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ABSTRACT: We focus on the issue of proper definition of entanglement entropy in lattice
gauge theories, and examine a naive definition where gauge invariant states are viewed as
elements of an extended Hilbert space which contains gauge non-invariant states as well.
Working in the extended Hilbert space, we can define entanglement entropy associated with
an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then
derive the associated replica formula. We also discuss the issue of gauge invariance of the
entanglement entropy. In the Zy gauge theories in arbitrary space dimensions, we show
that all the standard properties of the entanglement entropy, e.g. the strong subadditivity,
hold in our definition. We study the entanglement entropy for special states, including the
topological states for the Zx gauge theories in arbitrary dimensions. We discuss relations
of our definition to other proposals.
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1 Introduction

Entanglement entropy plays important roles in various fields of quantum physics includ-
ing string theory [1-16], condensed matter physics [17-22], and the physics of the black
hole [23-27]. It is believed that entanglement entropy characterizes various aspects of
quantum states in a simple and unified manner.

In the context of lattice gauge theories, entanglement entropy is expected to be a useful
tool for studying confinement / deconfinement transitions (or crossover) [28-30]. It has
been pointed out, however, that there is a subtle problem in the definition of entanglement
entropy in gauge theories [31-35]. When we calculate the entanglement entropy of a region
V', we first express the Hilbert space of the total system as a tensor product of the Hilbert
spaces of V and that of V, the complement of V. Thus we trace out the degrees of



freedom of V and obtain the reduced density matrix of V. For gauge theories, however,
the physical gauge invariant Hilbert space can not be factorized into a tensor product of
the gauge invariant subspaces of V and that of V due to the local gauge invariance at
the boundary 9V between V and V. This reflects the fact that the fundamental physical
degrees of freedom contain Wilson loops, which are nonlocal operators. Due to the absence
of the factorization into a tensor product, it is not straightforward to define the reduced
density matrix of some region and to calculate the entanglement entropy. We need to
specify the prescription to obtain the reduced density matrix of the region.

In this paper, we propose a definition of the entanglement entropy in lattice gauge
theories. We extend the gauge invariant Hilbert space to a larger Hilbert space in order
to admit the factorization into a tensor product of the gauge invariant subspaces of the
region V and the region V in this larger Hilbert space. The natural candidate of this larger
Hilbert space is the whole (gauge non-invariant) Hilbert space of the link variables. We
then obtain the reduced density matrix of the region V by tracing out the link variables
of the region V. We define the entanglement entropy as the von Neumann entropy of the
above reduced density matrix. We can define the entanglement entropy for an arbitrary
subset of links. This definition is applicable not only for abelian theories but also for non-
abelian ones. We then derive the replica formula to calculate the entanglement entropy in
our definition.

In the Zx gauge theories in arbitrary space dimensions, we express the whole Hilbert
space by useful basis states, which are eigenstates of the gauge transformations [32]. We
argue that all the standard properties of entanglement entropy, e.g. the strong subadditivity,
hold in our definition. We study the one for some special states. In particular, we calculate
rigorously the one for the topological states in arbitrary space dimensions. We discuss
relations of our definition to other proposals. We also demonstrate that the entanglement
entropy depends on the choice of the gauge fixing for some simple cases. This indicates
that one should not fix the gauge, at least on the boundary points between two regions, to
calculate the entanglement entropy in gauge theories.

The present paper is organized as follows. In section 2, we give precise definitions
of the geometry of our lattice and define the entanglement entropy. We discuss the gauge
invariance of the reduced density matrix. We also derive the replica formula here. In section
3, we consider the Zy gauge theories. We express the whole Hilbert space by eigenstates of
the gauge transformations, and derive an explicit expression of the entanglement entropy.
We then argue that all the standard properties of entanglement entropy, e.g. the strong
subadditivity, hold in our definition. We study the one for some special states. In particular,
we calculate the one for the topological states in arbitrary space dimensions. We discuss
relations of our definition to other proposals. In section 4, we summarize our investigations.
Some properties of the Zy gauge theories used in the main text are given in appendix A,
while gauge invariant states in non-abelian gauge theories are briefly discussed in B.



2 Naive definition of entanglement entropy in lattice gauge theories

2.1 Definition and some properties

Geometry. We can treat quite general geometries and boundary conditions.

Our lattice is (S, £), where S denotes the set of sites x,y,... € S, and L C S x S the
set of links. We understand that £ = (x,%) and £ = (y, x) are different ways of expressing a
single link in £. This in particular means that ¢ € V implies £ € V for any subset V C L.
Here we do not assume a particular structure of our lattice such as regularity, so that a
random lattice could be treated. Note that this setup can treat both periodic and free
boundary conditions for the whole lattice.

We define the boundary of a subset V' C L as

oV :={zeS ‘ (z,y) €V and (z,2) € V for some y,z € S }, (2.1)
which is the set of sites in both V and its complement V' = £\V. Note also that 9V = V..

Naive definition of entanglement entropy. We consider the global density matrix p
for gauge theories, whose elements are denoted by

{UlplU") = p(U;U") = p(Uv, Uy; Uy, Uyy) (2.2)

where U represents a gauge configuration (a set of all link variables), U = {Uy | £ € L}, while
Uy, Uy are gauge configurations on V and V, Uy = {Uy | £ € V} and Uy = {U, | £ € V'},
respectively.

We propose to define a reduced density matrix as

(Uvlpv|Uy) = pv(Uv; Uy) = /DUV p(Uv, Uy; Uy, Uy), (2.3)

where DUy, denotes a product of the group invariant integrals or sums. For the compact
group, we have DUy, = [],cy dUy, where dUy is the Haar measure for the link variable Uy.

The above definition of the reduced density matrix is a simple generalization of the
reduced density matrix in spin systems, where the whole Hilbert space is a direct product
of those of region V and region V, H = Hy ® Hy. In the case of gauge theories, on the
other hand, due to the local gauge invariance, the gauge invariant full Hilbert space can not
be factorized into a product of gauge invariant subspaces, Hiﬁnv # ’Hi‘ﬁ“’ ® H%W. Therefore
the above reduced density matrix py can not be obtained from a single partial trace of
p over the gauge invariant subspace Hi‘—ﬁ“’. Without gauge invariance, however, the whole
Hilbert space can be factorized as Hy = Hy ® Hyr, so that our definition of py above
can be understood as the partial trace of p over the gauge non-invariant subspace Hy, on
Uy. In the next section, we explicitly construct the reduced density matrix for the Zy
gauge theories in an arbitrary dimensions, and explicitly construct an extension of py to
He=Hy @ Hy.

