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1 Introduction

Logarithmic corrections to the area law for black hole entropy are interesting because they

are features of the high energy theory that can be computed systematically in the low energy

effective theory [1–4]. In situations far from the supersymmetric limit there is not yet a

microscopic theory of black hole entropy so in this setting logarithmic corrections provide a

valuable target for future progress. The most promising arenas for such future developments
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are nonsupersymmetric black hole solutions to theories with a lot of supersymmetry. The

goal of this paper is to compute logarithmic corrections to the entropy of these black holes.

Logarithmic corrections are derived from quantum determinants over quadratic fluctu-

ations around the black hole background [5]. All fields in the theory fluctuate so the results

depend on the theory through its matter content and couplings. Concretely, we consider

well-known black holes from general relativity in four dimensions such as the Kerr-Newman

solutions to the Einstein-Maxwell theory but we embed these solutions in N ≥ 2 SUGRA.

The matter content is specified by the host SUGRA which also determines the nonminimal

couplings between the matter and the background.

We find that it is useful to organize the matter in multiplets of N = 2 SUGRA even

in the presence of a black hole background that breaks supersymmetry completely and

also when N > 2. Indeed, this organization diagonalizes the problem in the sense that

different N = 2 multiplets decouple. Furthermore, with our embedding the field equations

for quadratic fluctuations of such multiplets depend only on the N = 2 field content and

not on couplings encoded in the prepotential.

The one-loop quantum corrections computed in heat kernel regularization are presented

as usual as short distance expansions with coefficients that are invariants formed from the

curvature [6, 7]. The four derivative terms that we focus on take the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (1.1)

where Wµνρσ is the Weyl tensor and E4 is the 4D Gauss-Bonnet invariant. The values of

the coeffiicients c, a are nonstandard because they are for fields with nonminimal couplings

specified by N ≥ 2 SUGRA. Our results for c, a are somewhat complicated for bosons and

fermions separately but we find that the sum gives c = 0 for any values of nV , nH , and N .

That is very surprising, at least to us.

The heat kernel coefficient a4(x) encodes the trace anomaly of the stress tensor which

in turn determines the logarithmic correction to the black hole hole entropy in the limit

where all parameters with the same length dimension are taken large at the same rate. For

BPS black holes there is only one length scale, identified as the scale of the near horizon

AdS2 × S2. In this situation there are no dimensionless ratios so the coefficient of the

logarithmic correction is a pure number given by [8]

δS =
1

12
(23− 11(N − 2)− nV + nH) logAH . (1.2)

For example, BPS black holes in N = 4 SUGRA have vanishing logarithmic corrections to

their black hole entropy.

Non-extremal black holes are characterized by dimensionless quantities such as the

charge/mass ratio Q/M and the angular momentum quantum number J/M2. For such

black holes the coefficient in front of logAH is expected to depend on these dimensionless

variables. This expectation has proven correct in the case of Kerr-Newman black hole

solutions to Einstein-Maxwell theory [9]. The way this comes about is that fluctuations of

the metric and vector fields and additional minimally coupled fields all contribute to the

– 2 –



J
H
E
P
0
6
(
2
0
1
5
)
2
0
0

c coefficient, and the curvature invariant WµνρσW
µνρσ is a complicated function of Q/M

and J/M2 after integration over the black hole geometry.

Our main result is that when the Kerr-Newman black holes are interpreted instead

as solutions to N ≥ 2 SUGRA the coefficient c = 0. In this situation the logarithmic

correction is much simpler: (1.2) remains valid for all of these black holes (modulo integer

corrections due to zero modes and ambiguities in the ensemble). There is no dependence

on the parameters that deform the black hole off extremality.

This paper is organized as follows. In section 2 we take solutions to Einstein-Maxwell

theory in 4D and embed them intoN = 2 SUGRA. We determine the quadratic fluctuations

around this background and extend these results to general N ≥ 2 SUGRA. In section 3

we review the heat kernel method for determining one-loop quantum corrections to the

background fields, and then compute the first three heat kernel coefficients for each N = 2

multiplet. Finally, in section 4 we tabulate the results for the trace anomaly and show that

the logarithmic corrections to black hole entropy are independent of black hole parameters.

As a concrete example we consider the non-extremal Kerr-Newman black hole.

2 The background solution and its fluctuations

In this section we embed an arbitrary solution to the D = 4 Einstein-Maxwell theory into

N ≥ 2 SUGRA. We then derive the equations of motion for quadratic fluctuations around

this background.

2.1 The background solution: Einstein-Maxwell

The starting point is a solution to the standard D = 4 Einstein-Maxwell theory

L =
1

2κ2

(
R− 1

4
FµνF

µν

)
, (2.1)

where κ2 = 8πG. The geometry thus satisfies the Einstein equation

Rµν −
1

2
gµνR = κ2Tµν , (2.2)

where the energy-momentum tensor is

Tµν = −2
δS

δgµν
=

1

2κ2

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
. (2.3)

The field strength Fµν satisfies Maxwell’s equation and the Bianchi identity which we

combine into the complex equation

∇µF+µν = 0 . (2.4)

We introduce the self-dual and anti-self-dual parts of the field strength as

F±µν =
1

2
(Fµν ± F̃µν) , (2.5)

with

F̃µν = − i
2
εµνρσF

ρσ . (2.6)

We will not specify the solution explicitly at this point but it may be useful to have in

mind that we will later consider the Kerr-Newman black hole.
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2.2 N = 2 SUGRA: notation

We want to interpret the background as a solution to N = 2 SUGRA with matter in the

form of nV N = 2 vector multiplets and nH N = 2 hypermultiplets. The most difficult step

will be the bosonic fields in the gravity and vector multiplets so in this section we focus on

those. We will return to the hyper multiplets and all the fermions in the next subsection.

The bosonic action of N = 2 SUGRA coupled to nV vector fields is

L = − 1

2κ2
R− gαβ̄∇µzα∇µzβ̄ +

1

2
Im
[
NIJF+I

µν F
+µνJ

]
. (2.7)

The index α = 1, . . . , nV enumerates the complex scalar fields zα in the vector multiplet.

The label I = 0, . . . , nV for the vector fields has an additional value because the N = 2

gravity multiplet includes the graviphoton.

The holomorphic prepotential F (X) is homogeneity two with respect to the projective

coordinates XI . It has derivatives denoted FI = ∂IF , FIJ = ∂I∂JF , etc., and specifies the

coupling between vectors and scalars as

NIJ = µIJ + iνIJ = F̄IJ + i
NIKX

KNJLX
L

NNMXNXM
, (2.8)

where NIJ = 2ImFIJ . The Kähler metric is

gαβ̄ = ∂α∂β̄K , (2.9)

where the Kähler potential is

K = i(XI F̄I − FIX̄I) . (2.10)

The Kähler covariant derivatives

∇αXI =

(
∂α +

1

2
κ2∂αK

)
XI ,

∇̄ᾱXI =

(
∂ᾱ −

1

2
κ2∂ᾱK

)
XI = 0 ,

(2.11)

relate the true motion in moduli space to the projective parametrization. The Kähler

weights are such that

ZI(z) = e−
1
2
κ2KXI(z) (2.12)

is purely holomorphic ∂ᾱZ
I = 0. The projective coordinates can be normalized such that

NIJX
IX̄J = −i(FJX̄J −XJ F̄J) = − 1

κ2
. (2.13)

2.3 The background solution: N ≥ 2 SUGRA

The background solution to Einstein-Maxwell theory specifies the geometry and a single

field strength. The corresponding solution to N = 2 SUGRA has the same geometry but

the matter fields
zα = const ,

F+I
µν = XIF+

µν .
(2.14)

We need to verify that this in fact is a solution to N = 2 SUGRA.
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The scalars are constant so their derivatives do not contribute to the EM tensor:

Tµν = −2Im

[
NIJ(F+I

µλ F
−λJ
ν − 1

4
gµνF

+I
λσ F

−Jλσ)

]
= −2νIJ

(
F+I
µλ F

−λJ
ν − 1

4
gµνF

+I
λσ F

−Jλσ
)
. (2.15)

The expression simplifies for the EM tensor of the matter (2.14)

− 2νIJX
IX̄J = iNIJXIX̄J + c.c = iFIJX

IX̄J + c.c = i(FJX̄
J −XJ F̄J) =

1

κ2
, (2.16)

due to (2.8) for NIJ , homogeneity 2 of the prepotential, and then the normalization con-

dition (2.13). Our result therefore becomes

Tµν =
1

κ2

(
F+
µλF

−λ
ν − 1

4
gµνF

+
λσF

−λσ
)

=
1

2κ2

(
FµλF

λ
ν −

1

4
gµνFλσF

λσ

)
. (2.17)

This is the same as (2.3) for the Einstein-Maxwell theory so the Einstein equation for

N = 2 SUGRA is satisfied with unchanged geometry.

The combined Maxwell-Bianchi equation in N = 2 SUGRA

∇µ
(
NIJF+Iµν

)
= 0 (2.18)

is automatically satisfied because the background satisfies the Maxwell-Bianchi equa-

tion (2.4). The dependence of NIJ and F Iµν on the scalar fields introduces no spacetime

dependence since the scalars are constant.

The scalar field equations are not automatic even though the scalars are constant

because the vector fields act as a source unless

∂NIJ
∂zα

F+I
µν F

+µνJ =
∂NIJ
∂zᾱ

F+I
µν F

+µνJ = 0 . (2.19)

The anti-holomorphic condition
∂NIJ
∂zᾱ

ZIZJ = 0 (2.20)

is obvious: move the holomorphic coordinates ZI under the derivative and use NIJZIZJ =

FIZ
I = 2F to find an antiholomorphic derivative that vanishes because it acts on the

holomorphic prepotential. The holomorphic condition is almost as simple:

∂NIJ
∂zα

ZIZJ = ∂αFIZ
I − FI∂αZI = (FIJZ

I − FJ)∂αZ
J = 0 . (2.21)

We used NIJZJ = FI again and then FIJZ
I = FJ from homogeneity of the prepotential.

At this point we have completed the verification that a solution to Einstein-Maxwell

remains a solution when embedded in N = 2 SUGRA through (2.14). Any additional fields

in N > 2 SUGRA must all appear quadratically. The further embedding from N > 2 into

N = 2 SUGRA is therefore automatic.
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2.4 Quadratic fluctuations: the action

The quantum corrections to the black hole entropy are determined by the spectrum of

quadratic fluctuations around the background.

