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Abstract: We study the dynamics of vacuum entanglement in the process of gravitational

collapse and subsequent black hole evaporation. In the first part of the paper, we introduce

a covariant regularization of entanglement entropy tailored to curved spacetimes; this reg-

ularization allows us to propose precise definitions for the concepts of black hole “exterior

entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent

with the standard thermodynamic properties of Hawking radiation. In the second part of

the paper, we compute the vacuum entanglement entropy of various spherically-symmetric

spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward,

Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We

discuss specifically the role of event and trapping horizons in connection with the behavior

of the radiation entropy at future null infinity. We observe in particular that (i) in the

presence of an event horizon the radiation entropy diverges at the end of the evaporation

process, (ii) in models of nonsingular evaporation (with a trapped region but no event hori-

zon) the generalized second law holds only at early times and is violated in the “purifying”

phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can

be less correlated than the vacuum) before going back to zero leading to an up-down-up

behavior for the Page curve of a unitarily evaporating black hole.
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1 Introduction

In quantum field theory the existence of correlations at spacelike separations indicates that

the vacuum is a highly entangled state. Entanglement entropy provides a measure of these

correlations [1–3]. When the vacuum state is perturbed, for instance because of the coupling

to an external background field, the amount of entanglement in the vacuum can change.

In this paper we study the evolution of the entanglement entropy of the vacuum due to

the coupling to an external gravitational field describing the collapse of classical matter.

The entanglement entropy is generally defined — at a given time — as a measure of

the entanglement between modes of the field supported respectively in a spatial region and
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its complement [1–3]. In a general-relativistic setting, it is desirable to have a covariant

definition associated to spacetime regions (or causal domains) instead of regions of space at

a given time [4–6]. This is in fact possible thanks to the causality and unitarity properties of

relativistic quantum field theory [7]. In the first part of this paper we adopt this spacetime

perspective and introduce a covariant regularization of the entanglement entropy of causal

domains, the causal-splitting regularization (section 2). The regularized entropy is defined

in terms of the mutual information of causal domains separated by a splitting region [8–

10]. The covariant cut-off is given by the spacetime volume of the splitting region. This

covariant definition of the entanglement entropy is tailored to curved spacetimes; it allows

us to compare the entanglement entropy of different spacetime regions and define a cut-off

independent notion of entanglement entropy production.

In section 3 we consider the entanglement entropy production during gravitational col-

lapse. A spherically symmetric distribution of classical matter collapses and forms a star

or a black hole. At past null infinity I− the background geometry is asymptotically flat

and a massless quantum field is prepared in the in-going vacuum state. The quantum field

is treated as a test field, with no backreaction on the geometry. We restrict our attention

to spherically symmetric modes of the field (s-wave) and neglect backscattering (geometric

optics approximation). These assumptions reduce the analysis to a two-dimensional quan-

tum field theory problem [11, 12] and classical results in conformal field theory [13] can be

used to compute the entanglement entropy production.

We consider the time evolution of the entanglement entropy for three different regions

of spacetime: (i) a thick-shell region far from the collapsed object, (ii) the exterior of the

event horizon when a black hole forms, and (iii) a portion of future null infinity. In all three

cases the entanglement entropy production can be connected to the Hawking process and

to its thermodynamics: the propagation of the quantum field in a gravitational-collapse

spacetime in general results in the production of radiation, i.e. of an excited state of the

field at future null infinity I+. To illustrate this relation, in section 4 we study in detail

the entanglement entropy production for a black hole formed by the collapse of a thin shell

(Vaidya spacetime).

In section 5 we study the entanglement entropy of the radiation emitted at future null

infinity I+ (the “Page curve”) for four analytically solvable toy models of gravitational

collapse: the formation of a compact star, the formation and evaporation of a black hole

with event horizon, the formation and evaporation of a non-singular black hole with a

closed trapped region but no event horizon, and the tunnelling of a black hole to a white

hole. In particular we discuss some unexpected features of the Page curve relevant for the

puzzle of information loss.

2 Entanglement entropy of causal domains

In this section, we introduce a covariant regularization of vacuum entanglement entropy

tailored to curved spacetimes. This regularization is based on the notion of mutual infor-

mation of disconnected causal domains. For two-dimensional conformal fields, a formula of
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Figure 1. Entanglement entropy in the causal splitting regularization of a diamond D, defined as

(one half) the mutual information between D and D+ = (D+)1 ∪ (D+)2. The covariant cutoff µ is

the spacetime volume of the splitting region ∆ = ∆1 ∪∆2 (shaded).