From the reduced density matrix, the entanglement entropy can thus be defined as

S(V) = —tr [py log pv], (2.4)



where the trace is taken over Hy . The definitions (2.3) and (2.4) are so simple that they
can be used not only for discrete abelian theories but also for continuous non-abelian gauge
theories without practical difficulties.

In the next section, we will see that this trace is reduced to a sum of traces in the gauge
invariant subspace ’Hi{}" C Hy and discuss that a basic properties such as the symmetric
property and the strong subadditivity are satisfied for the Zy gauge theories.

Gauge invariance. In gauge theories, the global density matrix is gauge invariant as
p(U9U™) = p(U; 1), (2.5)

where the gauge transformation of the link variable Uy is given by U] = gngg;S with
¢ = (z,y). To discuss the gauge invariance of the reduced density matrix py in (2.3), we
write the gauge transformation ¢ = (gv, gav, gy7) acting on whole U, but § = (gv, gav)
acting on only Uy and § = (gy,9sv ), where gy and gy represent gauge transformations
inside V and V while gy represents those on V.

It is then obvious that the gauge invariance of p implies that of py for a special class
of gauge transformations on Uy such that g = (gy, 1) and h= (hy,1):

pUEUY) = [ DU 0™ = [ DU U0 = py @sl}), (20)

where g = (gv,1,1) and h = (hy, 1,1).
For the general gauge transformations § = (gv, gav) and h = (hy, hgy) on Uy, (2.6)
implies

v (U UL") = py (U503, (o)), (2.7)

Writing (1, ggy) simply as gay, we have
PR UL ) = [ DU o0 Ui U Uy)
h
— /DUQBV p(U‘%aV,U‘%?V; U‘l/ BV,U‘%BV>
— [ DUG U Uy (0320557 Uy) = pu (U (U250, (29

where the invariance of the measure DU‘Q/W = DUy and the gauge invariance of the full
density matrix p are used. Therefore py is invariant only under diagonal gauge transfor-
mations at the boundary, gsy = hgy, among general gauge transformations g = (gv, gov)
and h = (hy, hgy) on Uy .

This suggests that the reduced density matrix and thus its entanglement entropy may
depend on the choice of the gauge if the gauge fixing is employed at the boundary in
the calculation. Indeed, we will show in the next section that values of the entanglement
entropy are different for different gauge fixing conditions in some simple cases for the Zy
gauge theories. Because of this problem, it is important and sensible to calculate the
entanglement entropy in the gauge invariant way without gauge fixing.



2.2 Replica formula

Since the explicit construction of the replica formula based on the concrete definition of the
entanglement entropy for lattice gauge theories is missing in literatures, we here explicitly
derive it based on our definition.

Transfer matrix and path integral. In lattice gauge theories, the evolution in a dis-
crete time is given by the transfer matrix T (for example, see refs. [36, 37]), which is

given by
T(U,U") == (U|T|U") = exp Bsd(U)} exp[So(U,U")] exp BSC,(U’)] (2.9)
where
SuU) = 5.9 Z Z T [Up Uil 5, UL ] = 57 Z Z (2.10)
z€eS p=1,v=1 z€eS p=1v=1
Wﬁv u#V
So(U,U") = QZZTY[ (UL )+ UL (Um,u)q (2.11)
€S p=1

for the plaquette action on a d-dimensional hyper-cubic lattice with the coupling constant
g. We here define P, () as a trace of the plaquette on pv plane at z, and use the notation
that U, := Up with ¢ = (z,2 + f1) and i is an unit vector in the p direction. Roughly
speaking, Sy corresponds to the magnetic (B?) contribution, while Sy to the electric (E?)

ol where H is the Hamiltonian and a; is

one, and the transfer matrix is regarded as e~
the unit lattice spacing in the time direction.

The wave function for the vacuum state is obtained as

Jim WP |w) = (U]0)(0]w) (2.12)

for an arbitrary gauge invariant state |¥) which satisfies (0|¥) # 0, where P is a projection
to the physical (gauge invariant) Hilbert space as

pP:= H/dgx 2 (9z)- (2.13)

€S

Here Ex(gx) generates the gauge transformation at x by g,. Note that (ﬁ)Q = P and
[T, P] = 0. While we explicitly write P in the above expression since (U] is not gauge
invariant, the formula without P is equally correct since P|¥) = | ).

Thus we can write

No 1 U[Np)=U 1 /
UIPENT|UY) = exp [2sd<U>] /U L, PUHe (o e [2sd<U>} (2.14)



where

Np—1 Nt
DUt == [] [Tdve@ I ] do-lt] (2.15)
t=1 (el t=02x€eS
Np—1 Nr
Sa(UMH]) == Y Sa(U]) + > So(U9[t — 1), U9[¢]) (2.16)
t=1 t=1

where UY ,[t] = g.[t] Ux,“[t]glﬂl [t]. Defining a new gauge field as U, o := g5t gz[t+1] where
z = (x,t) is a d + 1 dimensional lattice point, and introducing a new notation for gauge
fields U, , with ©=0,1,---d, we have

(U PN = exp Bsd(Ud)] /UZTUd DU / Dy exp [Spia (Ua)] exp Bsd(U’)}

Usy=U,,
(2.17)
where
Npr—1 d
Splaq 2 Z Z Z Z) + Z {ng(Z()) + PkO(ZO)} ) (218)
zeS | t=1 p=0,b=0 k=1
HFEV

with zg = (2,0) and 27 = (x, Nr). Here U,, = Ug means U = (Ug), i for k =1,2,--- ,d.
Note that since Spjaq and S4 do not depend on g, the gauge transformation left after the
change of variables, we have [ Dg,, = 1 in the above expression.

Path integral expression. The (unnormalized) density matrix for the vacuum state,
can be obtain as
(U4 p|U) = e2[SaUa)+SaUQ] Jipy DUS(U,- — Uag)d(U,+ — U})eSpiaalll)
Np—o00 0
LSq(U_)+Sqa(U_—
62[ al z;:) al ZT)] (2.19)
where v € S, —Np <t < N, zg: = (x,0%), and zrfﬁ = (x,£Nr7).