We first consider the general matter equations of motion derived from the action (2.7)

∇µ
(
gαβ̄∇µzα

)
− i

4

∂NIJ
∂z̄β̄

F+I
µν F

+Jµν +
i

4

∂N IJ

∂z̄β̄
F−Iµν F

−Jµν = 0 ,

i∇µ
(
NIJF+Jµν −N IJF

−Jµν) = 0 ,

∇µ
(
F+Jµν − F−Jµν

)
= 0 .

(2.22)

The last two lines are the Maxwell-Bianchi equations. Linearizing around the background

these equations become

NIJ∇µδF+Jµν + (∇µδNIJ)F+Jµν −N IJ∇µδF−Jµν − (∇µδN IJ)F−Jµν = 0 ,

∇µ
(
δF+Jµν − δF−Jµν

)
= 0 ,

(2.23)

where unvaried fields (without δ) are evaluated on the background. The background fields

satisfy (2.14) so the variation simplifies

(∇µδNIJ)F+Jµν = (∇αNIJ)XJ∇µδzαF+µν +∇ᾱNIJXJ∇µδzᾱF+µν

= (∇αFI −NIJ∇αXJ)∇µδzαF+µν = −2iνIJ∇αXJ∇µδzαF+µνF+µν .

(2.24)

We used symplectic invariance in the form ∇αFI = N IJ∇αXJ .

Inserting into (2.23) and simplifying we find

∇µ
(
δF+Iµν −∇αXIδzαF+µν −∇ᾱX̄IδzᾱF−µν

)
= 0 . (2.25)

This is a complex equation with imaginary part reducing to the Bianchi identity.

After linearizing the scalar equation of motion in (2.22) around the background the

middle term vanishes due to holomorphicity. The (complex conjugate of) the last term

simplifies as

δ
(
∇βNIJF+I

µν F
+Jµν

)
= ∇α∇βNIJδzαXIXJF+

µνF
+µν + 2∇βNIJXIF+

µνδF
+Jµν

= 2∇βNIJXIF+
µν(δF+Jµν −∇αXJδzαF+µν)

= −4iνIJ∇βXIF+
µν(δF+Jµν −∇αXJδzαF+µν) .

(2.26)

We then collect terms and write the linearized scalar equation as

gαβ̄∇2δzα − νIJ∇̄β̄X̄IF−µν(δF−Jµν − ∇̄ᾱX̄JδzᾱF−µν) = 0 . (2.27)

The linearized equations of motion for the vectors (2.25) and the scalars (2.27) can

both be derived from the single action

L = −gαβ̄∇µδzα∇µδzβ̄ +
1

2
νIJ(δF+I

µν − δXIF+
µν)(δF+Jµν − δXJF+µν) + c.c , (2.28)

with δXI = ∇αXIδzα. This is a consistency check on the manipulations.

– 6 –
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2.5 Quadratic fluctuations: decoupling

The action (2.28) for quadratic fluctuations is concise but the dependence on the Kähler

metric gαβ̄ and the symplectic metric νIJ introduces elaborate couplings between the nV
complex scalars zα and the nV + 1 field strengths F Iµν . We can simplify by expanding as

F+I
µν = XIF+

µν + ∇̄ᾱX̄If+ᾱ
µν

=
(
XI ∇̄ᾱX̄I

)(F+
µν

f+ᾱ
µν

)
.

(2.29)

This represents the nV + 1 fields F Iµν as a single graviphoton field Fµν and nV vector fields

fαµν . The complete basis {XI ,∇ᾱX
I} is orthogonal with respect to the metric νIJ in the

sense that (
X̄I

∇αXI

)
νIJ

(
XI ∇̄β̄X̄I

)
= −1

2

(
κ−2 0

0 gαβ̄

)
. (2.30)

The component form of the field variations are

δF+Iµν = XIδF+µν +∇αXIδzαF+µν + ∇̄ᾱX̄If+ᾱµν . (2.31)

For variations of this form the linearized matter equations (2.25) and (2.27) become

XI∇µδF+µν + ∇̄ᾱX̄I∇µ
(
f+ᾱµν − δzᾱF−µν

)
= 0 ,

∇2δzα +
1

2
F−µνf

−αµν = 0 .
(2.32)

Orthogonality forces the two terms in the first equation to vanish separately. Thus δF+µν

satisfies the standard Maxwell-Bianchi equations (2.4) also in the presence of a fluctuating

scalar. We rename δzα → zα and write the remaining equations as

∂µ
(
f−αµν − zαF+µν

)
= 0 ,

∇2zα +
1

2
F−µνf

−αµν = 0 .
(2.33)

These matter equations are fully decoupled: there is no interaction between the matter

multiplet and the SUGRA multiplet (gravity and graviphoton). Also, the nV vector multi-

plets do not couple to each other so they can be analyzed independently. We will henceforth

suppress the index α.

The equations of motion (2.33) are actually misleading as they stand because, according

to the first equation, the antisymmetric vector field fµν does not satisfy the Bianchi iden-

tity: the imaginary part of f−µν has a source. We can remedy this by the field redefinition

f−µν → −2if−µν + z̄F−µν . (2.34)

The transformed field strength fµν satisfies the Bianchi identity. The general equa-

tions (2.33) become

∂µ
(
fµν − izF+µν + iz̄F−µν

)
= 0 ,

∇2z − iF−µνf−µν +
1

2
z̄F−µνF

−µν = 0 .
(2.35)
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This is our final result for quadratic fluctuations of a N = 2 vector multiplet around a

solution to the Einstein-Maxwell theory.

We have not yet analyzed the Einstein equation. Linearizing the EM tensor (2.15) of

the N = 2 theory around the background we find

δ
(
νIJF

+I
ac F

−Jc
b

)
= δνIJF

+I
ac F

−Jc
b + νIJ

(
δF+I

ac F
−Jc
b + c.c.

)
= − i

2
∇α
(
NIJ − N̄IJ

)
δzαXIX̄JF+

acF
−c
b + νIJδF

+I
ac X̄

JF−cb + c.c.

= νIJX̄
J(δF+I

ac −∇αXIδzαF+
ac)F

−c
b + c.c.

= − 1

2κ2
δ(F+

acF
−c
b ) ,

(2.36)

for variations of the form (2.31). Thus fluctuations in the geometry are sourced exclusively

by the graviphoton or, equivalently, the Einstein equation respects the decoupling of the

N = 2 SUGRA multiplet from the vector multiplets.

2.6 Quadratic fluctuations: completing the multiplets

The full N = 2 supergravity theory generally includes many fields that vanish in the

background. The actions of such fields can be computed at quadratic order by taking all

other fields to have their background value. This process introduces nonminimal couplings

because of the background graviphoton. In the following we examine the various N = 2

multiplets one by one.

The N = 2 SUGRA multiplet contains the graviton, two gravitini, and the gravipho-

ton. The bosons are governed by the Einstein-Maxwell action (2.1). The gravitino action is1

Lgravitino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ + νIJ

(
F−Iµν Q

−Jµν + h.c.
)
, (2.37)

where i = 1, 2 enumerates the two gravitini. The Pauli term depends on Q−Jµν =

XJ ψ̄µi ψ
ν
j ε
ij + . . .. In the background (2.14) the normalization condition (2.30) then gives

Lgravitino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ −

1

2κ2

(
F−µνψ̄

µ
i ψ

ν
j ε
ij + h.c.

)
. (2.38)

The sum of this action and the Einstein-Maxwell action (2.1) is invariant under the N = 2

supersymmetry

δψiµ = Dµε
i − 1

4
F̂ εijγµεj , (2.39)

where F̂ = 1
2γµνF

µν .

The N = 2 vector multiplet has one vector field, two gauginos, and one complex scalar.

The bosons satisfy the equations of motion (2.35), as we have shown in detail. The gauginos

are subject to Pauli terms that couple them to each other and to the gravitinos. However,

these couplings appear in the combination Q−Jµν = ∇ᾱX
J (
χᾱiγµψνjεij + . . .

)
, and such

1We follow the conventions of [10]. The normalization of the Maxwell field strength in (2.1) is con-

ventional in the gravity literature. The relation between the two conventions for the graviphoton is

F
(FvP)
µν = 2F

(here)
µν .

– 8 –
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terms vanish when contracted with a field strength F−Iµν of the background form (2.14)

because of orthogonality (2.30). Therefore the gauginos are minimally coupled fermions.

The N = 2 hyper multiplet has two Majorana hyper fermions and four real scalars.

The scalars are minimally coupled to gravity. The hyper fermion is acted on by a Pauli

term where the metric νIJ contracts F−Iµν and Q−Jµν = XJ
(

1
2κ

2ζ
A
γµνζBCAB + . . .

)
. The

Q−Jµν is proportional to XJ as it was for the gravitino and again orthogonality leads to a

simple result for the quadratic action

Lhyper = −2ζAγ
µDµζ

A − 1

2

(
ζ
A
F̂ ζBεAB + h.c.

)
. (2.40)

It is sufficient for our purposes to consider each hyper multiplet independently. For a single

hyper multiplet the indices A,B = 1, 2 and we can take CAB = εAB.

2.7 N > 2 SUGRA

We can extend our results for N = 2 SUGRA to theories with N > 2.

We first embed the background solution to the Maxwell-Einstein theory into SUGRA

with N > 2. We pick one of the 1
2N (N − 1) gauge fields in the gravity multiplet and

designate it as the graviphoton of an N = 2 theory that is identified with the gauge field

of the Maxwell-Einstein theory. This embedding defines the background defined earlier as

a solution also to N > 2 SUGRA.

We next organize all fluctuating fields in N = 2 multiplets. The N > 2 symmetry

constrains the N = 2 matter content. For example:

• A N = 4 theory has nV = nH + 1 because one N = 2 vector is part of the N = 4

supergravity multiplet while each N = 4 matter multiplet is composed of one N = 2

vector and one N = 2 hyper.

• The N = 6 theory: nV = 7 and nH = 4.

• The N = 8 theory: nV = 15 and nH = 10.

The classification under N = 2 takes all matter fields into account except for the

N − 2 gravitini and their superpartners. We refer to these as massive gravitini. A massive

gravitino multiplet has one gravitino, two vectors, and one gaugino. The two vectors

in the massive gravitino multiplet are minimally coupled vector fields. The background

graviphoton field couples the remaining fermions:

Lgravitino = − 1

κ2
Ψ̄µγ

µνρDνΨρ −
2

κ2
λγµDµλ−

1

2κ2
(Ψ̄µF̂ γ

µλ+ h.c.) . (2.41)

We found this action by reduction of N = 8 SUGRA [11] but other approaches give the

same result. As a check we verified that in AdS2 × S2 the fermion fields acquire precisely

the conformal weights demanded by the superconformal symmetry of the action.
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3 Heat kernel expansion

This section reviews the heat kernel approach to the computation of functional determi-

nants of the quadratic field fluctuations, including a few elementary examples. We then

employ this method to calculate heat kernel coefficients for quadratic fluctations around

generic solutions to Einstein-Maxwell theory. We consider each N = 2 multiplet in turn.

