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Abstract: The results of a search for solar axions from the Korea Invisible Mass Search

(KIMS) experiment at the Yangyang Underground Laboratory are presented. Low-energy

electron-recoil events would be produced by conversion of solar axions into electrons via the

axio-electric effect in CsI(Tl) crystals. Using data from an exposure of 34,596 kg ·days, we

set a 90 % confidence level upper limit on the axion-electron coupling, gae, of 1.39× 10−11

for an axion mass less than 1 keV/c2. This limit is lower than the indirect solar neutrino

bound, and fully excludes QCD axions heavier than 0.48 eV/c2 and 140.9 eV/c2 for the

DFSZ and KSVZ models respectively.
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1 Introduction

Despite its success, the Standard Model of particle physics still has many problems. One

such problem, known as the strong CP problem [1–3], is that the CP-violating term in

strong interaction implies that the neutron electric dipole moment has to be an order of 1010

larger than the experimental upper bound [4]. Peccei and Quinn [5] found out an elegant

method to solve this problem by introducing a new global chiral symmetry U(1)PQ which is

spontaneously broken at an energy scale fa and which compensates the CP-violating term.

This solution implies the existence of a new pseudoscalar particle called the axion (a) [6, 7].

Since the original axion model assumed fa to be at the electroweak energy scale, it was

ruled out by laboratory experiments [8–10]. Currently the invisible axion models with

the energy scale fa as a free parameter, allowing up to the Plank mass scale of 1019 GeV,

are not excluded by terrestrial experiments and astrophysics [11]. There are two popular

models, the KSVZ (hadronic) [12, 13] and DFSZ (non-hadronic) [14, 15] models.

The strengths of axion-photon (gaγ), axion-electron (gae) and axion-nucleon (gaN )

couplings are different for both models as described in ref. [16, 17]. In particular, axion-

electron coupling in the DFSZ model occurs at tree level while axion-electron coupling

in the KSVZ model is strongly suppressed due to axion-electron coupling at loop level.

Thus, in the DFSZ model, the processes related to axion-electron coupling [18–23] would

prevail over the Primakoff process with axion-photon coupling as an axion production

mechanism in stars and the sun: Compton scattering (γ + e→ e+ a), axio-recombination

(e+A→ A−+a), axio-deexcitation (A∗ → A+a), axio-bremsstrahlung (e+A→ e+A+a),

and electron-electron collision (e + e → e + e + a), where A is an atom. The total axion

flux on earth produced from the sun was recently estimated in ref. [24], which includes

processes with axion-electron and axion-photon couplings, as shown in figure 1.

In this paper, we report on a solar axion search using the data sample from the KIMS

experiment with CsI(Tl) crystal detectors. Since this estimation in ref. [24] does not have

corrections for axions heavier than 1 keV/c2, our search region for axions is below this value.

Axions would produce electron signals in the CsI(Tl) detector through the axio-electric

effect, a + A → e− + A+ where A is mainly either Cs or I in the detector. We searched
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Figure 1. Flux of solar axions due to Compton scattering, axio-recombination, axio-deexcitation,

axio-bremsstrahlung and electron-electron collisions on earth [24] with axion-electron coupling of

gae = 10−13.

for this process as a signal for solar axion detection. The cross section for the axio-electric

effect [25, 26] is given by

σae(Ea) = σpe(Ea)
g2
ae

βa

3E2
a

16παm2
e

1− β
2
3
a

3

 , (1.1)

where Ea is the axion energy, σpe is the photoelectric cross section for either Cs or I in

ref. [27], gae is the axion-electron coupling, βa is the axion velocity over the speed of light,

α is the fine structure constant, and me is the electron mass. Figure 2 shows the cross

sections for the axio-electric effect for Cs and I atoms with gae = 1.

