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1 Introduction

Diphoton production at hadronic colliders is a very relevant process, both from the point

of view of testing the Standard Model (SM) predictions [1–6] as for new physics searches.

While a general understanding of QCD processes at hadronic collisions poses a serious

challenge due the complicated environment, direct or prompt photons provide an ideal

probe since they constitute a theoretically and experimentally clean final state. From the

theory side, because they do not have QCD interactions with other final state particles

and, from the experimental side, because their energies and momenta can be measured

with high precision in modern electromagnetic calorimeters.

Besides purely QCD-related considerations, diphoton final states have played a cru-

cial role in the recent discovery of a new boson at the LHC [7, 8], whose properties are

compatible with those of the SM Higgs. They are also important in many new physics sce-

narios [9, 10], in particular in the search for extra-dimensions [11] or supersymmetry [12].

In this paper we are interested in the process pp → γγX, and in particular in the

transverse-momentum (qT ) spectrum of the diphoton pair. The lowest-order process

(O(α0
S)) occurs via the quark annihilation subprocess qq̄ → γγ. The QCD corrections

at the first order in the strong coupling αS involve quark annihilation and a new partonic

channel, via the subprocess qg → γγq. First order corrections have been computed and

implemented in several fully-differential Monte Carlo codes [13–16]. At the second order

in the strong coupling αS the gg channel starts to contribute, and the large gluon-gluon

luminosity makes this channel potentially sizeable.

The amplitudes needed to evaluate the corrections at the second order in the strong

coupling αS , for diphoton production, have been presented in [17–22], and first put together

in a complete and consistent O(α2
S) calculation in the 2γNNLO code [23]. The next-order

gluonic corrections to the box contribution (which are part of the N3LO QCD corrections

to diphoton production) were also computed in ref. [14] and found to have a moderate

quantitative effect.

The calculation of the qT spectrum poses an additional challenge with respect to more

inclusive calculations, such as the total cross section. In the large-qT region (qT ∼ Mγγ),

where the transverse momentum is of the order of the diphoton invariant mass Mγγ , cal-

culations based on the truncation of the perturbative series at a fixed order in αS are
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theoretically justified. In this region, the QCD radiative corrections are known up to the

next-to-leading order (NLO), including the corresponding partonic scattering amplitudes

with X = 2 partons (at the tree level [18, 19]) and the partonic scattering amplitudes

with X = 1 parton (up to the one-loop level [20, 21]). We remind the reader that at least

one additional parton is needed in order to have qT 6= 0 for the diphoton pair. The qT
spectrun of the diphoton pair has been calculated in fully-differential Monte Carlo codes

at LO [13–16] and at NLO [23–25]. Recently, first calculations for diphoton production in

association with two [26–28] and three [28] jets at NLO became available.

The bulk of the diphoton events is produced in the small-qT region (qT ≪ Mγγ), where

the convergence of the fixed-order expansion is spoiled by the presence of large logarith-

mic terms, αn
S ln

m(M2
γγ/q

2
T ). In order to obtain reliable predictions these logarithmically-

enhanced terms have to be systematically resummed to all perturbative orders [29, 30]–[43].

The resummed calculation, valid at small values of qT , and the fixed-order one at large qT
have then to be consistently matched to obtain a pQCD prediction for the entire range of

transverse momenta.

We use the transverse-momentum resummation formalism proposed in refs. [42, 44, 45]

(see also [46] for processes initiated by gg annihilation). The formalism is valid for a generic

process in which a high-mass system of non strongly-interacting particles is produced in

hadron-hadron collisions. The method has so far been applied to the production of the

Standard Model (SM) Higgs boson [44, 45, 47–49], Higgs boson production in bottom quark

annihilation [50], Higgs boson production via gluon fusion in the MSSM [51], single vector

bosons at NLL+LO [52] and at NNLL+NLO [53], WW [54, 55] and ZZ [56] pairs, slepton

pairs [57], and DY lepton pairs in polarized collisions [58–61].

Finally, note that besides the direct photon production from the hard subprocess,

photons can also arise from the fragmentation of QCD partons. The computation of frag-

mentation subprocesses requires (the poorly known) non-perturbative information, in the

form of parton fragmentation functions of the photon (the complete single- and double-

fragmentation contributions are implemented in DIPHOX [13] for diphoton production at

the first order in αS). However, the effect of the fragmentation contributions is sizeably

reduced by the photon isolation criteria that are necessarily applied in hadron collider ex-

periments to suppress the very large irreducible background (e.g., photons that are faked

by jets or produced by hadron decays). Two such criteria are the so-called “standard”

cone isolation and the “smooth” cone isolation proposed by Frixione [62]. The standard

cone isolation is easily implemented in experiments, but it only suppresses a fraction of the

fragmentation contribution. By contrast, the smooth cone isolation (formally) eliminates

the entire fragmentation contribution. For all of the results presented in this paper we rely

on the smooth isolation prescription, which, for the parameters used in the experimental

analysis reproduces the standard result within a 1% accuracy [63].

