν . (2.21)

Knowing that SAAµα S
AA
αν = (p2c−1)SAAµν , the solution can be taken to be ∆ = c/p2, as with

massless scalar field theory (with the normalisation assured by the overall factor of 1/2

in (2.18)). Unlike in scalar field theory, the gauge invariance prevents ∆ from inverting the

2-point function, thus it is no longer a true effective propagator, but rather it satisfies the

condition that

∆SAAµν = δµν − pµpν/p2. (2.22)

Instead of having unity on the right hand side, we have the transverse projector.

Equating the two-point vertices of S and Ŝ at the classical level in a theory with no

1-point functions also has the benefit that Ṡ can be determined at the classical n-point

level entirely in terms of (n−1)-point and lower functions from S, given some Ŝ that one is

essentially free to choose [40]. This happens because all contributions to the n-point part

of Ṡ from n-point functions in S are cancelled in the classical flow equation.

As remarked in the scalar case, the continuum limit (and thus the quantum field

theory) needs now to be constructed by adding relevant perturbations to the fixed point
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action. As is well known, the coupling g will turn out to be marginally relevant (otherwise

known as asymptotically free) and is the only relevant direction. The fixed point action is

given by the formal g → 0 limit of (2.16), i.e. effectively by S0 (now renamed S). Unlike

in the scalar case, there is no closed solution for this fixed point action however. It has

an infinite number of vertices. Since we are free to choose the seed action we can at least

insist it takes a closed form, for example:

Ŝ[A] =
1

4
tr

∫
x
Fµν c

−1

(
−D

2

Λ2

)
Fµν . (2.23)

3 Background-independent gravity flow equation

We adopt sign conventions such that the Ricci tensor Rµν = Rαµαν and

Rµνρσ = 2 ∂[ρΓ
µ
σ]ν + 2 Γµλ[ρΓ

λ
σ]ν , (3.1)

where the Levi-Civita connection is defined in the usual way:

Γµνρ =
1

2
gµα(∂νgρα + ∂ρgνα − ∂αgνρ) . (3.2)

To maintain quasi-locality, we Wick rotate such that the metric, gµν , has Euclidean signa-

ture. In analogy to the manifestly gauge invariant exact RG for Yang-Mills, we now wish to

construct a manifestly diffeomorphism invariant exact RG for gravity. Manifest diffeomor-

phism invariance gives us the opportunity for studying two formalisms: one that maintains

a strict background independence and one that defines our metric as a given background

ḡµν plus a perturbation hµν . The latter formalism has had to be used for continuum studies

in quantum gravity, since gauge-fixing requires a fixed background (and coordinates). The

typical choice is ḡµν = δµν , which we will also use. In fact for a diffeomorphism invariant

exact RG, the two formalisms are straightforwardly related, as we will see. In this section

and in section 4, we will outline the background-independent formalism and then develop

the fixed-background formalism from section 5 onwards.

We begin the manifestly diffeomorphism exact RG by defining a Kadanoff blocking

functional, bµν [g0](x), which is itself a covariant tensor field, via the Boltzmann factor:

e−S[g] =

∫
Dg0 δ [g − b [g0]] e−Sbare[g0], (3.3)

where g0µν is the bare metric.2 This is directly analogous to equation (2.1). As with scalar

and gauge theories, cf. eq. (2.3), the partition function is invariant under change of cutoff.

We obtain the exact RG flow equation as done in (2.4) by differentiating the Boltzmann

factor with respect to RG time:

Λ
∂

∂Λ
e−S[g] = −

∫
x

δ

δgµν(x)

∫
Dg0 δ [g − b [g0]] Λ

∂bµν(x)

∂Λ
e−Sbare[g0], (3.4)

2We suppress tensor indices inside functional arguments and in the functional integral for notational

convenience.
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In analogy with equation (2.5), we thus obtain a general exact RG for gravity in terms of

the rate of change of blocking functional, Ψµν(x):

Λ
∂

∂Λ
e−S[g] =

∫
x

δ

δgµν(x)

(
Ψµν(x)e−S[g]

)
. (3.5)

To achieve a form of exact RG flow equation applicable to gravity, analogous to (2.8), we

now specify the form of Ψµν :

Ψµν(x) =
1

2

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
, (3.6)

where as in the scalar and gauge field cases, we anticipate the need for a factor 1/2 to

allow canonical normalisation, and where the kernel, Kµνρσ(x, y), is a covariant bitensor

which can be chosen to be symmetric. The µ and ν indices of Kµνρσ are associated with

the position argument x and the ρ and σ indices are associated with the position argument

y. Just as in the scalar or gauge theory cases, we set Σ = S − 2Ŝ, where Ŝ is the “seed

action” that we are essentially free to choose, whose only length scale is Λ. This gives us

an adaptation of the Polchinski flow equation, which we had in (2.10) for a pure scalar

theory and (2.18) for a pure gauge theory, that now applies to gravity:

Ṡ =
1

2

∫
x

δS

δgµν(x)

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
− 1

2

∫
x

δ

δgµν(x)

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
. (3.7)

As is the case with scalar and gauge theories, the second term has no tree-level part. We

will be focussing on the tree-level, so we will mostly neglect this term from here on.

As we noted in the introduction and below (2.5), the full exact RG flow just induces

an exact reparametrisation of the effective action, as is again clear from (3.5). The phys-

ical equivalence of the effective action at different scales Λ is then clear. Since we will be

focussing on the classical evolution only, it is worth pointing out that it is also straightfor-

ward to see the equivalence directly at the classical level. Indeed, keeping only the classical

part of (3.7) means, by (3.6), that

Ṡ =

∫
x

Ψµν(x)
δS

δgµν(x)
, (3.8)

in other words

SΛ−δΛ[gµν ] = SΛ[gµν −Ψµν δΛ/Λ] . (3.9)

Let us also for convenience in what follows express Kµνρσ(x, y), as a covariant derivative

operator acting on a space-time delta function, δ(x− y), allowing the integral over y to be

done trivially. One respect in which gravity differs from scalar and gauge theories is that

we have two possible index structures for the flow equation. Let us illustrate this with just

the classical component of (3.7), recognising that this in turn defines the kernel Kµνρσ and

thus also the quantum part of (3.7). First, we have the “cross-contracted” form:

Ṡ|c.c. =
1

2

∫
x

δS

δgµν

gµ(ρgσ)ν√
g

∆̇(−∇2)
δΣ

δgρσ
. (3.10)
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Next we have the “two-traces” form:3

Ṡ|t.t. =
1

2

∫
x

δS

δgµν

gµνgρσ√
g

∆̇(−∇2)
δΣ

δgρσ
. (3.11)

In general, we expect that the full flow equation is a linear combination of both index

structures:

Ṡ = Ṡ|c.c. + jṠ|t.t., (3.12)

where j is a dimensionless parameter. In other words the kernel is set to

Kµνρσ(x, y) =
1
√
g
δ(x− y)

(
gµ(ρgσ)ν + jgµνgρσ

)
∆̇(−∇2) (3.13)

(where ∇2 acts on the y dependence to the right). Note that we need only one parameter

here since we can absorb an overall factor into ∆̇. The remaining parameter, j, thus

distinguishes different ways of integrating out the metric. It appears for the same reason

as in the DeWitt supermetric [60], where it is part of the apparent freedom in choice of

quantization, however we will see that in the present context the other constraints we place

on the form of the flow equation will determine its value.

To see how the value of j affects the balance of modes propagating in the flow equation,

let us briefly consider two special cases. Firstly, a value of j →∞ corresponds to only the

conformal mode propagating in the RG flow.4 Secondly, a value of j = −1/D allows only

traceless fluctuations to propagate in the RG flow.

To see why j →∞ only carries the conformal mode in the RG flow, let us rewrite the

metric to bring a scale factor, eσ, outside of a fixed-scale metric, g̃µν :

gµν = g̃µνe
σ. (3.14)

We now see that
δS

δσ
= gµν

δS

δgµν
. (3.15)

This tells us that, if we only use the two-traces structure, then only the conformal mode

propagates in the flow equation. Therefore this limit for the flow equation is the so-called

conformal truncation, or conformally reduced gravity model [45, 61–64].

Conversely, since any symmetric two-tensor can be split uniquely into its trace and

trace-free part:

T ρσ = gρσT/D + T ρσtrace−free , (3.16)

and since (
gµ(ρgσ)ν + jgµνgσρ

)
gρσ = gµν(1 + jD) , (3.17)

the pure trace part of any variation is excluded from the flow for j = −1/D. This choice

therefore decouples the cosmological constant from the flow equation at the classical level,

leaving it as a pure integration constant that does not mix with other scales. Therefore this

3The 1/
√
g is required in order to ensure an overall density of weight −1. The metric factors commute

with the covariant derivatives and thus with the kernel ∆̇, so can be placed anywhere in these expressions.
4By renormalising ∆̇ this corresponds to dropping the cross-contracted piece.
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limit for the flow equation is related to unimodular gravity [65–68]. We will not discuss

these special cases further.

Finally, it will be helpful to note that the flow equation at the classical level, (3.12),

can be written compactly as [14]

Ṡ = −a0[S,Σ] , (3.18)

where a0 is symmetric bilinear. Writing S =
∫
x

√
gL, where the Lagrangian density L is a

scalar (and likewise relate Ŝ to L̂), we can alternatively write this as a symmetric bilinear

map between Lagrangians:

L̇ = −a0[L,L − 2L̂] . (3.19)

3.1 Dimensional analysis

Further insight into the gravity flow equation can be gained from dimensional analysis (us-

ing the usual so-called engineering dimensions). First consider the scalar case. The (mass)

dimension of a scalar field is (D−2)/2, from (2.9) for example. Since the action must be di-

mensionless, ∆̇ expressed as a differential operator (or in momentum space) then has dimen-

sion −2, from (2.10) for example, consistent with regarding ∆ as an effective propagator.

Next, consider the gauge theory case. Expressing the covariant derivative as Dµ =

∂µ − igAµ, in the way appropriate for perturbative quantum field theory with canonically

normalised kinetic term, the dimensional assignments in D space-time dimensions are the

same. However expressing the covariant derivative as (2.12) already leads to a difference

outside D = 4 dimensions, which as we will see is instructive to understand. Now the gauge

field must always have dimension 1 and thus to keep the action dimensionless we recover

from (2.15) that [g2] = 4 −D. If we tried to use the definition Σ = S − 2Ŝ that we used

in scalar field theory, we would have to have [∆] = 2 −D to balance dimensions in (2.18).

This is actually consistent with regarding ∆ as an effective propagator since indeed g2c/p2

has this dimension, the factor of g2 coming from the non-canonical normalisation of the

kinetic term in (2.15). Once g runs with Λ however the flow equation will no longer be

consistent because ∆̇ then has a 1/p2 pole so is no longer quasi-local. This is a problem

because the non-locality will in turn be inherited by solutions S for the Wilsonian action.

The change in definition of Σ to Σg, as in (2.19), not only ensures a sensible gauge invariant

perturbative expansion but also makes [Σg] = 4−D (and [Ŝ] = 4−D consistent with the

fact that it does not contain g), and thus from (2.18) allows [∆̇] = −2 consistent with it

playing the rôle of a canonically normalised effective propagator, and ensuring that the

flow equation remains quasi-local.

Finally let us return to the gravity flow equation. Since [gµν ] = 0, and the actions are

dimensionless, the putative “effective propagator” in (3.10) and (3.11) has dimension

[∆] = −D . (3.20)

Again, this is to be expected. In D = 4 dimensions we see that the effective propagator

will have to take the form

∆(p2) =
c(p2/Λ2)

p4
, (3.21)
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for some function c, at a fixed point, recovering the fact that classically this will involve

a four-derivative R2-type action around the Gaussian fixed point (a.k.a. free gravitons).