3.1 One-loop quantum corrections

The action for quadratic fluctuations around a background solution takes the

schematic form

S = −
∫
d4x
√
−g φnΛnmφ

m , (3.1)

for some differential operator Λ that depends on the background fields such as the metric

gµν and the field strength Fµν . We define the effective action W as

W =
1

2
log det Λ , (3.2)

since we can schematically write

e−W =

∫
Dφ e−φΛφ =

1√
det Λ

. (3.3)

The one-loop quantum corrections we want to compute are encoded in this Euclidean path

integral.

The heat kernel of Λ is defined by

D(s) = Tr e−sΛ =
∑
i

e−sλi , (3.4)

where {λi} are the eigenvalues of Λ; we have denoted them as discrete, but they may in

practice be continuous. After UV regularization we can express W in terms of D(s) as

W =
1

2

∑
i

log λi = −1

2

∫ ∞
ε2

ds
D(s)

s
. (3.5)

D(s) is referred to as the “heat kernel” because we can express it as

D(s) =

∫
d4x
√
−g K(x, x; s) , (3.6)

where the Green’s function K(x, x′; s) satisfies the heat equation

(∂s + Λx)K(x, x′; s) = 0 , (3.7)

with the boundary condition K(x, x′; 0) = δ(x − x′). Inserting (3.6) back into (3.5), W

becomes

W = −1

2

∫ ∞
ε2

ds

s

∫
dDx
√
−g K(x, x; s) . (3.8)

Therefore, in order to compute the one-loop quantum corrections to the theory, we must

find the Green’s function K(x, x; s) corresponding to the quadratic field operator Λ.
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3.2 General method

The Green’s function K(x, x; s) corresponding to Λ permits a perturbative expansion for

small s

K(x, x; s) =
∞∑
n=0

sn−2a2n(x) , (3.9)

where {a2n(x)} are the Seeley-DeWitt coefficients [12]. We want to express these coeffi-

cients in terms of the background fields and their covariant derivatives. To do so, we follow

the procedure reviewed in [7] and assume that the differential operator Λ acting on our

quadratic field fluctuations takes the form

Λnm = −(�)Inm − 2(ωµDµ)nm − Pnm , (3.10)

where ωµ and P are matrices constructed from the background fields {φn} and I is the

identity operator on the space of fields. We denote � = DµDµ where Dµ indicates the

ordinary covariant derivative. All indices are raised and lowered with the background

metric gµν . The formulae below require that Λ be a Hermitian operator, and so the action

must be adjusted (up to a total derivative) to make this so.

We can complete the square and rewrite Λ as

Λnm = −(DµDµ)Inm − Enm , (3.11)

where

E = P − ωµωµ − (Dµωµ) , Dµ = Dµ + ωµ , (3.12)

and we have suppressed the field indices for notational simplicity. Note that the paren-

theses in the term (Dµωµ) indicate that the covariant derivative Dµ acts only on ωµ. The

background connection was assumed to be torsion-free, but this new effective covariant

derivative Dµ need not be. The curvature associated with Dµ is denoted as

Ωµν ≡ [Dµ,Dν ] . (3.13)

With these definitions, the expressions for the first three Seeley-DeWitt coefficients are

(4π)2a0(x) = Tr I ,

(4π)2a2(x) = Tr E ,

(4π)2a4(x) = Tr

[
1

2
E2 +

1

12
ΩµνΩµν +

1

180
(RµνρσR

µνρσ −RµνRµν)I

]
.

(3.14)

We have set R = 0 in (3.14) since the Einstein equation (2.2) defines a Ricci-flat space. We

have also ignored all total derivatives as they will integrate to zero. We can in principle go

to higher orders and compute a6(x), a8(x), . . . , but the logarithmic divergences in 4D are

determined by a4(x) and so it is sufficient to compute the heat kernels up to this order.
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3.3 Elementary examples

To see how these heat kernel coefficient calculations work in practice, we will do the explicit

calculations for a few elementary examples. The methods used naturally generalize for the

more complicated interactions analyzed in the following subsection.

3.3.1 Free scalar field

Consider a minimally-coupled scalar field with a mass m

L = −1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 . (3.15)

The ordinary derivative ∂µ is the same as the covariant derivative Dµ when acting on scalar

fields so we can integrate by parts freely. In the language of section 3.2 the differential

operator is

Λ = −� +m2 , (3.16)

where Λ acts on the scalar field φ. There are no terms in (3.16) linear in derivatives, so

the matrices I, ωµ, and E are

I = 1 , ωµ = 0 , E = −m2 . (3.17)

The commutator of two covariant derivatives vanish when acting on scalar fields, and so

the curvature is 0:

Ωµν = 0 . (3.18)

Inserting this data into (3.14) we find the Seeley-DeWitt coefficients for the massive

scalar field

(4π)2a0(x) = 1 ,

(4π)2a2(x) = −m2 ,

(4π)2a4(x) =
1

2
m4 +

1

180
(RµνρσR

µνρσ −RµνRµν) .

(3.19)

3.3.2 Free spinor field

The action for a minimally-coupled Dirac spinor ψ with a (real) mass m in a 4D spacetime is

S =

∫
d4x
√
−g ψ̄ (γµDµ +m)ψ . (3.20)

The gamma matrices γµ satisfy the standard commutation relation

{γµ, γν} = 2gµνI4 , (3.21)

where I4 is the identity matrix in our Clifford algebra, which we may suppress for notational

simplicity and re-introduce when needed. The action consists of a first-order Dirac-type

differential operator Ĥ ≡ γµDµ + m acting on spinors. As is standard procedure [7, 13],

we can define the determinant of a Dirac operator Ĥ as the square root of the determinant

of ĤĤ†:

log det Ĥ = log det Ĥ† =
1

2
log det ĤĤ† . (3.22)

It is therefore sufficient to compute the heat kernel of ĤĤ†.
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Let us now assume that our spacetime is even-dimensional and has Euclidean signature,

in which case our gamma matrices are Hermitian, γ†µ = γµ. With this choice, the operator

γµDµ is anti-Hermitian, (γµDµ)† = −γµDµ, and hence we find that the relevant second-

order differential operator acting on ψ is

Λ = ĤĤ† = −γµγνDµDν +m2 . (3.23)

The covariant derivative acts on ψ by

Dµψ = ∂µψ +
1

4
γabω

ab
µ ψ , (3.24)

for the spin connection ωabµ , where µ, ν, . . . are curved space indices, a, b, . . . are flat space

indices, γµ is shorthand for γaeµa , and eµa is the vierbein. Gamma matrix commutation

relations give

[Dµ, Dν ]ψ =
1

4
γabRµνabψ =

1

4
γρσRµνρσψ . (3.25)

By breaking up γµγνDµDν into its symmetric and antisymmetric parts and using (3.25),

we find that

ψ̄Λψ = ψ̄

(
−1

2
γργσ{Dρ, Dσ} −

1

2
γρσ[Dρ, Dσ] +m2

)
ψ

= ψ̄

(
−�− 1

8
γµνγρσRµνρσ +m2

)
ψ

= ψ̄

(
−� +

1

4
R+m2

)
ψ ,

(3.26)

where equality in the last line comes from using gamma matrix commutation relations and

the Bianchi identity Rµ[νρσ] = 0.

Λ defined in (3.26) is of the Laplace-type form required in (3.10), and we identify I,

ωµ, E, and Ωµν as

I = I4 , ωµ = 0 , E = −m2I4 , Ωµν =
1

4
γρσRµνρσ . (3.27)

We can use gamma matrix identities to compute the traces of I, E, E2, and ΩµνΩµν needed

for our heat kernel coefficients. The result is:

(4π)2a0(x) = −4 ,

(4π2)2a2(x) = 4m2 ,

(4π2)2a4(x) = −
[
2m4 +

1

360
(−7RµνρσR

µνρσ − 8RµνR
µν)

]
.

(3.28)

The overall minus sign on each of these heat kernel coefficients is put in by hand to account

for fermion statistics. We also note that this derivation assumed that ψ was a Dirac spinor.

Weyl and Majorana spinors have half the degrees of freedom of Dirac spinors, and so we

must divide these results by two if we want the heat kernel coefficients for Majorana or

Weyl spinors.
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This derivation was done in a Euclidean spacetime in order to take advantage of Her-

mitian gamma matrices. For Lorentzian spacetimes the spinor conjugation includes γ0,

which has the effect of changing the boundary conditions on the conjugate spinor. We are

considering manifolds without boundary, so this change in boundary conditions is irrelevant

and our results naturally generalize to Lorentzian spacetimes as well [7].

3.4 N = 2 multiplet heat kernels

We will now compute the heat kernels of the quadratic fluctuations of the N = 2 multiplet

field content. The heat kernel coefficient formulae (3.14) are strictly in terms of local

invariants constructed from the background fields, so there are no issues in using the

classical equations of motion for the background fields to simplify these expressions. We

will freely make use of the Ricci-flat Einstein equation

Rµν =
1

2
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ , (3.29)

as well as the Schouten identity (given in equation (4.47) of [10])

FµρF̃
ρ
ν = F̃µρF

ρ
ν =

1

4
gµνFρσF̃

ρσ . (3.30)

We will also use Maxwell’s equations and the Bianchi identity in the form

DµFµν = 0 , DµF̃µν = 0 , (3.31)

and the gravitational Bianchi identity

Rµ[νρσ] = 0 . (3.32)

In addition, we will make extensive use of gamma matrix technology in 4D, using the

conventions from [10]. In particular, the identity

γµνρσ = −iγ5εµνρσ (3.33)

will be very useful. Lastly, we can ignore total derivative terms in heat kernel coefficients

and so we freely integrate by parts. For example, we find that (up to a total derivative)

(DρFµν)(DρFµν) = 2(DρFµν)(DνFµρ)

= −2(DνDρFµν)Fµρ

= −2([Dν , Dρ]F
µν)F ρ

µ ,

(3.34)

where equality comes from the Bianchi identity, integration by parts, and Maxwell’s

equations, respectively. The covariant derivative commutator acting on a rank-2 tensor

then gives

(DρFµν)(DρFµν) = −2RµνF
µρF νρ +RµνρσF

µνF ρσ . (3.35)

We note that (3.35) also holds if we replace Fµν with the dual field strength F̃µν .
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3.4.1 Hyper multiplet

A single N = 2 hyper multiplet contains two Majorana fermions and four real scalars.