The paper is organized as follows. In section 2 we briefly review the resummation

formalism of refs. [42, 44, 45]. In section 3 we present numerical results and we comment

on their comparison with the LHC data [6]. We also study the scale dependence of our

results with the purpose of estimating the corresponding perturbative uncertainty. In

section 4 we summarize our results.
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2 Transverse-momentum resummation

We briefly recall the main points of the transverse-momentum resummation formalism

of refs. [42, 44, 45], referring to the original papers for the full details. The formalism

is general, as long as the measured final state is composed of non strongly-interacting

particles (transverse-momentum resummation for strongly-interacting final states, such as

heavy-quark production, has been developed in refs. [64, 65]). Here we specialize to the

case of diphoton production only for ease of reading. The inclusive hard-scattering process

considered is

h1(p1) + h2(p2) → γγ(Mγγ , qT , y) +X , (2.1)

where h1 and h2 are the colliding hadrons with momenta p1 and p2, γγ is the diphoton pair

with invariant mass Mγγ , transverse momentum qT and rapidity y, and X is an arbitrary

and undetected final state.

The corresponding fully differential cross section, in qT , Mγγ and y, which we denote

for simplicity (since our focus is on the qT distribution) by dσγγ/dq
2
T , can be written using

the factorization formula as

dσγγ
dq2T

=
∑

a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa/h1

(x1, µ
2
F ) fb/h2

(x2, µ
2
F )

dσ̂γγ
ab

dq2T
(qT ,Mγγ , y, ŝ;αS, µ

2
R, µ

2
F ) (2.2)

(up to power-suppressed corrections), where the fa/h(x, µ
2
F ) (a = q, q̄, g) are the parton

densities of the hadron h at the factorization scale µF , αS ≡ αS(µ
2
R), dσ̂γγ

ab /dq
2
T is the

pQCD partonic cross section, s (ŝ = x1x2s) is the square of the hadronic (partonic) centre-

of-mass energy, and µR is the renormalization scale.

In the region where qT ∼ Mγγ the QCD perturbative series is controlled by a small

expansion parameter, αS(Mγγ), and a fixed-order calculation of the partonic cross section

is theoretically justified. In this region, the QCD radiative corrections are known up to

next-to-leading order (NLO) [17–22].

In the small-qT region (qT ≪ Mγγ), the convergence of the fixed-order perturbative

expansion is spoiled by the presence of powers of large logarithmic terms, αn
S ln

m(M2
γγ/q

2
T ).

To obtain reliable predictions these terms have to be resummed to all orders.

To perform the resummation, we start by decomposing the partonic cross section as

dσ̂γγ
ab

dq2T
=

dσ̂
(res.)
γγ ab

dq2T
+

dσ̂
(fin.)
γγ ab

dq2T
. (2.3)

The first term on the right-hand side contains all the logarithmically-enhanced contribu-

tions, which have to be resummed to all orders in αS, while the second term is free of

such contributions and can thus be evaluated at fixed order in perturbation theory. Us-

ing the Fourier transformation between the conjugate variables qT and b (b is the impact

parameter), the resummed component dσ̂
(res.)
γγ ab can be expressed as

dσ̂
(res.)
γγ ab

dq2T
(qT ,Mγγ , y, ŝ;αS, µ

2
R, µ

2
F ) =

M2
γγ

ŝ

∫
∞

0
db

b

2
J0(bqT ) Wγγ

ab (b,Mγγ , y, ŝ;αS, µ
2
R, µ

2
F ) ,

(2.4)
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where J0(x) is the 0th-order Bessel function. The form factor Wγγ is best expressed in

terms of its double Mellin moments Wγγ
N1N2

, taken with respect to the variables z1, z2 at

fixed Mγγ , with

z1z2 ≡ z =
M2

γγ

ŝ
,

z1
z2

= e2y; (2.5)

the resummation structure of Wγγ
N1N2

can be organized in an exponential form1

Wγγ
N1N2

(b,Mγγ , y;αS, µ
2
R, µ

2
F ) = Hγγ

N1N2

(
Mγγ , αS;M

2
γγ/µ

2
R,M

2
γγ/µ

2
F ,M

2
γγ/µ

2
res

)

× exp{GN1N2
(αS, L;M

2
γγ/µ

2
R,M

2
γγ/µ

2
res)} , (2.6)

were we have defined the logarithmic expansion parameter L ≡ ln(µ2
resb

2/b20), and b0 =

2e−γE (γE = 0.5772 . . . is the Euler number). The scale µres (µres ∼ Mγγ), which appears

on the right-hand side of eq. (2.6), is the resummation scale [44]. Although Wγγ
N1N2

(i.e., the

product Hγγ
N1N2

× exp{GN1N2
}) does not depend on µres when evaluated to all perturbative

orders, its explicit dependence on µres appears when Wγγ
N1N2

is computed by truncation

of the resummed expression at some level of logarithmic accuracy (see eq. (2.7) below).

Variations of µres around Mγγ can thus be used to estimate the size of yet uncalculated

higher-order logarithmic contributions.