Perturbative quantum gravity based on such an action can be renormalisable and asymptot-

ically free but suffers from problems with unitarity [8, 9, 69]. In order to implement univer-

sality as widely as possible we want to avoid having to restrict the form of the cutoff profile

function c(p2/Λ2) beyond normalisation c(0) = 1, smoothness (that is being infinitely dif-

ferentiable) and the requirements that will eventually be placed on its asymptotic behaviour

to ensure UV finiteness of the flow equation at the quantum level. In this case, for ∆̇ to re-

main quasi-local however, we will need to restrict the cutoff profile to satisfy c′(0) = 0. We

will pursue this solution for the flow equation in section 4.1. Since it can be arranged that

there is one asymptotically free coupling λW which is proportional to the inverse coefficient

of the square of the Weyl curvature (and another coupling ω → ω∗ ≈ −0.0228 in the Λ→∞
limit) [69–72] we will refer to this approach to the flow equation as the “Weyl scheme”.

(The running of these couplings follow from logarithmic UV divergences and thus can be

expected to be universal, independent of regularisation and renormalisation scheme.)

If the Lagrangian contains the Einstein-Hilbert term −R/(16πG) then Newton’s con-

stant has dimension [G] = 2 −D. If we want the effective propagator to be derived from

this term, it will now be ∆ ∼ Gc/p2, and indeed again has dimension −D. Once G runs

with Λ however, such a term is once more unacceptable. Again this problem is avoided

by redefining Σ, this time to Σ = 4S/M2 − 2Ŝ where M is the reduced Planck mass:

M2 = 1/(8πG), and allowing

∆(p2) =
c(p2/Λ2)

p2
, (3.22)

corresponding to a canonically normalised kinetic term. The classical limit corresponds to

M →∞ such that we retain only S = M2S0/4 in the expansion (4.28), and again we then

relabel S0 as S. Again this corresponds to building the theory around the Gaussian fixed

point (for canonically normalised kinetic term, in the limit M → ∞, it again describes

free gravitons), however this time with the irrelevant perturbation, parametrized by G =

1/(8πM2), built in. Note that the actions however then have mass dimension [S0] = [Ŝ] =

−2. We will refer to this form of flow equation as the “Einstein scheme” and give more

detail on this in section 4.2.

Either way at the classical level the flow equation will reduce to (3.18), i.e. (3.12),

where the individual terms are defined in (3.10) and (3.11). From here on, we will exclu-

sively consider space-time dimension D = 4. Since the classical action can be dimensionless

or dimension -2 depending on whether we use the Weyl or Einstein scheme, the dimension

of the Lagrangians is respectively [L] = [L̂] = ` = 4 or 2.

4 Background-independent expansion of the effective action

In the background-independent computation, L (and likewise L̂) can be organised by ex-

panding in a basis of local diffeomorphism invariant scalar operators Od of increasing even
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engineering mass dimension d = 2i:

L =

∞∑
i=0

∑
αi

g2i,αi O2i,αi , (4.1)

where the operators contain only the metric and space-time derivatives,5 and the αi are

extra labels which we usually suppress, but which are needed when there is more than one

operator of the given dimension. The couplings gd are therefore of dimension `− d.

Note that since the metric has dimension zero, the operator dimension just counts the

number of space-time derivatives required to construct it. Thus the lowest dimension opera-

tor is just the unit-operator, O0 = 1, whose associated coupling g0(Λ) we can loosely regard

as associated to the effective cosmological constant. (In general this coupling runs with

Λ. It therefore does not correspond to the cosmological constant λC until the functional

integral is completed by sending Λ→ 0. Furthermore since the coefficient of
√
g is actually

λC/(8πG), in the Weyl scheme we must still also compute the effective Planck mass, then

finally λC = g0(0)/M2.) The next higher dimension operator is O2 = −2R. We include

the minus sign gained through Wick rotation from Minkowski signature and the factor two

for canonical normalisation of the graviton kinetic term. In the Weyl scheme its coupling

g2 will provide the effective Newton coupling or Planck mass in the limit Λ → 0, through

g2 = 1/(32πG) = M2/4. In the Einstein scheme we already have a (running) reduced

Planck mass M but which we so far have not defined precisely. To do this a natural refine-

ment of the scheme is to define M2(Λ) to be the coefficient of −R/2 at cutoff-scale Λ.6 Thus

in the Einstein scheme, recalling that we have defined the classical part of the action by S =

M2S0/4, defining M in this way, we impose that g2 = 1. At dimension 4, there are two lin-

early independent operators which may be taken to be O4,1 = R2 and O4,2 = RµνRµν .7 At

dimension 6, for the first time we have operators with explicit covariant derivatives appear-

ing (for example R∇2R), and also for the first time we have operators containing more than

two curvature factors that thus do not contribute to the two-point vertex (for example R3).

Given the quasi-local form of the flow equation, whatever quasi-local form we choose

for Ŝ, we can solve for the general form of the classical action iteratively, starting from the

lowest dimension operators.

Let us illustrate this with the specific forms (3.10) and (3.11).8 In this case the re-

quirement of quasi-locality enforces that the kernel inserts a Taylor series in ∇2:

∆̇(−∇2) =
∞∑
k=0

1

k!
∆̇(k)(0)

(
−∇2

)k
, (4.2)

5N.B. we use position space, since a momentum space only makes sense in a translation invariant

background.
6For further discussion of schemes in Wilsonian, and also holographic contexts, see ref. [73].
7Since we tacitly assume a space with no boundary throughout the paper, the third possibility

RµνρσR
µνρσ is linearly related to the other two up to the generalized Gauss-Bonnet topological invari-

ant (in D = 4 dimensions) which thus decouples from the other terms in the flow equation. We will not

consider it further in this paper.
8However, we keep the discussion at a general level. In sections 4.1 and 4.2 we will give concrete examples.
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(the coefficients ∆̇(k)(0) depend on the scheme and are examined in more detail in sec-

tions 4.1 and 4.2). We first note that a0[Od,Od′ ] can also be expanded in operators of

definite dimension. Indeed, given that

δ

δgµν

∫
x

√
gOd

is also dimension d, we see that a0 in the flow equation (3.19) has the property that

a0[Od1 ,Od2 ] =

∞∑
k=0

ak0[Od1 ,Od2 ] , (4.3)

where ak0[Od1 ,Od2 ] is a linear combination of operators Od with dimension d = d1 +d2 +2k,

and is proportional to ∆̇(k)(0). Since d, k ≥ 0, a coupling gd can only appear in the flow

of couplings gd′ where d′ ≥ d. Therefore, as claimed, we can solve iteratively for all the

couplings ordered according to the dimension of the associated operator.

In particular, the effective cosmological constant g0 obeys a closed equation:

ġ0 = g0(2ĝ0 − g0) a0
0[1, 1] , (4.4)

which is readily solved. (a0
0[1, 1] ∝ ∆̇(0) is just a number times a power of Λ.) Plugging

g0(Λ) into the flow of g2:

ġ2 = 2(g0ĝ2 + ĝ0g2 − g0g2)
a0

0[O2, 1]

O2
, (4.5)

allows this to be solved, yielding g2(Λ). (Note that the final term again is proportional to

∆̇(0) and is a number times a power of Λ.) Note the dimension-two term ∝ a2
0[1, 1] which

would have been a priori expected, vanishes. In fact

ak0[Od, 1] = 0 ∀k > 0 , (4.6)

since ∇µgαβ = 0. Armed with g0 and g2, the two couplings g4,1 and g4,2 can now be solved

for etc.

As we will see now, the seed action couplings ĝd are subject to some constraints, which

turn out to be sufficient to determine the ĝd,αd (up to a binary decision in the Weyl scheme)

for all d ≤ 4.

As remarked at the end of section 2.2, we want to be able to construct a fixed point

action S and then flow out of this to form the continuum limit (or in the effective field

theory context flow into this to form an approximate description valid at energies less than

the Planck mass). This is only possible if the seed action contains no scale apart from Λ.

Therefore by dimensions ĝd ∝ Λ`−d where the coefficients are pure numbers.

For convenience we impose that when expanded around a flat background, the Ŝ and S

two-point vertices are equal at the fixed point. Thus the fixed point values of the gd,αd are

subject to constraints. For d ≤ 4, this is simply that the fixed point values gd,αd = ĝd,αd .

(For d > 4, this is only true for the operators containing only two curvature factors.) From

the flow equation this imposes further constraints on the ĝd,αd .
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Before turning to the computations in the two different schemes, it is helpful to note

that

a0[Od, 1] = a0
0[Od, 1] =

1

8
(d− 4)(1 + 4j)∆̇(0)Od . (4.7)

To see this, we note that from (3.18), (3.12), (3.10) and (3.11), we have

a0

[
S,

∫
x

√
g

]
= −1

4
(1 + 4j)∆̇(0)

∫
x
gµν

δS

δgµν
. (4.8)

But from (3.15) we know that the last factor just counts powers of gµν . Equations (4.6)

and (4.7) provide explicit values for all the bilinears involving O0.

4.1 Effective action in the Weyl scheme

We start by solving the constraints on the seed action couplings ĝd, and thus through the

flow equation also compute the fixed point action. Since the fixed point values gd = ĝd
for d ≤ 4, and since, in the Weyl scheme, we have ġd = (4 − d)gd, (4.4) and (4.5) already

determine ĝ0 and ĝ2. From (4.4) and (4.7) we find ĝ0 = 0 or ĝ0 = −8/(1 + 4j)∆̇(0). Both

these solutions in (4.5) imply that ĝ2 = 0.

The couplings ĝ4,α are pure numbers that at first sight are undetermined. From (3.19)

and (4.6), the g4,α satisfy at the fixed point:

ġ4,1R
2 + ġ4,2R

µνRµν = 4g2
2a

0
0[R,R] + 2g0g4,1a

0
0[R2, 1] + 2g0g4,2a

0
0[R2

µν , 1] . (4.9)

Since ġ4,α = 0 the left hand side vanishes. One would usually expect this to force con-

straints, however, remarkably, the right hand side vanishes already for any g4,α, as follows

from (4.7) and g2 = 0. Thus so far the fixed point couplings g4,α = ĝ4,α can be any pure

number.

(If the right hand side had not vanished, for example if g2 6= 0, we would have found

ġ4,α = −2r, where r is a non-vanishing pure number. This has been disallowed by the fixed

point condition and quasi-locality. Indeed ġ4,α = −2r would imply g4,α = r ln(µ2/Λ2).

However at a fixed point µ cannot be a separate scale. Neither can µ inherit a scale

from modifying the operators themselves, for example by replacing R2 by R2 ln(R/Λ2) or

R ln(−∇2/Λ2)R, without violating quasi-locality. )

In fact, in order to fully develop the Weyl scheme, we would have to isolate the asymp-

totically free coupling λW and perform an expansion as in (2.16) (again to avoid the

problems with quasi-locality that would follow from ∆ ∝ λW once λW runs with Λ). Then

in order to define λW through the renormalisation scheme we would have to fix the numer-

ical value of g4,2. The normalisation implied by the definition of λW used in refs. [69, 72]

results in g4,2 = 1, however in order to canonically normalise the effective propagator and

kinetic term of the graviton (in section 9.1) we choose a different normalisation and set

instead g4,2 = 2. Following the fixed point analysis in refs. [69, 72] the ratio of the ĝ4,α is

determined by ω∗. In this way both the ĝ4,α are in fact already determined.

Thus the couplings ĝd for d ≤ 4 are all determined up to a binary decision for ĝ0.

Choosing the simplest possibility ĝ0 = 0, we have thus shown that the seed action is given

– 18 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

by

Ŝ = 2

∫
x

√
g
(
RµνR

µν + sR2 + · · ·
)
, (4.10)

where s is a number determined by ω∗ (in fact s = −(1 + ω∗)/3 [69, 72]) and the ellipsis

stands for operators of higher dimension with their associated couplings; those with only

two curvature factors will be needed in order to ensure equality of the two-point vertex

with the (classical) fixed point S when expanded around a flat background.

