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1 Introduction

The hadroproduction cross sections for a top pair in association with a Standard Model

(SM) heavy boson V are interesting in many respects, and are thus actively studied by

theorists and experimenters alike. In the context of the SM, they constitute excellent

tests for the EW theory and for its perturbative predictions, and a unique and direct

probe of the tt̄V couplings λtt̄V in the cases V = Z and V = H. On the other hand, by

assuming the correctness of the SM description of tt̄W± and tt̄Z production, these processes

feature prominently as backgrounds in several searches for beyond-the-SM (BSM) signals,

typically characterised by multi-lepton signatures (e.g. same-sign di-leptons or tri-leptons

final states), including SUSY [1–3], extra dimensions [4], and models with heavy top-quark

partners [5]. Needless to say, they are also backgrounds to tt̄H production itself, again in

the case of multi-lepton signatures.

Experimentally, evidence of tt̄V production is hard to obtain even at the very high LHC

c.m. energies, owing to the smallness of the rates and/or to background contaminations.

Measurements of the tt̄W± and tt̄Z cross sections extracted from Run-I data have been

reported by both ATLAS and CMS [6–10]; they are affected by very large uncertainties,

which are statistically dominated (although not overwhelmingly so). Conversely, the tt̄H

cross section has not yet been measured at the LHC; however, exclusion limits on the SM

value have been established with several searches that employ a variety of Higgs decay

channels [11–18].

From the theoretical point of view, the calculation of tt̄V cross sections used to repre-

sent a very challenging problem beyond the leading order (LO); such higher-order calcu-

lations have a strong phenomenological motivation, since these processes are characterised

by large K factors. These computational problems have been fully solved at the next-to-

leading order (NLO) by the advent of modern automation techniques; nowadays, results

accurate to the NLO in QCD are straightforwardly available (see e.g. refs. [19–23] for tt̄Z

production, refs. [20, 23, 24] for tt̄W± production, and refs. [25–30] for tt̄H production);

the most recent among them include matching to parton showers.
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While at present the precision of the theoretical predictions is thus sufficient for all kind

of phenomenological applications, since one is dominated by experimental uncertainties,

the Run II of the LHC, with both energy and luminosity larger than in Run I, might

soon change the situation, whence the need to increase the precision of the perturbative

predictions. At fixed order, this can be done in two ways: by computing either the NNLO

QCD corrections, or the NLO electroweak (EW) ones; these, as a rule of thumb, are believed

to have comparable numerical impacts. Calculations at the NNLO in QCD for processes of

the complexity of tt̄V production are beyond the scope of the currently available technology.

This is not the case for NLO EW corrections, and the aim of this paper is to compute them.

We point out that, for what concerns tt̄H production, purely-weak and EW corrections

have been presented in refs. [31, 32] respectively, while they are currently unknown for tt̄Z

and tt̄W± production, and are considered in this paper for the first time.

We remind the reader that, in the context of a perturbative expansion where both αS
and α are treated as small parameters (called a mixed-coupling scenario in ref. [33]), what

is meant by “NLO EW corrections” is conventional, and might lead to ambiguities. A more

precise terminology, advocated in ref. [31], uses “leading NLO” and “second-leading NLO”

contributions to denote what are traditionally called NLO QCD and NLO EW corrections,1

respectively. In the case of tt̄V production, these correspond to the O(α3
Sα) and O(α2

Sα
2)

contributions to the cross sections. In the phenomenological results to be presented below,

we shall include the leading and second-leading LO terms as well, of O(α2
Sα) and O(αSα

2)

respectively.

Our work is performed within the MadGraph5 aMC@NLO framework [33]. Apart

from the novelty of the physics results presented here, this paper constitutes the first

application of such a code to the fully-automated computation of cross sections that require

the subtraction of QED singularities. We stress, in particular, that no aspect of the code

has been designed or optimised in order to deal specifically with tt̄V production, in keeping

with the general strategy that underpins MadGraph5 aMC@NLO. We also remark that

the calculation of EW corrections and their automation is receiving a growing attention

from the high-energy physics community (see e.g. refs. [34–37] for recent results).

This paper is organised as follows. In section 2 we introduce our notation, and briefly

describe the calculation as is performed by MadGraph5 aMC@NLO. In section 3 we

present results for total cross sections and sample differential distributions. We summarise

our findings in section 4.

2 Definitions and calculation details

We adopt, as far as it is possible, the definitions and notations introduced in ref. [31]. A

generic observable Σ(αS, α) in tt̄V production can be written at the LO as follows:

Σ
(LO)
tt̄V

(αS, α) = α2
SαΣ3,0 + αSα

2 Σ3,1 + α3 Σ3,2

≡ ΣLO,1 + ΣLO,2 + ΣLO,3 . (2.1)

1The standard definition of the latter neglects the contributions due to the radiation of an extra heavy

boson. See section 2 and ref. [31] for more details.
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This equation implicitly defines the leading, second-leading, and third-leading ΣLO,q+1

contributions in terms of the coefficients Σ3,q that appear naturally in a mixed-coupling

expansion (see section 2.4 of ref. [33] for more details). Analogously, at the NLO one has:

Σ
(NLO)
tt̄V

(αS, α) = α3
SαΣ4,0 + α2

Sα
2 Σ4,1 + αSα

3 Σ4,2 + α4 Σ4,3 ,

≡ ΣNLO,1 + ΣNLO,2 + ΣNLO,3 + ΣNLO,4 . (2.2)

We shall retain in our computation the two dominant terms at the LO and NLO, namely

ΣLO,1, ΣLO,2, ΣNLO,1, and ΣNLO,2.