In practice, one often employs the periodic boundary condition at +Np in the Eu-
clidean time, which correspond to the thermal density matrix at temperature T =
1/(2Nra), where a is the lattice spacing. In this case, after interchanging ¢ = 0 and
t = =Np, we have

1 / U 1+=Ua T
(U7 |U,) = ezlSaUa)+5a(U))] T pUeSeadl) (2.20)
U__=U,
T
where

Np—1 d
Sptaq(U) = 22 > Z w(2) + 3 {Pok(en) + Prozp)} |- (2:21)

ze€S |t=—Np+1 p=0,r=0 k=1

uFV

The density matrix for the vacuum state is reproduced from p7 by the T — 0 limit.



Reduced density matrix for replica formula. We now consider two regions V' and
V = £\V, and denote U = (Uy,Uy) and Uy = (Ugy,Uygyy). Then the reduced density
matrix [B‘F‘C can be written as

. U +v=Uav 1 N ST (U
Py (Uav; Upv) = (Uav| Pp UGy ) = / r DU 2l T5aUnloaa ™) (2.22)
UZ;v=Ufiv

The replica formula for the entanglement entropy in now given as

1 Zn A
S(V) = lim log (n) . Zn=Te(ph)" (2.23)
n A

where Z,, can be expressed in the path-integral as
In = (H/DUz‘> pv(U1; Ua)pir (Us; Us) - - pi (Up; Ut ) (2.24)
i=1

and pl,(U;,U;) is given in (2.22). Note that (2.24) is invariant under the local gauge
transformation g in d + 1 dimensions with the period 2N7 ( not 2nNp) at the boundary,
which satisfies

9(@2kN7) = 9(z,0) at x € OV, k=1,2,--- ,n. (2.25)

This reflects the property that the reduced density matrix is only invariant under diagonal
gauge transformations at the boundary.

3 ZpN gauge theories in an arbitrary dimension
We consider the Zn gauge theories in this section.

3.1 Some properties of divergence-free flux-configurations

Flux-configuration. For each link ¢ € L, we associate a flux k; € {0,1,..., N —1}. We
assume the consistency k; = —kj;. Here and throughout the present paper, equalities for
the flux are with respect to mod N. We denote by k = (k¢)sc, a configuration of flux over
the whole lattice which satisfies d% (k) = 0 at "z € S, where

di(k) = Y kay) (3.1)

yeS
s.t. (z,y)eL

is the divergence of k at x associated with region £. We denote the set of all divergent-free
k’s by F.

Take an arbitrary subset V' C £. For any k € F, let Ry (k) be the configuration
obtained by omitting all the flux outside V. We then denote by Fi, the set of k&’ which is
written as k' = Ry (k) for some (not necessarily unique) k € F.



Incoming flux and decomposition of F. Fix an arbitrary subset V' C L. For any
k € F, we define

Fv(k) = (d (k) ,cov (3.2)
where dY is the divergence associated with the region V, obtained by replacing £ — V

in (3.1). Note that fy (k) is the list of incoming flux at each site on the boundary OV.
Recalling that OV = 9V for V = £L\V, we have

fvk) =—Ffy(k), (3-3)

which represents the conservation of flux at the boundary sites.
For a give subset V C L, we say that f € {0,1,...,N — 1}8\/ is admissible if there
exists at least one k € F such that fi,(k) = f. Then we have a natural decomposition

F={JFY, (3.4)
F

where the union is over all admissible f, and
FO =LlkeF|fyk)=Ff}. (3.5)

It is remarkable that all F(f) with admissible f are completely isomorphic to each
other. To see this, take arbitrary f, and f, which are admissible. Choose and fix k1, ko € F
such that fy (ki) = f; for i = 1,2. Then we define a map 15 : FF1) — F(f2) by
p1,2(k) := k — k1 + k2 and its inverse map 91 : F(f2) 5 F(f1) by ¢21(k) ==k — ko + k.
Since ¢12(kq) # p1,2(ky) for ko # ky, kap € F(1) and a similar property for ©21, these
maps establish a one-to-one correspondence between the elements of F(F1) and F(f2); F(£1)
and F(f2) are isomorphic to each other.

Finally let us evaluate the number of all the admissible f’s. Decompose V and V
into connected components as V = V3 U---UV, and V = Vi U--- U V,,. (For example,
see figure 1 in appendix A.) Correspondingly, the boundary 9V is decomposed as OV =
OViU---UdV, =0V =90V, U---U0dV,,. Then the divergence-free condition for k implies
that an admissible incoming flux f = (f;).cov satisfies

fozo, i=1,...,n, (3.6)

zedV;

Y fo=0,j=1,...,m, (3.7)

IGB‘_/J-
with an additional condition that
n m
2.2 =) D ) (3.8)
i=1 z€dV; J=1zesV;

for an arbitrary f even without satisfying the divergent-free condition. Thus the total
number of the admissible f’s is readily found to be NI?VI=("+m=1) "where |9V| denotes the
number of sites in dV. See appendix A for a more rigorous discussion.



Decomposition of k. Let V C L be a subset, and f be an admissible incoming flux. We
define .73‘(/f ) as the set of k' € Fy which is written as k' = Ry (k) for some (not necessarily
unique) k € F),

Note that an arbitrary k € FU) is written as

k= (kyv.kp), (3.9)

where ky = Ry (k) and kp = Ry(k). We then have ky € FF), and ky € FU P, we
remark here that ]}‘(—/_f ) is the set of configurations on V with incoming flux to V (i.e.,
outgoing flux from V') equal to — f.

3.2 Zn gauge theories

We consider the Zy gauge theory, generated by Zy = {¢° = 1,¢',--- , ¢V "'}, where g is

a generator of the Zy and satisfies ¢¥ =1 and ¢~ = ¢'.

Operators and states. With each link ¢ € £, we associate the N-dimensional Hilbert
space Hy, whose orthonormal bra-basis is given by ((U| with U € Zy. The coordinate
operator Uy and the momentum (electric) operator Eg act on this bra-state as

(U0 = (U (U), oU|E] = (gUl|, «(UIES = (Ug'|, (3.10)

where 71(U) is the fundamental representation of the Zy group such that ri(gig2) =
r1(g1)r1(g2) for g1,92 € Zn. All irreducible representations are one dimensional and ex-
plicitly given by r1(g) = 2™/ for k =0,1,2,--- ,N — 1.