In fact as we will see in section 9.1, this determines the seed Lagrangian to be

L̂ = 2Rαβ c
−1(−∇2/Λ2)Rαβ + 2sR c−1(−∇2/Λ2)R , (4.11)

where c−1 is the inverted ultraviolet cutoff function. We have the option (by universality)

to include more operators providing they contain at least three curvature factors, however

we stick with this simplest possibility. The classical fixed point Lagrangian L takes the

same form as (4.11) for the quadratic curvature terms, but is complemented by an infinite

series of further operators which include at least three curvature factors.

Plugging (4.10) for the fixed point S and Ŝ back into the flow equation (3.18), equiv-

alently (3.19), we derive

L̇ = 4 a0[RµνR
µν , RαβR

αβ ] + 8s a0[RµνR
µν , R2] + 4s2a0[R2, R2] + · · · , (4.12)

where now the ellipsis stands for terms where a0 contains at least one operator of dimension

d > 4. Thus we see from (4.3), that (4.10) will induce operators Od of dimension d =

8, 10, 12, · · · and in fact uniquely determine the fixed point couplings g8,α8 and g10,α10 .

(The couplings associated to higher dimension operators, starting with g12,α12 , receive

contributions from these d = 4 operators but also contributions from d ≥ 8 operators.)

To calculate these fixed point couplings we use the functional derivatives of the action

terms:

δ

δgµν

∫
x

√
gRαβR

αβ =
√
g

(
1

2
gµνRαβR

αβ − 2RµαR
να

−∇2Rµν − 1

2
gµν∇2R+ 2∇α∇(µRν)α

)
, (4.13)

δ

δgµν

∫
x

√
gR2 =

√
g

(
1

2
gµνR2 − 2RRµν + 2∇µ∇νR− 2gµν∇2R

)
(4.14)

(where we have used the Bianchi identity ∇µRµν = 1
2∇

νR). Thus we find

2a0[RµνR
µν , RαβR

αβ ] =RαβR
αβ∆̇RγδR

γδ − 4RαβR
α
γ∆̇RγδRβδ − 4RαβR

α
γ∆̇∇2Rβγ

+8RαβR
α
γ∆̇∇δ∇βRγδ −∇2Rαβ∆̇∇2Rαβ −∇2R∆̇∇2R (4.15)

+4∇2Rαβ∆̇∇γ∇αRβγ−4∇α∇(βR
α

γ) ∆̇∇δ∇βRγδ−4j∇2R∆̇∇2R ,

2a0[R2, R2] =R2∆̇R2 − 2R2∆̇∇2R− 4RRαβ∆̇RαβR+ 8RRαβ∆̇∇α∇βR
−4∇α∇βR∆̇∇α∇βR− 8∇2R∆̇∇2R− 36j∇2R∆̇∇2R , (4.16)

and

2a0[RµνR
µν , R2] = R2∆̇RαβR

αβ − 4RRαβ∆̇RαγR
βγ − 2RRαβ∆̇∇2Rαβ
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+4RRαβ∆̇∇γ∇αRγβ −∇
2R∆̇RαβR

αβ + 4∇α∇βR∆̇RαγRβγ

+2∇α∇βR∆̇∇2Rαβ − 4∇α∇βR∆̇∇γ∇αRγβ − 3∇2R∆̇∇2R

−12j∇2R∆̇∇2R . (4.17)

These expressions need to be quasi-local since they are part of the Wilsonian flow (4.12).

If we have the “effective propagator” (3.21) discussed in section 3.1, then from

∆̇(p2) = − 2

Λ2p2
c′(p2/Λ2) , (4.18)

we see that we require the cutoff profile to be restricted so that c′(0) = 0 as claimed. Since

only ∆̇ depends on Λ in the above expressions, integrating up (4.12) amounts to replacing

∆̇ by ∫
dΛ

Λ
∆̇(p2) =

c(p2/Λ2)− 1

p4
=

1

p4

∞∑
k=2

c(k)(0)

k!

(
p2

Λ2

)k
, (4.19)

where the integration constant c(0) = 1 is determined by maintenance of quasi-locality. To

compute the couplings of the dimension d = 8 and 10 operators Od, we therefore replace

∆̇ by ∫
dΛ

Λ
∆̇ =

1

2Λ4
c′′(0)− 1

6Λ6
c′′′(0)∇2 +O(∇4) . (4.20)

In order to compare with (4.11), we combine covariant derivatives in the two-curvature

terms in (4.15)–(4.17), recognising that commutators of covariant derivatives yield cur-

vature terms and thus contribute operators containing at least three curvature factors.

Thus we deduce that both L̂ and the fixed point L have the following couplings for their

respective d = 8, 10 operators:9

−{1 + 4j + 4s(2 + 3s)(1 + 3j)}
[

1

Λ4
c′′(0)R

(
−∇2

)2
R+

1

3Λ6
c′′′(0)R

(
−∇2

)3
R

]
− 1

Λ4
c′′(0)Rµν

(
−∇2

)2
Rµν − 1

3Λ6
c′′′(0)Rµν

(
−∇2

)3
Rµν . (4.21)

Since

c−1
(
−∇2/Λ2

)
= 1− 1

2Λ4
c′′(0)

(
−∇2

)2 − 1

6Λ6
c′′′(0)

(
−∇2

)3
+O(∇8) , (4.22)

(recalling that c(0) = 1 and c′(0) = 0), we see that (4.21) agrees with (4.11) already for

the R2
µν terms, and agrees also for the R2 terms providing

1 + 4j + 4s(2 + 3s)(1 + 3j) = s , (4.23)

which determines

j = −1

4

1 + 4s

1 + 3s
. (4.24)

We will see that this constraint indeed arises, in the fixed background computation in

section 9.1. Setting s = −1/3, with j a free parameter, would also have solved (4.23),

however we have fixed s to the value set by ω∗, as below (4.10). The remaining d =

8, 10 operators coming from (4.15)–(4.17) after using (4.20), have at least three factors of

curvature and thus appear in the fixed point S but not in Ŝ.

9The first line combines contributions from all three (4.15)–(4.17). The second line has only one contri-

bution, coming from (4.15).
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4.1.1 Flowing away from the fixed point with dimensionful couplings

Any operator added to S with a coupling containing a dimensionful parameter other than Λ,

will perturb the theory away from the fixed point. At the classical level two such operators

are distinguished, namely O0 = 1 and O2 = −2R, since they are relevant eigenoperators

and thus generate flow away from the fixed point. We already have the corresponding

flow equations in (4.4) and (4.5). Using the fact that the corresponding fixed point and

seed-action couplings vanish, we have for the general flows

ġ0 = α g2
0/Λ

4 , ġ2 = α g0g2/Λ
4 (4.25)

where, using (4.7), (4.24) and (4.18), we compute the dimensionless parameter α =

s c′′(0)/(1+3s). At the linearised level, the couplings g0 and g2 do not flow. Since they have

dimension 4 and 2 respectively the dimensionless couplings g̃0 = g0/Λ
4 and g̃2 = g2/Λ

2

therefore do indeed correspond to relevant directions shooting out from the fixed point.

In the limit Λ → 0, and at the classical level in which we are working, g0 and g2 should

provide the physical cosmological constant, and physical Newton constant or Planck mass,

as already discussed in section 4.

In general, the fact that the fixed point and seed-action couplings coincide for d ≤ 4

means that the flow equation for perturbations in these couplings contains no linear terms

(or equivalently cross-terms between these and the fixed point values). To see this, let ∆L
contain such perturbations away from the fixed point solution, then from (3.19),

2∑
i=0

∑
αi

ġ2i,αi O2i,αi ∈ −a0[L+ ∆L,L+ ∆L − 2L̂]

∈ a0[L,L]− a0[∆L,∆L] . (4.26)

Since at the fixed point ġ4,α = 0, using (4.9) we thus read off the flow for the d = 4

couplings away from the fixed point:

ġ4,1R
2 + ġ4,2R

µνRµν = −4g2
2a

0
0[R,R] = 2∆̇(0) g2

2

(
RµνR

µν + jR2
)
, (4.27)

while from (4.18) we see that ∆̇(0) = −2 c′′(0)/Λ4.

Note that it is straightforward to solve the g0 flow equation in (4.25). Substituting the

result into the flow for g2 allows g2 to be straightforwardly solved for. Substituting g2 into

the above equation then allows us to solve straightforwardly for g4,1 and g4,2. Continuing

in this way we can iteratively construct and solve the flows for operators Od up to any

desired dimension d.

Note that if g2 6= 0 then (4.27) implies in particular that the coupling g4,2 now runs

even at the classical level. In fact as we discussed above (4.10), in a full development of

the Weyl scheme we would set g4,2 = 2, and expand in a power series in the coupling

λW . The running would then be accounted for in a classical contribution to the running

of λW . However inclusion of an Einstein-Hilbert term adds an O(p2) term to the graviton

propagator and therefore it would be more natural to generalise the flow equation to incor-

porate an “effective propagator” of form ∼ 1/(p4 +aM2p2) (where a is some dimensionless

coefficient). We leave this line of investigation for future research.
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4.2 Effective action in the Einstein scheme

As already sketched in section 3.1, in order to build a flow equation adapted to the Einstein-

Hilbert action, we need to scale out Newton’s constant G so that it does not appear in

the “effective propagator” ∆. The action then has the following weak coupling expansion,

similar to (2.16):

S =
1

κ̃
S0 + S1 + κ̃S2 + κ̃2S3 + · · · (4.28)

where κ̃ = 32πG also counts powers of ~, and since κ̃ = 4/M2 it is also an expansion in

1/M2, where M is the reduced Planck mass. Thus again Si is the contribution at the

ith loop level, with S0 being purely classical. The coefficient of O2 = −2R in S is set

at g2 = 1 thus defining precisely what we mean by G(Λ), equivalently M(Λ), but with

the consequence that these run with Λ (in general and certainly at the quantum level).

Therefore the physical values are only assured in the limit Λ → 0. Notice that the actions

Sn thus have mass dimension 2n − 2, and corresponding Lagrangian densities Ln have

mass dimension 2n + 2. The flow equation is still (3.18) but now we set Σ = κ̃S − 2Ŝ.

Therefore Σ and Ŝ have mass dimension -2. Let us briefly also consider the quantum part

of the flow equation (3.7); it is a linear operator a1 acting on Σ, thus the full flow equation

can be written compactly as [14]

Ṡ = −a0[S,Σ] + a1[Σ] . (4.29)

Substituting (4.28) we see that

1

κ̃
Ṡ0 + Ṡ1 + κ̃Ṡ2 + κ̃2Ṡ3 + · · ·+ β

(
− 1

κ̃2
S0 + S2 + 2κ̃S3 + · · ·

)
= −1

κ̃
a0[S0, S0 − 2Ŝ]

−2a0[S0−Ŝ, S1]+a1[S0−2Ŝ]+κ̃
(
−2a0[S0−Ŝ, S2]−a0[S1, S1]+a1[S1]

)
+ · · · . (4.30)

The classical equation is recovered in the limit κ̃ → 0, equivalently the M → ∞ limit,

where we do not expect it to run. Therefore we find for the classical flow

Ṡ0 = −a0[S0, S0 − 2Ŝ] . (4.31)

The quantum corrections at the nth loop level can be consistently separated by equating

coefficients of κ̃n−1. At the same time we see that the beta function must therefore take

the general form

β := Λ∂Λκ̃ = β1Λ2κ̃2 + β2Λ4κ̃3 + · · · . (4.32)

The powers of Λ are included by dimensions so that the βi are dimensionless. In the case

that κ̃ is the only independent dimensionful parameter, the βi will be pure numbers. The

formula (4.32) concurs with perturbative expectations (as can be confirmed by expanding

−√gR/(16πG) about a flat background as in (5.1), normalising the kinetic term by

writing hµν = h̃µν
√
κ̃, and drawing Feynman diagrams). Writing in dimensionless terms

by introducing κ = κ̃Λ2 = 4Λ2/M2, the beta function inherits the expected classical term

reflecting the fact that it is dimensionally an irrelevant coupling:

β(κ) = Λ∂Λκ = 2κ+ β1κ
2 + β2κ

3 + · · · . (4.33)
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Now we again consider only the classical limit. Dropping the subscript 0 on S in (4.31)

we return to the form of the original flow equation (3.18) as promised, with the only

difference being that the actions now have mass dimension -2 (and thus Lagrangian densities

have dimension 2).