The scalars are minimally coupled to gravity and massless, so we can use the free scalar

result (3.19) with m = 0:

(4π)2aH,b
0 (x) = 4 ,

(4π)2aH,b
2 (x) = 0 ,

(4π)2aH,b
4 (x) =

1

45
(RµνρσR

µνρσ −RµνRµν) .

(3.36)

The Lagrangian for the hyper fermions (2.40) mixes left-handed and right-handed

fermions. We want to put this Lagrangian in the form of a diagonal Dirac-type Lagrangian

to use the procedure outlined earlier for fermionic heat kernels. We define the spinor

ψA ≡ PRζA + PLζ
A , (3.37)

where PL = 1
2(1 + γ5), PR = 1

2(1 − γ5). The hyper fermion Lagrangian can then be

rewritten as

Lhyper = ψ̄A

(
−γµDµδAB +

1

4
Fµνγ

µνεAB

)
ψB . (3.38)

Though we have lost information about the chirality of the spinors, this Lagrangian is now

in the form of (3.20). That is, we can express the Lagrangian as

Lhyper = ψ̄AĤABψB , (3.39)

where ĤAB is a Dirac operator acting on the spinors ψA by

ĤAB = −γµDµδAB +
1

4
Fµνγ

µνεAB . (3.40)

As with the free spinor field we now continue to Euclidean space, giving us Hermitian

gamma matrices γ†µ = γµ and the spinor conjugate ψ̄A = ψ†A. We can also choose the

background field Fµν to be real. With these conventions, the Hermitian conjugate of

ĤAB is

Ĥ†AB = γµDµδAB +
1

4
Fµνγ

µνεAB . (3.41)

The relevant Laplace-type operator that we will compute the heat kernel of is

ΛAB = ĤACĤ
†
CB

=

(
− γµDµδAC +

1

4
Fµνγ

µνεAC

)(
γµDµδCB +

1

4
Fµνγ

µνεCB

)
= −

(
γµγνDµDνδAB −

1

4
Fµνγ

µνγρDρεAB

+
1

4
γρDρFµνγ

µνεAB +
1

16
FµνFρσγ

µνγρσδAB

)
= −

[
�δAB + Fρµγ

µDρεAB +

(
1

8
FµνF̃

µνγ5 −
1

8
FµνF

µν

)
δAB

]
,
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where equality in the last line comes from using (3.26) and (3.33), as well as noting that

γρ(DρFµν)γµν = (DρFµν)γµνγρ = 0 , (3.42)

by the Maxwell-Bianchi equations (3.31).

From the form of Λ in (3.42) we identify the matrices I, ωµ, and P as

IAB = I4δAB , (ωµ)AB =

(
1

2
Fµνγ

ν

)
εAB , PAB =

1

8

(
FµνF̃

µνγ5 − FµνFµν
)
δAB .

(3.43)

By Maxwell’s equations
(
Dµ(ωµ)AB

)
= 0 so E becomes

EAB = PAB − (ωµ)AC(ωµ)CB =
1

8

(
FµνF̃

µνγ5 + FµνF
µν
)
δAB . (3.44)

The curvature Ωµν corresponding to the effective covariant derivative Dµ = Dµ + ωµ is

(Ωµν)AB = [(Dµ)AC , (Dν)CB]

= [Dµ, Dν ]δAB +
(
Dµ(ων)AB

)
−
(
Dν(ωµ)AB

)
+ [(ωµ)AC , (ων)CB]

(3.45)

We can use our expressions for [Dµ, Dν ] and ωµ from (3.25) and (3.43), respectively, giving

(Ωµν)AB =

(
1

4
Rµνρσ −

1

2
FµρFνσ

)
γρσ δAB +

(
−1

2
γρDρFµν

)
εAB . (3.46)

We can now compute all of the traces necessary for the Seeley-DeWitt coefficients. These

traces are tedious but straightforward to compute, so we will simply quote the results,

noting that we use (3.29) and (3.35) to simplify when possible.

Tr I = 8 ,

Tr E = FµνF
µν ,

Tr E2 =
1

8
(FµνF

µν)2 +
1

8
(FµνF̃

µν)2 ,

Tr ΩµνΩµν = −RµνρσRµνρσ + 16RµνR
µν − 3

2
(FµνF

µν)2 .

(3.47)

We can use these quantities with (3.14) to calculate the Seeley-DeWitt coefficients for

the hyper fermions, making sure to add an overall factor of −1/2 to account for fermion

statistics and the Majorana condition. The result is

(4π)2aH,f
0 (x) = −4 ,

(4π)2aH,f
2 (x) = −1

2
FµνF

µν ,

(4π)2aH,f
4 (x) = − 1

360

(
−7RµνρσR

µνρσ + 232RµνR
µν − 45

4
(FµνF

µν)2 +
45

4
(FµνF̃

µν)2

)
.

(3.48)
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Adding up the bosonic part (3.36) and the fermionic part (3.48), the full hyper multiplet

heat kernel coefficients are

(4π)2aH
0 (x) = 0 ,

(4π)2aH
2 (x) = −1

2
FµνF

µν ,

(4π)2aH
4 (x) =

1

24

(
RµνρσR

µνρσ − 16RµνR
µν +

3

4
(FµνF

µν)2 − 3

4
(FµνF̃

µν)2

)
.

(3.49)

The a0(x) coefficient vanishes because any full multiplet has an equal number of bosonic

and fermionic degrees of freedom.

3.4.2 Vector multiplet

The N = 2 vector multiplet consists of one vector field, two gauginos, and one complex

scalar. The gauginos are massless Majorana fermions that couple minimally to gravity,

and thus we can use (3.28) to find the vector multiplet fermionic heat kernel coefficients

(4π)2aV,f
0 (x) = −4 ,

(4π)2aV,f
2 (x) = 0 ,

(4π)2aV,f
4 (x) = − 1

360
(−7RµνρσR

µνρσ − 8RµνR
µν) .

(3.50)

The equations of motion for the bosonic content of the vector multiplet are given

in (2.35). We split the complex scalar z into its real and imaginary parts by

z = x− iy , (3.51)

where x is a real pseudoscalar field and y is a real scalar field. The bosonic action consistent

with the equations of motion (2.35) is

Lb = − 1

8
fµνf

µν − 1

4
(Dµy)(Dµy) +

1

4
yfµνF

µν − 1

16
y2FµνF

µν

− 1

4
(Dµx)(Dµx) +

i

4
xfµνF̃

µν +
1

16
x2F̃µνF̃

µν − i

8
xyFµνF̃

µν ,

(3.52)

where fµν = Dµaν−Dνaµ is the fluctuation about the background field strength Fµν . As a

consistency check we note that on AdS2× S2 (where FµνF̃
µν = 0) this action is consistent

with equation (6.4) of [3].

We choose the Lorenz gauge Dµa
µ = 0 by adding a gauge-fixing term to the Lagrangian

Lg.f. = −1

4
(Dµa

µ)2 . (3.53)

This gauge-fixing will introduce two anti-commuting scalar ghosts that will contribute to

the heat kernel with an overall minus sign. We denote {φm} = {y, x, aµ} to be the bosonic

field fluctuations. Then, we can use Maxwell’s equations and the Bianchi identity to rewrite

our action in the Hermitian form required in (3.10), up to a total derivative, as

S = −1

4

∫
d4x
√
−gφnΛnmφm , (3.54)
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where

−φnΛnmφm = aµ (�gµν −Rµν) aν + y

(
�− 1

4
FµνF

µν

)
y + x

(
� +

1

4
F̃µνF̃

µν

)
x

+ y (F ρνDρ) aν+aµ (FµρDρ) y+x
(
iF̃ ρνDρ

)
aν + aµ

(
iF̃µρDρ

)
x

+ y

(
− i

4
FµνF̃

µν

)
x+ x

(
− i

4
FµνF̃

µν

)
y .

(3.55)

From (3.55) we can read off the matrices P and ωρ. And, since all of the terms in ωρ
depend on Fµρ or F̃µρ, (Dρωρ) = 0 due to Maxwell’s equations and the Bianchi identities.

E thus becomes

φnE
n
mφ

m = φn (P − ωρωρ)nm φ
m = aµ

(
−Rµν +

1

4
FµρF νρ −

1

4
F̃µρF̃ νρ

)
aν . (3.56)

The lack of any terms involving x or y in (3.56) was not a priori obvious but a consequence

of how terms in the action that coupled x and y to the background conspired to cancel.

There are six off-shell bosonic degrees of freedom for the fields {φn}: four from the

vector aµ, and two from the scalars x and y, giving Tr I = 6. From (3.56) we compute

the traces

Tr E =
1

4

(
FµνF

µν − F̃µνF̃µν
)
,

Tr E2 = RµνR
µν − 1

2
RµνF

µρF νρ +
1

2
RµνF̃

µρF̃ νρ

+
1

16
(FµρFνρ)(FµσF

νσ) +
1

16
(F̃µρF̃νρ)(F̃µσF̃

νσ)− 1

8
(FµρFνρ)(F̃µσF̃

νσ) .

(3.57)

In order to compute the curvature we expand the commutator in (3.13)

(Ωρσ)nm = [Dρ, Dσ]nm + (D[ρωσ])
n
m + [ωρ, ωσ]nm . (3.58)

The covariant derivative commutes when acting on scalars, but not for vectors, and so the

first term in (3.58) is

φn[Dρ, Dσ]nmφ
m = aµ[Dρ, Dσ]aµ = aµ

(
Rµνρσ

)
aν . (3.59)

The second term in (3.58) is calculated by applying the covariant derivative to ωµ. Using

the Maxwell-Bianchi equations to simplify we find that

φn(D[ρωσ])
n
mφ

m = y

(
−1

2
(DνFρσ)

)
aν + aµ

(
1

2
(DµFρσ)

)
y

+ x

(
− i

2
(DνF̃ρσ)

)
aν + aµ

(
i

2
(DµF̃ρσ)

)
y .