The LO contribution ΣLO,2 vanishes in the case of tt̄W± production, and is numerically

rather small in the cases of the cross sections for electrically-neutral bosons, tt̄Z and tt̄H.

As discussed in ref. [31], the latter two final states stem at this perturbative order from

partonic processes with a bb̄ initial state,2 if only weak effects are considered. However,

when one includes QED effects, diagrams with an initial-state photon contribute as well.

Partonic processes with one incoming photon also contribute to the second-leading NLO

term ΣNLO,2. While this fact does not pose any problems at the level of short-distance

computations, it requires one to use PDFs that feature photon densities, and that incorpo-

rate QED evolution. From this viewpoint, the situation is less than satisfactory. The only

modern such PDF set is NNPDF2.3QED [38], which has the disadvantage of treating QED

effects only at the leading order. While formally this degrades the NLO accuracy of (part

of) our computation, in practice it does not constitute a major problem, given that the

photon density is anyhow rather poorly determined at present. In the following, we shall be

assessing carefully the impact of PDF uncertainties on our predictions, both by employing

the NNPDF prescription, and by artificially setting the photon density equal to zero. We

point out that another consequence of having QED-LL-evolved PDFs is the possibility of

using an arbitrary scheme for the finite parts of the initial-state QED subtractions. In this

paper, we have adopted the MS scheme, and have refrained from studying the dependence

of our results on the QED scheme choice for the PDFs.

As was already mentioned, all of our results are obtained by means of the automatic

code MadGraph5 aMC@NLO, which contains all ingredients relevant to the computations

of LO and NLO cross sections, with or without matching to parton showers. NLO re-

sults not matched to parton showers are obtained by adopting the FKS method [39, 40]

for the subtraction of the singularities of the real-emission matrix elements (automated in

the module MadFKS [41]), and the OPP [42] or Tensor Integral Reduction (TIR [43, 44])

procedures for the computation of the one-loop matrix elements (automated in the module

MadLoop [20, 33], which makes use of CutTools [45] with OPP and of IREGI [46] with

TIR, and of an in-house implementation of the representation proposed in ref. [47] (Open-

Loops)). The automation of mixed-coupling expansions has now been fully achieved also

in MadFKS, at variance with the situation of ref. [31], and the present paper is part of the

ongoing validation effort. We have performed all of the self-consistency checks available

in MadGraph5 aMC@NLO, which are discussed in ref. [33] (see in particular section 2.4.2

2Under the assumption that the CKM matrix be diagonal, as is done here. Light-quark initial states qq̄

are possible when this assumption is relaxed, but then the corresponding contributions are CKM-suppressed.
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of that paper for what concerns one-loop matrix elements). Here, we mention explicitly

the independence of the cross section of the values taken by the FKS subtraction parame-

ters [39] ξcut and δI , which is directly relevant to the newly-implemented QED subtractions.

Furthermore, we have computed to high numerical accuracy (O(0.1%)) the LO and NLO

contributions both separately and in the course of the same numerical simulation, and

found full agreement between these two procedures. We also remark that the second-

leading NLO term ΣNLO,2 can be organised internally by MadGraph5 aMC@NLO in two

different ways, which correspond to seeing it (in an unphysical manner [31]) as either an

EW correction to ΣLO,1 or a QCD correction to ΣLO,2; we have verified that these two

ways lead to the same numerical results.

The notation of eqs. (2.1) and (2.2) may be unfamiliar to most readers. Given that

in this paper we restrict ourselves to the computation of the two dominant terms at each

perturbative order, one can introduce an alternative notation, which is less precise (see

ref. [31] for more details) but rather consistent with what has been used in the literature

so far. Such an alternative labeling scheme, which we shall adopt extensively in section 3,

is summarised in table 1. We stress that the two lines at the bottom of that table imply:

ΣNLO,2 = ΣNLO EW + ΣHBR , (2.3)

with:

ΣNLO EW(tt̄V ) = α2
Sα

2
∑

X 6=W±,Z,H

Σ4,1(tt̄V +X) , (2.4)

ΣHBR(tt̄V ) = α2
Sα

2
∑

X=W±,Z,H

Σ4,1(tt̄V +X) . (2.5)

The two terms on the r.h.s. of eq. (2.3) are both finite and theoretically well defined,

and we shall present the corresponding results separately (rather than only for their sum

ΣNLO,2). In the vast majority of the results available in the literature, the analogue of

the HBR contribution is simply ignored, on the basis of the fact that its final states are

distinguishable from those relevant to eq. (2.4). Unfortunately, such an argument is rather

unphysical, because it cannot be quantified unless a proper study is made that uses the

decay products of the vector bosons, and suitable acceptance cuts are imposed on their

momenta. A fully realistic simulation of this kind would be particularly important were the

experimental results quoted for cross sections exclusive in exactly one heavy boson. Note,

finally, that a very similar argument could be made in the case of the radiation of a photon

(of sufficient hardness), whereas typically cross sections that include QED corrections are

computed fully inclusively in any extra photon (as we do in eq. (2.4)).