2 KIMS experiment

The KIMS experiment is designed to directly search for weakly interacting massive parti-

cles (WIMP) using CsI(Tl) crystal detectors. The experiment is housed in the Yangyang

Underground Laboratory (Y2L) with an earth overburden of 700 m (2400 m water equiv-

alent) and uses a 12 module array of low-background CsI(Tl) crystals with a total mass

of 103.4 kg. Each detector module is composed of a CsI(Tl) crystal with dimension of

8 cm x 8 cm x 30 cm and with photomultiplier tubes (PMT) mounted at each end. The

amplified signals from the PMTs on each crystal were recorded by a 400 MHz flash analog-

to-digital converter for a duration of 32 µs with the trigger condition requiring at least two

photoelectrons (PEs) in both PMTs on each crystal within a 2 µs window. The number of

PEs are 5 to 6 per keV. The crystal array is completely surrounded from inside to outside
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Figure 2. Axio-electric cross section calculated for Cs (green ) and I (red) atom for axion mass of

0 keV/c2 with gae = 1.

by 10 cm of copper, 5 cm of polyethylene, 15 cm of lead, and a buffer consisting of liquid

scintillator (LS) of 30-cm thickness. The LS buffer reduces external neutrons and gammas

and is equipped with PMT’s in order to reject cosmic-ray muon events. The experiment

took stable data with 12 crystal modules in the period from September 2009 to December

2012. Details of the experiment can be found elsewhere [28–30].

3 Data analysis

This analysis is based on one year data corresponding to an exposure of 34,596 kg · days.

We applied event selection criteria that were developed for low-mass WIMPs search stud-

ies [30]. One of the main sources of background events is PMT noise. In order to reject

these events, a set of event-selection criteria was developed by studying noise signals from

a dummy detector module consisting of PMTs mounted on both ends of a transparent and

empty acrylic box. The dummy detector was operated simultaneously with the CsI(Tl)

detector array. These event-selection criteria were applied for the recorded events. In ad-

dition to these criteria, events induced by high-energy cosmic-ray muons were rejected by

coincidence with the muon veto detector.

Events that passed the above selection criteria were divided into two independent event

sets, single-detector (SD) and multiple-detector (MD) events. The MD events are defined

as those for which multiple detectors each independently satisfied the trigger condition.

Since an axion would give rise to an electron-like signal with a hit in only a single detector-

module, only SD events were selected as axion candidate events. The SD events include

surface α events (Sα) and electron recoil events (Re−) from Compton scattered γ rays

and β decays in the crystal bulk [31, 32]. The Sα events come from decays of radioactive

isotopes which contaminate the surfaces of the crystals or the surrounding materials. Major

internal backgrounds for β-decays in our CsI(Tl) crystals are 137Cs (Q=1175.6 keV), 134Cs

(Q=2058.7 keV) and 87Rb (Q=282 keV). The energy spectra from those radioisotopes are
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Figure 3. Contribution of electron recoil events (green) and surface alpha events (grey) to the

observed single-detector energy spectrum (dots).

flat in our search region, 2 keV to 12 keV, as from Compton-scattered γ rays in the MD

events [31, 32]. Therefore we expect that the MD energy spectrum is similar to the Re−

spectrum in the SD sample. That is, the energy spectra for Re− events in the detector is

expected to be a flat distribution in the axion search window. Pulse-shapes of photoelectron

distributions in the time domain depend on the type of particle incident on the crystal. To

discriminate Re− events from Sα events we employed the pulse-shape discrimination (PSD)

method described in refs. [30, 33, 34]. In this method, the mean time (MT ) for each event

is calculated as follows:

MT =

∫
tf(t)dt/

∫
f(t)dt,

where f(t) is the PE distribution. The quantity (LMT10) is obtained by taking base

10 logarithm of MT . The LMT10 distribution of each event type is well fitted by an

asymmetric gaussian function defined as follows,

g(t) =
A

1/2(σL + σR)
e
− 1

2
( t−µ
σL

)2
, t < µ,

=
A

1/2(σL + σR)
e
− 1

2
( t−µ
σR

)2
, t ≥ µ,

where A is the amplitude, µ is the mean value and σL (σR) is the standard deviation of left

(right) side. The parameters, µ, σL and σR, for the Re− events were first determined from

the single-asymmetric-gaussian function fit to the MD sample data. In order to extract

these fit parameters for Sα events, we applied fit to the data from a sample of a CsI crystal

contaminated by 222Rn progenies. With these parameters fixed, the contributions of Re−

and Sα events in the SD data were determined by the fit and are shown in figure 3.