Holzhey, Larsen and Wilczek [13] permits explicit computations of the regularized entropy

and allows us to define a cut-off independent notion of entanglement entropy production.

2.1 General definitions

Consider a (d+ 1)-dimensional (globally hyperbolic) spacetime with metric gαβ , and let S

be a set of points. The causal complement S of S is the set of all points which are space-

like separated from all points of S. A causal domain D is defined as a causally complete

set, i.e. D = D. Given a Cauchy surface Σ and a spatial region R ⊂ Σ, the Cauchy

development of R defines a causal domain D = D(R) ≡ D+(R) ∪ D−(R) [14]. The causal

complement of D coincides with the Cauchy development of the complementary region in

Σ, i.e. D = D(Σ−R). We define the corner of the causal domain D as CD ≡ ∂R. Clearly

every spatial region R with the same boundary C defines the same causal domain.1

Given a pure global state ρ in a quantum field theory, the entanglement entropy of the

causal domain D is usually defined by introducing a UV cut-off ε and computing the von

Neumann entropy of the reduced state ρD,2

Sε(D) = −Tr(ρD log ρD) . (2.1)

This quantity provides a measure of the correlations between the causally disconnected

domains D and D. It diverges in the limit ε → 0 due to the presence of UV correlations

in the state ρ.

2.2 Causal splitting regularization

Consider now two causal domains D1 and D2 that are disjoint, D1 ∩D2 = ∅, and causally

disconnected, i.e. D1 ⊂ D2. The mutual information I(D1, D2) of the two causal domains

1The causal domain with corner C is defined by the intersection of the causal complements of each point

in C, i.e. D = ∩p∈C p. No reference to the spatial region R ⊂ Σ is needed.
2The reduced state ρD is defined in terms of the global state ρ and the local algebra of operators with

support in D, see [7].
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is defined as the relative entropy of the reduced state ρD1∪D2 with respect to the tensor

product of reduced states ρD1 ⊗ ρD2 ,

I(D1, D2) ≡ S(ρD1∪D2 |ρD1⊗ ρD2) (2.2)

= Tr(ρD1∪D2 log ρD1∪D2 − ρD1∪D2 log ρD1⊗ ρD2)

The relative entropy is a well-defined quantity in quantum field theory, no UV cut-off is

required in its definition.3 We now introduce a regularization S+(D) of the entanglement

entropy that makes use of the notion of mutual information [8].

Let D+ be a causal domain that contains D. We call D+ a smearing of D and we are

interested in the limit D+ → D. The domains D and D+ are causally disconnected. We

define the splitting region as

∆ ≡ D ∪D+ . (2.3)

The splitting region ∆ is causally complete and therefore is also a causal domain, see

figure 1.

At every point of the corner CD of the domain D there are two null geodesics ` = ∂v
and n = ∂w that lie on the boundary of ∆. In the limit D+ → D the spacetime volume

V(d+1) of ∆ is given by the integral over C∆ of the transversal spacetime area of ∆, i.e.

µ ≡ gαβ`αnβ δv δw. (2.4)

We require the smearing D+ to be such that the transversal area µ is constant. As a result

the splitting region has finite spacetime volume given by

V(d+1)(∆) = µA(d−1)(CD) , (2.5)

where A(d−1) is the area4 of the (d − 1)-dimensional corner CD, and µ is a cut-off with

dimensions of length×time.

The entanglement entropy in the causal-splitting regularization S+(D) is defined as half

of the mutual information between the domain D and the complement of its smearing D+,

S+(D) ≡ 1

2
I(D, D+) . (2.6)

For a finite cut-off µ this quantity is finite. In the limit µ → 0 the causal domains D and

its smearing D+ coincide and the mutual information diverges. The point of view adopted

in this paper is that µ is a physical cut-off, fixed for instance at the Planck scale

µ =
G~
c4

, (2.7)

or at the scale below the point where the effective field theory considered breaks down.

The cut-off is defined in a covariant way by the curved spacetime volume of the splitting

region ∆, formula (2.5).