3 Results

In this section we present our predictions for inclusive rates relevant to the production of

tt̄H, tt̄Z, tt̄W+, and tt̄W− at a pp collider with a c.m. energy of 8 TeV (LHC Run I),

13 TeV (LHC Run II), and 100 TeV. In the case of the LHC Run II, we shall also study

– 4 –
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Label Meaning

LO QCD LO, 1

NLO QCD NLO, 1

LO EW LO, 2

NLO EW NLO, 2; no pp→ tt̄V1V2

HBR NLO, 2; only pp→ tt̄V1V2

Table 1. Shorthand notation used in section 3. V1 and V2 stand for a Higgs, a W±, or a Z boson.

HBR is an acronym for Heavy Boson Radiation, and for a given V1 understands the sum over V2.

The reader is encouraged to check section 2 for the precise definitions of all the quantities involved.

the four production processes at the level of several differential distributions. Furthermore,

for such a c.m. energy we shall consider the implications of a “boosted” regime, effectively

obtained by imposing the following final-state cuts:

pT (t) ≥ 200 GeV , pT (t̄) ≥ 200 GeV , pT (V ) ≥ 200 GeV . (3.1)

In HBR processes, the transverse momentum of the vector boson denoted by X in eq. (2.5)

is not constrained; this implies that, in the case of identical particles (X = V ), a single

vector boson fulfilling the last condition in eq. (3.1) is sufficient for the corresponding event

to contribute to the cross section. While a high-pT regime might be advocated in the context

of Higgs searches [48–50] to increase the relative strength of the signal, in the present case

it is interesting regardless of the nature of the associated heavy boson, because it is known

to enhance the impact of EW effects through large Sudakov logarithms [51–54]. Thus, it

allows one to gauge directly the impact of EW corrections where they should matter most,

and hence to assess the reliability of predictions that include only NLO QCD effects.

We have chosen the particle masses as follows:

mt = 173.3 GeV , mH = 125 GeV , (3.2)

mW = 80.385 GeV , mZ = 91.188 GeV . (3.3)

All widths are set equal to zero, and the massive modes and Yukawas are renormalised on-

shell. We point out that these settings are not hard-coded in MadGraph5 aMC@NLO, but

are inherited [33] from the adopted UFO [55] model. We have chosen the NNPDF2.3QED

PDF set [38] (particularly for the reasons discussed in section 2) that is associated with

the value

αS(mZ) = 0.118 . (3.4)

Our default EW scheme is the α(mZ) scheme, where we set:

1

α(mZ)
= 128.93 . (3.5)

We shall also present results in the Gµ scheme, where:

Gµ = 1.16639 · 10−5 −→ 1

α
= 132.23 . (3.6)
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The central values of the renormalisation (µR) and factorisation (µF ) scales have been taken

equal to the reference scale:

µ =
HT

2
≡ 1

2

∑
i

√
m2
i + p2

T (i) , (3.7)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies have been evaluated by varying these scales independently in

the range:
1

2
µ ≤ µR, µF ≤ 2µ , (3.8)

and by taking the envelope of the resulting predictions; the value of α is kept fixed. In this

work, we have limited ourselves to considering the scale dependence of ΣLO,1 and ΣNLO,1,

which corresponds to what is usually identified with the scale uncertainty of the QCD cross

section. We point out that the calculation of this theory systematics does not entail any

independent runs, being performed through the exact reweighting technique introduced

in ref. [56], which is fully automated in MadGraph5 aMC@NLO. The PDF uncertainties

are computed, again through reweighting, by following the NNPDF methodology [57]; we

report the 68% CL symmetric interval (that is the one that contains only 68 replicas out of

a total of a hundred; this is done in order to avoid the problem of outliers, which is severe

in this case owing to the photon PDF [38])

We stress that, because of the choice of PDFs made in this paper, the present results

for tt̄H production would not be exactly identical to those of ref. [31] even if QED effects

were ignored. However, the differences are tiny, so that a direct comparison between the

tt̄H results of this paper and those of ref. [31] is possible, which allows one to assess the

impact of QED-only corrections.

3.1 Inclusive rates

We begin by reporting, in table 2, the results relevant to the individual contributions that

enter the definition of a given HBR cross section. As is implied by eq. (2.5), by summing

the relevant entries of table 2 one obtains the desired HBR rate. For example, in the case

of tt̄H production:

σHBR(tt̄H) = σ(tt̄HH) + σ(tt̄HZ) + σ(tt̄HW+) + σ(tt̄HW−) , (3.9)

and analogously for the other processes. Note that HBR cross sections are inclusive by

definition, and cannot be summed; this is evident if one considers that one given contri-

bution may enter in more than one HBR rate (e.g. σ(tt̄HZ) contributes to the HBR’s of

both tt̄H and tt̄Z). The entries of table 2 have a relative integration error of about 0.1%.