As discussed in section 3.1, we can now take the form (3.22) for the “effective propa-

gator”, giving automatically a quasi-local kernel since

∆̇(p2) = − 2

Λ2
c′(p2/Λ2) . (4.34)

We now deduce the form of the couplings gd = ĝd for d ≤ 4. Recall that g2 = 1 is fixed as

a normalisation condition. Thus since we then have ĝ2 = 1, and we maximise universality

by avoiding having to impose ∆̇(0) = 0, we deduce from (4.5), that ĝ0 = 0 (and thus at the

fixed point g0 = 0 also). From (4.3), we see we now have enough information to determine

the couplings g4,α. Indeed,

g4,1R
2 + g4,2R

µνRµν = 4

∫
dΛ

Λ
a0

0[R,R] = −2
c′(0)

Λ2

(
RµνR

µν + jR2
)
, (4.35)

where we have used the last equality in (4.27), and noted by (4.34) that now∫
dΛ

Λ
∆̇(0) =

c′(0)

Λ2
(4.36)

(since dimensionful integration constants are not allowed at the fixed point).

These terms form the beginning of the tower of curvature-squared operators that con-

tribute to the regularised graviton kinetic term when expanded around a fixed background.

In section 9.2, we will see that they continue to appear in the same proportions as in (4.35)

and thus the seed-Lagrangian takes the form:

L̂ = −2R+
2

Λ2
Rµν d(−∇2/Λ2)Rµν +

2

Λ2
jR d(−∇2/Λ2)R . (4.37)

So far, we have shown that d(0) = −c′(0). As before, we have a choice of whether to

include operators containing at least three curvature factors, but take the simplest choice

and exclude them.

In pure gravity, the only relevant perturbation is now O0 = 1, generating a cosmological

constant. From (4.4), (4.7) and (4.34) we obtain for this flow,

ġ0 = −(1 + 4j)
c′(0)

Λ2
g2

0 . (4.38)

Notice that the flow equation (4.5) is still consistent with the normalisation requirement

g2 = 1, since this together with the seed action couplings ensures that ġ2 = 0 even with

g0 6= 0.

5 Gravity flow equation expanded around fixed background

In the fixed-background approach, we define a metric perturbation as the difference between

the metric and a Euclidean background:

hµν(x) := gµν(x)− δµν . (5.1)
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This metric perturbation corresponds to the graviton field. The inverse metric is then an

expansion around a flat background:

gµν(x) = δµν − hµν(x) + hµρ(x)hνρ(x) + · · · . (5.2)

On the right hand side (and from now on) indices are raised and contracted using the

background metric δµν . Although we could continue to use position representation, we will

find it more useful to Fourier transform into a momentum representation:

hµν(x) =

∫
d̄p e−ip·xhµν(p) . (5.3)

where we use the shortened notation that

d̄p :=
dDp

(2π)D
. (5.4)

It is also convenient to define

δ̄(p) := (2π)Dδ(p). (5.5)

The action is now defined as an expansion in n-point vertices

S =

∫
d̄p δ̄(p)Sµν(p)hµν(p) +

1

2

∫
d̄p d̄q δ̄(p+ q)Sµνρσ(p, q)hµν(p)hρσ(q)

+
1

3!

∫
d̄p d̄q d̄r δ̄(p+ q + r)Sµνρσαβ(p, q, r)hµν(p)hρσ(q)hαβ(r) + · · · (5.6)

We do not include a 0-point function because it has no physical significance. Since there

is only one type of 1-point function, which always has zero for its momentum argument, it

is convenient, unless otherwise stated, to write it as

Sµν(0) = Sδµν , (5.7)

where S is a constant. The n-point functions are obtained by functional differentiation:

Sα1β1···αnβn(p1, · · · , pn) =
δ

δhα1β1(p1)
· · · δ

δhαnβn(pn)
S
∣∣∣
h=0

. (5.8)

The n-point functions are symmetric under exchange of pairs of indices and the associated

momentum arguments together, and under exchange of the indices within a pair. We can

re-express the flow equation (3.10), (3.11) and (3.12), which uses the kernel given in (3.13),

in fixed-background form by noting that

δ

δgµν(x)
=

δ

δhµν(x)
. (5.9)

Fourier transformed into the momentum representation, the flow equation becomes

Ṡ =
1

2

∫
d̄q d̄r

δS

δhµν(−q)
Kµνρσ(q, r)

δΣ

δhρσ(−r)
. (5.10)
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where S, Σ and K are all separately momentum conserving. One then obtains the flow

equations at the n-point level by functionally differentiating n times, then setting hαβ = 0.

Not only the actions, S and Σ, but also the kernel, K, consist of an infinite expansion

in metric perturbations, in a spirit similar to (5.6). The n-point structure of the kernel

differs from that of the actions since there are n+2 momentum arguments for each n-point

function. Also, the kernel n-point expansion begins with n = 0 rather than n = 1.

Expanding the flow equation in powers of hαβ thus gives a diagrammatic form that

looks exactly like that of figure 2, the only difference being that the action terms now

generically have one-point vertices, as we noted above. At first sight, that means that the

classical flow of n-point functions is no longer closed but rather receives a contribution

from a one-point vertex (tadpole) attached to an (n+1)-point vertex. This is actually not

the case, since such an (n+1)-point vertex has a zero momentum argument and can thus

be related back to n-point vertices via differential Ward identities as we show in the next

section. In fact, a one-point vertex can only arise from a cosmological constant (i.e. O0)

term as we will also demonstrate explicitly in the next section, and we have already seen in

the background-independent computation, namely (4.7), that attaching such a term just

multiplies the other operator Od by a d-dependent factor.

Thus the classical n-point vertices can be solved for iteratively, i.e. once the (m<n)-

point vertices have been determined.

6 Ward identities

The diffeomorphism invariance of the action allows us to relate the (n+1)-point functions

of the action to their respective n-point functions via Ward identities. Since the kernel

is a diffeomorphism covariant bitensor, it is also possible to derive Ward identities for it

separately. The Ward identities for Ṡ in the flow equation can then be consistently derived

either using the usual Ward identity for an action or by the more laborious method of

using the Ward identities of S, Σ and K separately in the flow equation. We have verified

explicitly that the results are the same, providing a non-trivial consistency check on our

derivations. In section 6.3 we give an example of such a consistency check.

6.1 Ward identities for an action

The variation under diffeomorphisms of the metric perturbation is given by the Lie deriva-

tive of the total metric:

δhαβ = £ξ (δ + h)αβ = 2(δ + h)λ(α∂β)ξ
λ + ξ · ∂hαβ . (6.1)

Writing this in momentum space and requiring the variation in the total action (5.6) to be

zero gives us the action Ward identities:

−2p1µ1Sµ1ν1···µnνn(p1, · · · , pn) =
n∑
i=2

π2i

{
pν12 S

µ2ν2···µnνn(p1 + p2, p3, · · · , pn) (6.2)

+2p1αδ
ν1(ν2Sµ2)αµ3ν3···µnνn(p1 + p2, p3, · · · , pn)

}
,

– 25 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

where π2i is the transposition operator effecting the substitution p2, µ2, ν2 ↔ pi, µiνi, and

momentum conservation p1 + · · ·+ pn = 0 is assumed. The 2-point Ward identity is thus

2pµSµνρσ(p,−p) = Spµδµνδρσ − 2Spµδµ(ρδσ)ν , (6.3)

which is only non-zero if the 1-point function, which is momentum-independent, is non-zero.

The 2-point function can thus be split into a transverse momentum-dependent part

and a non-transverse momentum-independent part. Here we determine the form of the

momentum-independent part by solving the Ward identities, and confirm that they re-

produce the cosmological constant part of the action. In sections 8 and 9 we can thus

concentrate on transverse two-point functions.

To extract the momentum-independent part of the Ward identity, we first compute

the differential Ward identity, for example by putting n 7→ n+ 1 in (6.2) and choosing the

momenta to be ε, p1 − ε, p2, · · · , pn. It is easy to see that in the limit ε → 0, both sides

of (6.2) vanish. The O(ε) piece then gives:

−2Sαβµ1ν1···µnνn(0, p1, · · · , pn) =

(
n∑
i=1

pβi ∂
α
i − δαβ

)
Sµ1ν1···µnνn(p1, · · · , pn)

+2

n∑
i=1

π1i δ
β(ν1Sµ1)αµ2ν2···µnνn(p1, · · · , pn) , (6.4)

(where in this context, ∂αi denotes differentiation with respect to piα). Thus, as we claimed

at the end of the last section, a vertex with a zero momentum argument is related to

vertices with one less leg through the differential Ward identity.

In fact the tadpole term will involve contraction of α and β through the attachment

of (5.7). Then the above equation simply becomes:

S αµ1ν1···µnνn
α (0, p1, · · · , pn) =

(
2− n− 1

2

n∑
i=1

pi · ∂i

)
Sµ1ν1···µnνn(p1, · · · , pn) . (6.5)

The differential operator just counts momentum, in the sense that, if we Taylor expand

the n-point vertex, the differential operator counts the overall power d of momentum in

any given term, i.e. the dimension of the associated operator Od. Thus we recognise that

the operator is simply multiplied by a factor involving (d − 4) as in (4.7). (Matching the

n dependence requires also the m-point vertices from
√
gO0 and the kernel.)

To extract the momentum-independent part of the Ward identity, we just set all mo-

menta to zero in (6.4):

2Sµ1ν1···µnνn(0) = δµ1ν1Sµ2ν2···µnνn(0)− 2
n∑
i=2

π2i δ
ν1(ν2Sµ2)µ1µ3ν3···µnνn(0) . (6.6)

These momentum-independent Ward identities allow us to derive the unique form of the

zero-momentum part of the action, starting from the 1-point function. Thus we find the

2-point function at zero momentum is found to be

2Sµνρσ(0, 0) = Sδµνδρσ − 2Sδµ(ρδσ)ν . (6.7)
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The momentum-independent 3-point function can be written as

2Sµνρσαβ(0, 0, 0) = 2Sδ(α|(µδν)(ρδσ)|β)−Sδµνδρ(αδβ)σ−2S(µ|αρσ(0, 0)δβ|ν) +Sµνρσ(0, 0)δαβ .

(6.8)

This can then be iterated to any desired n-point level. These structures correspond to the

n-point structure of
√
g by itself (see appendix A), the cosmological constant part of the

action.

6.2 Ward identities for a kernel

The same principle applies to the kernel, except that the kernel is not diffeomorphism

invariant, but rather a covariant bitensor, Kµνρσ(x, y). The Lie derivative for the kernel is

therefore

£ξKµνρσ(x, y) = ξ(x) · ∂xKµνρσ(x, y) + ξ(y) · ∂yKµνρσ(x, y)

+2Kλ(µ|ρσ(x, y)∂x|ν)ξ
λ(x) + 2Kµνλ(ρ|(x, y)∂y|σ)ξ

λ(y) . (6.9)

The two position coordinates are Fourier transformed separately into momentum space:

Kµνρσ(x, y) =

∫
d̄q d̄r e−iq·x−ir·yKµνρσ(q, r). (6.10)

The kernel is itself an expansion in metric perturbations subject to momentum conserva-

tion:

Kµνρσ(q, r) = Kµνρσ(q, r) +

∫
d̄p1 δ̄(p1 + q + r)Kα1β1

µνρσ(p1, q, r)hα1β1(p1) + · · · (6.11)

The Ward identities for the kernel then follow in the same way as the Ward identities for

the action, except that the right hand side of (6.9) is not zero. Thus we modify (6.2) to

2p′γKγδα1β1···αnβn
µνρσ(p′, p1, · · · , pn, q, r) =

−(p′ + q)δKα1β1···αnβn
µνρσ(p1, · · · , pn, q + p′, r)

−(p′ + r)δKα1β1···αnβn
µνρσ(p1, · · · , pn, q, r + p′)

+2δλδp′(µ|K
α1β1···αnβn

|ν)λρσ(p1, · · · , pn, q + p′, r)

+2δλδp′(ρ|K
α1β1···αnβn

µν|σ)λ(p1, · · · , pn, q, r + p′)

−
n∑
i=1

πi1

{
pδ1Kα1β1···αnβn

µνρσ(p′ + p1, p2, · · · , pn, q, r)

+2p′λδ
δ(α1Kβ1)λα2β2···αnβn

µνρσ(p′ + p1, p2, · · · , pn, q, r)
}
. (6.12)

The first four terms on the right hand side of (6.12) come from the right hand side of (6.9).