The form factor exp{GN1N2
} is universal2 and contains all the terms that order-by-order

in αS are logarithmically divergent as b → ∞ (or, equivalently, qT → 0). The resummed

logarithmic expansion of the exponent GN1N2
is defined as follows:

GN1N2
(αS, L;M

2
γγ/µ

2
R,M

2
γγ/µ

2
res) = L g(1)(αSL) + g

(2)
N1N2

(αSL;M
2
γγ/µ

2
R,M

2
γγ/µ

2
res)

+
αS

π
g
(3)
N1N2

(αSL,M
2
γγ/µ

2
R,M

2
γγ/µ

2
res) + . . . (2.7)

where the term Lg(1) collects the leading logarithmic (LL) O(αp+n
s Ln+1) contributions, the

function g
(2)
N1N2

includes the next-to-leading leading logarithmic (NLL) O(αp+n
s Ln) contri-

butions [35–37], g
(3)
N1N2

controls the NNLL O(αp+n
s Ln−1) terms [38, 39, 66–68] and so forth;

p is the number of powers of αs in the LO (Born) process. In eq. (2.7), αSL is formally of

order 1, so there is an explicit O(αS) suppression between different logarithmic orders. The

explicit form of the functions g(1), g
(2)
N1N2

and g
(3)
N1N2

can be found in ref. [44]. The process

dependent function Hγγ
N1N2

does not depend on the impact parameter b and it includes all

the perturbative terms that behave as constants as b → ∞. It can thus be expanded in

powers of αS:

Hγγ
N1N2

(Mγγ , αS;M
2
γγ/µ

2
R,M

2
γγ/µ

2
F ,M

2
γγ/µ

2
res)

= σ(0)
γγ (αs,Mγγ)

[
1 +

αS

π
Hγγ (1)

N1N2
(M2

γγ/µ
2
F ,M

2
γγ/µ

2
res)

+
(αS

π

)2
Hγγ (2)

N1N2
(M2

γγ/µ
2
R,M

2
γγ/µ

2
F ,M

2
γγ/µ

2
res) + . . .

]
, (2.8)

1For the sake of simplicity we consider here only the case of the diagonal terms in the flavour space of

the partonic indices a, b. For a detailed discussion, we refer to refs. [44, 45].
2The form factor does not depend on the final state; all the hard-scattering processes initiated by qq̄

(gg) annihilation have the same form factor.
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where σ
(0)
γγ is the partonic cross section at the Born level. Since the formalism applies to

non strongly-interacting final states, in general the Born cross-section can only correspond

to a qq̄ or gg initial state. In the specific case of the diphoton production, both channels

contribute, but at different orders in αs: the qq̄ subprocess initiates as a pure QED process

(O(αs)
0), while the gg one requires a fermion loop, starting at O(αs)

2.

In the present work, we keep contributions up to an uniform order in αs (and all orders

in αSL), namely up to αn
SL

n−1. For the qq̄ channel, this requires the inclusion of the H
coefficients of eq. (2.8) up to order 2: the first-order coefficients Hγγ(1)

N1N2
are known since a

long time [66, 67], while the second-order coefficients Hγγ(2)
N1N2

were computed only relatively

recently [23, 43]. For the gg channel, it is sufficient to include the leading H contribution

(that is, the Born cross-section) and the appropriate G in the exponential of eq. (2.7). Since

it does not require any additional numerical effort, we decided, in all the plots presented

in the paper, to include all the terms up to g
(3)
N1N2

in the exponential G factor also for this

channel. In this way, we technically include some terms which are of higher order in αs

with respect to those in the qq̄ channel; however we checked that those terms result in a

negligible numerical effect (at 1% accuracy), that is, the difference produced by including

the higher order terms is within the error bands obtained by the scale variations, which

verifies the stability of the calculation.

Within a straightforward (‘naive’) implementation of eq. (2.6), the resummation of

the large logarithmic contributions would affect not only the small-qT region, but also the

region of large values of qT . This can easily be understood by observing that the logarithmic

expansion parameter L diverges also when b → 0. To reduce the impact of unjustified

higher-order contributions in the large-qT region, the logarithmic variable L in eq. (2.6) is

actually replaced by L̃ ≡ ln
(
µ2
resb

2/b20 + 1
)
[44, 47]. This (unitarity related) replacement

has an additional and relevant consequence: after inclusion of the finite component (see

eq. (2.9)), we exactly recover the fixed-order perturbative value of the total cross section

upon integration of the qT distribution over qT (i.e., the resummed terms give a vanishing

contribution upon integration over qT ).

We now turn to consider the finite component of the transverse-momentum cross sec-

tion (see eq. (2.3)). Since dσ
(fin.)
γγ does not contain large logarithmic terms in the small-qT

region, it can be evaluated by truncation of the perturbative series at a given fixed or-

der. In practice, the finite component is computed starting from the usual fixed-order

perturbative truncation of the partonic cross section and subtracting the expansion of the

resummed part at the same perturbative order. Introducing the subscript f.o. to denote

the perturbative truncation of the various terms, we have:

[
dσ̂

(fin.)
γγ ab

dq2T

]

f.o.

=

[
dσ̂γγ ab

dq2T

]

f.o.

−
[
dσ̂

(res.)
γγ ab

dq2T

]

f.o.

. (2.9)

This matching procedure between resummed and finite contributions guarantees to achieve

uniform theoretical accuracy over the region from small to intermediate values of transverse

momenta. At large values of qT , the resummation (and matching) procedure is eventually

superseded by the customary fixed-order calculations (their theoretical accuracy in the

– 5 –
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large-qT region cannot be improved by resummation of the logarithmic terms that dominate

in the small-qT region).