(3.60)

The last term in (3.58) is the product of ωρ and ωσ, antisymmetrized in ρ and σ:

φn[ωρ, ωσ]nmφ
m = aµ

(
1

4
Fµ[ρFσ]ν −

1

4
F̃µ[ρF̃σ]ν

)
aν . (3.61)
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Adding all of these components up, we find that

φn(Ωρσ)nmφ
m = aµ

(
Rµνρσ +

1

4
Fµ[ρFσ]ν −

1

4
F̃µ[ρF̃σ]ν

)
aν

+ y

(
−1

2
(DνFρσ)

)
aν + aµ

(
1

2
(DµFρσ)

)
y

+ x

(
− i

2
(DνF̃ρσ)

)
aν + aµ

(
i

2
(DµF̃ρσ)

)
y .

(3.62)

Now that we have all of the components of Ωρσ, it is straightforward to trace over ΩρσΩρσ.

We will also simplify by using the Maxwell-Bianchi equations and (3.35). The result, up

to a total derivative, is

Tr ΩρσΩρσ = −RµνρσRµνρσ +Rµν

(
FµρF νρ − F̃µρF̃ νρ

)
+

1

8

(
(FµρFνρ)(FµσF

νσ) + (F̃µρF̃νρ)(F̃µσF̃
νσ)− (FµνF

µν)2 − (F̃µνF̃
µν)2

)
+

1

4

(
(FµνF̃

µν)2 − (FµρF̃νρ)(F̃µσF
νσ)
)
.

(3.63)

We now have all of the traces needed to calculate the Seeley-DeWitt coefficients for the

bosonic fields. However, our gauge-fixing also introduced two scalar ghosts into our system.

These ghosts do not interact with any of the bosonic fields and so their corresponding heat

kernels are those for two minimally coupled scalars (3.19). If we insert our traces into the

coefficient formulas in (3.14) and subtract off the ghost contribution, we find that:

(4π)2aV,b
0 (x) = 4 ,

(4π)2aV,b
2 (x) =

1

4

(
FµνF

µν − F̃µνF̃µν
)
,

(4π)2aV,b
4 (x) =

1

180

[
− 11RµνρσR

µνρσ + 86RµνR
µν − 30Rµν

(
FµρF νρ − F̃µρF̃ νρ

)
+

15

2
(FµρFνρ) (FµσF

νσ) +
15

2

(
F̃µρF̃νρ

)(
F̃µσF̃

νσ
)

− 15

8
(FµνF

µν)2 − 15

8

(
F̃µνF̃

µν
)2

+
15

4

(
FµνF̃

µν
)2

− 45

4
(FµρFµρ)

(
F̃µσF̃

µσ
)
− 15

4

(
FµρF̃νρ

)(
F̃µσF

νσ
)]

.

(3.64)

Adding up the fermionic (3.50) and bosonic (3.64) contributions and using the Schouten

identity (3.30) to simplify, the full vector multiplet heat kernel is

(4π)2aV
0 (x) = 0 ,

(4π)2aV
2 (x) =

1

4

(
FµνF

µν − F̃µνF̃µν
)
,

(4π)2aV
4 (x) =

1

24

[
−RµνρσRµνρσ + 12RµνR

µν − 4Rµν

(
FµρF νρ − F̃µρF̃ νρ

)
+ (FµρFνρ) (FµσF

νσ) +
(
F̃µρF̃νρ

)(
F̃µσF̃

νσ
)

− 1

4
(FµνF

µν)2 − 1

4

(
F̃µνF̃

µν
)2
]
.

(3.65)
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Our result for aV2 (x) disagrees with [8] in the special case of BPS black holes. How-

ever, a2(x) determines the quadratic divergences and encodes the renormalization of the

Newton constant. These quadratic divergences are scheme-dependent and unphysical. We

will record our results for a2(x) in our heat kernel regularization scheme for the sake

of completion.

3.4.3 Gravity multiplet: fermions

The gravity multiplet consists of the graviton, two Majorana gravitini, and the graviphoton.

We rewrite the Lagrangian for these gravitini (2.38) by using (3.33) to express γµνρσ in

terms of γ5 and the Levi-Civita symbol, resulting in

Lgravitini = − 1

2κ2
Ψ̄Aµγ

µνρDνΨAρ +
1

4κ2
Ψ̄Aµ

(
Fµν + γ5F̃

µν
)
εABΨBν , (3.66)

where A,B = 1, 2 enumerates the two gravitini species. The covariant derivative acts on

the gravitino field Ψρ
A by

DµΨρ
A = ∂µΨρ

A +
1

4
γabω

ab
µ Ψρ

A + ΓρµνΨν
A , (3.67)

for the spin connection ωabµ and the Levi-Civita connection Γρµν . The commutator [Dµ, Dν ]

acting on Ψρ
A will be the sum of the spin and Riemann commutators

Ψ̄Aρ[Dµ, Dν ]Ψρ
A = Ψ̄Aρ

(
1

4
gρσγ

αβRµναβ +R ρσ
µν

)
δABΨBσ . (3.68)

Tbe gravitini Lagrangian (3.66) is invariant under the SUSY transformation

δΨAµ =

(
δABDµ −

1

8
εABγ

ρσFρσγµ

)
εB , (3.69)

for a spinor εB. This SUSY transformation acts as a gauge symmetry.

We need the kinetic term of the gravitini to be in Dirac form in order for it to square

to a minimal operator. We use the procedure outlined in [14] and gauge-fix our action in

such a way that, when paired with a suitable corresponding field redefinition, the kinetic

term becomes Dirac-type. In particular, we choose the harmonic gauge for our gravitini

γµΨAµ = 0 by adding the gauge-fixing term

Lg.f. =
1

4κ2
(Ψ̄Aµγ

µ)γνDν(γρΨAρ) . (3.70)

Then, we consider the field redefinition

ΦAµ = ΨAµ −
1

2
γµγ

νΨAν . (3.71)

Using gamma matrix identities and (3.33), it is easily verified that

Φ̄Aµγ
νDνΦµ

A = Ψ̄Aµ

(
γµνρDν −

1

2
γµγνγρDν

)
ΨAρ ,

Φ̄AµF
µνΦBν =

1

2
Ψ̄Aµ

(
Fµν + γ5F̃

µν +
1

2
γρσFρσg

µν

)
ΨBν ,

Φ̄Aµγ5F̃
µνΦBν =

1

2
Ψ̄Aµ

(
Fµν + γ5F̃

µν − 1

2
γρσFρσg

µν

)
ΨBν .

(3.72)
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Therefore our full action (including gauge-fixing) can be written as

S =
1

2κ2

∫
d4x
√
−g Φ̄AµĤ

µν
ABΦBν , (3.73)

where

Ĥµν
AB = −γρDρg

µνδAB +
1

2

(
Fµν + γ5F̃

µν
)
εAB . (3.74)

Our action is now in the Dirac form required for our heat kernel methods. We note that

the overall normalization in (3.70) was chosen to enforce this; any other choice would result

in an action whose square is non-minimal [15].

As with the hyper fermions we now continue to Euclidean space, giving Hermitian

gamma matrices. The gravitino conjugate is Φ̄Aµ = Φ†Aµ, and we will again choose Fµν to

be real. The Hermitian conjugate of Ĥ is

Ĥµν†
AB = γρDρg

µνδAB +
1

2

(
Fµν − γ5F̃

µν
)
εAB . (3.75)

The relevant Laplace-type operator that we will calculate the heat kernel of is

ΛµνAB = Ĥµλ†
AC Ĥ

ν
λ CB

= −γργσDρDσg
µνδAB +

1

4
(Fµλ + γ5F̃

µλ)(F ν
λ − γ5F̃

ν
λ )δAB

− 1

2
γρDρ(F

µν − γ5F̃
µν)εAB +

1

2
(Fµν + γ5F̃

µν)γρDρεAB .

(3.76)

As with the hyper fermions, we can break the two-derivative term γργσDρDσ into its

symmetric and anti-symmetric parts and use the commutator given in (3.68). We will also

use the Schouten identity (3.30) and gamma matrix commutation relations to simplify this

expression. The result is

ΛµνAB = −
(
�gµνδAB +

1

2
γρσR µν

ρσ δAB +
1

4
(FµλF ν

λ − F̃µλF̃ ν
λ )δAB

+
1

2
γρ(DρF

µν)εAB −
1

2
γργ5(DρF̃

µν)εAB

)
.

(3.77)

In (3.77) there is no term linear in derivatives. This corresponds to ωµ = 0, and so the

matrices I and E are

IµνAB = I4gµνδAB ,

EµνAB =

(
1

2
γρσR µν

ρσ +
1

4
FµλF ν

λ −
1

4
F̃µλF̃ ν

λ

)
δAB

+

(
1

2
γρ(DρF

µν)− 1

2
γρ(DρF̃

µν)γ5

)
εAB .

(3.78)

Since ωµ = 0, the curvature Ωµν of the connection Dµ is given by the commutator in (3.68)

(Ωρσ)µνAB =

(
1

4
γαβRρσαβg

µν +R µν
ρσ

)
δAB . (3.79)
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The relevant traces for our heat kernel coefficients are

Tr I = 32 ,

Tr E = −2FµνF
µν + 2F̃µνF̃

µν ,

Tr E2 = 4RµνρσR
µνρσ +

1

2
(FµρFνρ − F̃µρF̃νρ)(FµσF νσ − F̃µσF̃ νσ)

+ 2(DρFµν)(DρFµν)− 2(DρF̃µν)(DρF̃µν) ,

Tr ΩρσΩρσ = −12RµνρσR
µνρσ .

(3.80)

We can now calculate the Seeley-DeWitt coefficients (3.14) for the gravitini in the

gravity multiplet, making sure to add an overall factor of −1/2 to account for fermion

statistics and the Majorana condition. We will also simplify the result by using (3.35) to

rewrite (DρFµν)2 and (DρF̃µν)2 in terms of the Riemann tensor and Ricci tensor contracted

with these field strengths. We end up with

(4π)2agravitini
0 (x) = −16 ,

(4π)2agravitini
2 (x) = FµνF

µν − F̃µνF̃µν ,

(4π)2agravitini
4 (x) = − 1

360

(
212RµνρσR

µνρσ−32RµνR
µν−360Rµν(FµρF νρ−F̃µρF̃ νρ)

+180Rµνρσ(FµνF ρσ − F̃µνF̃ ρσ)

+45(FµρFνρ − F̃µρF̃νρ)(FµσF νσ − F̃µσF̃ νσ)
)
.