They ensure that all terms in the Ṡ Ward identities are momentum-conserving by cancelling

the momentum-violating contributions originating from the action Ward identities. In the

same way as for the action, we can also extract a differential Ward identity, and Ward

identity for the momentum-independent part of the kernel:

Kγδα1β1···αnβn
µνρσ(0) = −1

2
δγδKα1β1···αnβn

µνρσ(0) + δλ(γδ
δ)

(µ|K
α1β1···αnβn

|ν)λρσ(0) (6.13)
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+δλ(γδ
δ)

(ρ|K
α1β1···αnβn

µν|σ)λ(0)−
n∑
i=1

πi1

{
δ(γ|(α1Kβ1)|δ)···αnβn

µνρσ(0)
}
.

The momentum-independent part of the kernel describes the n-point structure for linear

combinations of
gµ(ρgσ)ν√

g and
gµνgρσ√

g , starting with the 0-point function.

6.3 Consistency of Ward identities

We can demonstrate the consistency of these Ward identities by applying them in two

different ways using the fact that the action Ward identities, (6.2), also apply to Ṡ. Consider

the 2-point flow equation for Ṡ:

2pα1 Ṡα1β1α2β2(p,−p) = pβ1 Ṡα2β2(0)− 2pλδ
β1(α2 Ṡβ2)λ(0). (6.14)

We can use the flow equation to expand out Ṡ. Keeping index and momentum structure

explicit for clarity, the 1-point tree-level flow equation can be written as

Ṡαβ(0) =
(
S
∣∣∣αβµν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0) + Sµν(0)Kαβµνρσ(0, 0, 0)Σρσ(0), (6.15)

where the large round brackets indicate anticommutation:(
S
∣∣∣αβ···µν(p, · · · ,−q)Kµνρσ(q, r)

∣∣∣Σ)γδ···ρσ (p′, · · · ,−r) =

= Sαβ···µν(p, · · · ,−q)Kµνρσ(q, r)Σγδ···ρσ(p′, · · · ,−r) +

+Σαβ···µν(p, · · · ,−q)Kµνρσ(q, r)Sγδ···ρσ(p′, · · · ,−r). (6.16)

We can substitute (6.15) into (6.14) to get

2pα1 Ṡα1β1α2β2(p,−p) = pβ1
(
S
∣∣∣α2β2µν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

+pβ1Sµν(0)Kα2β2
µνρσ(0, 0, 0)Σρσ(0)

−2pλδ
β1(α2

(
S
∣∣∣β2)λ(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(α2|Sµν(0)K|β2)λ

µνρσ(0, 0, 0)Σρσ(0). (6.17)

We can test the kernel Ward identity by applying the 2-point flow equation to the left hand

side of (6.17) and showing that both sides match after further use of action and kernel Ward

identities. The 2-point tree-level flow equation for Ṡ is

Ṡα1β1α2β2(p,−p) =
(
S
∣∣∣α1β1µν(p,−p)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p) +

+
(
S
∣∣∣α1β1µν(p,−p)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0) +

+
(
S
∣∣∣α2β2µν(p,−p)Kα1β1

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0) +

+Sµν(0)Kα1β1α2β2
µνρσ(p,−p, 0, 0)Σρσ(0) +

+
(
S
∣∣∣α1β1α2β2µν(p,−p, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0). (6.18)
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We contract (6.18) with 2pα1 and apply the action and kernel Ward identities as

appropriate. The first four terms on the right hand side of (6.12) are used to cancel

momentum-violating contributions from the action Ward identities. We will demonstrate

the cancellation of momentum-violating terms explicitly in this example. The first two

terms on the right hand side of (6.18) only contribute momentum-violating terms from the

2-point Ward identity for an action, which are

pβ1
(
S
∣∣∣α2β2µν(−p, p)Kµνρσ(p,−p)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p)

+pβ1
(
S
∣∣∣µν(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0). (6.19)

The next two terms give us contributions from the 1- and 2-point kernel Ward identities.

After some rearranging of contracted indices, the cancelling contributions are

−pβ1
(
S
∣∣∣α2β2µν(−p, p)Kµνρσ(p,−p)

∣∣∣Σ)ρσ (0)

+2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p)

+2pλδ
β1(µ

(
S
∣∣∣ν)λα2β2(−p, p)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−pβ1
(
S
∣∣∣µν(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0)

+2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0). (6.20)

The non-cancelling contributions are

pβ1Sµν(0)Kα2β2
µνρσ(0, 0, 0)Σρσ(0)− 2pλδ

β1(α2|SµνK|β2)λ
µνρσ(0, 0, 0)Σρσ(0). (6.21)

Since the 1-point kernel Ward identity only gives cancelling terms, the non-cancelling

contributions come from the the 2-point kernel Ward identity in this example. This just

leaves the final term in (6.18), which gives us

pβ1
(
S
∣∣∣α2β2µν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(α2

(
S
∣∣∣β2)λµν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λα2β2(p,−p)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0), (6.22)

of which only the last term is a momentum-violating term, coming from the 3-point action

Ward identity. Putting all these terms together, we can match both sides of (6.17). Thus we

see how momentum-violating contributions from the action Ward identities are cancelled

exactly by momentum-violating contributions from the kernel Ward identities, which in

turn come from the non-zero Lie derivative of the kernel, as seen in (6.9).
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7 Functional derivatives of the covariantized kernel

Like the kernel for gauge theories, the gravity kernel expands out as a series of n-point

functions. Since we have specified the general form (3.13), we can compute these exactly

in terms of the function ∆̇. It is easy to expand out the momentum-independent part of

the kernel as a series in metric perturbations, following appendix A. For ∆̇, we use the

1-point level as an example.

We start by extracting the O(h) term from −∇2 acting on a contravariant tensor, T ρσ.

In momentum representation, our expression at the 1-point level is

(−∇2)(p, r)T ρσ(−r) = Hαβ ρσ
γδ (p, r)T γδ(−r)hαβ(p) , (7.1)

where Hαβ ρσ
γδ (p, r) is defined by

Hαβ ρσ
γδ (p, r)T γδ(−r)hαβ(p) = −

(
hαβ(p)rαrβ − p(αrβ)h

αβ(p) +
1

2
p · rh(p)

)
T ρσ(−r)

+
(

(p2 − 2p · r)h (ρ|
λ (p) + pλ(pα − 2rα)hα(ρ|(p)− p(ρ|(pα − 2rα)hαλ(p)

)
T |σ)λ(−r). (7.2)

Since (−∇2)mT ρσ is still a contravariant tensor, we can similarly pull out the O(h) part

from:

(−∇2)n(p, r)T ρσ(−r) =

n−1∑
m=0

|p− r|2(n−1−m)Hαβ ρσ
γδ (p, r) |r|2m T γδ(−r)hαβ(p) , (7.3)

Summing the geometric progression:

n−1∑
m=0

|p− r|2(n−1−m)|r|2m =
(p− r)2n − r2n

(p− r)2 − r2
, (7.4)

and using (4.2) we find the form of ∆̇ at the 1-point level to be

∆̇(−∇2)(p, r)T ρσ(−r) =
∆̇
(
|p− r|2

)
− ∆̇(r2)

|p− r|2 − r2
Hαβ ρσ

γδ (p, r)T γδ(−r)hαβ(p) . (7.5)

After expanding the overall kernel to the desired order in h, one can take functional deriva-

tives in the usual way to obtain n-point functions. We will not dwell on this further because

we will only need the 0-point function of the kernel in the remainder of this paper.

8 Transverse 2-point functions

The 2-point Ward identities (6.3) and (6.7) tell us that the momentum-dependent part

of the 2-point function is transverse. Although we can obtain the unique form of the

momentum-independent part through (6.7), we cannot use the Ward identities alone to

obtain the momentum-dependent part. In this section, we demonstrate that there exist two

linearly independent transverse 2-point structures that respect the required diffeomorphism
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invariance of the action. Momentum conservation tells us that there is only a single momen-

tum argument, p, at the 2-point level. Structures that are of odd order in the momentum

are forbidden by Lorentz invariance, so let us begin with quadratic structures. The most

general structure that is at quadratic order in the metric perturbation and momentum is

a1hp
2h+ a2hαβp

2hαβ + a3hpαpβh
αβ + a4h

αβpαpγh
γ
β , (8.1)

where the ai are numerical coefficients. Performing a linearized diffeomorphism

δhαβ → 2p(αξβ) and requiring this to vanish gives a1 = −a2 = −a3/2 = a4/2. Thus we

have only one allowed structure that is quadratic in the momentum:

L(2)
EH =

1

2

(
hµνp

2hµν − hp2h+ 2hµνpµpνh− 2hµνpµpρh
ρ
ν

)
. (8.2)

This corresponds to the Einstein-Hilbert action since∫
x

√
gO2 = −2

∫
x

√
gR =

∫
d̄p L(2)

EH +O(h3) . (8.3)

We have a more general structure with quartic terms in momenta:

b1h
αβp4hαβ + b2hp

4h+ b3h
αβp2pαpβh+ b4h

αβp2pαpγh
γ
β + b5h

αβpαpβpγpδh
γδ . (8.4)

Requiring this to vanish under linearised diffeomorphisms gives us b5 = b1 + b2, b4 = −2b1,

b3 = −2b2, and thus leaves only two linearly independent transverse structures:

L(2)
a =

1

2

(
hµνp4hµν − 2hµνp2pµpρh

ρ
ν + hµνpµpνpρpσh

ρσ
)
, (8.5)

L(2)
b =

1

2

(
hp4h− 2hµνp2pµpνh+ hµνpµpνpρpσh

ρσ
)
. (8.6)

These are now the most general index structures for O(h2), since higher orders in

momentum would have to be contracted into p2 factors. Therefore the general form of

the transverse two-point vertex at O(p4) and higher is given by the linear combination

aL(2)
a +bL(2)

b , where a(p2/Λ2) and b(p2/Λ2) are Taylor expandable functions. On the other

hand, the Einstein-Hilbert structure (8.2) is also reproduced by setting a = −b = 1/p2.

The choice of b = 2, a = 0 gives the 2-point part of the R2 term in the action. Similarly

a = 2, b = 0 gives the 2-point part of the RµνρσR
µνρσ term. Also, a = b = 1/2 gives the

2-point part of the RµνR
µν term. (The linear relation between these three 2-point vertices

is of course the one implied by the Gauss-Bonnet topological invariant.)

We can express these structures explictly as 2-point functions as follows:

SµνρσEH (−p, p) = p2(δµ(ρδσ)ν − δµνδρσ) + pµpνδρσ + pρpσδµν − 2p(µ|p(ρδσ)|ν) , (8.7)

Sµνρσa (−p, p) = p4δµ(ρδσ)ν − 2p2p(µ|p(ρδσ)|ν) + pµpνpρpσ (8.8)

=
(
p2δ(µ|(ρ − p(µ|p(ρ

)(
p2δσ)|ν) − pσ)p|ν)

)
,

Sµνρσb (−p, p) = p4δµνδρσ − p2pµpνδρσ − p2pρpσδµν + pµpνpρpσ (8.9)

=
(
p2δµν − pµpν

) (
p2δρσ − pρpσ

)
.
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9 Tree-level 2-point functions at fixed points

Since neither choice of fixed point and seed Lagrangian, (4.11) or (4.37), involves the unit

operator (a.k.a. cosmological constant) term, the two-point vertex will be transverse for

both schemes. Using the linearly independent structures from the previous section, we

can now derive their exact classical fixed point 2-point graviton vertices through the flow

equation (3.18), thus relating these consistently to the form of ∆̇ and the cutoff profile c.