In summary, the inclusion of the functions g(1), g
(2)
N1N2

, Hγγ(1)
N1N2

in the resummed compo-

nent, together with the evaluation of the finite component at LO (i.e. at O(αS)), allows us

to perform the resummation at NLL+LO accuracy. This is the theoretical accuracy used

in previous studies [16, 69–71] of the diphoton qT distribution. Including also the functions

g
(3)
N1N2

and Hγγ(2)
N1N2

, together with the finite component at NLO (i.e. at O(α2
S)) leads to full

NNLL+NLO accuracy.

Using the Hγγ(2)
N1N2

coefficient [23, 43], we are thus able to present the complete result

for the diphoton qT -distribution up to NNLL+NLO accuracy. We point out that the

NNLL+NLO (NLL+LO) result includes the full NNLO (NLO) perturbative contribution

in the small-qT region. In particular, the NNLO (NLO) result for the total cross section

is exactly recovered upon integration over qT of the differential cross section dσγγ/dqT at

NNLL+NLO (NLL+LO) accuracy.

We conclude this section with some comments on the numerical implementation of

our calculation. Within our formalism, the resummation factor Wγγ
N1N2

(b,Mγγ) is directly

defined, at fixed Mγγ , in the space of the conjugate variables b and N1, N2. To obtain

the hadronic cross section, we have to perform inverse integral transformations: the Bessel

transformation in eq. (2.4) and an inverse Mellin transformation, implemented following the

prescription introduced in ref. [72]. These integrals are carried out numerically. The Mellin

inversion requires the numerical evaluation of some basic N -moment functions that appear

in the expression of the the second-order coefficients Hγγ(2)
N1N2

[23, 43]: this evaluation has

to be performed for complex values of N1 and N2; to evaluate some of the needed special

function at complex value, we use the numerical routines of refs. [73–76]. We recall [44]

that the resummed form factor exp{GN1N2
(αS(µ

2
R), L̃)} is singular at the values of b where

αS(µ
2
R)L̃ ≥ π/β0 (β0 is the first-order coefficient of the QCD β function). We avoid this

singularity by introducing a smooth effective cut-off at small b, which is shown to have a

negligible effect in the final result.

It is known that at small values of qT , the perturbative QCD approach has to be sup-

plemented with non-perturbative contributions, since they become relevant as qT decreases.

A discussion on non-perturbative effects on the qT distribution is presented in ref. [44], and

related quantitative results are shown in section 3.

3 Numerical results for diphoton production at the LHC

In this section we consider diphoton production in pp collisions at LHC energies (
√
s =

7TeV). We present our resummed results at NNLL+NLO accuracy, and compare them

with NLL+LO predictions and with available LHC data [6]. Since the present formulation

of the qT resummation formalism, is restricted to the production of colourless systems F ,

it does not treat parton fragmentation subprocesses (here F includes one or two coloured

partons that fragment); therefore, we concentrate on the direct production of diphotons,

and we rely on the smooth cone isolation criterion proposed by Frixione [62] (see also

– 6 –
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refs. [77, 78]) which is defined by requesting

∑
Ehad

T ≤ ET max χ(r) ,

inside any r2 = (y − yγ)
2 + (φ− φγ)

2 ≤ R2 , (3.1)

with a suitable choice for the function χ(r). This function has to vanish smoothly when

its argument goes to zero (χ(r) → 0 , if r → 0 ), and it has to verify 0 < χ(r) < 1, if

0 < r < R . One possible choice is

χ(r) =

(
1− cos(r)

1− cosR

)n

, (3.2)

where n is typically chosen as n = 1. This condition implies that, closer to the photon, less

hadronic activity is allowed inside the cone. At r = 0, when the parton and the photon are

exactly collinear, the energy deposited inside the cone is required to be exactly equal to zero,

and the fragmentation component (which is a purely collinear phenomenon in perturbative

QCD) vanishes completely. Since no region of the phase space is forbidden, the cancellation

of soft gluon effects takes place as in ordinary infrared-safe cross sections. That is the main

advantage of this criterion: it eliminates all the fragmentation component in an infrared-safe

way. By contrast, it can not be implemented within the usual experimental conditions; the

standard way of implementing isolation in experiments is to use the prescription of eq. (3.2)

with a constant χ(r) = 1. In any case, from a purely pragmatic point of view, it has been

recently shown [63] that if the isolation parameters are tight enough (e.g., ET max < 6 GeV,

R = 0.4), the standard and the smooth cone isolation prescription coincide at the 1% level,

which is well within the theoretical uncertainty of our predictions.

The acceptance criteria used in this analysis (
√
s = 7TeV) are those implemented by

the ATLAS collaboration analysis [6]; in all the numerical results presented in this paper,

we require pharderT ≥ 25GeV, psofterT ≥ 22GeV, and we restrict the rapidity of both photons

to satisfy |yγ | < 1.37 and 1.52 < |yγ | ≤ 2.37. The isolation parameters are set to the values

ET max = 4 GeV, n = 1 and R = 0.4, and the minimum angular separation between the

two photons is Rγγ = 0.4. We use the Martin-Stirling-Thorne-Watt (MSTW) 2008 [79]

sets of parton distributions, with densities and αS evaluated at each corresponding order

(i.e., we use (n+ 1)-loop αS at NnLO, with n = 0, 1, 2), and we consider Nf = 5 massless

quarks/antiquarks and gluons in the initial state. The default renormalization (µR) and

factorization (µF ) scales are set to the value of the invariant mass of the diphoton system,

µR = µF = Mγγ , while the default resummation scale (µres) is set to µres = Mγγ/2. The

QED coupling constant α is fixed to α = 1/137.