3The abstract definition of relative entropy in terms of von Neumann algebras can be found in [15]. See

also ch. II of [16] for a pedagogical introduction.
4For d = 1 we define A(0) = 1 and impose V(1+1)(∆i) = µ for each connected component of ∆.
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Now we connect the expression of the entanglement entropy S+(D) defined by the

causal-splitting regularization to the standard formula (2.1). Introducing the UV cut-off

ε and using the formula S(ρ|σ) = Tr(ρ log ρ − ρ log σ) for the relative entropy, the mutual

information (2.2) can be written as [17]

I(D1, D2) = Sε(D1) + Sε(D2)− Sε(D1 ∪D2) , (2.8)

where a limit ε → 0 is understood on the right-hand side of the equation. Clearly, the

mutual information remains finite in this limit. Using the fact that for a pure global state

Sε(D) = Sε(D), we find a simple expression for the entanglement entropy defined by the

causal splitting:

S+(D) =
1

2

(
Sε(D) + Sε(D+)− Sε(∆)

)
. (2.9)

This expression contains two cut-offs, µ and ε. The entropy S+(D) is defined by ε → 0

with µ finite. In the opposite limit, µ → 0 and ε finite, we have Sε(∆) → 0, and the

right-hand-side of (2.9) reduces to the ordinary entropy Sε(D).

Defining the entanglement entropy in terms of mutual information of complementary

regions has various advantages, especially in the presence of gauge fields [18]. In this paper

we are mostly interested in its use in a curved background spacetime where the causal-

splitting regularization allows us to compare the entanglement entropy of different regions

of spacetime while keeping the same physical cut-off µ constant.

2.3 Entanglement entropy in two-dimensional spacetimes

In (1 + 1)-dimensional Minkowski space, a causal domain (or diamond) is determined by

two spacelike separated points, the corners of the diamond: p1 = (v1, w1) and p2 = (v2, w2)

with v2 < v1 and w1 < w2. Here v and w are inertial null coordinates, the metric is

ds2 = −dv dw, and the causal domain is the set D = [v2, v1] × [w1, w2]. The standard

expression of the entanglement entropy of a massless scalar field in the Minkowski vacuum

is [13, 19, 20]

Sε(D) =
1

6
log

∆v∆w

ε2
, (2.10)

where ∆v ≡ v1 − v2, ∆w ≡ w2 − w1, and ε is an ultraviolet cut-off.5 We now introduce

a smearing in the size of the diamond D. In particular we consider a larger diamond

D+ = [v2−δv2, v1+δv1]×[w1−δw1, w2+δw2], with δv1, δv2, δw1, δw2 all positive. The causal

complement of D ∪D+ is a domain ∆ consisting of two (small) disconnected diamonds,

∆ = ∆1 ∪∆2 , (2.11)

with ∆1 = [v1, v1 +δv1]× [w1−δw1, w1] and ∆2 = [v2−δv2, v2]× [w2, w2 +δw2], see figure 1.

5This formula is most easily derived using Euclidean path integral methods, with the cut-off ε corre-

sponding to a smearing of the conical defects [13]. The formula can also be derived using real time methods

by imposing a cut-off on field modes as a Dirichlet condition at distance ε from the boundary [19], or

by introducing a lattice regularization with lattice spacing ε [21]. It generalizes to any two-dimensional

conformal field theory [13, 22].
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The entanglement entropy defined via a causal splitting can be computed using for-

mula (2.9), the expression (2.1), and the fact that the entanglement entropy of the union

of two diamonds is additive in the limit of diamonds that are small compared to their

separation, S(∆1 ∪∆2)→ S(∆1) + S(∆2) [8, 23]. This results in the expression

S+(D) =
1

12
log

(∆v)2(∆w)2

δv1 δw1 δv2 δw2
. (2.12)

To conclude the derivation of the entanglement entropy in the causal-splitting regulariza-

tion, the spacetime volume of the splitting regions ∆1 and ∆2 must now be expressed in

terms of the physical cut-off µ, namely δv1δw1 = δv2δw2 = µ. As a result, the spacetime

volume cut-off µ takes the place of the UV cut-off ε2 in (2.10). Notice that the cut-off µ

is Lorentz invariant: under a boost the shape of the splitting region changes, δv1 → λ δv1

and δw1 → λ−1δw1, but its spacetime volume δv1δw1 = µ remains invariant.

2.3.1 Two-dimensional curved spacetimes

The relation between the causal-splitting regularization and the standard regularization of

the entanglement entropy becomes non-trivial in a curved spacetime. Consider a spacetime

with metric

ds2 = −C2(v, w) dv dw (2.13)

and the same past asymptotic structure as Minkowski space. A minimally coupled massless

scalar field on this curved background satisfies the wave equation 0 = �ϕ = C−2 ∂v∂wϕ.

Therefore in terms of the coordinates v and w the solutions of the wave equation are the

same as in Minkowski space and the global state ρ defined by the Minkowski vacuum at past

null infinity is also a global state of the quantum theory on the curved spacetime (2.13).6

As a result, its entanglement entropy has the same expression (2.12) as in Minkowski space.