9.1 Weyl scheme 2-point vertex

As anticipated in section 4.1, we can set the seed Lagrangian to be (4.11). Since we want

the 2-point vertex of the classical fixed point action to coincide with this, we have for both

actions that

Sαβγδ = c−1Sαβγδa + (1 + 4s) c−1Sαβγδb , (9.1)

using the notation for 2-point functions in (8.8) and (8.9). From (3.11) we get the “two-

traces” part of the flow

− 16(1 + 3s)2c−2p4∆̇Sαβγδb (p,−p) , (9.2)

and from (3.10) the “cross-contracted” part

− 4(1 + 2s)(1 + 6s) c−2p4∆̇Sαβγδb − c−2p4∆̇
(
Sαβγδa + Sαβγδb

)
. (9.3)

and thus comparing (3.12) to the RG-time derivative of (9.1):

˙(c−1) = −p4c−2∆̇ , (9.4)

s ˙(c−1) = −p4c−2∆̇
[
4j(1 + 3s)2 + (1 + 2s)(1 + 6s)

]
. (9.5)

Requiring (9.5) to be consistent with (9.4) determines j = −(1 + 4s)/4(1 + 3s) i.e. the

value (4.24) determined in the background-independent calculation, while eq. (9.4) itself is

solved by the normalised choice (3.21) already put forward for the effective propagator.

9.2 Einstein scheme 2-point vertex

As anticipated in section 4.2, we will see that we can set the seed Lagrangian to be (4.37).

Since we want the 2-point vertex of the classical fixed point action to coincide with this,

we have for both actions that

Sαβγδ =

(
1

p2
+

d

Λ2

)
Sαβγδa +

(
− 1

p2
+ (1 + 4j)

d

Λ2

)
Sαβγδb . (9.6)

From (3.11) we get the “two-traces” part of the flow

− 4p4

(
1

p2
− 2(1 + 3j)

d

Λ2

)2

∆̇Sαβγδb , (9.7)

and from (3.10) we get the “cross-contracted” part:

4(1 + 2j)p4 d

Λ2

(
2

p2
− (1 + 6j)

d

Λ2

)
∆̇Sαβγδb − p4

(
d

Λ2
+

1

p2

)2

∆̇
(
Sαβγδa + Sαβγδb

)
. (9.8)
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Thus comparing (3.12) to the RG-time derivative of (9.6):

Λ∂Λ

(
d

Λ2

)
= −p4∆̇

(
d

Λ2
+

1

p2

)2

, (9.9)

jΛ∂Λ

(
d

Λ2

)
= −p4∆̇

(
j

p4
+(1+12j+36j2+36j3)

d2

Λ4
−2(1+4j+6j2)

d

p2Λ2

)
. (9.10)

The first equation is solved by the assumed effective propagator (3.22), providing we identify

c =
1

1 + d p2/Λ2
. (9.11)

First order expansion confirms the relation c′(0) = −d(0) we found from the background-

independent calculation, cf. below (4.37). On the other hand (9.9) and (9.10) are consistent

if and only if j = −1/2 or j = −1/3. From (9.6), we see that the latter solution implies that

the index structure of the regularised 2-point vertex is not identical to the Einstein-Hilbert

term. If we choose the j = −1/2 solution however the classical fixed point and seed-action

2-point vertex is simply

Sαβγδ(p,−p) = c−1SαβγδEH . (9.12)

10 Discussion and conclusions

In this paper we have constructed a manifestly diffeomorphism invariant continuum Wilso-

nian RG (a.k.a. exact RG) at the classical level (by which we mean precisely the ~→ 0 limit

cf. e.g. the discussion in section 4.2), and sketched the first steps for quantum gravity. As

addressed at the beginning of the Introduction, already the classical construction could be

useful. Indeed, since gravity is very weakly coupled at currently accessible scales, the clas-

sical level applies to all currently observed gravitational physics. The formulation allows

computations to be done by phrasing the problem in terms of computing the Wilsonian

effective action S[g] at some diffeomorphism preserving effective momentum cutoff scale

Λ. Although we have not discussed this here, the formulation allows in principle to com-

pute exactly the expectation of any diffeomorphism invariant operator, along the lines of

refs. [38, 39] for example. It is important to emphasise that the effective action S is arrived

at by an exact transformation from the original “bare” action. At the quantum level, this

was demonstrated in general in section 2.1. We gave an independent demonstration of this

for classical gravity in eq. (3.9). Therefore no information is actually lost by “integrating

out” modes down to the effective cutoff Λ.

By utilising the freedom to design the Kadanoff blocking (see the review in section 2

and application to gravity in section 3) it is actually straightforward to ensure that the flow

equation respects diffeomorphism invariance. More surprising perhaps is the fact that the

effective action can then be explicitly computed without gauge fixing. One way to do this is

to start by following standard practice, and pick a space-time manifold and convenient co-

ordinates, e.g. flat, and perturb about a “background” metric e.g. ḡµν = δµν . The difference

here is that no gauge fixing step is required and thus the (differential) Ward identities ex-

pressing exact diffeomorphism invariance, are obeyed. These confirm that the momentum-
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independent piece becomes the cosmological constant term, and that the remaining two-

point vertex is transverse. They also show how to relate the (n+1)-point vertex with one

zero momentum argument to an n-point vertex, thus closing the flow equations at the clas-

sical level and allowing the n-point vertices to be computed iteratively in terms of the lower

point vertices. We developed this approach in the latter half of the paper, sections 5–9.

However it is not necessary to introduce a background metric, nor particular coordi-

nates, nor even to pick a particular space-time manifold in order to compute S. It is a

fundamental requirement that the flow equation, and also the solution S, be quasi-local

i.e. have vertices that are Taylor expandable to all orders in momenta.10 This encodes the

requirement that the Kadanoff blocking effectively operates only on a local patch of the

manifold. Nevertheless it is important to recognise that the implementation does not re-

quire flat space, or to be somehow close to flat space, rather the size of the patch is controlled

in a diffeomorphism invariant and background-independent way by 1/Λ, through the cutoff

function c(−∇2/Λ2), where ∇ is the full quantum covariant derivative. In practical terms,

it means that S can be computed in terms of the full metric gµν simply by manipulating

covariant derivatives. The computation proceeds iteratively as an expansion in local dif-

feomorphism invariant operators of increasing engineering dimension. We pursued this ap-

proach in sections 3 and 4. Although we do not do so here, it would require only minor mod-

ifications to phrase the computation in this framework entirely in coordinate free language.

It should be clear that it is the same effective action that we are computing by either

fixed background or background-independent methods. We do however confirm this in a

number of examples. In section 4.1, we demonstrate (by obtaining the same value of j)

that, in the Weyl scheme background-independent computation, the same two-curvature

∇4 and∇6 terms arise as in the fixed background computation in section 9.1. We derive the

same behaviour of the differential Ward identity (6.5) from the background-independent

computation (4.7) as explained at the end of section 5. Finally, in the Einstein scheme,

we demonstrate in sections 4.2, 9.2 that the coefficients of the curvature-squared operators

are the same in the two approaches.

As stated already, it is actually quite straightforward to incorporate exact diffeomor-

phism invariance. Essentially one replaces the kernel ∆̇xy as it appears in the scalar flow

equation (2.10) by some appropriate covariantization {∆̇}xy. There is a great deal of free-

dom in this. Following the treatment in gauge theory [14, 18, 19], we could have kept

this general. We could have represented this as a weighted functional integral over path

ordered integrals between x and y using the connection Γµαβ . Instead we made perhaps the

simplest choice which was to express ∆̇ as a differential operator and replace the partial

differentials by covariant derivatives.

As we emphasised, there still remains a great deal of freedom in designing the exact

RG, equivalently in the choice of Ψ in (2.5). However while any choice of Ψ that is quasi-

local generates a quasi-local exact reparametrisation of the theory, as sketched below (2.5),

it is not true that any choice leads to a valid exact RG. The key extra property we look for

in the latter is that momenta are indeed effectively cutoff by Λ. For a fully quantum exact

10A different notion of locality for quantum gravity has recently been discussed in ref. [74].
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RG we can expect that extra structure is required, beyond the covariant higher derivatives

introduced here, just as it was for gauge theory [18–23]. But even before we consider this

extra structure, it is still not true that there is complete freedom in choice of Ψ. For example

Ψ must depend on the effective action itself, otherwise the flow is linear inhomogeneous

in (2.6) and cannot lead to fixed point behaviour. A slightly less straightforward example

is given by discarding the seed action, i.e. setting Ŝ = 0. In that case, in (2.10), Σ = S,

so the flow is non-linear and at first sight is a valid starting point. However as we see in

appendix B, the tree-level corrections then do not take the right form for the momentum

integrals in the quantum corrections to be properly regulated.

To avoid such dangers, we chose to mimic what has already proved to work well for

scalar and gauge theory: the significant choice being to require that the two-point vertex

of the seed action be equal to the two-point vertex of the fixed point effective action.

This in turn determines the form of the kernel ∆̇. As we have seen we can then arrange

for sensible intuitive results in the sense that ∆ comes out as might be expected for an

effective propagator for graviton fluctuations, mimicking the successful construction for

gauge theory. However note that these requirements, which guide the construction of the

exact RG, mean that there remains some association with a preferred background (here

flat) and indeed preferred expansion (5.1), in the sense that it is this expansion about such

a background that defines the two-point vertices of the fixed point and seed actions, which

are then required to coincide.

Even after making these choices, there is still freedom. In particular, we set up two

different versions which we called the “Einstein scheme” (sections 4.2, 9.2) and the “Weyl

scheme” (sections 4.1, 9.1). The Einstein scheme gives a privileged rôle to Newton’s con-

stant G(Λ), as an expansion in this irrelevant coupling around the Gaussian fixed point,

equivalently an expansion in 1/M2(Λ) where M is the running Planck mass. The Weyl

scheme is also an expansion around the Gaussian fixed point, but adapted to four-derivative

gravity, a renormalisable theory with asymptotically free couplings but which has issues

with unitarity [8, 9].

A further apparent freedom appears in the index structure for the kernel (3.13), where

it is parametrised by j. While this has the same origin as the DeWitt supermetric [60]

we find that for both schemes it is actually determined by the other choices we make (and

for the Weyl scheme also by the fixed-point ratio s(ω∗) of the couplings). We only touched

briefly on the special values j = ∞ and j = −1/D, which correspond to the conformal

truncation [45, 61–64] and unimodular gravity [65–68] respectively. Since these variants

can thus be naturally incorporated, it would be very interesting to develop them further.

As we noted in the introduction, quantum corrections are not yet sufficiently regulated.

These are generated by the second term in (3.7). If it is treated perturbatively, using the

expansion around a fixed background, developed in the second half of this paper, we would

find that the loop integrals suffer ultraviolet divergences. The problem that has to be faced

is that the diffeomorphism invariant cutoff function c(−∇2/Λ2), which is effectively covari-

ant higher derivative regularisation, is not sufficient to regulate all ultra-violet divergences.

One loop divergences slip through just as they do for gauge theories [75, 76]. Therefore

extra ultraviolet regularisation needs to be incorporated into the exact RG flow equation.
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As we briefly reviewed in the introduction, for a gauge theory this extra regularisation

is provided by generalising the gauge group from SU(N) to SU(N |N) and then sponta-

neously breaking the fermionic gauge fields at the effective cutoff scale Λ. The resulting

massive fields behave as gauge invariant Pauli-Villars fields with masses set by Λ and in-

teractions that are naturally incorporated into the flow equation [14, 18–20]. The reason

these provide the needed extra regularisation can be understood as follows. The extra

structure introduces as many wrong-statistics fermionic fields as there are bosonic degrees

of freedom.11 For the gauge fields themselves, the original gauge field A1
µ is joined by a copy

gauge field A2
µ and complex pair of fermionic gauge fields Bµ, B̄µ. At high energies these

degrees of freedom cancel each other, as happens with Parisi-Sourlas supersymmetry [77],

at least sufficiently that, together with appropriately chosen covariant cutoff functions, the

theory is then regularised to all orders in perturbation theory [21–23].