The basic ket-state |h)y with h € Z is defined as

{Ulh)e = 6un, (3.11)

and the general state can be expressed as

N-1

(W)= cnlg™e. cn €C, (3.12)
n=0

where |¢g"); with n € {0,1,..., N — 1} forms a basis of |¥),.
We now introduce the basis of the flux representation as

N—-1
1
kY = — re(9™)]g™) e, ke{0,1,...,N —1}, (3.13)
7F 2
which leads to
1 N-1 1 N-1
WUk = —= > m(g")elUlg")e = —=r1(U) > o(Ulg")e
e 70 2
1 N-1
= —r(U), (Ulg™)e = 1. (3.14)
N n=0



Since
1 N—-1
EY k), =75 Z g9 = re(9)|k)e, (3.15)

so that |k), is an eigenstate of the electric operator Ef with an eigenvalue r;(g). We shall
use this electric flux representation, which is suited for studying reduced density matrices.
The Hilbert space ‘H for the whole system is spanned by the basis states

=) ke, (3.16)

el

where k € F. The gauge invariant condition at z that

Gilk)y =1k, Gci= I £, (3.17)
yeS
s.t. (z,y)eL
leads to
ri(g)%® =1 = df(k) =0, (3.18)

where we use a property that 7(g) = r1(g)*. Therefore the divergence-free condition for
k corresponds to the gauge invariance of |k) at all z € S. In terms of link variables U,
|k) represents 7, (Up) = r1(Up)** at each link ¢, and the gauge invariant (divergence-free)
condition means that {ri(U;)*}sc, forms several closed loops with identifications that
Tl(Ug)kae = Tl(Ug)kl.

For a subset V' C £ we also define Hy as the space spanned by

kv)v = ) ko), (3.19)

lev

where ky = (k¢)ey € Fv. The state |kv )y is not necessarily gauge invariant.
If ky € .7:"(/f) and ki, € ]}{(/f) with f # f’, the corresponding kets |ky )y and |k} )y
are orthogonal. This means that the Hilbert space Hy is decomposed into a direct sum

Hy = PHY, (3.20)

where Hg) is spanned by |ky)y with ky € .7:"‘(,f).
Fix an arbitrary subset V C £ and let V = L£\V. Corresponding to the decomposi-
tion (3.9) of k € F(), the state (3.16) is decomposed as

k) = [kv)v @ |ky)y, (3.21)
where [ky)y € H\Y and |kp)p € H .

~10 -



Reduced density matrix. Take an arbitrary normalized state |¥) € H, and expand

= > Wb(k)[k), (3.22)

keF

where (k) € C. We shall fix a subset V' C £ and its complement V = £\V, and study
the reduced density matrix in the region V for the state |U).

it as

By taking into account the decomposition (3.4) of F, and the decomposi-
tions (3.9), (3.21) of k and the corresponding ket, the state (3.22) can be written as

=) D vk

F keF®

=Y > > dlkvikp) kv)v @ lkp)p, (3.23)

FokyeFd kperl

where the first sum is over admissible f. Then the corresponding density matrix is writ-
ten as

=3 > D Wk kp) gk kL) kv) (K| © kg (KD (3.24)
P okveR! kperl?
K, eI K, cFCID

Since |ky) with ki € ]}V are orthonormal, the desired reduced density matrix is readily
found to be

S ST itk k) 0 Ry Ry (K
P kyeFd kperl D
Ky eFF)

= s itf). (3.25)
f

We have here defined the density matrix on Hg,f ) (see (3.20)) by

— > Y Ulkv.kp)olky ky) [Ry) (kY] (326)
kve}'(f)k: eFs?

where py is obtained from the normalization condition.
As is well-known the final expression in (3.25) implies

Slpv] = Hlp| + > _ps S, (3.27)

where H[p| = — > ; pslogpy is the (classical) Shannon entropy for the probability distri-

bution of the incoming flux through the boundary. Note that the “quantum part” S [ﬁ‘j;]

- 11 -



is in general obtained by diagonalizing the expression (3.26); this calculation may be non-
trivial. The same result was obtained already in refs. [31, 32] starting from the different
construction of the entanglement entropy for gauge theories.

It is suggestive to observe that, in the expression (3.27), the von Neumann entropy
S [ﬁg )} reflects “intrinsic entanglement” between V and V while the Shannon entropy H [p]
simply reflects the behavior of Wilson loops that touch both V and V.

3.3 Some properties

In the Zx gauge theories, the density matrix can be expressed in the flux representation as

p=> K)o w (K|, k), |K) € Hiot, (3.28)
kK’

in general,! where Hi; is the full Hilbert space without gauge invariance, and tryo p = 1
implies Y, pkk = 1. The gauge invariance under the gauge transformation G4 and GZ
with Y2,”y implies that pgy can be different from zero if and only if d% (k) = dg(k:’) =0
for Yx,” y. This means that k and k' are divergence-free. Therefore

ot p =Y, Y, (PlR)prr (K1P) =D ppp = trpn p, (3.29)

P kkecF peF

where trpy, represents the trace over the physical space H.
Furthermore, the reduced density matrix is written as

=33 N pkv.kpi kb kp)lky) (k. (3.30)
f kyeF@ kpeF9
ki, e F ()

Therefore, for |p)y € Hiot,v, we have

pvIp)v =0 (3.31)

unless py € .73‘/, so that
treot, v pv = try py = 1, (3.32)

where try is a trace over Hy in (3.20). In addition, we have

pkvipviky ) g =dp g Y plky kpsky ky). (3.33)
kpG]ﬂff)

Therefore we can extend py in the full Hilbert space on V, Hiqt, vy without any modifications.

The above argument shows that p and py can be regarded as the full and reduced den-
sity matrices in the full Hilbert spaces without gauge constraint. The standard method then
can be applied to prove properties of py such as positivity and strong sub-additativity [38].
Thus our naive definition of the entanglement entropy for gauge theories is shown to satisfy
these important properties. Our argument given here is much simpler than that in ref. [31]
for the different construction.

!This form of the density matrix is more general than (3.24) for the pure state |¥).
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3.4 Entanglement entropy for special states

Factorized states and the topological state. Consider a special state in which the
coefficients in (3.22) and (3.23) factorize as

Y(ky, ky) = Yv(ky) by (ky) (3.34)

for any k = (ky,ky) € F. Then the three summations in (3.26) can be treated indepen-
dently to give

/;<Vf>:p1f S ko) || wvlk) k) || dvlRy) (vl | (3.35)

k:(/G]}‘(—/_f) kv€.7:—‘(/f> k\/E]}‘(/f)

which shows that [)gc ) i pure, and hence S [ﬁgff )] = 0. In this case we find that the

entanglement entropy S[py] is equal to the Shannon entropy H|[p] for the probability
distribution of the incoming flux f.