This choice of the order of the parton densities and αS is fully justified both in the small-

qT region (where the calculation of the partonic cross section includes the complete NNLO

(NLO) result and is controlled by NNLL (NLL) resummation) and in the intermediate-

qT region (where the calculation is constrained by the value of the NNLO (NLO) total

cross section).

Non-perturbative (NP) effects are expected to be important at very small qT . In this

paper we follow the strategy of ref. [44], implementing them by multiplying the b-space

– 7 –
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Figure 1. The qT spectrum of the photon pair (solid red lines) at the LHC (7TeV): results

at NLL+LO (left panel) and NNLL+NLO (right panel) accuracy. Each result is compared to

the corresponding fixed-order result (dashed lines) and to the finite component (dotted lines) in

eq. (2.9). The resummed spectrum includes a non-perturbative (NP) contribution parametrized as

in eq. (3.3) and is obtained within the 3-body approach.

form factor Wγγ of eq. (2.4) by a ‘NP factor’ which consists of a gaussian smearing of

the form

Sa
NP = exp(−Ca gNP b2), (3.3)

where a denotes the initial state channel, a = F for qq̄ and a = A for gg (as usual, CF =

(N2
c − 1)/(2Nc) and CA = Nc). In order to asses the importance of the NP contributions,

we vary gNP in the interval from gNP = 0GeV2 (no NP contributions) to gNP = 2GeV2,

corresponding to moderate NP effects [44].

An additional and potentially important source of theoretical uncertainty arises from

an ambiguity in the definition of the photon momenta in the resummation formalism. In

fact, in the main resummation formula (2.4), which is used to define both the resummed

and (via the subtraction eq. (2.9)) the finite contributions to the partonic cross-section,

the diphoton pair total transverse momentum qT is not associated with the recoil of any

extra physical particles in the final state. After qT resummation the angular distributions

of the photons are still provided by the Born level functions (σ
(0)
γγ , Hγγ

N1N2
), which appear as

multiplicative factors in front of the Sudakov form factor of eq. (2.7). At this point there

are two strategies to follow, which differ by corrections that are of O(qT /Mγγ) order-by-

order in the perturbative expansion [81] (after having matched the resummed calculation

with a complete NkLO calculation, these corrections start to contribute at the Nk+1LO).

One of them is to just use the Born phase space for all the angular distributions in

front of the Sudakov form factor of eq. (2.7). In this case the transverse momentum qT is

neglected in the calculation of the photon momenta, while the momenta qi , (i = 1, 2) of

the colliding partons are given by:

qµ1 = x1P
µ
1 qµ2 = x2P

µ
2 , (3.4)

where xi (i = 1, 2) are the parton momentum fractions and Pi (i = 1, 2) are the momenta

of the colliding hadrons. The momenta qi respects the Born level kinematics

q1 + q2 = qγ1 + qγ2 , (3.5)
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Figure 2. Uncertainties in the qT spectrum of diphoton production at the LHC (
√
s = 7TeV). In

the left panel we show the different predictions associated with the 2-body and 3-body parametriza-

tion of the photon momenta at the central scale µF = µR = Mγγ , µres = Mγγ/2. In the right panel,

the bands (solid and dotted lines) are obtained by varying µF and µR as described in the text; the

prediction at the central scale with the NP contribution turned off (gNP = 0GeV2 in eq. (3.3)) is

also shown.

where qγi , (i = 1, 2) are the momenta of the two photons in the final state. In this case

the two photons are always in the back-to-back configuration, and therefore the kinematic

effects of the transverse-momentum recoil, are not included in the momentum of each single

photon. We call this approach the 2-body phase space; all the differential distributions

which use this method have a (2-body) label.

A more elaborate, and arguably more physical, approach is to consider the effects of

the transverse-momentum recoil in the two-photon final state. Therefore these kinematic

effects have to be ‘absorbed’ by the incoming parton momenta q1 and q2, in order to respect

the Born level kinematics

q1(qT ) + q2(qT ) = qγ1(qT ) + qγ2(qT ) , (3.6)

and the LO kinematics of eq. (3.4). There are different consistent implementations of

this approach, all of them giving equivalent (up to higher order corrections) results.3 The

implementation that we use in the following is essentially equivalent to define the separate

photon momenta according to the Born level angular distribution computed in the Collins-

Soper frame [82] of the diphoton system (in practice, this is the same procedure used

in ref. [16]). We call this method the 3-body phase space, and distributions obtained

using this method are labelled (3-body). The modifications introduced by this phase space

parametrization in the momentum fractions x1, x2 of the incoming partons are neglected

because they produce negligible effects (O(qT /Mγγ)) in the cross-section. Notice that

it is not the formal 3-body phase space (the 3-body effect is produced by the Lorentz

transformation with finite qT of the Collins-Soper frame). We have checked that if the

formal 3-body phase space is used,4 the changes in the cross section (comparing the 2-

3The details of the implementation of these kinematic effects are discussed in a forthcoming paper [81].
4Which violates the Born level kinematics of eq. (3.5).
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Figure 3. The qT spectrum of diphoton production at the LHC (
√
s = 7TeV). Here, the scales

µF = µR = Mγγ are kept fixed while we vary the resummation scale µres to establish its impact

on the cross section. In the left panel we show the range 0GeV< qTγγ < 40GeV, and in the right

panel the full spectra in logarithmic scale.

body and 3-body cases) are of order O(qT /Mγγ). The ambiguity in the treatment of the

photon momenta is considered as an additional source of theoretical uncertainty.