We now present, in turn, the results for the total rates relevant to tt̄H, tt̄Z, tt̄W+,

and tt̄W− production. Each of these processes corresponds to a set of two tables: tables 3

and 4 for tt̄H, tables 5 and 6 for tt̄Z, tables 7 and 8 for tt̄W+, and tables 9 and 10 for

tt̄W−. In the first table of each set we give the values, in pb, of the various contributions

to the total cross section, namely LO QCD, NLO QCD, LO EW, NLO EW, and HBR; at

a given c.m. energy, these results have an integration error which is at most 0.1% times the

– 6 –
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σ( pb) 8 TeV 13 TeV 100 TeV

tt̄HH 1.640 · 10−4 6.947 · 10−4 6.078 · 10−2

tt̄HZ 2.831 · 10−4 1.214 · 10−3 1.212 · 10−1

tt̄HW+ 2.918 · 10−4 8.996 · 10−4 1.982 · 10−2

tt̄HW− 1.139 · 10−4 4.074 · 10−4 1.366 · 10−2

tt̄ZZ 3.373 · 10−4 1.385 · 10−3 1.209 · 10−1

tt̄ZW+ 5.036 · 10−4 1.711 · 10−3 4.634 · 10−2

tt̄ZW− 1.919 · 10−4 7.455 · 10−4 3.084 · 10−2

tt̄W+W− 1.618 · 10−3 7.066 · 10−3 7.747 · 10−1

Table 2. Total rates for the individual contributions to HBR cross sections.

LO QCD cross section3 relevant to that energy. The two contributions labelled with “EW”

are also computed by setting the photon density equal to zero, as explained in section 2.

In the case of the 13 TeV LHC, we also give (in parentheses) the rates within the cuts of

eq. (3.1). The second table of each set displays the value of the ratios:

δX =
σX

σLO QCD
, (3.10)

with X equal to NLO QCD, LO EW, NLO EW, and HBR. In other words, for any given

column the entry in the nth row of the second table is equal to the ratio of the entry in the

(n+1)th row of the first table over the entry in the first row of that table. Except for HBR,

the results for the ratios δ are associated with uncertainties. These fractional uncertainties

are computed by using eq. (3.10), with the numerator set equal to the maximum and

minimum of either the scale or the PDF envelope, and the denominator always computed

with central scales and PDFs. Note that the denominator is a LO quantity, at variance

with what is done usually in QCD where the central NLO cross section is used; the present

choice allows one to treat QCD and EW effects on a more equal footing in the context

of a mixed-coupling expansion. In the case of NLO QCD, the uncertainties quoted in the

tables are due to scale variations (leftmost errors) and PDF variations (rightmost errors);

in the case of the LO and NLO EW contributions, to PDF variations.

The results for the total cross sections exhibit a few features common to all four pro-

cesses considered here. Firstly, the leading NLO term (NLO QCD) is very large, and grows

with the collider energy. Its impact is particularly striking in the case of tt̄W± production,

owing to the opening at the NLO of partonic channels (qg) that feature a gluon PDF, while

no initial-state gluon is present at the LO — in the case of tt̄H and tt̄Z production, one

has gg-initiated partonic processes already at the Born level. As a consequence of this, the

scale uncertainty, which is relatively large for all processes, becomes extremely significant

in tt̄W± production of increasing hardness (large c.m. energy or boosted regime), where it

is predominantly of LO-type because of the growing contributions of qg-initiated partonic

processes. In all cases, the PDF uncertainties of the NLO QCD term are smaller than those

3The typical errors are such that the statistical uncertainties affect the last digit of the results quoted

in the tables.
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3. Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production, for three

different collider energies. The results in parentheses are relevant to the boosted scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 ± 3.5 29.7+6.8

−11.1 ± 2.8 (24.2+4.8
−10.6 ± 4.5) 40.8+9.3

−9.1 ± 1.0

LO EW 1.8± 1.3 1.2± 0.9 (2.8± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4. Same as in table 3, but given as fractions of corresponding LO QCD cross sections. Scale

(for NLO QCD) and PDF uncertainties are also shown.

due to the hard scales, and decrease with the c.m. energy. Secondly, the contributions due

to processes with initial-state photons are quite large at the LO (except for tt̄W± pro-

duction, which has a LO EW cross section identically equal to zero), but constitute only

a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial states, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitutes a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases of

tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC, NLO

EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and the

smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production the NLO

EW effects are barely within the NLO QCD scale uncertainty band; conversely, for tt̄H and

tt̄Z production NLO EW contributions are amply within the NLO QCD uncertainties. By

imposing at the NLO EW level and at the 13-TeV LHC the boosted conditions enforced by

eq. (3.1), the change w.r.t. the non-boosted scenario is largest in the case of tt̄H production