The topological state, in which all the coefficients ¥ (k) in (3.22) are identical, is an
example where the factorization condition (3.34) is satisfied. (See refs. [17, 18, 31, 32, 39, 40]
for related issues.) This state is called the topological state, since an arbitrary (Wilson)
loop has an unit eigenvalue. Namely, for "k’ € F, we have

U*|topo) = [topo), T* =[] (@), (3.36)
Ler
where
topo) = 3 [} (337
keF

with v is a complex number. Indeed, since

. 1 1
UlUglk)s = —=rx(U)r(U) = ——=r U)=¢(Ulk+ 1)y, 3.38
(UUelk)e \/ﬁk()l() \/Nk+1() (Ulk+ 1) (3.38)
where we use 7, (U)rg,(U) = 7k, 41, (U), we have
U¥'[topo) = > [k+ k') =4 > |k") = |topo), (3.39)
keF K'eF

where k" =k + k' € F .
Writing o = [¢|?, the expression (3.35) becomes

o= 3 1| X m) || X kel (3.40)

pr . . .
kpeFS Y ky £ ky ey

where

pr=al| > 1 oo, D opr=1 (3.41)
f

k:VEJ;"(—/_f) kvEﬁ‘(/‘f)
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NI10V]=(n+m-1) , where

We shall argue that py is independent of f, and hence is equal to 1/
NIOVI=(ntm=1) ig o pnumber of independent f’s as shown in appendix A. We thus get the
desired result

Sptopo,v] = (|0V]| —ng)log N, ng:=n+m—1, (3.42)

where |0V is a total number of boundary points, n and m are a number of disconnected
components of V and V, respectively.

The asserted independence is easily seen if one recalls the one-to-one correspondences
between F(f) with different f. Take admissible f; and f,. By restricting the map 1,2 to
]}‘(/f Y and ]}éff 1), respectively, we obtain one-to-one correspondences between ]}‘(/f 1) and
.7}‘(/f 2) and between ]}‘(—/_fl) and .7:"‘(—/_f 2). We thus find that the expression (3.40) for different
f are in perfect one-to-one correspondences, so that a numbers of elements in both ]:"(/f )
and .7:"‘(—;f) does not depend on f, and thus pg is independent of f from (3.41).

The result (3.42) agrees with the result of Z5 case at d = 2 [31] in the electric center
definition. Results in more general cases were also obtained in ref. [32]. Note that we
have rigorously shown (3.42) for very general cases: any N, any d, any connectivities of
lattice sites even including random lattices and any boundary conditions. In this sense
the result (3.42), in particular, an appearance of the topological term —nglog N, is quite
robust in Zy gauge theories.

States with products of two loops. We consider a simply entangled state, given by

Uw) = jﬁ S (U ) (Ury ) (3.43)
=1

for n < N, where integers k;’s satisfy k; # k; for ¢ # j, and I'y and I'y; are closed loops
in V and V without touching the boundary, and Ur is a product of 71 (U) along the closed
loop I'. The reduced density matrix then becomes

n

PR = 5 (U, ) (UF, ), (3.44)
=1

so that the entanglement entropy is given by
S(V) = logn. (3.45)

In terms of the decomposition in eq.(3.27), we have

1 for f=0 ~(f) o
= =4 3.46
bs { 0 otherwise ’ Pv F.0Pv: ( )
so that
Hlp] =0,  psS[pY)) = 650logn. (3.47)

A simply disentangled state, on the other hand, is constructed as

({U¥) = % {Ufflv + UFQV} ® {UFV +Up? } : (3.48)
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which leads to
U0 = ok vl {wr)h + wh )} (3.49)
S(V) =0. (3.50)
Single-loop states. An entangled loop state is constructed as

(Uly) = f Z Uryr,)" (3.51)

for n < N, where integers k;’s satisfy k; # k; for i # j, and I'yT'y is a closed loop with
I'yvI'y € fo # 0. The reduced density matrix and entanglement entropy are given by

vU,Uy = ZUFV (L (3.52)

S(V) = logn. (3.53)

In terms of the decomposition in eq.(3.27), we have

1/TL for f = Elkif(] ~(kifo) ks ;\ks
N o =Ur, (Ur,)" 3.54
bs { 0 otherwise » Pv Iy (Ur,, )™, ( )

so that
Hip] = logn,  S[p\1=0. (3.55)
An example of a disentangled loop state is constructed as
1

(U18) = = { Uryr )™ + Wryr ) | (3.56)

which leads to

1

U U) = 5 {We )+ Or ) { W)+ U (3.57)
S(V)=o. (3.58)

3.5 One dimensional lattice without boundary

Since one dimension is a little special, we here consider the d = 1 case separately.

We consider Zy-gauge theory on one dimensional lattice with periodic boundary con-
dition. Note that the open boundary is incompatible with the gauge invariance. Since
there are no Wilson loops (except one big loop on a whole lattice), only the momentum
operator Eg is a local gauge invariant operator.

Considering the Gauss law, every link has the same electric eigenvalue. Therefore,
physical state is given by

W) = @) k) = k) @ |k)y (3.59)
!

with

v =Q Wk kv =@k, (3.60)

lev lev
for arbitrary partitioning.
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Topological state. A topological state is given by

N-1
). (3.61)
k=0

|topo) =

-

The global density matrix becomes

p = [topo)(topol

= Yl

kK

= = SRy © ke (Kl (3.62)
kK’

and the reduced density matrix

. . 1
pv="Trpp=1 ij |)v (K| v (3.63)

Therefore, the entanglement entropy of the one dimensional topological state is given by
SoPO) (V) = —trpy log py
= log N (3.64)
= (np —ny)log N, (3.65)
where npg is the number of boundary points and ng = n+m—1. Since n = m and ng = 2n,

we always have
ng—ng=1 (3.66)

in one dimensional space. The entanglement entropy does not depend on the number of
links in V. The result in (3.65) is the same as the topological state entropy formula in
d > 2 lattice,

General state. We consider general state as
la) = K a(k)|Uk) (3.67)

with the normalization coefficient

1
K2 — 272[;01 |a(k)‘2. (3.68)
The reduced density matrix is given by
pv=K*) a(k)a®)|k)y klv. (3.69)
k
The entanglement entropy is given by
S(V) = —trpylogpv = — Y _ prlogpy (3.70)

~16 —



with pr = |a(k)[?/ > |a(k)|?. For the topological state pg =p; = --- = py_1 = 1/N,

S(toPo) (1) = Jog N. (3.71)
For pure state pg =1,p1 =--- =py_1 =0,
Stu) (1) — . (3.72)
A simply entangled state
) = —= kv @ 1By + W)y © K)o} (373)
with k # k', gives
S(V) =log2. (3.74)

3.6 Relation to other proposals

We here discuss relations of our definition of entanglement entropy (or the reduce density
matrix) for gauge theories, in particular, the Zy gauge theory to other proposals.