In figure 1, left panel, we present the NLL+LO qT spectrum at the LHC (
√
s = 7TeV).

The NLL+LO result (solid line) at the default scales (µF = µR = Mγγ ; µres = Mγγ/2)

is compared with the corresponding LO result (dashed line). We use the 3-body phase

space and a NP parameter gNP = 2GeV2. The LO finite component of the spectrum

(see eq. (2.3)), is also shown for comparison (dotted line). We observe that the LO result

diverges to +∞ as qT → 0, as expected. The finite component is regular over the full qT
range, it smoothly vanishes as qT → 0 and gives an important contribution to the NLL+LO

result in the low-qT region. That is mostly originated by the qg channel, which starts at

NLO and provides a subleading correction in terms of logs (single logarithmic terms) but

contributes considerably to the cross-section due to the huge partonic luminosity compared

to the formally leading qq̄ channel. The resummation of the small-qT logarithms leads to

a well-behaved distribution: it vanishes as qT → 0 and approaches the corresponding LO

result at large values of qT .

The results in the right panel of figure 1 are systematically at one order higher: the qT
spectrum at NNLL+NLO accuracy (solid line) is compared with the NLO result (dashed

line) and with the NLO finite component of the spectrum (dotted line). The NLO result

diverges to −∞ as qT → 0 and, at small values of qT , it has an unphysical peak that

is produced by the compensation of negative leading and positive subleading logarithmic

contributions. The contribution of the NLO finite component to the NNLL+NLO result

is of the order of the 50% at the peak and becomes more important as qT increases. A

similar quantitative behaviour is observed by considering the contribution of the NLO

finite component to the NLO result. At large values of qT the contribution of the NLO

finite component tends to the NLO result. This behaviour indicates that the logarithmic

terms are no longer dominant and that the resummed calculation cannot improve upon the

predictivity of the fixed-order expansion.
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Figure 4. The qT spectrum of diphoton pairs at the LHC. The NNLL+NLO result is compared with

the NLL+LO result, for the window 0GeV < qT < 40GeV (left panel) and the full spectra (right

panel). We use the 3-body parametrization in the resummed cross-section, and set gNP = 2GeV2.

The bands are obtained by varying µR and µF as explained in the text.
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Figure 5. Comparison of the theoretical prediction for the qT spectrum of diphoton pairs at the

LHC to the experimental data. The NNLL+NLO result is compared with the ATLAS data of

ref. [6], for the window 0GeV < qT < 40GeV (left panel) and the full spectra (right panel). In

the right panel the NNL+LO distribution at central scale (dotted line) is also shown in order to

compare it with the data and the NNLL+NLO result. In the theoretical curves we use the 2-body

parametrization for the resummed cross-section and set gNP = 2GeV2; the bands (solid and dashed

lines) are obtained by varying µR and µF as explained in the text.

We also observe that the position of the peak in the NNLL+NLO qT distribution is

slightly harder than the corresponding NLL+LO qT distribution. This effect is (in part)

due to the large transverse-momentum dependence of the fixed order corrections.

As discussed in section 2, the resummed calculation depends on the factorization and

renormalization scales and on the resummation scale µres. Our convention to compute

factorization and renormalization scale uncertainties is to consider independent variations

of µF and µR by a factor of two around the central values µF = µR = Mγγ in independent

way in order to maximise them: (µF = 2 Mγγ , µR = Mγγ/2, µres = Mγγ/2) and (µR =

2 Mγγ , µF = Mγγ/2, µres = Mγγ/2). The uncertainty due to the resummation scale

variation is assessed separately by varying it between µres = Mγγ/4 and µres = Mγγ at

fixed µF and µR.
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Figure 6. Comparison of the theoretical prediction for the qT spectrum of diphoton pairs at the

LHC with the experimental data. The NNLL+NLO result is compared with the ATLAS data of

ref. [6], for the window 0GeV < qT < 40GeV (left panel) and the full spectra (right panel). In

the right panel the NNL+LO distribution at central scale (dotted line) is also shown in order to

compare it with the data and the NNLL+NLO result. In the theoretical curves we use the 3-body

parametrization for the resummed cross-section and set gNP = 2GeV2. The bands (solid and

dashed lines) are obtained by varying µR and µF as explained in the text.
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Figure 7. Individual photon spectra in diphoton production at the LHC. Left panel: the qHTγ

spectrum of the hard photon at the LHC [6] (
√
s = 7TeV). Right panel: the qSTγ spectrum of the

softer photon at the LHC [6] (
√
s = 7TeV). In both panels, we compare the resummed prediction

using the 3-body parametrization in the resummed cross-section (gNP = 2GeV2) with the fixed

order prediction.