In our detector, the expected number of axion events is given by

R(E) =

∫
dEa

dΦa

dEa
ε(E)(σCsae (Ea)NCs + σIae(Ea)NI)TRdet(E,Ea)

∝ g4
ae, (3.1)
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Figure 4. The PDF’s for the axion (red) and background events (black).

where dΦa
dEa

is the differential axion flux on the earth, ε(E) is the detection efficiency, σCsae (Ea)

and σIae(Ea) are the axio-electric cross section for Cs and I atoms, respectively, NCs and

NI are the number of Cs and I atoms, respectively, in our detector, T is the detector live

time, and Rdet(E,Ea) is the resolution function of our detector.

The efficiency, ε(E), is estimated from the ratio of the number of MD events satisfying

event selection cuts to the total number of MD events in each energy bin. The event

selection efficiency is energy dependent and varies from 31.0% to 91.2%.

The resolution function, Rdet(E,Ea), is determined from a detector simulation. For

each crystal, the photoelectron yield used in the simulation was estimated using data from

the 59.4 keV γ generated from an 241Am calibration source [30, 33].

To estimate the number of axion events, we used the energy spectrum for the Re−

events in the SD sample, which contains background events mainly from Compton scattered

gamma rays and from β decays. The signal yield for axion event is extracted by maximizing

a binned maximum likelihood function for the energy spectrum, which is given by

L =

Nbin∏
i=1

e−(nsPs(Ei)+nbPb(Ei))
(nsPs(Ei) + nbPb(Ei))

Ni

Ni!
,

where Nbin is the number of bins, ns and nb are the expected number of signal and back-

ground events, respectively, Ni is the number of data events, and Ps(Ei) and Pb(Ei) are

the probability density function (PDF) for signal and background in the energy bin Ei,

respectively. The PDF for the energy spectra for the axion signal, Ps(E), is constructed

from the simulation by generating electron events with an energy distribution of R(E). In

order to model the background PDF below 12 keV, Pb(E), we used the energy spectrum

in the MD sample. This is possible because the spectrum contains only a flat Compton

continuum, modified by the low-energy efficiency curve. Figure 4 shows the distributions

for Ps(E) and Pb(E).
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Figure 5. The energy distributions for the Re− events in the SD sample (black circle). The yellow

shaded boxes are the background events estimated by the fit with the efficiency uncertainty. The

red circles are the axion signals scaled up by a factor of million for better visibility.

The signal yields, ns, for axion masses of 0 keV/c2 to 1 keV/c2 are found to be

0.077+36.59
−127.64 to 0.077+40.22

−132.12 events/year, consistent with no axion event. Figure 5 shows

the energy distributions for Re− events in the SD sample, the background events (Re−

events) in the MD sample estimated by the fit and axion signal events.

A 90 % confidence limit (C.L.) for the signal yield, nups , is obtained from∫ nups
0 L(ns)dns∫∞
0 L(ns)dns

= 0.9. (3.2)

The resulting values obtained for nups are varied from 58.56 to 60.92 events with axion

masses of 0 keV/c2 to 1 keV/c2. The upper limit on gae at the 90% C.L. is estimated with

eq. (3.1), and is found to be gae < 1.37× 10−11 and gae < 1.39× 10−11 for axion mass of 0

keV/c2 and 1 keV/c2, respectively. From the upper limit on gae, we exclude a QCD axion

heavier than 0.48 eV/c2 in DFSZ model and 140.9 eV/c2 in the KSVZ model.

4 Summary

A search for solar axions from 34,956 kg · days exposure with the KIMS CsI(Tl) detector

array has been performed. In this search, we used the solar axion flux recently estimated

with the DFSZ model assuming that axions produce electron signals in the CsI(Tl) detector

through the axio-electric effect. The number of extracted axion events is consistent with

no axion signal in this data sample. At the 90 % C.L., we obtain an upper limit of the

axion-electron coupling, gae < 1.39× 10−11 for axion mass of 0 keV to 1 keV and exclude

QCD axions heavier than 0.48 eV/c2 in the DFSZ model and 140.9 eV/c2 in the KSVZ

model. We exclude a region in the plane of axion mass and the axion-electron coupling at

90 % C.L. as shown in figure 6.
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