– 8 –
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tt̄Z : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 1.379 · 10−1 5.282 · 10−1 (1.955 · 10−2) 37.69

NLO QCD 5.956 · 10−2 2.426 · 10−1 (7.856 · 10−3) 18.99

LO EW 6.552 · 10−4 −2.172 · 10−4 (4.039 · 10−4) −4.278 · 10−1

LO EW no γ −1.105 · 10−3 −5.771 · 10−3 (−6.179 · 10−5) −5.931 · 10−1

NLO EW −4.540 · 10−3 −2.017 · 10−2 (−2.172 · 10−3) −1.974

NLO EW no γ −5.069 · 10−3 −2.158 · 10−2 (−2.252 · 10−3) −2.036

HBR 1.316 · 10−3 5.056 · 10−3 (4.162 · 10−4) 3.192 · 10−1

Table 5. Same as in table 3, for tt̄Z production.

tt̄Z : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 43.2+12.8
−15.9 ± 3.6 45.9+13.2

−15.5 ± 2.9 (40.2+11.1
−15.0 ± 4.7) 50.4+11.4

−10.9 ± 1.1

LO EW 0.5± 0.9 0.0± 0.7 (2.1± 1.6) −1.1± 0.2

LO EW no γ −0.8± 0.1 −1.1± 0.0 (−0.3± 0.0) −1.6± 0.0

NLO EW −3.3± 0.3 −3.8± 0.2 (−11.1± 0.5) −5.2± 0.1

NLO EW no γ −3.7± 0.1 −4.1± 0.1 (−11.5± 0.3) −5.4± 0.0

HBR 0.95 0.96 (2.13) 0.85

Table 6. Same as in table 4, for tt̄Z production.

(by a factor equal to about 6.8); tt̄Z and tt̄W± behave similarly, with enhancement factors

in the range 2.5–3. However, for all processes the boosted kinematics are such that the NLO

EW terms are equal or larger than the scale uncertainties that affect the corresponding

NLO QCD terms. For both of the processes which have a non-trivial LO EW cross section

(tt̄H and tt̄Z), the bb̄- and γg-initiated contributions tend to cancel each other. In the

case of tt̄H, an almost complete (and accidental) cancellation (relative to the LO QCD

term) occurs at a c.m. energy of 100 TeV, while for tt̄Z it so does at the much lower LHC

Run II energy. This implies that the impact of EW effects at the 13-TeV LHC is more

important in the case of tt̄Z than for tt̄H production, given that for the latter process the

LO and NLO contributions tend to cancel in the sum at this collider energy. However, it

is necessary to keep in mind the observation about the uncertainties induced on the LO

EW cross section by the photon density: a better determination of such a PDF would

be desirable, in order to render the statement above quantitatively more precise. Finally

for tt̄H production, by comparing the results of table 4 relevant to the NLO EW terms

with those of table 6 of ref. [31] relevant to the weak-only contributions to the NLO cross

section, one sees that the relative impact of QED effects decreases with the c.m. energy

and is rather negligible in the boosted scenario, as expected. These QED effects have the

opposite sign w.r.t. those of weak origin, and can be as large as half of the latter at the

LHC Run I.

As far as the HBR cross sections are concerned, some general considerations about

the various mechanisms that govern the (partial) compensation between these terms and
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tt̄W+ : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 1.003 · 10−1 2.496 · 10−1 (7.749 · 10−3) 3.908

NLO QCD 4.089 · 10−2 1.250 · 10−1 (4.624 · 10−3) 6.114

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −6.899 · 10−3 −1.931 · 10−2 (−1.490 · 10−3) −3.650 · 10−1

NLO EW no γ −7.103 · 10−3 −1.988 · 10−2 (−1.546 · 10−3) −3.762 · 10−1

HBR 2.414 · 10−3 9.677 · 10−3 (5.743 · 10−4) 8.409 · 10−1

Table 7. Same as in table 3, for tt̄W+ production.

tt̄W+ : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 40.8+11.2
−12.3 ± 2.9 50.1+14.2

−13.5 ± 2.4 (59.7+18.9
−17.7 ± 3.1) 156.4+38.3

−35.0 ± 2.4

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −6.9± 0.2 −7.7± 0.2 (−19.2± 0.7) −9.3± 0.2

NLO EW no γ −7.1± 0.2 −8.0± 0.2 (−20.0± 0.5) −9.6± 0.1

HBR 2.41 3.88 (7.41) 21.52

Table 8. Same as in table 4, for tt̄W+ production.

the one-loop contributions of weak origin have already been given in ref. [31]; they are

not tt̄H-specific, and hence will not be repeated here. We limit ourselves to observing, by

inspection of tables 4, 6, 8, and 10, that relative to the LO QCD cross sections the tt̄H

and tt̄Z HBR contributions have a mild dependence on the c.m. energy (slightly increasing

for the former process and decreasing for the latter one); the NLO EW contribution tend

to become clearly dominant over HBR by increasing the collider energy and especially in

a boosted scenario. The situation is quite the opposite for tt̄W± production, where the

growth of the HBR rates is not matched by that of the NLO EW terms, so that the HBR

cross section is largely dominant over the latter at a 100 TeV collider (but not quite so in

a boosted configuration at the LHC Run II). The origin of this fact is the same as that

responsible for the growth of the NLO QCD contributions, namely partonic luminosities;

in particular, the tt̄W+W− final state can be obtained from a gg-initiated partonic process.