What changes now is the metric relation between the points (v1, w1) and (v2, w2), and most

importantly the relation between the splittings δv1, δv2, δw1, δw2, and the covariant cut-off

µ given by the volume of the splitting region

− C2(v1, w1) δv1δw1 = −C2(v2, w2) δv2δw2 = µ . (2.14)

Thus, in the causal-splitting regularization, the expression of the entanglement entropy of

a causal domain D with corners p1 = (v1, w1) and p2 = (v2, w2) in a curved spacetime is

given by

S+(D) =
1

12
log

(∆v)2(∆w)2C2(v1,w1)C2(v2,w2)

µ2
. (2.15)

2.3.2 Entanglement entropy production

These preliminaries allow us to address the main objective of this paper, namely com-

puting the entanglement entropy production in the Hawking process. A massless scalar

field prepared in the Minkowski vacuum at I− evolves in the time-dependent background

describing a gravitational collapse, and at I+ is found in an excited state. The dynamics

6This argument generalizes to conformal vacua in any conformal field theory.
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of the background results in particle production [24]. We wish to probe the evolution of

the state of the field and the emission of Hawking radiation by studying the evolution of

the entanglement entropy of the field.

For this purpose, let us consider a one-parameter family of diamonds Dλ labeled by

the trajectory of the two space-like separated corners p1(λ) =
(
v1(λ), w1(λ)

)
and p2(λ) =(

v2(λ), w2(λ)
)
. Given a reference ‘time’ λ0, we define the entanglement entropy production,

or excess entanglement entropy, in Dλ as

∆S(λ) ≡ S+(Dλ)− S+(Dλ0) . (2.16)

Recalling that µ is a physical cut-off that is kept fixed in the evolution, we can compute the

entanglement entropy production using formula (2.15) and find the µ-independent result

∆S(λ) =
1

12
log

(∆v)2(∆w)2C2
1 C

2
2

∣∣
λ

(∆v)2(∆w)2 C2
1 C

2
2

∣∣
λ0

. (2.17)

where ∆v|λ ≡ v1(λ) − v2(λ), ∆w|λ ≡ w1(λ) − w2(λ), and C2
i |λ ≡ C2

(
vi(λ), wi(λ)

)
with

i = 1, 2. Expression (2.17) is the working formula of this paper. In the following, we apply

this formula in different collapse backgrounds, for three different families of diamonds. As

we shall see, each one of them corresponds to a familiar notion of entropy discussed in the

literature — now free of any UV ambiguity.

3 Three notions of entropy for gravitational collapse

In this section we specialize the notion of entanglement entropy production to dynamical

spacetimes representing gravitational collapse (and subsequent black hole evaporation).

Considering various different types of causal domains, this leads to precise definitions of

the notion of “thermal entropy of Hawking quanta”, of Sorkin’s “exterior entropy” [1] and

of Page’s “radiation entropy” [25].

3.1 Collapse geometry and dimensional reduction

Given a pair of double-null coordinates (v, w) in the time-radius plane, the metric of a

general spherically symmetric spacetime can be written as [26]

ds2 = −C2(v, w) dv dw + r2(v, w) (dθ2 + sin2 θ dφ2) (3.1)

where C2(v, w) is a conformal factor in the time-radius plane, r(v, w) > 0 is the area

radius, and dθ2 + sin2 θ dφ2 is the metric on the unit 2-sphere. In collapse settings where

spacetime is asymptotically flat in the past, there is a natural choice for globally defined

null coordinates (v, w). Denote past null infinity I−, and pick an affine parameter along

I− in the time-radius direction. Given a point p, we define the shadow coordinates v(p)

and w(p) as the affine parameters of the two radial null rays which meet at p, with w(p) the

coordinate of the null ray bouncing at the centre.7 By construction, the shadow coordinates

7There is of course a two-parameter family of such coordinates, following from the ambiguity of the

affine parametrization of I−.
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i−

i0

u

w
r
=

0

p

v

I+

I−

Figure 2. Definition of the shadow coordinates (v, w). Here u and v are affine coordinates on I+

(resp. I−), with u = f(w).

are such that w ≤ v. Furthermore, the center r(v, w) = 0 has equation w = v, and past

(resp. future) null infinity corresponds to w → −∞ (resp. v → +∞); without loss of

generality, we require that limw→−∞C
2(v, w) = 1. Note that, being defined using data at

I−, v and w are well-defined also in the presence of a future event horizon. See figure 2.