(3.81)

As noted in [3], the particular choice of gauge made in (3.70) induces the ghost

Lagrangian

Lghost =
¯̃
bAγ

µDµc̃A + ¯̃eAγ
µDµẽA , (3.82)

where b̃A, c̃A, and ẽA are fermionic ghosts, with the same species index A = 1, 2 as the grav-

itinos. Since there are six different species of these minimally coupled Majorana fermions,

their contribution to the fermionic heat kernel will be −6 times the free spin-1/2 heat ker-

nel (3.28). The net fermionic heat kernel coefficients, including gauge-fixing and ghosts, are

agrav,f
2n (x) = agravitini

2n (x) − 6a
1/2
2n (x). The final Seeley-DeWitt coefficients for the fermionic

content of the gravity multiplet are thus

(4π)2agrav,f
0 (x) = −4 ,

(4π)2agrav,f
2 (x) = FµνF

µν − F̃µνF̃µν ,

(4π)2agrav,f
4 (x) = − 1

360

(
233RµνρσR

µνρσ − 8RµνR
µν − 360Rµν(FµρF νρ − F̃µρF̃ νρ)

+180Rµνρσ(FµνF ρσ − F̃µνF̃ ρσ)

+45(FµρFνρ − F̃µρF̃νρ)(FµσF νσ − F̃µσF̃ νσ)
)
.

(3.83)
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3.4.4 Gravity multiplet: bosons

As discussed in section 2.3, the action for the bosonic content of the gravity multiplet

coincides with the Einstein-Maxwell action

S =
1

2κ2

∫
d4x
√
−g

(
R− 1

4
FµνF

µν

)
, (3.84)

where R is the Ricci scalar corresponding to the metric gµν and Fµν = DµAν−DνAµ is the

background graviphoton field strength. We want to consider quadratic fluctuations about

the background and then compute the corresponding heat kernel. This calculation has

been done for Einstein-Maxwell theory [9], but we find it useful to go through it in detail.

Consider the variations

δgµν = hµν , δAµ = aµ . (3.85)

The fluctuations are the graviton hµν and the graviphoton aµ. We will expand the ac-

tion (3.84) to quadratic order in these field fluctuations. The relevant second-order varia-

tions, up to a total derivative, are

δ2
(√
−gR

)
=
√
−g
[

1

2
hµν�hµν −

1

2
hµµ�h

ρ
ρ + hµνhρσRµρνσ + hµνhµρR

ρ
ν

+
1

4
(hµµ)2R− hµνhρρRµν −

1

2
hµνhµνR

+ (Dµhµν)(Dρh ν
ρ ) + (DµDνhµν)hρρ

]
,

δ2
(√
−gFµνFµν

)
=
√
−g
[
2fµνf

µν − 1

2

(
hµνhµν −

1

2
(hµµ)2

)
FρσF

ρσ

− 8hµνfµρF
ρ
ν + 2hρρfµνF

µν + 4hµνhρνFµσF
σ
ρ

+ 2hµνhρσFµρFνσ − 2hµνhρρFµσF
σ
ν

]
,

(3.86)

where fµν = Dµaν −Dνaµ. We gauge-fix our theory by

Lg.f. = − 1

2κ2

(
Dµhµρ −

1

2
Dρh

µ
µ

)(
Dνhνσ −

1

2
Dσh

ν
ν

)
− 1

2κ2
(Dµaµ)2 , (3.87)

which picks out the harmonic gauge for the graviton (Dµhµρ − 1
2Dρh

µ
µ = 0) and the

Lorenz gauge for the graviphoton (Dµaµ = 0). We use the background Einstein equations

to simplify the gauge-fixed quadratic action, which includes setting R = 0. Additionally,

we let hµν →
√

2hµν so that the kinetic terms for the graviton and the graviphoton have

the same normalization. The resulting action is

S =
1

2κ2

∫
d4x
√
−g
[
hµν�hµν −

1

2
hµµ�h

ρ
ρ + aµ (�gµν −Rµν) aν + 2hµνhρσRµρνσ

− 2hµνhµρR
ρ
ν −

1

4
hµνhµνFρσF

ρσ +
1

8
(hµµ)2FρσF

ρσ − hµνhρσFµρFνσ

− 1√
2
hρρfµνF

µν + 2
√

2hµνfµρF
ρ
ν

]
. (3.88)
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We note that (3.88) is not in the required Laplace form needed for our heat kernel

analysis, due to the hµµ�h
ρ
ρ kinetic term. To fix this, we separate the graviton hµν into

its trace h and traceless component φµν by defining

h ≡ hµµ , (3.89)

φµν ≡ hµν −
1

4
gµνh . (3.90)

This decomposition is standard, as the fields h and φµν transform under irreducible repre-

sentations of SL(2,C) [16–19]. The action becomes

S =
1

2κ2

∫
d4x
√
−g
[
φµν�φµν −

1

4
h�h+ aµ (�gµν −Rµν) aν + 2φµνφρσRµρνσ

− 2φµνφµρR
ρ
ν −

1

4
φµνφµνFρσF

ρσ − φµνφρσFµρFνσ − hφµνRµν + 2
√

2φµνfµρF
ρ
ν

]
.

(3.91)

The kinetic term for h has a negative sign. This is the conformal factor problem in

gravity, and results in an unbounded path integral for our theory. The resolution to this

problem is that the one-loop effective action can be made to converge by performing a

conformal rotation that takes the contour of integration for h to be along the imaginary

axis [20–22]. We will also simultaneously rescale h to make the normalization of its kinetic

term coincide with those for φµν and aµ. Therefore, we let

φ = − i
2
h , (3.92)

and consider the action quadratic in the fields {φn} = {φµν , aµ, φ}. The result is

S = − 1

2κ2

∫
d4x
√
−g φnΛnmφ

m , (3.93)

where Λ acts on our fields by

−φnΛnmφ
m = φµν

(
�gµρg

ν
σ − 2Rµρg

ν
σ + 2Rµ ν

ρ σ −
1

4
gµρg

ν
σFλτF

λτ − FµρF νσ
)
φρσ

+ aµ
(
�gµρ −Rµρ

)
aρ + φ�φ+ φµν (−iRµν)φ+ φ (−iRρσ)φρσ

+ φµν

(√
2

2
(DµF ν

ρ ) +
√

2(F ν
α gµρ − F ν

ρ gµα)Dα

)
aρ

+ aµ

(√
2

2
(DρF

µ
σ) +

√
2(Fµσgρα − Fασg µ

ρ )Dα

)
φρσ .

(3.94)

We have adjusted total derivative terms to make Λ Hermitian. From (3.94), the matrices
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P and ωα are

φnP
n
mφ

m = φµν

(
−2Rµρg

ν
σ + 2Rµ ν

ρ σ −
1

4
gµρg

ν
σFλτF

λτ − FµρF νσ
)
φρσ

+ aµ
(
−Rµρ

)
aρ + φµν (−iRµν)φ+ φ (−iRρσ)φρσ

+ φµν

(√
2

2
(DµF ν

ρ )

)
aρ + aµ

(√
2

2
(DρF

µ
σ)

)
φρσ , (3.95)

φn(ωα)nmφ
m =

√
2

2
φµν

(
F ν
α gµρ − F ν

ρ gµα
)
aρ +

√
2

2
aµ
(
Fµσgρα − Fασg µ

ρ

)
φρσ . (3.96)

We now define the operator

Gµνρσ =
1

2

(
gµρg

ν
σ + gµσg

ν
ρ −

1

2
gµνgρσ

)
. (3.97)

Gµνρσ projects onto the traceless part of a symmetric tensor. In order to impose that φµν
is the traceless part of the graviton, we must use Gµνρσ to contract pairs of indices for any

operator acting on φµν . That is, if we have some matrix M acting on our fields such that

φnM
n
mφ

m = φµνM
µν
ρσ φ

ρσ , (3.98)

then M2 is given by

φn(M2)nmφ
m = φµνM

µν
αβG

αβ
γδM

γδ
ρσφ

ρσ . (3.99)

We must also use Gµνρσ when taking traces of these operators, i.e.

Tr M = GρσµνM
µν
ρσ . (3.100)

As an example, the identity operator Ig acting on φµν is defined by

φn(Ig)
n
mφ

m = φµν
(
gµρg

ν
σ

)
φρσ = φµνφ

µν . (3.101)

Since φµν is both symmetric and traceless, we expect it to have 10 − 1 = 9 independent

off-shell degrees of freedom. The trace of Ig, using Gµνρσ to contract indices, is indeed

Tr Ig = Gρσµνg
µ
ρg
ν
σ = Gµνµν =

1

2

(
gµµg

ν
ν +

1

2
gµνgµν

)
= 9 . (3.102)

Using the traceless projection operator (3.97) with our expressions for P and ωα and

the background equations of motion, it follows that ωαωα and (Dαωα) are

φn(ωαωα)nmφ
m = φµν

(
−FµρF νσ − 2Rµρg

ν
σ −

1

4
gµρg

ν
σFλτF

λτ

)
φρσ

+ aµ

(
−Rµρ −

3

8
gµρFλτF

λτ

)
aρ , (3.103)

φn(Dαωα)nmφ
m = φµν

(
−
√

2

2
(DµF ν

ρ )

)
aρ + aµ

(√
2

2
(DρF

µ
σ)

)
φρσ . (3.104)
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Using E = P −ωαωα− (Dαωα) and adjusting total derivative terms to make E Hermitian,

we find that

φnE
n
mφ

m = φµν
(
2Rµ ν

ρ σ

)
φρσ + aµ

(
3

8
gµρFλτF

λτ

)
aρ

+ φµν(−iRµν)φ+ φ(−iRρσ)φρσ

+ φµν

(√
2

2
(DµF ν

ρ )

)
aρ + aµ

(√
2

2
(DρF

µ
σ)

)
φρσ .

(3.105)

The traceless graviton φµν has nine off-shell degrees of freedom, while the trace φ has

only one and the graviphoton aµ has four. Therefore,

Tr I = 9 + 1 + 4 = 14 . (3.106)

From (3.105) it follows that

Tr E =
3

2
FµνF

µν ,

Tr E2 = 3RµνρσR
µνρσ − 7RµνR

µν +
3

4
RµνρσF

µνF ρσ +
9

16
(FµνF

µν)2 .

(3.107)

In order to compute the curvature Ωαβ we expand the commutator in (3.13):

(Ωαβ)nm = [Dα, Dβ ]nm + φn(D[αωβ])
n
mφ

m + [ωα, ωβ ]nm . (3.108)

The covariant derivative commutes when acting on φ but not when acting on aµ or φµν .