Given the developments just described it is natural to conjecture that the extra regu-

larisation for gravity can be incorporated by introducing wrong-statistics fermionic compo-

nents to the metric in a way that extends the diffeomorphism invariance along fermionic di-

rections. We are therefore led naturally to consider extending the coordinates themselves to

xA = (xµ, θa) , (10.1)

where, in Euclidean signature, the D dimensional bosonic coordinates run from

µ = 1, · · · , D, while an equal number of real fermionic coordinates run from

a = D + 1, · · · , 2D. Writing the invariant interval as

ds2 = dxAgABdx
B , (10.2)

we have introduced D2 wrong-statistics fermionic degrees of freedom gµa = −gaµ, which

is the right number to cancel the D2 bosonic degrees freedom, namely the D(D + 1)/2

degrees of freedom in the original metric gµν and the D(D − 1)/2 bosonic degrees of

freedom in the antisymmetric components gab. We see that we are led to construct a

particular type of supermanifold, what we might call a Parisi-Sourlas supermanifold.

Fortunately, supermanifolds in general have been extensively developed [78].

Of course it remains to demonstrate whether this structure can indeed provide the

missing regularisation and then also how to decouple the extra degrees of freedom at

energies lower than Λ. Again, following the hints from gauge theory, we would expect to

incorporate a running spontaneous symmetry breaking. Possible strategies for the latter

would be to consider extra fields, or particular structures in the Lagrangian or maybe even

just particular solutions for gAB.
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A Expansion of the metric determinant

The momentum-independent part of the action has the same n-point structure as
√
g,

meaning that it corresponds to a cosmological constant-like term. All actions carry a

factor of
√
g, whereas the kernel carries a factor of 1/

√
g. Here, we list the first few n-point

functions from the lth power:

det l/2(gµν) = e
l
2

tr(ln(δµν+hµν)) . (A.1)

Expanding out the logarithm gives the trace as h− 1
2hµνh

µν + 1
3hµνh

µρhνρ − · · · . Then we

expand the exponential to get

√
g l = 1 + l

h

2
− lhµνh

µν

4
+ l2

h2

8
+ l

hµνh
µρhνρ
6

− l2hµνh
µνh

8
+ l3

h3

48
+ · · · (A.2)

We can then obtain n-point functions by differentiating with respect to metric perturba-

tions:

Sµνc =
l

2
δµν , (A.3)

Sµνρσc =
l2

4
δµνδρσ − l

2
δµ(ρδσ)ν , (A.4)

Sµνρσαβc =
l3

8
δµνδρσδαβ + lδ(µ|(ρδσ)(αδβ)|ν)

− l
2

4

(
δµνδρ(αδβ)σ + δρσδµ(αδβ)ν + δαβδµ(ρδσ)ν

)
. (A.5)

The choice of l = 1 gives the n-point functions implied by the momentum-independent

Ward identities in (6.6), as seen by explictly comparing (6.7) and (6.8) to (A.3), (A.4)

and (A.5).

B Why the seed action cannot be set to zero

We demonstrate that the choice Ŝ = 0 does not lead to an acceptable exact RG. For this

purpose we can work with the ϕ↔ −ϕ invariant scalar field theory treated in section 2.2.

Setting Ŝ = 0 in (2.10) means that the classical flow equation is simply

Ṡ =
1

2

δS

δϕ
· ∆̇ · δS

δϕ
. (B.1)

Then instead of (2.11) we have

Ṡ(2) = ∆̇
(
S(2)

)2
. (B.2)

(In this appendix we will use S(n)(p1, · · · , pn) to denote the effective action n-point vertex

with the momentum conserving δ-function factored out.) Thus we are now led to the choice

∆ = −1/S(2). From (B.1), the four-point vertex satisfies the flow equation:

Ṡ(4)(p1, · · · , p4) = S(4)(p1, · · · , p4)

4∑
i=1

∆̇(pi)S
(2)(pi) , (B.3)
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where S(2)(p) is short hand for S(2)(p,−p). Using (B.2) we see that this has solution:

S(4)(p1, · · · , p4) = S
(4)
0 (p1, · · · , p4)

4∏
i=1

S(2)(pi) , (B.4)

where the integration ‘constant’ is a Λ-independent Taylor-expandable four-point vertex

S
(4)
0 . (Standard RG considerations would lead us to set this simply to a four-point coupling

λ.) The two-point vertex decoration shown in (B.3) appears for any n-point vertex, for

example the six-point vertex flow takes the form:

Ṡ(6)(p1, · · · , p6) = S(6)(p1, · · · , p6)

6∑
i=1

∆̇(pi)S
(2)(pi)

+
1

2

∑
partitions π

S(4)(pπ1 , pπ2 , pπ3 ,−P )∆̇(P )S(4)(P, pπ4 , pπ5 , pπ6) , (B.5)

where P = pπ1 +pπ2 +pπ3 . Thus all tree-level interaction vertices have S(2) on their external

legs, as in (B.4), where they appear as integrating factors. Loop corrections follow from

the second term in (2.10). We see that the propagator in the loop thus appears with the

factors:

S(2)∆S(2) = S(2) , (B.6)

which has the incorrect momentum dependence, since it takes the form of a 2-point function

rather than a UV regularized propagator, which would be its inverse.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] T. Buchert, On average properties of inhomogeneous fluids in general relativity. 1. Dust

cosmologies, Gen. Rel. Grav. 32 (2000) 105 [gr-qc/9906015] [INSPIRE].

[2] S. Rasanen, Dark energy from backreaction, JCAP 02 (2004) 003 [astro-ph/0311257]

[INSPIRE].

[3] A.W.H. Preston and T.R. Morris, Cosmological back-reaction in modified gravity and its

implications for dark energy, JCAP 09 (2014) 017 [arXiv:1406.5398] [INSPIRE].

[4] N. Evans, T.R. Morris and M. Scott, Translational symmetry breaking in field theories and

the cosmological constant, Phys. Rev. D 93 (2016) 025019 [arXiv:1507.02965] [INSPIRE].

[5] T. Buchert et al., Is there proof that backreaction of inhomogeneities is irrelevant in

cosmology?, Class. Quant. Grav. 32 (2015) 215021 [arXiv:1505.07800] [INSPIRE].

[6] S.R. Green and R.M. Wald, Comments on backreaction, arXiv:1506.06452 [INSPIRE].

[7] M. Visser, Buchert coarse-graining and the classical energy conditions, arXiv:1512.05729

[INSPIRE].

– 38 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1001800617177
http://arxiv.org/abs/gr-qc/9906015
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9906015
http://dx.doi.org/10.1088/1475-7516/2004/02/003
http://arxiv.org/abs/astro-ph/0311257
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0311257
http://dx.doi.org/10.1088/1475-7516/2014/09/017
http://arxiv.org/abs/1406.5398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5398
http://dx.doi.org/10.1103/PhysRevD.93.025019
http://arxiv.org/abs/1507.02965
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02965
http://dx.doi.org/10.1088/0264-9381/32/21/215021
http://arxiv.org/abs/1505.07800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07800
http://arxiv.org/abs/1506.06452
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06452
http://arxiv.org/abs/1512.05729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05729


J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

[8] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977)

953 [INSPIRE].

[9] S.L. Adler, Einstein gravity as a symmetry breaking effect in quantum field theory, Rev. Mod.

Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].

[10] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, General relativity,

S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1980),

pg. 790.

[11] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998)

971 [hep-th/9605030] [INSPIRE].

[12] K.G. Wilson and J.B. Kogut, The renormalization group and the ε-expansion, Phys. Rept. 12

(1974) 75 [INSPIRE].

[13] T.R. Morris, Noncompact pure gauge QED in 3D is free, Phys. Lett. B 357 (1995) 225

[hep-th/9503225] [INSPIRE].

[14] T.R. Morris, A manifestly gauge invariant exact renormalization group, in Proceedings,

Workshop, Faro Portugal September 10–12 1998, pg 1 [hep-th/9810104] [INSPIRE].

[15] T.R. Morris and O.J. Rosten, Manifestly gauge invariant QCD, J. Phys. A 39 (2006) 11657

[hep-th/0606189] [INSPIRE].

[16] S. Arnone, T.R. Morris and O.J. Rosten, Manifestly gauge invariant QED, JHEP 10 (2005)

115 [hep-th/0505169] [INSPIRE].

[17] O.J. Rosten, A resummable β-function for massless QED, Phys. Lett. B 662 (2008) 237

[arXiv:0801.2462] [INSPIRE].

[18] T.R. Morris, A gauge invariant exact renormalization group. 1, Nucl. Phys. B 573 (2000) 97

[hep-th/9910058] [INSPIRE].

[19] T.R. Morris, A gauge invariant exact renormalization group. 2, JHEP 12 (2000) 012

[hep-th/0006064] [INSPIRE].

[20] T.R. Morris, An exact RG formulation of quantum gauge theory, Int. J. Mod. Phys. A 16

(2001) 1899 [hep-th/0102120] [INSPIRE].

[21] S. Arnone, Yu. A. Kubyshin, T.R. Morris and J.F. Tighe, Gauge invariant regularization in

the ERG approach, in High energy physics and quantum field theory. Proceedings, 15th

International Workshop, QFTHEP 2000, Tver Russia September 14–20 2000, pg. 297

[hep-th/0102011] [INSPIRE].

[22] S. Arnone, Yu. A. Kubyshin, T.R. Morris and J.F. Tighe, A gauge invariant regulator for the

ERG, Int. J. Mod. Phys. A 16 (2001) 1989 [hep-th/0102054] [INSPIRE].

[23] S. Arnone, Y.A. Kubyshin, T.R. Morris and J.F. Tighe, Gauge invariant regularization via

SU(N |N), Int. J. Mod. Phys. A 17 (2002) 2283 [hep-th/0106258] [INSPIRE].

[24] S. Arnone, A. Gatti and T.R. Morris, Exact scheme independence at one loop, JHEP 05

(2002) 059 [hep-th/0201237] [INSPIRE].

[25] S. Arnone, A. Gatti and T.R. Morris, Towards a manifestly gauge invariant and universal

calculus for Yang-Mills theory, Acta Phys. Slov. 52 (2002) 621 [hep-th/0209130] [INSPIRE].

[26] S. Arnone, A. Gatti and T.R. Morris, A manifestly gauge invariant exact renormalization

group, in Renormalization group. Proceedings, 5th International Conference, RG 2002,

Tatranska Strba Slovakia March 10–16 2002 [hep-th/0207153] [INSPIRE].

– 39 –

http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1103/PhysRevD.16.953
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D16,953%22
http://dx.doi.org/10.1103/RevModPhys.54.729
http://dx.doi.org/10.1103/RevModPhys.54.729
http://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,54,729%22
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1103/PhysRevD.57.971
http://arxiv.org/abs/hep-th/9605030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605030
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://inspirehep.net/search?p=find+J+%22Phys.Rept.,12,75%22
http://dx.doi.org/10.1016/0370-2693(95)00913-6
http://arxiv.org/abs/hep-th/9503225
http://inspirehep.net/search?p=find+EPRINT+hep-th/9503225
http://arxiv.org/abs/hep-th/9810104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810104
http://dx.doi.org/10.1088/0305-4470/39/37/020
http://arxiv.org/abs/hep-th/0606189
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606189
http://dx.doi.org/10.1088/1126-6708/2005/10/115
http://dx.doi.org/10.1088/1126-6708/2005/10/115
http://arxiv.org/abs/hep-th/0505169
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505169
http://dx.doi.org/10.1016/j.physletb.2008.03.006
http://arxiv.org/abs/0801.2462
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2462
http://dx.doi.org/10.1016/S0550-3213(99)00821-4
http://arxiv.org/abs/hep-th/9910058
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910058
http://dx.doi.org/10.1088/1126-6708/2000/12/012
http://arxiv.org/abs/hep-th/0006064
http://inspirehep.net/search?p=find+EPRINT+hep-th/0006064
http://dx.doi.org/10.1142/S0217751X01004554
http://dx.doi.org/10.1142/S0217751X01004554
http://arxiv.org/abs/hep-th/0102120
http://inspirehep.net/search?p=find+EPRINT+hep-th/0102120
http://arxiv.org/abs/hep-th/0102011
http://inspirehep.net/search?p=find+EPRINT+hep-th/0102011
http://dx.doi.org/10.1142/S0217751X0100461X
http://arxiv.org/abs/hep-th/0102054
http://inspirehep.net/search?p=find+EPRINT+hep-th/0102054
http://dx.doi.org/10.1142/S0217751X02009722
http://arxiv.org/abs/hep-th/0106258
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106258
http://dx.doi.org/10.1088/1126-6708/2002/05/059
http://dx.doi.org/10.1088/1126-6708/2002/05/059
http://arxiv.org/abs/hep-th/0201237
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201237
http://arxiv.org/abs/hep-th/0209130
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209130
http://arxiv.org/abs/hep-th/0207153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207153


J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

[27] S. Arnone, A. Gatti, T.R. Morris and O.J. Rosten, Exact scheme independence at two loops,

Phys. Rev. D 69 (2004) 065009 [hep-th/0309242] [INSPIRE].