In figure 2 we compare the impact of the various sources of theoretical error for the

NNLL+NLO predictions: the 2-body and 3-body parametrizations of the photon phase

space, the effect of the variation of the non-perturbative contribution, and the variation

of the factorization and renormalization scales. In the left panel of figure 2 we use only

the central scale (µF = µR = Mγγ , µres = Mγγ/2), and we note that the 3-body method

results in a slightly larger cross section (about 10%) around the peak (qT ∼ 5GeV) than

the 2-body one. For qT > 20GeV all the contributions in the left panel coincide, which is

consistent with the fact that at these values the resummed component starts to vanishes

and the fixed order result dominates the cross section, as we can anticipate from figure 1.

Also we note that if we use a NP parameter, the peak of the distribution is located at
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larger values of qT (qT ∼ 5GeV) and the shape of the distribution is slightly different (for

values 0GeV< qT < 22GeV) from the case in which the NP parameter is not implemented.

These differences, which are stronger for qT < 10GeV, have their origin in the resummed

component, which is the only contribution that depends on gNP . In the right panel of

figure 2 we show the comparison between the variation of the scales5 in the 3-body approach

with the central scale results of the 2-body and 3-body frameworks (with and without non

perturbative parameter, respectively). Evidently, the uncertainty due to the ambiguity of

the parametrization of the photon momenta turns out to be subdominant with respect

to the one arising from the variation of the scales which provides, by itself, a reasonable

estimate of theoretical uncertainties.

In figure 3 we show the NNLL+NLO transverse momentum distribution for three

different implementations of the µres parameter (µres = Mγγ/4;Mγγ/2;Mγγ) at fixed

µF = µR = Mγγ . The 2-body phase space and a non-perturbative parameter gNP = 2GeV2

were used. We notice the small impact of the variation of the µres scale in the cross sec-

tion (at per-cent level). In the left panel of figure 3 we present the transverse momentum

distribution for values of qT within the interval 0GeV< qT < 40GeV, and in the right

panel of figure 3 the full spectra. We also notice that the strongest effect of the variation of

the µres scale appears in the last bin of right panel of figure 3. This is expected since the

resummation scale effectively sets the value of transverse momentum at which the loga-

rithms are dominant. A choice of a very large resummation scale affects the distribution at

larger transverse momentum and might in general result in a mismatch with the fixed order

prediction due to the artificial introduction of unphysically large logarithmic contributions

in that region. Similar results are obtained if the 3-body phase space is used instead of the

2-body one.

In figure 4 we compare the variation of the scales of the NNLL+NLO and NLL+LO

predictions (3-body phase space), for the interval 0GeV< qT < 40GeV (left panel) and

the full spectra (right panel). We notice that the dependence on the scales is not reduced

when going from NLL+LO to NNLL+NLO. This is mostly because at NNLL+NLO a new

channel (gg) opens, in which the box contribution (effectively “LO” but formally O(α2
S))

ruins the reduction of the scale dependence usually expected when adding second order

corrections for the qq̄ channel and first order corrections for the qg channel. This effect

has the same origin that the reported behaviour of the diphoton production at NNLO of

ref. [23], when the variation of the scales is implemented. Since NNLL+NLO is the first

order at which all partonic channels contribute, it is possible to argue that this is the

first order at which estimates of theoretical uncertainties through scale variations can be

considered as reliable. The same results are obtained if the 2-body phase space is used

instead of the 3-body one.

The peak observed in the right panel of figure 4 is the so called Guillet shoulder [80],

which is a real radiation effect and has its origin in the fixed order contribution. It appears

stronger in the NNLL+NLO qT distribution than in the NLL+LO, due to the larger size

of the real contributions at NLO.

5We vary the scales from (µF = 2Mγγ ;µR = Mγγ/2) to (µR = 2Mγγ ;µF = Mγγ/2) at fixed µres =

Mγγ/2.
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In the small qT region (qT < 4GeV) the real radiation effects are no longer dominant

in the qT distribution. The finite and resummed component (which vanish as qT → 0) are

of the same order for qT < 4GeV. In absence of the strong real radiation effects the con-

tributions are almost completely Born like. This is the main reason why the NNLL+NLO

bands overlaps with those at the previous order.

In figures 5 and 6 we compare the LHC data (
√
s = 7TeV) from ATLAS [6] with

our resummed theoretical predictions (at NNLL+NLO and NLL+LO) using the 2-body

and 3-body approaches, respectively. In both cases we use a NP parameter different from

zero (gNP = 2GeV2) and we estimate the theoretical uncertainty by the variation of

the µR and µF scales. In the left panels we show the qT distribution in the window

(0GeV< qT < 40GeV), while in the right ones we show the full spectra in logarithmic scale.

We observe in general an excellent agreement between the resummed NNLL+NLO

prediction and the experimental data, that is accurately described within the theoretical

uncertainty bands in the whole kinematic range. Also we observe that the NLL+LO result

is not enough to describe the phenomenology of the transverse-momentum distribution

of the LHC data (figures 5 and 6, right panel). By direct comparison to the fixed order

prediction, we notice that the effect of resummation is not only to recover the predictivity

of the calculation at small transverse momentum, but also to improve substantially the

agreement with LHC data [6].