We also account for the fact that φµν is symmetric. So, the first term in (3.108) is

φn[Dα, Dβ ]nmφ
m = φµν [Dα, Dβ ]φµν + aµ[Dα, Dβ ]aµ

= φµν

(
2Rµραβg

ν
σ

)
φρσ + aµ(Rµραβ)aρ .

(3.109)

The second term in (3.108) can be calculated by applying the covariant derivative to ωα
and simplifying with the Bianchi identity:

φn(D[αωβ])
n
mφ

m =

√
2

2
φµν

(
−DνFαβg

µ
ρ − g

µ
[βDα]F

ν
ρ

)
aρ

+

√
2

2
aµ
(
DσFαβg

µ
ρ + gρ[βDα]F

µ
σ

)
φρσ .

(3.110)

Note that the covariant derivative is applied only to the background field strength tensors

in the above expression, and not to the fields themselves. The last term in equation (3.108)

is obtained by taking a product of ωα and ωβ , antisymmetrizing, and simplifying with the

background equations of motion, giving

φn[ωα, ωβ ]nmφ
m =

1

2
φµν
(
FµρF

ν
α gβσ − FµρFβσg ν

α − F ν
α Fβσg

µ
ρ − 2Rµρg

ν
α gβσ

− 1

4
gµρg

ν
α gβσFλτF

λτ
)
φρσ +

1

2
aµ

(
R µ
β gαρ +Rαρg

µ
β − F

µ
ρFαβ

)
aρ

− (α↔ β) . (3.111)
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We have all of the components of Ωµν and so it is straightforward to compute the trace of

ΩµνΩµν using the background equations of motion and Bianchi identities. The result, up

to a total derivative, is

Tr ΩµνΩµν = −7RµνρσR
µνρσ + 56RµνR

µν − 9

2
RµνρσF

µνF ρσ − 27

8
(FµνF

µν)2 . (3.112)

The choice of gauge-fixing in (3.87) induces the ghost Lagrangian

Lghost = 2bµ(�gµν +Rµν)cν + 2b�c− 4bFµνDµcν , (3.113)

where bµ, cµ are the diffeomorphism ghosts associated with the graviton and b, c are the

ghosts associated with the graviphoton. For the purposes of computing the heat kernel

coefficients we can treat bµ, cµ as vector fields and b, c as scalar fields. In order to make

the kinetic term in (3.113) diagonal, we make the change of variables

b′µ =
i(bµ − cµ)√

2
, c′µ =

bµ + cµ√
2

, b′ =
i(b− c)√

2
, c′ =

b+ c√
2

. (3.114)

If we insert these into (3.113) and adjust the total-derivative terms to make the action

Hermitian, we find that

S =

∫
d4x
√
−g
[
c′µ(�gµν +Rµν)c′ν + b′µ(�gµν +Rµν)b′ν + b′�b′ + c�c′

− (b′µ − ic′µ)FµνDν(b+ ic)− (b+ ic)FµνDµ(b′ν − ic′ν)

]
.

(3.115)

We will now supress the ′ on these terms for notational simplicity. From this action, we

can read off the matrices P and ωα as

φnP
n
mφ

m = bµ(Rµν)bν + cµ(Rµν)cν ,

φn(ωα)nmφ
m = −1

2
(bµ − icµ)Fµα(b+ ic)− 1

2
(b+ ic)Fαν(bν − icν) .

(3.116)

The commutator of two covariant derivatives commutes when acting on the scalar ghosts

but not on the vector ghosts, so

φn[Dα, Dβ ]nmφ
m = bµ(Rµναβ)bν + cµ(Rµναβ)cν . (3.117)

Using (3.116) and (3.117) it is straightforward to compute E and Ωαβ for the ghosts:

φnE
n
mφ

m = bµ(Rµν)bν + cµ(Rµν)cν ,

φn(Ωαβ)nmφ
m = bµ(Rµναβ)bν + cµ(Rµναβ)cν − 1

2
(bµ − icµ)(DµFαβ)(b+ ic)

+
1

2
(b+ ic)(DνFαβ)(bν − icν) .

(3.118)

Each vector ghost has four degrees of freedom, while the scalars each have one, giving

Tr I = 4 + 4 + 1 + 1 = 10. The traces of E, E2, and ΩµνΩµν are

Tr E = 0 , Tr E2 = 2RµνR
µν , Tr ΩµνΩµν = −2RµνρσR

µνρσ . (3.119)
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The total Seeley-DeWitt coefficients for the bosons in the gravity multiplet are given

by inserting the traces in (3.107) and (3.112) (as well as the ghost traces in (3.119) with

an overall minus sign) into (3.14). The result is

(4π)2agrav,b
0 (x) = 4 ,

(4π)2agrav,b
2 (x) =

3

2
FµνF

µν ,

(4π)2agrav,b
4 (x) =

1

180
(199RµνρσR

µνρσ + 26RµνR
µν) .

(3.120)

agrav,b
4 (x) matches exactly with the Einstein-Maxwell result given in [9]. As mentioned

there, it has no explicit dependence on the background graviphoton field strength, although

we would have obtained a different result if we had ignored the terms involving the field

strength in the action.

The full gravity multiplet heat kernel coefficients, with contributions from the graviton,

gravitini, and graviphoton fluctuations, are

(4π)2agrav
0 (x) = 0 ,

(4π)2agrav
2 (x) =

5

2
FµνF

µν − F̃µνF̃µν ,

(4π)2agrav
4 (x) =

1

24

(
11RµνρσR

µνρσ + 4RµνR
µν + 24Rµν(FµρF νρ − F̃µρF̃ νρ)

−12Rµνρσ(FµνF ρσ − F̃µνF̃ ρσ)

−3(FµρFνρ − F̃µρF̃νρ)(FµσF νσ − F̃µσF̃ νσ)
)
.

(3.121)

3.4.5 Gravitino multiplet

By gravitino multiplet we refer to the additional N − 2 gravitini, referred to as massive

gravitini, and their superpartners in N = 2 SUSY. The N = 2 gravitino multiplet consists

of a (massive) Majorana gravitino, two vector fields, and a Majorana gaugino. The two

vector fields are minimally coupled to gravity, so the heat kernel coefficients (including

ghosts resulting from the standard Lorenz gauge-fixing) are well-known [6, 7]:

(4π)2a
3/2,b
0 (x) = 4 ,

(4π)2a
3/2,b
2 (x) = 0 ,

(4π)2a
3/2,b
4 (x) =

1

90
(−13RµνρσR

µνρσ + 88RµνR
µν) .

(3.122)

The fermions in the gravitino multiplet are coupled together by the background

graviphoton field. The Lagrangian describing these interactions is given in (2.41) as

Lgravitino = − 1

κ2
Ψ̄µγ

µνρDνΨρ −
2

κ2
λ̄γµDµλ−

1

2κ2

(
Ψ̄µF̂ γ

µλ+ λ̄γµF̂Ψµ

)
, (3.123)

where Ψµ is the gravitino field, λ is the gaugino field, and F̂ = 1
2Fµνγ

µν . We will proceed as

we did for the gravitini in the gravity multiplet and choose the harmonic gauge γµΨµ = 0

by adding to our Lagrangian the gauge-fixing term

Lg.f. =
1

2κ2
(Ψ̄µγ

µ)γνDν(γρΨρ) . (3.124)
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We also make the field redefinition

Φµ =
1√
2

Ψµ −
1

2
√

2
γµγ

νΨν . (3.125)

Let {φm} = {Φµ, λ} denote our fermionic fields. Then, the total action quadratic in these

fields (including gauge-fixing) is

S =
1

κ2

∫
d4x
√
−g φnĤn

mφ
m , (3.126)

where

φnĤ
n
mφ

m = −Φ̄µγ
νDνΦµ − λ̄γνDνλ−

√
2

4

(
Φ̄µF̂ γ

µλ+ λ̄γµF̂Φµ

)
. (3.127)

The action (3.126) is in the Dirac form needed to employ our heat kernel methods, where

Ĥ is the Dirac-type operator acting on our fermionic fields.

From here, the story is familiar: we continue to Euclidean space, take Λ = ĤĤ†, and

compute the heat kernel of Λ using all of our standard tricks. We will also include the ghost

contribution (see (3.82)) that results from our choice of gauge-fixing and subtract that from

the massive gravitino and gaugino contribution. The resulting heat kernel coefficients are

(4π)2a
3/2,f
0 (x) = −4 ,

(4π)2a
3/2,f
2 (x) = −FµνFµν ,

(4π)2a
3/2,f
4 (x) = − 1

360

[
113RµνρσR

µνρσ − 8RµνR
µν − 15Rµνρσ

(
FµνF ρσ − F̃µνF̃ ρσ

)
− 45

4

(
(FµνF

µν)2 − (FµνF̃
µν)2

)]
.

(3.128)

Adding up the bosonic (3.122) and fermionic (3.128) contributions, the net heat kernel

coefficients for the massive gravitino multiplet are

(4π)2a
3/2
0 (x) = 0 ,

(4π)2a
3/2
2 (x) = −FµνFµν ,

(4π)2a
3/2
4 (x) =

1

24

[
− 11RµνρσR

µνρσ + 24RµνR
µν +Rµνρσ

(
FµνF ρσ − F̃µνF̃ ρσ

)
+

3

4

(
(FµνF

µν)2 − (FµνF̃
µν)2

)]
.

(3.129)

4 Discussion

In this section we collect our results and simplify their form. We compute the corresponding

logarithmic corrections to black hole entropy. We discuss the significance of our results and

the implications for Kerr-Newman black holes.
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4.1 The conformal anomaly and central charges

The a4(x) coefficients derived in each N = 2 multiplet are linear combinations of covariant

terms that each contain four derivatives

a4(x) = α1RµνρσR
µνρσ + α2RµνR

µν + α3RµνρσF
µνF ρσ + . . . , (4.1)

for some set of numerical coefficients {αi}. We found it useful to keep Fµν and F̃µν distinct

in section 3 but we will now simplify as much as possible by expressing the dual field

strength in terms of the Levi-Civita symbol and the field strength. We use the Einstein

equation (3.29), the Schouten identity (3.30), and derivatives of the field strength (3.35)

to prove the following identities:2

F̃µρF̃ νρ = −FµρF νρ +
1

2
gµν(FρσF

ρσ) = −2Rµν +
1

4
gµν(FρσF

ρσ) ,

Rµνρσ(FµνF ρσ − F̃µνF̃ ρσ) = 8RµνR
µν ,

(FµνF
µν)2 − (FµνF̃

µν)2 = 16RµνR
µν .