Consider now a minimally coupled massless scalar field prepared in the Minkowski

vacuum state at I−. At sufficiently high energy/frequency, the s-wave modes of the

field are described by a (1 + 1)-dimensional field theory on the curved background ds2 =

−C2(v, w) dv dw [11, 12]. As is well known, this “geometric optics” approximation allows

us to obtain the renormalized vacuum energy-momentum tensor 〈Tab〉 in closed form [27],

and connects the physics of black hole evaporation with more intuitive settings, such as

moving mirror systems [28, 29]. Thanks to the Holzhey-Larsen-Wilczek formula [13], this

approximation also permits explicit computations of vacuum entanglement entropy in col-

lapse spacetimes.

In more detail, expanding the scalar field in spherical harmonics

ϕ(v, w, θ, φ) =

∞∑
`=0

∑̀
m=−`

φ`m(v, w)

r(v, w)
Y`m(θ, φ) (3.2)

we can write the action of a minimally-coupled massless scalar field on the 4d back-

ground geometry (3.1) as a sum over `m modes, S4d[ϕ] = −
∫ √−ggµν ∂µϕ∂νϕd4x =∑

`m S`[φ`m], with S` the dimensionally reduced 2d action for the ` mode,

S`[φ`m] =

∫ (
− ∂vφ`m ∂wφ`m − V`(v, w)φ2

`m

)
dvdw . (3.3)

The 2d potential V`(v, w) = −∂v∂wr(v,w)
r(v,w) + `(`+1)

r(v,w) accounts for the backscattering of the `

modes of the gravitational background. The backscattering is smallest for ` = 0, i.e. for

– 8 –
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s-waves. Moreover, the potential can be neglected for frequencies of the s-wave that are

much larger that the potential barrier V0(v, w). Neglecting completely the contribution

of V0(v, w) reduces the propagation of the s-waves to the study of the 2d conformal field

theory described in section 2.3.1. In particular both the entanglement entropy (2.15) and

the cut-off independent entanglement entropy production for the s-wave (2.17) can be

computed explicitly.

It is also important to notice that, if the initial state has no entanglement between

different `-modes as it is the case for the Minkowski vacuum at I−, then the evolution on a

spherically symmetric background as described by (3.3) does not generate any entanglement

between them. As a result we can meaningfully speak about the entanglement entropy of

each `-wave separately. We now turn to various implementations of these observations for

s-wave modes.

3.2 Finite diamonds: entropy in a thick shell

Our first example of vacuum entanglement entropy in collapse spacetimes is directly in-

spired by [13], where the authors discussed the “geometric entropy” of a finite segment in

(1 + 1) dimensions. In the context of spherically symmetric gravitational collapse, we can

consider similarly the entanglement entropy in a thick spherical shell far from the centre

r = 0, as follows.

In asymptotically flat spacetimes, there exists a time coordinate t∗ such that ∂t∗ is an

asymptotic Killing vector at large radii r. Denote r1 and r2 two integral curves of ∂t∗ , and

define Dt∗ as the domain of dependence of the segment [r1, r2] lying within the constant-t∗

surface. Given a reference time t∗0, we can define the entanglement entropy production

∆Sshell(t
∗) in the thick spherical shell [r1, r2] at time t∗ as the excess entropy of Dt∗ with

respect to Dt∗0
,

∆Sshell(t
∗) ≡ S+(Dt∗)− S+(Dt∗0

). (3.4)

From (2.17), we have

∆Sshell(t
∗) ≡ 1

12
log

∆v(t∗)2∆w(t∗)2C2
1 (t∗)C2

2 (t∗)

∆v(t∗0)2∆w(t∗0)2C2
1 (t∗0)C2

2 (t∗0)
(3.5)

with C2
i (t∗) ≡ C2(v(t∗, ri), w(t∗, ri)), ∆v(t∗) ≡ v(t∗, r2)−v(t∗, r1) and ∆w(t∗) ≡ w(t∗, r2)−

w(t∗, r1). This quantity will be referred to as the shell entropy.

3.3 Infinite diamonds I: exterior entropy

In [1, 2] Sorkin et al. considered the entanglement entropy of quantum fields in the exterior

of a black hole, a quantity that plays an important role in the generalized second law of

thermodynamics [30–33]. Clearly this quantity is UV divergent and once regularized it

depends explicitly on the cut-off. Here we define the “exterior entropy” ∆Sext of a black

hole as the excess entanglement entropy of a causal domain with a corner at the horizon

and a corner at spatial infinity i0. This quantity is defined using the causal-splitting

regularization and is manifestly independent of the cut-off.
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Shell Entropy

i−

i0

t?