While the above statement must be carefully reconsidered in the context of fully-realistic

simulations, where acceptance cuts are imposed on the decay products of the tops and of

the vector bosons, it does say that, in such simulations, HBR contributions cannot simply

be neglected. Note that the behaviour with the c.m. energy of the tt̄W+ and tt̄W− cross

sections is not identical, mainly owing to the fact that the former (latter) process is more

sensitive to valence (sea) quark densities.

We now turn to discussing how the results presented so far might be affected by a

change of EW scheme. We thus give predictions obtained in the Gµ scheme, with the

parameters set as in eq. (3.6); we limit ourselves to considering the 13-TeV LHC, and do
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tt̄W− : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 4.427 · 10−2 1.265 · 10−1 (3.186 · 10−3) 2.833

NLO QCD 1.870 · 10−2 6.515 · 10−2 (2.111 · 10−3) 4.351

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −2.634 · 10−3 −8.502 · 10−3 (−5.838 · 10−4) −2.400 · 10−1

NLO EW no γ −2.761 · 10−3 −8.912 · 10−3 (−6.094 · 10−4) −2.484 · 10−1

HBR 1.924 · 10−3 8.219 · 10−3 (4.781 · 10−4) 8.192 · 10−1

Table 9. Same as in table 3, for tt̄W− production.

tt̄W− : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 42.2+11.9
−12.7 ± 3.3 51.5+14.8

−13.8 ± 2.8 (66.3+21.7
−19.6 ± 3.9) 153.6+37.7

−34.9 ± 2.2

LO EW 0 0 0

LO EW no γ 0 0 0

NLO EW −6.0± 0.3 −6.7± 0.2 (−18.3± 0.8) −8.5± 0.2

NLO EW no γ −6.2± 0.2 −7.0± 0.2 (−19.1± 0.6) −8.8± 0.1

HBR 4.35 6.50 (15.01) 28.91

Table 10. Same as in table 4, for tt̄W− production.

not include HBR cross sections in this study. We define a quantity analogous to that of

eq. (3.10) in the Gµ scheme:

δ
Gµ
X =

σ
Gµ
X

σ
Gµ
LO QCD

. (3.11)

We also introduce the following ratios, that help measure the differences between analogous

results in the two schemes:

∆
Gµ
LO QCD =

σLO QCD − σ
Gµ
LO QCD

σLO QCD
, (3.12)

∆
Gµ
LO EW =

σLO QCD + σLO EW −
(
σ
Gµ
LO QCD + σ

Gµ
LO EW

)
σLO QCD + σLO EW

, (3.13)

∆
Gµ
NLO EW =

σLO QCD + σLO EW + σNLO EW −
(
σ
Gµ
LO QCD+σ

Gµ
LO EW+σ

Gµ
NLO EW

)
σLO QCD + σLO EW + σNLO EW

. (3.14)

The results are collected in table 11, where for ease of comparison we also report the

relevant predictions given previously in the α(mZ) scheme (see tables 3–10).

The scheme dependence of the dominant LO term, σLO QCD, is solely due to the value

of α; thus, the 2.5% reported in the third row of table 11 is simply the relative difference

between the two values of α given in eqs. (3.5) and (3.6), since this LO term factorises a

single power of α. The smallness of σLO EW is such that ∆
Gµ
LO EW, defined in eq. (3.13),
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tt̄H tt̄Z tt̄W+ tt̄W−

σLO QCD( pb) 3.617 · 10−1 5.282 · 10−1 2.496 · 10−1 1.265 · 10−1

σ
Gµ
LO QCD( pb) 3.527 · 10−1 5.152 · 10−1 2.433 · 10−1 1.234 · 10−1

∆
Gµ
LO QCD(%) 2.5 2.5 2.5 2.5

δLO EW(%) 1.2 0.0 0 0

δ
Gµ
LO EW(%) 1.2 0.0 0 0

∆
Gµ
LO EW(%) 2.5 2.5 2.5 2.5

δNLO EW(%) −1.2 −3.8 −7.7 −6.7

δ
Gµ
NLO EW(%) 1.8 −0.7 −4.5 −3.5

∆
Gµ
NLO EW(%) −0.5 −0.7 −0.9 −0.9

Table 11. Comparison between results in the α(mZ) and Gµ scheme, at 13 TeV.

is largely dominated by σLO QCD. Hence its values are also equal to 2.5% within the

numerical accuracy of our results; by increasing the statistics, one would observe tiny

differences w.r.t. the predictions for ∆
Gµ
LO QCD. The predictions for the relative differences

at the LO imply that a change of EW scheme may be significant, being of the same order

as the NLO EW relative contributions, in particular in the case of tt̄H and tt̄Z production,

and slightly less so for tt̄W± production (compare ∆
Gµ
LO EW with δNLO EW). These higher-

order EW results are also affected by a change of EW scheme, as one can see by comparing

the results for δNLO EW and for δ
Gµ
NLO EW in table 11, with the Gµ scheme responsible

for a systematic shift towards positive cross sections. However, the most relevant figure

of merit is actually ∆
Gµ
NLO EW, defined in eq. (3.14), which must be compared with its LO

counterparts, ∆
Gµ
LO QCD and ∆

Gµ
LO EW; the values of the former ratio are significantly smaller

than those of the latter two ratios, as a result of the stabilisation against changes of scheme

that is characteristic of higher-order computations.