Our definition is equivalent to the electric boundary condition(electric center) in
ref. [31] and in ref. [32], to the extension of the Hilbert space in ref. [33], and to the
extended lattice construction in ref. [34]. In this definition, the reduce density matrix py,
from the whole density matrix p restricted to the region V, satisfies

(Oy) == tr[Ovp] = trv[Ovpy] (3.75)

for YOy € Ay, where Ay is the set of gauge invariant operators on V, generated by Eg
with £ € V and Up with the plaquette whose links are all included in V, and try is the
trace over Hy . It is noted that Ay is the maximal gauge invariant algebra on V.

The trivial center definition in ref. [31], denoted by p?/, is equivalent to the gauge fixed
theory where the boundary links in the maximal tree are all fixed to the unit element.
In this case, however, the set of gauge invariant operators .AY,, generated by Eg with
¢ € V\{maximal tree} and the same set of plaquette Up on V, is smaller than Ay . Similarly,
the algebra Af? associated with the magnetic center [31, 32] is smaller than AY, . Therefore
both A?/ and A7} do not represent the region V' algebraically, so that definitions based on
the trivial center and the magnetic center are inadequate for the entanglement entropy or
the reduced density matrix on the region V.

In conclusion, our definition of the entanglement entropy or reduced density matrix
gives the unique definition of these quantities on the region V, in the sense that our reduced
density matrix is associated with the maximally gauge invariant algebra Ay on V.

3.7 (Gauge fixing

Since the reduced density matrix py does not have the full gauge invariance as mentioned
before, the entanglement entropy may depend on whether gauge fixing at the boundary
is employed or not in the calculation, and on the choice of the gauge if the gauge fixing
is used. In this subsection, using a simple example, we explicitly demonstrate that the
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entanglement entropy with some gauge fixing is different from the one calculated without
gauge fixing.

We consider the Zx gauge theories in one dimension with periodic boundary condition
in subsection 3.5. Without gauge fixing, the entanglement entropy is given in (3.70) as

1

Siep 70

==Y pelogpe,  pe =K la(k)]?, K=
p

for a general state
o) = K> alk)|[Ty). (3.77)
k

Take L lattice points on the circle as § = {1,2,---,L} and £ =
{(1,2),(2,3),---,(L,1)}. Links in the region V" are given by Ly = {(1,2),(2,3),-- -, (Ly —
1,Ly)}, while those in V by Ly = {(Ly, Ly + 1), ,(L,1)}, where 0 < Ly < L and
0V = {1, Ly }. Using gauge transformations on all points in S except one, we can always
make Uy = 1 for all £ € L except one ¢ which may be in Ly or Lj;. In any cases, the
reduced density matrix from the global pure state is always pure, so that the entanglement
entropy is always zero. This is clearly different from (3.76) without gauge fixing.

We next consider the gauge fixing using all points in S except V. In this case we can
make Uy =1 for all £ € £ except two £’s, one £ in Ly and the other in Ly,. For example,
we can take Uy 9y # 1 and U(y, 1) # 1. Since the gauge invariance still holds on the site 1,
the physical state can be written as

KZ E)E)1,2) @ 1K) (L1 (3.78)

Then the reduce density matrix is given by

pv—KQZra )21k (12) (12) (K], (3.79)

which leads to (3.76) for the entanglement entropy. For the topological state, it reducers to
§(toPo) (1) — Jog N. (3.80)

As already pointed out in general cases, the above consideration leads to an important
lesson that the entanglement entropy does not depend on the gauge fixing if and only if
points in JV are excluded in the gauge fixing (including no gauge fixing at all). Otherwise,
the entanglement entropy does depend on the gauge choice.

4 Conclusion

We have proposed the definition of the entanglement entropy in lattice gauge theories for
an arbitrary subset of links not only in abelian theories but also in non-abelian theories,
and explicitly given the replica formula based on our definition. In the Zy gauge theories,
we have expressed the whole Hilbert space by the flux representation basis states which are
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eigenstates of the gauge transformations. By using these basis states, we have explicitly
argued that all the standard properties of entanglement entropy hold in our definition and
calculated the entanglement entropy for topological states as

S[ptopo, V] = (|0V| — ng)log N. (4.1)

We have also found that the entanglement entropy depends on the gauge fixing at the
boundary in general.

It will be important to extend our analysis for the Zx gauge theories to non-abelian
gauge theories, since our definition is applicable also to non-abelian cases without any
difficulties. In order to calculate the entanglement entropy analytically in non-abelian gauge
theories, we need some useful basis such as the flux representation in the Zx gauge theories.
In the Zn gauge theories, the flux representation basis diagonalizes gauge transformations
simultaneously. On the other hand, in non-abelian gauge theories, gauge transformations
cannot be diagonalized simultaneously since they do not commute each other. (Techniques
developed for loop quantum gravity [41] may be useful in this direction.) We therefore
need some new ideas for non-abelian gauge theories. In appendix B, some analyses in this
direction are given. For example, the entanglement entropy for the topological state in one
dimension is calculated as

Sy = log |G] (4.2)

in the discrete non-abelian gauge theories, where |G| is a number of elements of the dis-
crete group.

Others directions in future investigations include perturbative calculations for the en-
tanglement entropy in gauge theories [42-45] without gauge fixing at boundaries and nu-
merical simulations for the entanglement entropy in lattice gauge theories [33, 46-48].