I+

I−

Exterior Entropy

i−

i0
v

I+

I−

Radiation Entropy

i−

i0

u
I+

I−

Figure 3. Diamonds Dλ involved in the definition of the shell, exterior and radiation entropies,

with λ = t∗, v, u respectively.

Consider a spacetime with a future event horizon H with equation w = wH . On

a Cauchy slice Σ that intersects H, the exterior of the black hole is the region R =

Σ ∩ J−(I+). In covariant terms this region corresponds to a causal domain Dp,q with

corners p ∈ H and q → i0, where i0 denotes spatial infinity. Using the shadow coordinate

v(p) as a parameter along H, we can define the exterior entropy as the entanglement

entropy production at ‘time’ v

∆Sext(v) ≡ lim
q→i0

(
S+(Dpv ,q)− S+(Dp0,q)

)
, (3.6)

where pv = (v, wH) and p0 = (v0, wH) is a reference point on H. Denoting C2
H(v) ≡

C2(v, wH) the conformal factor at the horizon, the exterior entropy simplifies to

∆Sext(v) =
1

12
log

C2
H(v)

C2
H(v0)

. (3.7)

We will see in the next section how ∆Sext relates to the Bekenstein-Hawking entropy of

the black hole [24, 34].

3.4 Infinite diamonds II: radiation entropy

In [25] Page introduced the entanglement entropy of fields at future null infinity I+ as

a measure of the “age” of an evaporating black hole. Based on an analogy with the

entanglement entropy of finite-dimensional quantum systems, he argued that the entropy

in the radiation must have two phases as a function of time: a growing phase, corresponding

to the emission of thermal Hawking radiation, and a decreasing phase, corresponding to

the “purification” of the Hawking quanta.

From the perspective of this paper, the “radiation entropy” can be defined as the

entanglement entropy production in a causal domain which approaches I+ asymptotically,

as follows. Outgoing null geodesics that reach future null infinity provide a canonical map
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between I− and I+. This map can be written as u = u(w) where u is an affine null

coordinate at I+. We fix the ambiguity in u by requiring that (i) the null vectors l = ∂v
and n = ∂u are canonically normalized at spatial infinity i0, i.e. l · n → −1 there, and

u(0) = 0. Given this prescription, the mapping u = u(w) can be written as

u(w) =

∫ w

0
C2
I+(w′) dw′ (3.8)

where C2
I+(w) ≡ limv→∞C

2(v, w) is the conformal factor at I+. Now, given a point

pu ∈ I+ with coordinate u, we define the radiation entropy at retarded time u as the limit

∆Srad(u) ≡ lim
p→pu

lim
p0→i0

lim
r→i0

(
S+(Dp,r)− S+(Dp0,r)

)
. (3.9)

This gives

∆Srad(u) =
1

12
log C2

I+

(
w(u)

)
. (3.10)

Equation (3.9) can be rewritten as

∆Srad(u) = − 1

12
log ẇ(u) (3.11)

where the dot denotes derivatives with respect to u and w(u) is the inverse of the func-

tion (3.8). Thus, radiation entropy is nothing but the logarithmic redshift of outgoing rays.

Equivalently, we can express ∆Srad(u) in terms of the so-called peeling function

κ(u) ≡ − ẅ(u)

ẇ(u)
(3.12)

as

∆Srad(u) =
1

12

∫ u

−∞
κ(u′) du′, (3.13)

as found in [35, 36]. Equation (3.13) provides us with an intuitive geometric interpretation

of the “Page curve” ∆Srad(u) often discussed in the black hole literature: ∆Srad(u) grows

when the separation between neighboring outgoing geodesics increases, i.e. they are peeled

(κ(u) > 0), and decreases when their separation decreases, i.e. they are squeezed (κ(u) < 0).

We emphasize that from (3.11) and (3.13) and for a given spacetime, one can check whether

∆Srad(u) has the characteristic up-then-down behavior posited by Page [25]. Finally, we

note that

lim
u→∞

∆Srad(u) = 0 (3.14)

is neither a necessary nor a sufficient condition for unitarity of quantum evolution of a

massless field from I− to I+. However, as will be illustrated below, finiteness of ∆Srad(u)

at all times is necessary.