While the resummation performed in this work reaches NNLL accuracy formally only

for the diphoton transverse momentum distribution, its predictions can be extended to

other observables as well, since at least the leading logarithmic contributions have a com-

mon origin from soft and collinear emission. Note that the 3-body approach is more suitable

for a consistent implementation of these leading logarithmic effects on the observables. In

figure 7 we show results on more exclusive observables: the qT distributions of the harder

(left-hand plot) and softer (right-hand plot) photon at the central scale. We compare

the results obtained with the 2-body and 3-body phase space approaches, using a non-

perturbative parameter gNP = 2GeV2 with the fixed order result at NNLO for diphoton

production [23].

The 2-body phase space transverse-momentum distribution at NNLL+NLO provides

the same result than the NNLO fixed order cross section for diphoton production [23].

This is consistent with two following related facts: i) the single photon momentum does

not carry any information about the recoil due to the transverse momentum qT in the

2-body approach; ii) the NNLO (NLO) result for the total cross section is exactly recov-

ered upon integration over qT of the differential cross section dσγγ/dqT at NNLL+NLO

(NLL+LO) accuracy.

The effects of resummation are only present in these more exclusive observables if the

recoil due to qT are absorbed by the photons in the final state,6 which is equivalent to

the implementation of a 3-body like phase space. In this way, because the single photon

momentum depends on qT , the integral over qT of the NNLL+NLO (NLL+LO) distribution

6And also the recoil due to qT has to be absorbed in the initial state to restore the momentum conser-

vation (see eq. (3.6)).
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Figure 8. The ∆Φγγ distribution of diphoton pairs at the LHC. In the left panel, we show the

fixed order prediction, the complete resummed prediction and just the resummed contribution at

the central scale. In the right, the full NNLL+NLO result (using the extreme values for µR and µF

to estimate the theoretical uncertainty) is compared with the ATLAS data of ref. [6].

does not recover the NNLO (NLO) result as we can observe in figure 7. Here the last integral

over the single photon momentum of the NNLL+NLO (NLL+LO) distribution, is required

in order to recover the NNLO (NLO) result for the total cross section.

We comment on the qT distribution of the softer photon in the region around the back-

to-back threshold qSTγ ∼ 25GeV (see figure 7 right panel). The NLO fixed order result has

a step-like behaviour, and this necessarily produces [83] integrable logarithmic singularities

at each subsequent perturbative order. The peak of the NLO fixed order distribution at

qST γ ∼ 25GeV is an artifact of these perturbative instabilities. The instability is cured

by all-order perturbative resummation, which leads to a smooth qT distribution with a

shoulder-like behaviour [83] in the vicinity of the back-to-back threshold.

In figure 8 we present the results of the cross section as a function of the azimuthal

angle ∆Φγγ . In the left panel we compare the fixed order (NLO), finite (NLO) and full

(NNLL+NLO) ∆Φγγ distributions. The fixed order component dominates the cross section

over the whole ∆Φγγ range. However, as could be expected, the effect of resummation is

stronger for kinematic configurations near the ∆Φγγ ∼ π which correspond to qT ∼ 0GeV.

As in the case of the fixed order qT distribution, the ∆Φγγ fixed order differential cross

section is not well-behaved near the back-to-back configuration: it actually diverges as

∆Φγγ → π (qT → 0). The finite contribution (eq. (2.9)) is well-behaved near the back-

to-back configuration, and the full result (NNLL+NLO) improves the description in the

region near ∆Φγγ ∼ 0.

In the right panel of figure 8 we compare our theoretical prediction at NNLL+NLO level

of accuracy with the LHC data [6] using the variation of the µR and µF scales to estimate the

theoretical uncertainty. We observe that the transverse momentum resummation provides

a better description of the data with respect to the fixed order result. In both panels of

figure 8 we used the 3-body approach to describe the diphoton phase-space. In fact, in

this kind of observables (also see figure 7), the 2-body parametrization again reproduces

the result of the fixed order cross section.
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4 Summary

In this paper we performed the transverse momentum resummation for diphoton production

at NNLL accuracy in hadron collisions. At small values of qT , the calculation includes

the resummation of all logarithmically-enhanced perturbative QCD contributions, up to

next-to-next-to-leading logarithmic accuracy; at intermediate and large values of qT , it

combines the resummation with the fixed next-to-leading order perturbative result. The

combination is performed in such a way as to exactly reproduce the known next-to-next-

to-leading order result for the total cross section; in the end, the calculation consistently

includes all perturbative terms up to formal order α2
S. The theoretical uncertainty was

estimated by varying the various scales (renormalization, factorization and resummation)

introduced by the formalism as well as the parametrization of the diphoton phase-space.

The result was compared to experimental data, showing good agreement between theory

and experiment over the whole qT range. With respect to the fixed-order calculation, the

present implementation provides a better description of the data and recovers the correct

physical behaviour in the small qT region, with the spectrum smoothly going to zero. The

same set-up also allows the calculation of more exclusive observable distributions; the qT
spectrum of the individual photons and the ∆Φγγ distribution are given as examples.
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