After completing our investigations presented in this report, we noticed a paper [49] in
which the authors also propose the definition of the entanglement entropy in lattice gauge
theories. We find that their proposal is identical to ours, though research directions in this
paper are somewhat different from theirs. See also ref. [50] for a related result.
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A The number of admissible f

Here the whole £ is assumed to be finite and connected.
Suppose that V and V are decomposed into connected components as

V=1u---uV,, V=ViU---UV,, (A.1)
with n,m > 1. Consequently the boundary 0V = 0V is decomposed as
OV =0ViU---UdV,, OV =0ViU-- UV, (A.2)

where 0V} and 8‘7j are the boundaries of V; and Vj, respectively; they may not be connected.
Let us denote by

F={f=fo)ocov|fo €{0,1,...,N =1} forz € OV } (A.3)

the set of all configurations of incoming currents (including “unphysical” ones). We have
| F| = NI9VI.,
The necessary and sufficient conditions for the admissibility of f are

> fo=0, and > f=0, (A.4)

z€dV; z€dV;

forall ¢ = 1,...,n and j = 1,...,m. There are n + m constraints, but they are not
independent. To see this note that any f satisfies

an > fxzi > fa (A.5)

i=1 z€dV; Jj=1lzeoV;

because OV = 9V. We thus see that

me—iwa—nSme (A.6)

z€Vm i=1 z€dV; =1 zeoV;
holds for any f. It is therefore sufficient consider the constraints (A.4) for i = 1,...,n and
j=1,...,m —1. There are v :=n + m — 1 constraints.

To count a number of admissible f, let us introduce matter fields (or external sources)
with Zy charge on lattice sites {z},cs. For a given charge density distribution {g(x)}

€S
an admissible flux in this general case is determined so as to satisfy the Gauss law as
fo:Qie{Ovlv"'>N_1}7 (A7)
zedV;
foreach i =1,...,n, and
Z fJU:_Qj+7LE{071>"'7N_1}’ (AS)
zedV;
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Q1+ Q2+ Qs+ Q4

Q1 — Q2 — Qs —

Figure 1. An example of the connection and charge distributions.

for each 7 = 1,...,m, where Q (k = 1,---,7v+ 1), a sum of ¢(z) over inner point, is a
total charge inside the region V; or Vj excluding boundaries. The minus sign in the second
equation comes from the fact that a flux on 9V has a relative minus sign with respect to
a flux on OV. Due to the constraint (A.6), we have

.,
Qi1 ==Y Qr, (A.9)
k=1

so that only Q1,---,Q, are independent. We then define Fg, . ¢, as the set of f € F
which satisfies (A.7) and (A.8). It is then easy to see

F= U F Qs (A.10)
Q1,..,Q-€{0,1,...N—1}

Note that Fo,.. o is the set of admissible f’s that we are interested in.

Now we will argue that Fy ... o is isomorphic to Fq; ... @, for an arbitrary Q1,--- , Q.
Take one internal point zj, from each region V; or V;. Connect these points by the following
condition: (1) links can be used once. (2) except start and end points, each point belongs
to only two links (3) the end point is always x,41. It is easy to see such a connection
always exist. By changing the order of point x; along this connection and renaming xj in
this order, we write the connection as I'z, 2, Uagas - Tay 2, Tayzyyy, Where 'y p 4 is a set
of links which connect x; and x;41. For an illustration, see figure 1.

For {Q1, - ,Q,} (this is also reordered), we define k9@ on a link ¢ as

k
C . Q;, forlel
KO i1 @i for e (A.11)
0, otherwise

See figure 1 again as an example. A blue letter such as Q1 4+ Q2 represents a charge on some
lines, while a red letter such as i is a charge on the point z;. Note that the net charge
flowing out from the k-th region (some V; or V; ) is equal to Zle Qi — Zi-:ll Qi =Qr. It
is then easy to see that the map for k € Fy.... o defined by

SOQl’)Q"{ k = k+kQ17"'7Q"/ A12
0

) )
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establishes an isomorphism from Fy.... o to Fg, ... @,- This proves the number of Fg, ... ¢,
is independent of Q1, -+, Q5.

A number of possible charge distribution {Q1,Qa, -+ ,Q~} is N7 = N"*™=L There-
fore, for any charge distributions {¢(z)}zes including {¢(z)}zes = {0}zes, the total num-
ber of the admissible f is NIOVI-(ntm—1)

B Entanglement entropy for non-abelian gauge theories

B.1 About the Hilbert space on a link

We generalize the formulation of the Zxn case to non-abelian gauge theories. We take a
group G which we assume to be a compact group. We define the momentum operator
L,(g) and the position operator UJ via

(UILe(9)|¥) = ¥(g~'U), (UIUF)*s|¥) = n(U)*s2 (V) (B.1)

where ¢ € G and 7 is a representation of G. If we inverse the direction of link /¢, the
operator Lyr(g) and Uy is defined as follows:

(U|Lgz (9)|®) = ©(Ug), (Ul(UF)"¥) = a(U™1)*s¥(U) = (n(U)")s*¥(U)  (B.2)

It is known that the L? space on a group G (square integrable functions over G)
decomposes to the direct sum of 7' X 7 which is a irreducible representation of G x G as
follows [51]:

LG~ P Viov, (B.3)
welrr(G)

where we denote 7 as an (unitary) irreducible representation of G and Irr(G) as the set

of irreducible representation and 7f(g) = tr(g~!) is the dual representation. The meaning

of (B.3) will become clear below.
We first consider the basic state |7%g) defined via

(Uln®g) = 71(U)5%, (B.4)
with which we can explicitly write the action of Ly(g) as
(UILe(g)n®g) = ' (g7 U)s™ = (U~ 9)%s = m(9) (U 7). (B.5)
Therefore we have
Le(g)|m®p) = [7%1)7(9)" s, (B.6)
Ly (9)|n®g) = m(g™")% |77 ).

The dual vector of |7%g)is given by (|7%5)) = (77,|, and the projection operator to
the subspace 7! K 7 is given by

Pr=dim Ve > " [7%g) (7. (B.8)
(X?B
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The factor dim V; is needed here since the normalization of vector|n®g) is given by

045073
dim V.

(|77 s) /dU (U7 s(U) = (B.9)

By the projection (B.8), the meaning of (B.3) becomes clear.

B.2 Gauge invariant states

In the lattice gauge theory, the total Hilbert space H is @),(L?(G));. The physical Hilbert
space ‘H as the subspace of H is consist of gauge invariant states, which satisfy

o) =1w),  G= ] Ly, (B.10)
yeS
S.t. (=(z,y)eL

at Yz € S. The basis state in Hg is written in general as
%) == @ [(70)*,) (B.11)
lel

where 7y indicates an irreducible representation of G on a link £.