(4.2)

These three relations are sufficient to rewrite all contractions involving the field strength in

our a4(x) results purely in terms of the Riemann tensor. This simplification is surprising

because it would not work for generic four-derivative terms. It was noted previously for

the bosonic content of the gravity multiplet [9].

From the argument above, we can write our a4(x) coefficients as

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (4.3)

for some constants c and a, where the square of the Weyl tensor Wµνρσ is

WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 , (4.4)

and E4 is the Euler density (also known as the Gauss-Bonnet term)

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 . (4.5)

The c, a constants can be identified as the central charges of the conformal anomaly in 4D.

In theories without dynamical gravity they are related to the renormalization group flow

of the quantum field theory [23–26].

We now take the a4(x) results from section 3 and use the identities (4.2) to rewrite them

in the form of (4.3). The results for the central charges of our theory (with a single graviton

multiplet, N − 2 gravitino multiplets, nV vector multiplets and nH hyper multiplets) are

listed in table 1.

As a check on these results we consider the special case of BPS black holes. The

near-horizon geometry for these spaces is AdS2 × S2, with non-zero components of the

Riemann tensor

Rαβγδ = − 1

`2
(gαγgβδ − gαδgβγ) , Rijkl =

1

`2
(gikgjl − gilgjk) , (4.6)

2In deriving these we assumed Lorentzian signature. The single time-like direction then gives an extra

minus sign when contracting Levi-Civita symbols.
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Fields c a

Bosons 1
60 (137 + 12(N − 2)− 3nV + 2nH) 1

90 (106 + 31(N − 2) + nV + nH)

Fermions − 1
60 (137 + 12(N − 2)− 3nV + 2nH) 1

360 (−589 + 41(N − 2) + 11nV − 19nH)

Total 0 1
24 (−11 + 11(N − 2) + nV − nH)

Table 1. Central charges c and a for the massless field content of a N ≥ 2 supergravity theory

minimally coupled to the background gauge field.

where ` is the radius of curvature of AdS2 and S2. (The indices α, β, γ, δ refer to AdS2 and

i, j, k, l refer to S2.) It is straightforward to compute the curvature invariants

WµνρσW
µνρσ = 0 , E4 = − 8

`4
. (4.7)

If we combine these with the values of c, a found in table 1 we reproduce the sum of the

bulk and boundary contributions (for bosons and fermions separately) computed in [8,

27] exactly.

The results for c, a in table 1 are fairly complicated when considering bosons and

fermions separately. However, the bosonic and fermionic values of c for any full N = 2

multiplet exactly cancel, giving c = 0. By simultaneously considering quadratic fluctuations

of both the bosonic and fermionic fields in our theory, the c-anomaly vanishes for arbitrary

N = 2 multiplets. The entire one-loop result depends only on the Euler density E4:

a4(x) = − a

16π2
E4 . (4.8)

This cancellation would not be noticed for supersymmetric black holes, since

WµνρσW
µνρσ = 0 on AdS2 × S2 (4.7).

The cancellation of the c-anomaly is far from automatic. For example, c does not vanish

in pure Einstein-Maxwell theory [9], or equivalently for the bosonic part of our N = 2

supergravity multiplet. c and a have been computed in many theories without dynamical

gravity but rarely do these computations yield c = 0 [17, 28–30]. For quantum field theories

that can be described via the AdS/CFT correspondence the canonical situation is c = a in

the large N limit [31–35].

4.2 Black hole entropy

The logarithmic dependence of the black hole entropy is governed by

∂S

∂ logAH
=

1

2
(Clocal + Czm) , (4.9)

where Clocal is the constant term in the heat kernel D(s) (3.6) and Czm is an integer we

add to account for zero modes. [2, 3, 36, 37].

From the series representation of K(x, x; s) in (3.9) it is clear that

Clocal =

∫
d4x
√
−g a4(x) = −2aχ , (4.10)
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where χ is the 4D Euler characteristic

χ =
1

32π2

∫
d4x
√
−g E4 . (4.11)

If we insert (4.10) into (4.9) and employ the full value of the central charge a from table 1,

we find the logarithmic correction to the black hole entropy

δS =
χ

24

(
11− 11(N − 2)− nV + nH

)
logAH +

1

2
Czm logAH . (4.12)

The logarithmic correction depends only on the Euler characteristic χ (as well as the zero

mode correction Czm). This result is important because χ is a pure number that depends

only on the topology of the black hole solution and not on any black hole parameters.

4.3 Kerr-Newman black holes

The metric of a Kerr-Newman black hole parameterized by mass M , angular momentum

J , and charge Q is

ds2 = −r
2 + b2 cos2 ψ − 2Mr +Q2

r2 + b2 cos2 ψ
dt2 +

r2 + b2 cos2 ψ

r2 + b2 − 2Mr +Q2
dr2 + (r2 + b2 cos2 ψ)dψ2

+
(r2 + b2 cos2 ψ)(r2 + b2) + (2Mr −Q2)b2 sin2 ψ

r2 + b2 cos2 ψ
sin2 ψ dφ2

+
2(Q2 − 2Mr)b

r2 + b2 cos2 ψ
sin2 ψ dt dφ ,

(4.13)

where b = J/M . The horizon is located at

rH = M +
√
M2 −Q2 − b2 , (4.14)

and the inverse temperature β = 1
T is

β =
2πM√

M4 − J2 −M2Q2

(
2M2 −Q2 + 2

√
M4 − J2 −M2Q2

)
. (4.15)

After Euclidean continuation t → −iτ and interpreting τ as a periodic coordinate with

period β one can show that [37]∫
d4x
√
−gWµνρσW

µνρσ = 64π2 +
πβQ4

b5r4
H(b2 + r2

H)

[
4b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1

(
b

rH

)
+ 3br5

H

]
.

(4.16)

This expression can be recast as a complicated function of two dimensionless ratios, e.g.

Q/M and J/M2. In the extremal limit M2 = b2 +Q2 the expression depends on only one

of these ratios, but still in a very non-trivial way [9]. In contrast, the integral of the Euler

density is a pure number

χ =
1

32π2

∫
d4x
√
−g E4 = 2 , (4.17)

for all values of the dimensionless ratios.
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For generic field content the coefficient of the logarithmic correction to Kerr-Newman

entropy resulting from (4.3) depends on the Weyl invariant and thus on all of the black hole

parameters through the complicated expression in (4.16). Our result in (4.12), however,

demonstrates that when these black holes are interpreted as solutions to N ≥ 2 SUGRA

there is dependence only on χ and thus the logarithmic corrections to Kerr-Newman entropy

are universal:

δS =
1

12

(
(11 + 6Czm)− 11(N − 2)− nV + nH

)
logAH . (4.18)

The correction due to zero modes Czm depends on the setting. Some important exam-

ples are:

• BPS black holes : Czm = 2 [3]. The background is spherically symmetric and preserves

supersymmetry, giving rise to translational, rotational, and SUSY zero modes.

• Extremal rotating Kerr-Newman : Czm = −4 [36]. The angular momentum breaks two

of the rotational isometries and the background no longer preserves supersymmetry,

leaving translational modes and one rotational mode.

• Non-extremal rotating Kerr-Newman : Czm = −1 [37]. The zero mode counting is the

same as for the extremal case except with an additional correction due to the finite

IR volume of integration.

For completeness we review the computation of Czm in appendix A.
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A Zero modes

We initially defined the heat kernel D(s) in (3.4) to include zero modes of Λ, so

D(s) =
∑
i

e−sλi =
∑
λi 6=0

e−sλi +Nzm , (A.1)

where Nzm is the number of zero modes (i.e. the number of distinct eigenvalues of Λ that

are zero). The contribution from the zero modes in (A.1) affects only the constant term

D0 and not any other terms in D(s).

This contribution from zero modes must be reconsidered carefully. The schematic

Euclidean path integral representation of the one-loop effective action (3.3) does not apply

to zero modes, as the functional integral over the fields is no longer a Gaussian. Instead, the

zero mode piece of the path integral reduces to ordinary integrals over the symmetry groups

that give rise to these zero modes. These integrals depend on the scaling dimensions of the
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symmetry groups. Contributions from zero modes were included in our local expressions

but with an incorrect weight of 1, as in (A.1). The correction due to the actual scaling

dimension of the zero modes is

Czm = −
∑
i∈B

(∆i − 1)N (i)
zm +

∑
i∈F

(2∆i − 1)N (i)
zm . (A.2)

where ∆ is the scaling dimension of the field and Nzm is the number of zero modes associated

with that field [3, 8, 36]. The fermionic zero modes have the opposite sign as bosonic zero

modes to account for fermion spin statistics. The fermionic scaling dimensions also count

with double weight due to spin degeneracy.

The correct treatment of zero modes introduces the correction Czm in (4.9). As dis-

cussed in §1 of [36], (4.18) describes the logarithmic correction to the entropy in the mi-

crocanonical ensemble where M , Q, and J are fixed. In general Czm can depend on how

these quantities have been fixed. This correction has been computed in many different

cases [2, 3, 36, 37]. We collect these different results and present them compactly as

Czm = −(3 +K) + 2NSUSY + 3δ , (A.3)

where

K =

{
1 for J3 fixed with ~J2 arbitrary

3 for J3 = ~J2 = 0
,

NSUSY =

{
4 for BPS black holes

0 for non-BPS black holes
,

δ =

{
1 for non-extremal black holes

0 for extremal black holes
.

(A.4)

Scalars and spin-1/2 fermions have no zero modes. Vector fields have scaling dimension

∆1 = 1, so there are no corrections due to vector zero modes. All zero modes in the vector

and gravitino multiplets are due to vector fields and thus these multiplets do not get

corrected. Therefore we only need consider the fields in the gravity multiplet.

The metric has scaling dimension ∆2 = 2 and 3+K zero modes. There are 3 zero modes

associated with translational invariance and K zero modes associated with the number of

rotational isometries of the black hole solution.

The fermionic zero modes have scaling dimension ∆3/2 = 3
2 . For BPS black hole

solutions there are 4 SUSY zero modes, but there are no fermionic zero modes when the

background does not preserve SUSY.

Non-extremal black holes have a finite temperature and thus we assume the inverse

temperature β scales with the length scale of the black hole, as opposed to the extremal

limit where β → ∞. We thus have to consider a finite IR volume of integration, which

gives a 3δ contribution to (A.3) that exactly cancels the translational zero modes for non-

extremal black holes [37].
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