We conclude this section by mentioning that we have also computed the LO contribu-

tions of O(α3) to the total rates, since they factor the same power of λ6 as the O(α2
Sα

2)

NLO terms, according to the naive scaling law αS → λαS and α→ λ2α. We find that these

third-leading LO rates are smaller (for tt̄H and tt̄Z), or much smaller (for tt̄W±, by a factor

of about ten), than the NLO EW ones; furthermore, they are not enhanced by any Su-

dakov logarithms at large hardness. We finally remark that photon-initiated contributions

of O(α3) are negligibly small. For these reasons, we have not reported any O(α3) results

in the tables above, and have ignored their contributions to differential distributions.

3.2 Differential distributions

In analogy with ref. [31], we have considered the following observables:

• the transverse momentum of the heavy boson pT (V );

• the transverse momentum of the top quark pT (t);
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• the transverse momentum of the top-antitop pair pT (tt̄);

• the invariant mass of the top-antitop-heavy boson system M(tt̄V );

• the rapidity of the top quark y(t);

• the rapidity separation between the top-antitop pair and the heavy boson ∆y(tt̄, V ).

We present these six observables for each of the four production processes at the 13-TeV

LHC, without and with the cuts of eq. (3.1): tt̄H in figures 1 and 2, tt̄Z in figures 3

and 4, tt̄W+ in figures 5 and 6, and tt̄W− in figures 7 and 8, respectively. We use an

identical layout for all the plots, with a main frame and three insets; we employ the

labelling convention introduced in table 1, and used in section 3.1 for the total rates. Four

histograms appear in the main frame, that represent the differential cross sections; they

are the predictions for LO QCD (dashed black), LO QCD+NLO QCD (solid red overlayed

with full circles), and LO QCD + NLO QCD + LO EW + NLO EW (solid blue and green

diamonds, with and without photon density respectively). In the upper and middle insets,

the bin-by-bin ratios of the latter three histograms over the first one (i.e. LO QCD) are

presented, by using the same patterns as in the main frame. The upper insets also display

a grey band, centered around the LO QCD + NLO QCD prediction, which represents the

fractional scale variation of this cross section. Conversely, the middle insets show the

fractional PDF uncertainties that affect the full NLO cross section LO QCD+NLO QCD+

LO EW + NLO EW: with (blue band) and without (green error symbols) photon density.

Finally, in the bottom insets we present the ratios of the following three quantities over

LO QCD: NLO QCD (red solid), LO EW+NLO EW (solid blue with photon density, and

green diamonds without photon density), and HBR (purple dot-dashed). PDF-uncertainty

bands for the relative LO EW+NLO EW predictions are also given, with the same patterns

as their analogues in the middle insets. Note that HBR processes that feature two identical

vector bosons in the final state might give up to two contributions per event to the pT (V ),

M(tt̄V ), and ∆y(tt̄, V ) distributions.

The general features of these differential results are largely independent of the spe-

cific process considered. When no cuts are applied (figures 1, 3, 5, and 7), regions close

to threshold (i.e. associated with small transverse momenta) are dominated by QCD con-

tributions; by adding EW effects one generally shifts downwards the cross sections, but

still within the theoretical uncertainties. By moving towards large pT ’s, the K factors due

to the leading NLO term tend to increase, for some observables and processes in a truly

dramatic manner. The relative size of EW contributions also increases in absolute value

in the same regions; since the corresponding cross sections are negative, this partly com-

pensates the growth induced by QCD terms. Furthermore, at variance with what happens

at threshold, such a compensation is quite often significant, being of the same order as, or

larger than, the theoretical uncertainty; the largest effects are seen in tt̄W± production.

This fact, together with the observation that K factors are not flat, implies that both QCD

and EW higher-order effects need to be taken into account at a fully differential level for

a precision study of tt̄V production. As was already observed in the case of total rates,
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the impact of photon-initiated processes is not large on NLO-accurate results; there is a

slight fractional increase when moving towards large transverse momenta, but given the

current theoretical uncertainties this is hardly significant; a similar conclusion applies to

the impact of the photon density uncertainty on the overall PDF errors. The largest effects

are seen in tt̄H production. A notable exception to these statements is to be found at large

top-rapidity values in tt̄H and tt̄Z production, where the cross sections with or without the

photon-initiated processes exhibit large differences. However, such differences are offset by

a very significant increase of the PDF uncertainty, which is driven by the poorly known

photon density.