[28] S. Arnone, A. Gatti and T.R. Morris, A proposal for a manifestly gauge invariant and

universal calculus in Yang-Mills theory, Phys. Rev. D 67 (2003) 085003 [hep-th/0209162]

[INSPIRE].

[29] S. Arnone, T.R. Morris and O.J. Rosten, A generalised manifestly gauge invariant exact

renormalisation group for SU(N) Yang-Mills, Eur. Phys. J. C 50 (2007) 467

[hep-th/0507154] [INSPIRE].

[30] S. Arnone, A. Gatti and T.R. Morris, Manifestly gauge invariant computations, in

Renormalization group. Proceedings, 5th International Conference, RG 2002, Tatranska

Strba Slovakia March 10–16 2002 [hep-th/0207154] [INSPIRE].

[31] A. Gatti, A gauge invariant flow equation, Ph.D. thesis, Southampton U., Southampton

U.K. (2002) [hep-th/0301201] [INSPIRE].

[32] T.R. Morris and O.J. Rosten, A manifestly gauge invariant, continuum calculation of the

SU(N) Yang-Mills two-loop β-function, Phys. Rev. D 73 (2006) 065003 [hep-th/0508026]

[INSPIRE].

[33] O.J. Rosten, T.R. Morris and S. Arnone, The gauge invariant ERG, in 13th International

Seminar on High-Energy Physics: Quarks 2004, Pushkinskie Gory Russia May 24–30 2004

[hep-th/0409042] [INSPIRE].

[34] O.J. Rosten, The manifestly gauge invariant exact renormalisation group, Ph.D. thesis,

Southampton U., Southampton U.K. (2005) [hep-th/0506162] [INSPIRE].

[35] O.J. Rosten, A primer for manifestly gauge invariant computations in SU(N) Yang-Mills, J.

Phys. A 39 (2006) 8699 [hep-th/0507166] [INSPIRE].

[36] O.J. Rosten, Scheme independence to all loops, J. Phys. A 39 (2006) 8141 [hep-th/0511107]

[INSPIRE].

[37] O.J. Rosten, A manifestly gauge invariant and universal calculus for SU(N) Yang-Mills, Int.

J. Mod. Phys. A 21 (2006) 4627 [hep-th/0602229] [INSPIRE].

[38] O.J. Rosten, General computations without fixing the gauge, Phys. Rev. D 74 (2006) 125006

[hep-th/0604183] [INSPIRE].

[39] O.J. Rosten, Universality from very general nonperturbative flow equations in QCD, Phys.

Lett. B 645 (2007) 466 [hep-th/0611323] [INSPIRE].

[40] S. Arnone, T.R. Morris and O.J. Rosten, Manifestly gauge invariant exact renormalization

group, Fields Inst. Commun. 50 (2007) 1 [hep-th/0606181] [INSPIRE].

[41] O.J. Rosten, Fundamentals of the exact renormalization group, Phys. Rept. 511 (2012) 177

[arXiv:1003.1366] [INSPIRE].

[42] O.J. Rosten, Aspects of manifest gauge invariance, PoS(FACESQCD)035 [arXiv:1102.3091]

[INSPIRE].

[43] M. Reuter and H. Weyer, The role of background independence for asymptotic safety in

quantum Einstein gravity, Gen. Rel. Grav. 41 (2009) 983 [arXiv:0903.2971] [INSPIRE].

[44] D. Becker and M. Reuter, En route to background independence: broken split-symmetry and

how to restore it with bi-metric average actions, Annals Phys. 350 (2014) 225

[arXiv:1404.4537] [INSPIRE].

– 40 –

http://dx.doi.org/10.1103/PhysRevD.69.065009
http://arxiv.org/abs/hep-th/0309242
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309242
http://dx.doi.org/10.1103/PhysRevD.67.085003
http://arxiv.org/abs/hep-th/0209162
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209162
http://dx.doi.org/10.1140/epjc/s10052-007-0258-y
http://arxiv.org/abs/hep-th/0507154
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507154
http://arxiv.org/abs/hep-th/0207154
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207154
http://arxiv.org/abs/hep-th/0301201
http://inspirehep.net/search?p=find+EPRINT+hep-th/0301201
http://dx.doi.org/10.1103/PhysRevD.73.065003
http://arxiv.org/abs/hep-th/0508026
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508026
http://arxiv.org/abs/hep-th/0409042
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409042
http://arxiv.org/abs/hep-th/0506162
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506162
http://dx.doi.org/10.1088/0305-4470/39/27/010
http://dx.doi.org/10.1088/0305-4470/39/27/010
http://arxiv.org/abs/hep-th/0507166
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507166
http://dx.doi.org/10.1088/0305-4470/39/25/S24
http://arxiv.org/abs/hep-th/0511107
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511107
http://dx.doi.org/10.1142/S0217751X06033040
http://dx.doi.org/10.1142/S0217751X06033040
http://arxiv.org/abs/hep-th/0602229
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602229
http://dx.doi.org/10.1103/PhysRevD.74.125006
http://arxiv.org/abs/hep-th/0604183
http://inspirehep.net/search?p=find+EPRINT+hep-th/0604183
http://dx.doi.org/10.1016/j.physletb.2006.12.057
http://dx.doi.org/10.1016/j.physletb.2006.12.057
http://arxiv.org/abs/hep-th/0611323
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611323
http://arxiv.org/abs/hep-th/0606181
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606181
http://dx.doi.org/10.1016/j.physrep.2011.12.003
http://arxiv.org/abs/1003.1366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1366
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(FACESQCD)035
http://arxiv.org/abs/1102.3091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3091
http://dx.doi.org/10.1007/s10714-008-0744-z
http://arxiv.org/abs/0903.2971
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2971
http://dx.doi.org/10.1016/j.aop.2014.07.023
http://arxiv.org/abs/1404.4537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4537


J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

[45] J.A. Dietz and T.R. Morris, Background independent exact renormalization group for

conformally reduced gravity, JHEP 04 (2015) 118 [arXiv:1502.07396] [INSPIRE].

[46] J.F. Donoghue, General relativity as an effective field theory: the leading quantum

corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

[47] M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022

[arXiv:1202.2274] [INSPIRE].

[48] L.P. Kadanoff, Scaling laws for Ising models near Tc, Physics 2 (1966) 263 [INSPIRE].

[49] J.I. Latorre and T.R. Morris, Exact scheme independence, JHEP 11 (2000) 004

[hep-th/0008123] [INSPIRE].

[50] K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and

the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174 [INSPIRE].

[51] K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of

critical behavior, Phys. Rev. B 4 (1971) 3184 [INSPIRE].

[52] F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena,

Phys. Rev. A 8 (1973) 401 [INSPIRE].

[53] K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev.

Mod. Phys. 47 (1975) 773 [INSPIRE].

[54] T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl.

131 (1998) 395 [hep-th/9802039] [INSPIRE].

[55] J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B 231 (1984) 269

[INSPIRE].

[56] L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25

(1967) 29 [INSPIRE].

[57] C. Becchi, A. Rouet and R. Stora, The Abelian Higgs-Kibble model. Unitarity of the S

operator, Phys. Lett. B 52 (1974) 344 [INSPIRE].

[58] C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble model,

Commun. Math. Phys. 42 (1975) 127 [INSPIRE].

[59] C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories, Annals Phys. 98

(1976) 287 [INSPIRE].

[60] B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967)

1113 [INSPIRE].

[61] P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited, Phys. Rev. D

80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].

[62] M. Reuter and H. Weyer, Conformal sector of quantum Einstein gravity in the local potential

approximation: non-Gaussian fixed point and a phase of unbroken diffeomorphism

invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].

[63] M. Reuter and H. Weyer, Background independence and asymptotic safety in conformally

reduced gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].

[64] A. Bonanno and F. Guarnieri, Universality and symmetry breaking in conformally reduced

quantum gravity, Phys. Rev. D 86 (2012) 105027 [arXiv:1206.6531] [INSPIRE].

– 41 –

http://dx.doi.org/10.1007/JHEP04(2015)118
http://arxiv.org/abs/1502.07396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07396
http://dx.doi.org/10.1103/PhysRevD.50.3874
http://arxiv.org/abs/gr-qc/9405057
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9405057
http://dx.doi.org/10.1088/1367-2630/14/5/055022
http://arxiv.org/abs/1202.2274
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2274
http://inspirehep.net/search?p=find+J+PYCSA,2,263
http://dx.doi.org/10.1088/1126-6708/2000/11/004
http://arxiv.org/abs/hep-th/0008123
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008123
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B4,3174%22
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B4,3184%22
http://dx.doi.org/10.1103/PhysRevA.8.401
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,A8,401%22
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,47,773%22
http://dx.doi.org/10.1143/PTPS.131.395
http://dx.doi.org/10.1143/PTPS.131.395
http://arxiv.org/abs/hep-th/9802039
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802039
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B231,269%22
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B25,29%22
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B52,344%22
http://dx.doi.org/10.1007/BF01614158
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,42,127%22
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,98,287%22
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRev.160.1113
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,160,1113%22
http://dx.doi.org/10.1103/PhysRevD.80.024020
http://dx.doi.org/10.1103/PhysRevD.80.024020
http://arxiv.org/abs/0904.2510
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2510
http://dx.doi.org/10.1103/PhysRevD.80.025001
http://arxiv.org/abs/0804.1475
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1475
http://dx.doi.org/10.1103/PhysRevD.79.105005
http://arxiv.org/abs/0801.3287
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3287
http://dx.doi.org/10.1103/PhysRevD.86.105027
http://arxiv.org/abs/1206.6531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6531


J
H
E
P
0
6
(
2
0
1
6
)
0
1
2

[65] A. Einstein, Do gravitational fields play an essential part in the structure of the elementary

particles of matter?, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), english

translation in The principle of relativity, A. Einstein et al. Dover, U.S.A. (1919), pg. 433.

[66] W.G. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989)

1048 [INSPIRE].

[67] A. Eichhorn, The renormalization group flow of unimodular f(R) gravity, JHEP 04 (2015)

096 [arXiv:1501.05848] [INSPIRE].

[68] I.D. Saltas, UV structure of quantum unimodular gravity, Phys. Rev. D 90 (2014) 124052

[arXiv:1410.6163] [INSPIRE].

[69] A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity

with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414

[arXiv:0805.2909] [INSPIRE].

[70] I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity,

Phys. Lett. B 159 (1985) 269 [INSPIRE].

[71] G. de Berredo-Peixoto and I.L. Shapiro, Higher derivative quantum gravity with

Gauss-Bonnet term, Phys. Rev. D 71 (2005) 064005 [hep-th/0412249] [INSPIRE].

[72] A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett. 97

(2006) 221301 [hep-th/0607128] [INSPIRE].
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