4 Vacuum thermalization in a Vaidya spacetime

In this section we consider the simplest possible model of gravitational collapse: the two-

dimensional Vaidya ingoing shell. Although too simple to address the important issue of

unitarity in black hole evaporation, this model illuminates the nature of entanglement in

the Hawking thermalization process and provides the basic intuition underlying the notions

of shell, exterior and radiation entropy.
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4.1 Geometry of the Vaidya collapse

In advanced Eddington-Finkelstein coordinates (v, r), the spacetime metric for a Vaidya

ingoing shell at v = vs reads

ds2 = −
(

1− 2M

r
Θ
(
v − vs

))
dv2 + 2dvdr, (4.1)

where Θ is the Heaviside function and M the mass of the incipient black hole. This

spacetime consists of a flat patch in the past of the shell (v < vs), and of a Schwarzschild

patch in the future (v > vs). Finally, we set v = 0 to be the ray that crosses the infalling

shell at r = 3M .

The expression of the Vaidya metric (4.1) in double null coordinate (v, w) is easily

obtained. The coordinate v labels infalling null geodesics. An infalling null geodesic with

advanced time v = w is reflected at the centre r = 0 and results in an outgoing null

geodesic r(v, w) with v ≥ w. We use the coordinate w to label outgoing null geodesic. The

trajectory r(v, w) is obtained by solving the null geodesic equation

dr

dv
=

1

2

(
1− 2M

r
Θ
(
v − vs

))
. (4.2)

with initial condition r(w,w) = 0. We obtain

r(v, w) =


v − w

2
for v < vs,

2M

{
1 +W

((
vs − w

4M
− 1

)
exp

[
v − w
4M

− 1

])}
for v ≥ vs, (4.3)

where W is the Lambert function.8 The conformal factor in (3.1) in shadow coordinates

(v, w) is then obtained computing C2(v, w) = −2∂wr(v, w),

C2(v, w) =


1 for v ≤ vs,

w − vs
w − vs + 4M

W
((

vs−w
4M − 1

)
exp[v−w4M − 1]

)
1 +W

((
vs−w
4M − 1

)
exp[v−w4M − 1]

) for v ≥ vs. (4.4)

Using formula (3.8) and the value of the conformal factor at I+,

C2
I+(w) = lim

v→+∞
C2(v, w) =

w − vs
w − vs + 4M

, (4.5)

we find

u(w) = w − 4M log
vs − 4M − w
vs − 4M

(4.6)

The map u = u(w) is defined only for w ≤ vs− 4M which identifies the presence of an

event horizon H at

wH ≡ vs − 4M . (4.7)

8The Lambert W -function is defined for x ≥ −e−1 as the unique solution of the equation W (x)eW (x) = x.

It satisfies W (x) ∼ x as x→ 0, W (x)→∞ as x→∞, and W ′(x) = W (x)/[x(1 +W (x))].
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i−

i0

i+

wH

vs

r = 3M

u = 0

v = 0

r = 0
r
=

0
I+

I−

Figure 4. Geometry of the Vaidya collapse model. Left: Carter-Penrose diagram, with the trapped

region shaded. Right: outgoing null geodesics in Eddington-Finkelstein coordinates. Both diagrams

show the infalling shell (thick line) and the event horizon (dotted line).

The Carter-Penrose diagram for the metric (4.1) and the outgoing null geodesics are in

figure 4.

Equations (4.3), (4.4) and (4.6) contain the geometric information required for the

evaluation of the shell, exterior and radiation entropies in the Vaidya model of gravita-

tional collapse.

4.2 Shell entropy and the thermodynamics of Hawking quanta

Consider a stationary spherical shell [r1, r2] far away from the incipient black hole, r2 >

r1 � 2M , and denote t∗ ≡ v − r the Finkelstein time coordinate (∂t∗ is an asymptotic

Killing vector at r →∞). The double null coordinates pi =
(
vi(t
∗), wi(t

∗)
)
, i = 1, 2, of the

two walls of the spherical shell at time t∗ are easily determined using vi(t
∗) = ri + t∗ and

r
(
vi(t
∗), wi(t

∗)
)

= ri. Using formula (3.5) and (4.4) we find that the excess entanglement

entropy of the shell at time t∗ with respect to the reference time t∗0 ≡ vs − 2M is

∆Sshell(t
∗) =

1

12
log

[(
W
(
q1 exp[−(t∗ − t∗0)/4M ]

)
−W

(
q2 exp[−(t∗ − t∗0)/4M ]

))2(
W (q1)−W (q2)

)2 ×

×
(
1 +W

(
q1 exp[−(t∗ − t∗0)/4M ]