Given these results, it is not surprising that the various higher-order effects are en-

hanced when one imposes the cuts of eq. (3.1) — see figures 2, 4, 6, and 8. In this case, the

importance of taking into account EW effects is obvious; this includes the HBR cross sec-

tions which, according to our results, are particularly large for certain observables in tt̄W±

production, in keeping with what has been already found for total rates. The sharp thresh-

olds in pT (tt̄) and M(tt̄V ), and the knee at pT (t) ∼ 400 GeV, are LO features common

to all processes, which become less dramatic when NLO corrections are included. Their

origins have been discussed in ref. [31] (for tt̄H production, but those arguments apply to

tt̄Z and tt̄W± production as well), and therefore will not be repeated here.

4 Conclusions and outlook

We have studied the production of a tt̄ pair in association with a heavy SM boson (Higgs,

Z, or W±) at a pp collider with three different c.m. energies (8, 13, and 100 TeV). Our

predictions are obtained by computing the two dominant terms at both the leading and

the next-to-leading order in a mixed perturbative expansion in the QCD (αS) and EW

(α) couplings. Such terms factorise the coupling combinations α2
Sα and αSα

2 at the LO,

and α3
Sα and α2

Sα
2 at the NLO; the latter two contributions are usually denoted as QCD

and EW NLO corrections, respectively. The O(α2
Sα

2) results for tt̄H production had been

previously presented in the literature in refs. [31, 32] (with the former paper ignoring QED

effects); those for tt̄Z, tt̄W+, and tt̄W− are given here for the first time.

These tt̄V processes are characterised by tiny cross sections, the total rates being

smaller than 1 pb at LHC energies, and of the order of 10 pb at a 100-TeV collider.

However, in view of the luminosity foreseen at the LHC Run II and at future colliders,

it will become possible to measure them with a good accuracy; furthermore, tt̄Z and

tt̄W± are significant backgrounds to several BSM searches, that typically feature multi-

lepton final states. There are thus compelling phenomenological motivations to increase

the precision of the theoretical predictions for tt̄V production, which is what we have

done in this paper. From a technical viewpoint, our calculations have been performed

with MadGraph5 aMC@NLO [33], and are fully automated. They are the first public

results obtained with such a code that include QED subtractions, and they constitute

part of the validation procedure that will lead to the public release of an upgraded Mad-

Graph5 aMC@NLO capable of handling mixed-coupling expansions at the NLO. We point

out that no part of the code has been specifically constructed or modified in order to handle

tt̄V production.
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Figure 1. LO- and NLO-accurate results for tt̄H production at 13 TeV.
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Figure 2. Same as in figure 1, with the cuts of eq. (3.1).
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Figure 3. Same as in figure 1, for tt̄Z production.
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Figure 4. Same as in figure 2, for tt̄Z production.
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Figure 5. Same as in figure 1, for tt̄W+ production.
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Figure 6. Same as in figure 2, for tt̄W+ production.
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Figure 7. Same as in figure 1, for tt̄W− production.
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Figure 8. Same as in figure 2, for tt̄W− production.
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The main findings of our study are the following. The fully differential computation of

higher-order corrections is essential in order to attain a realistic description of the processes

at hand. K factors are large and not flat, and tend to grow with the collider c.m. energy;

such a growth is particularly spectacular in the case of tt̄W± production, owing to the

impact of gluon-initiated partonic processes which are absent at the LO (at variance with

what happens for tt̄H and tt̄Z). At a given collider energy, a similar feature is observed

when at least one of the final-state particles has a large transverse momentum. Theoretical

uncertainties are predominantly due to scale variations; PDF errors are smaller but not

negligible. For the same reason as explained above, scale uncertainties become very signif-

icant in tt̄W± production at high energies and/or transverse momenta. The considerable

size of higher-order corrections stems predominantly from O(α3
Sα) terms. However, effects

of EW origin do change the pure-QCD results in a way which is significant (i.e. of the same

order as, or larger than, the theoretical uncertainties) at large energies and pT ’s. The pre-

cise impact of such effects depends on the observable (and, of course, on the process), which

implies again the necessity of performing one’s calculations in a fully differential manner.

QED corrections lead to the inclusion of processes with initial-state photons. We find that

these give a modest fractional contribution to the NLO O(α2
Sα

2) term, but a very large

one to the LO O(αSα
2) term (for tt̄H and tt̄Z, being identically zero in tt̄W± production);

however, the latter does not induce a visible change in the physical NLO-accurate cross

section, since the corresponding contribution is quite small in absolute value. These facts

imply that, although the large uncertainties on the photon PDF are sizable when one only

considers second-leading LO and NLO terms, they essentially become irrelevant as far as

the overall uncertainties on the NLO-accurate results are concerned (with the exception of

large top rapidities in tt̄H and tt̄Z production). Finally, we find that processes with a tt̄

and a heavy-boson pair in the final state, which we have called HBR, might be responsible

for detectable effects, particularly in the case of tt̄W± production: a definite conclusion

on this point can only be reached with a realistic acceptance study (either by including

HBR contributions in the tt̄V cross section inclusive in V , or by subtracting them if the

tt̄V cross section is exclusive in a single V ).
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