Unlike the Zn gauge theories, it is not so easy to write gauge invariant conditions for
the state in (B.11). Let us consider the one dimensional case as a simplest example. In
this case, the nontrivial part of the gauge invariant condition at x becomes

|7Ta1“/1>51 77(.9)7151 ® ﬂ-/(g_l)(m'm |7T,72ﬁ2>42 = |7Ta151>f1 ® |7I‘/ a2ﬂ2>€2 (B'12)

where ¢; = (v — 1,7) = (v,2 — 1)T and ¢y = (2,2 + 1). Integrating this equation over g
with [dg =1, we find that a gauge invariant state at = has a form as

Ty e ® 1T s)e, (B.13)

where two irreducible representations on £ and ¢5 must be equal.

In higher dimensions, however, the condition becomes more complicated. On a d-
dimensional hyper-cubic lattice, the gauge invariant condition at x reads

d
/d'g H ‘ﬂ—ﬂau’mnu Wﬂ(g),mﬁu ® 71'[;,(9 1) Vi ’7'(“ ,BH H ’W# /Bu>£ ® ‘Wﬂ /Bu> Lp>
p=1 Iz

(B.14)

where £, = (z,z + p) and {5 = (z,2 — p). This implies that a product of 2d irreducible
representations of 7, and m; must contain the trivial representation. For example, in the
case of SU(2) gauge group at d = 2, 4 non-negative integers k1234, which are numbers
of boxes in the SU(2) Young tableaux and specify irreducible representations of SU(2),
must satisfy

{‘kl—k2‘7"' ,k1+k2}ﬂ{’k3—k4’,'“ ,k3+k4}7’5®.

For general gauge groups in higher dimension, it is hard to find a simple condition for (B.14).
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B.3 Examples

As was seen in the previous subsection, it is not so easy to construct general gauge invari-
ant states in higher dimensions. Therefore, in this subsection, we consider two examples
at d = 1.

B.3.1 One dimensional topological state with periodic boundary condition

Assume that there are N links on a circle (i.e. the periodic boundary condition). In this
boundary condition, similar results are obtained by Donnelly [35] in the theories defined on
the continuum space. The physical Hilbert space is given by the gauge invariant functions.
From the analysis in the previous subsection, the basis are given by the characters of
irreducible representations as

Wy= Y v@m), |)eH (B.15)
welr (G)
[m) = 7% ay) @ |T%%0;) @ -+ @ [Ty ), (mlm) = 1. (B.16)

The value of |7) at |Uy, -+ ,Un) =|U1) ® -+ @ |[Un) becomes as follows.

<U1> T UN|7T> = WT(Ul)azalﬂ-T(UQ)OBaQ T TFT(UN)CnaN
= tr(nT (Uy --- U1)). (B.17)
As we have done in the abelian cases, to divide the physical Hilbert space into the tensor

product of Hilbert spaces on the region V and V, we embed the physical Hilbert space H
into a larger Hilbert space H’' where?

W@ D M 19
T, ma,mBma’'mpg’

Here ma = (a1, -+ ,apr),mpB = (P1,- -+, Bu) are labels of boundaries when the subsystem

V is consist of M intervals and ma’, m/3’ are the corresponding ones in V. Then we trace
(m)mpB
v -
As the simplest case, we consider V' (and V) is an interval. In this case, the basic is

Im) = (dim Vz) ™! % Y V/dim Vil rf5) @ v/dim Vel o). (B.19)
a,B8
The reduced density matrix for physical wave function (B.15) is given by

pr=>_ p()(dimV;) 2> " (v/dim Ve|nf ) (v/dim Vi (o) (B.20)
o,

welrr(G)

over H ma, regarding the physical wave function |¢) as an element of H'.

written as

where p(7) = |1(m)|?. Its entanglement entropy is given by

Sy =— Y p(m)(dimVz) " log(p(r)(dim Vz)?)
melrr(G),a,B
= Y p(m)(~logp(m) + 2log dim Vz) (B.21)
melrr(G)

2Unlike the Zn gauge theories in the main text, we here consider the minimum extension where gauge
invariance is abandoned only at boundaries.
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Using the above result, we compute an entanglement entropy of the topological state
in finite non-abelian group G. The topological state is given by

1 _ _ _
D lgrtan) ® g ) @ ® gy gn-1), (B.22)

/ 2N+1
|G| - 9:€G

where |G| is the number of the element of G, and states satisfy (g|h) = |G|d4,;. Here [topo)

|topo) =

is written as the element of Hp, though it is gauge invariant, and the coefficient ¥ () is

given by
dim V;

i

which leads to p(7) = (dim V;)?/|G|. Thus the entanglement entropy is calculated as

() = (mltopo) = (B.23)

. 2 : 2
Sy = Z w<_1og(dur(;|/”)+21ogdimvﬂ) = log |G/, (B.24)
welrr(GQ)

where we use the identity 3/ .y, g (dim V)2 = |G|. This result agrees with (3.64) for the
Zn gauge theories

B.3.2 One dimensional topological state with open boundary condition

Next we consider the case with open boundary condition. From the gauge invariance of
the bulk, physical wave functions are given by a linear combination of functions on G as

Wy = Y () VAim Valma®s)  |v) € H (B.25)

melrr(G),a,8
‘ﬂ'totaﬁ> = ’Waa1> ® ’ﬂ-alaz> Q- & ’7.‘.041\!—16> (B26)
The value at |Uy,--- ,Uy) becomes as follows.

(Ui, Unmion®s) = 71 (U1)ay 7 (U2)ap ™ - 7 (Un) gV

This confirms that the physical Hilbert space is spanned by the functions on the group G.
For example, we consider V is an interval in the middle. In this case, the basis is

given by
Vdim Vel ®s) = (dim Vo) ™'Y v/dim Ve |ngy) @ v/dim Vel s) @ /dim Ve[, ).
¥,0

(B.28)
From the decomposition, we find the reduced density matrix is given by

pv =Y p(m)(dim V)" " (V/dim Vi |r)s)) (v/dim Va (7}, ) (B.29)
T ¥,0

where p(7) = > ¥(7)a ¥* (7)5%. The expression of the reduced density matrix is the same
with the case of periodic boundary condition (B.20), so that the entanglement entropy is
given by the same formula (B.21) .
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The topological state with open boundary condition is given by

’t0p0> \/W Z |gl ® ‘92 gl> R ‘g]:flflgN—2> ® ‘gN—1>- (BSO)

g:€G

Thus +/dim V|70t %3) component is obtained as

YaB () = \/dim Vo (2B, [topo) = dl‘rg"/” 508, (B.31)
and p(m) becomes
dim V)2
pm) = (B.32)

which is identical to the result with the periodic boundary condition case. We thus obtain
the same result also for the entanglement entropy as

Sy = log|G]. (B.33)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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