))(
1 +W

(
q2 exp[−(t∗ − t∗0)/4M ]

))
W
(
q1 exp[−(t∗ − t∗0)/4M ]

)
W
(
q2 exp[−(t∗ − t∗0)/4M ]

) ]
,

(4.8)

where qi ≡ ri
2M exp[ ri+2M

4M ]. This function of Finkelstein time t∗ is plotted in figure 5. Using

the properties of the Lambert W function, one can show from this expression that the shell

entropy ∆Sshell(t
∗) starts at zero and, after a transient starting at t∗ = O(r1) and lasting
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a time ∆t∗ = O(M + ∆r), it reaches a plateau where it converges to the final value

∆Sshell(∞) =
1

6
log

(
sinh[∆r/8M ]

∆r/8M

)
. (4.9)

Here ∆r ≡ r2−r1. As noted by Holzhey et al. [13], this value coincides with the entropy of

a thermal state. More precisely, defining Stherm(T ) as the entanglement entropy of a mixed

thermal state at temperature T for an interval ∆r = r2 − r1 in flat Minkowski space, one

finds that the excess entanglement entropy is

Stherm(T )− Stherm(0) =
1

6
log

(
sinh[π∆r T ]

π∆r T

)
, (4.10)

where the entanglement entropy of the vacuum Stherm(T = 0) has been subtracted [20].

Comparing (4.10) to (4.9) we see that excess entanglement entropy in a spherical shell

captures the thermal nature of the Hawking radiation at temperature TH ≡ (8πM)−1.

Note that, in the limit of a thick shell, ∆r ≡ r2 − r1 � 2M , this excess entanglement

entropy reduces to

∆Sshell(∞) ' ∆r

48M
, (4.11)

i.e. the excess entanglement entropy of a thick shell surrounding the black hole is extensive.

An extensive entropy is the typical behavior of a thermal system. Indeed, the thermal

entropy of a gas of massless scalars at temperature T in a one-dimensional box of size `, as

computed from standard statistical mechanics, is Stherm(T ) = πT∆r/6. At the Hawking

temperature T = (8πM)−1, this matches precisely the result (4.11). Therefore the excess

entanglement entropy ∆Sshell(∞) describes the thermal entropy of the Hawking radiation.

In the case of a thin shell (∆r � 2M), on the other hand, formula (4.9) results in an

excess entanglement entropy that is sub-extensive

∆Sshell(∞) '
(

∆r

48M

)2

, (4.12)

and smaller than the thermal entropy Stherm = πTH∆r/6 at the Hawking temperature.

This phenomenon can be understood as follows. If a box is smaller than the typical

wavelength λ ∼ T−1 of the thermal radiation, the Planckian distribution is cut off at the

size of the box and the entropy is not captured by standard statistical mechanics — the

excess entanglement entropy provides a finer description of the entropy of the system. This

finer description coincides with the one obtained for the entanglement entropy of a thermal

state in Minkowski space.

4.3 Exterior entropy and the generalized second law

Next we consider the entropy of the black hole exterior defined in section 3.3. From (4.4)

the conformal factor at a point v on the event horizon H = {(v, w)|w = wH ≡ vs− 4M} is

C2
H(v) = C2(v, wH) = exp

[
v − vs
4M

]
, (4.13)
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Figure 5. Entanglement entropy production in a Vaidya spacetime with M = 10mP . Left: entropy

in a spherical shell 100M ≤ r ≤ 101M , converging to the thermal value (4.10). Right: entropy of

the black hole exterior, linearly increasing in time.

hence, taking as reference value for the entropy v0 = vs, we get

∆Sext(v) =
1

12
log

C2
H(v)

C2
H(vs)

=
v − vs
48M

. (4.14)

Thus, from the perspective of the exterior, the black produces entanglement entropy at the

constant rate 1/48M . This is consistent with thermodynamical expectations [37]. Accord-

ing to conventional thermodynamics, the entropy radiated by a blackbody at temperature

T in empty space (in d spatial dimensions) satisfies

T ∆Stherm = ∆E + p∆V =
d+ 1

d
∆E, (4.15)

where ∆E is the energy radiated and p∆V the work term due to the radiation pressure.

According to (4.15), a two-dimensional blackbody at temperature TH emitting an energy

flux FH = πT 2
H/12 —as is the case for a black hole — should emit an entropy

∆Stherm = 2
FH
TH

∆v =
∆v

48M
. (4.16)

This is precisely what we found for the exterior entropy (4.14).

Another interesting observation about (4.14) regards the relationship between the ex-

terior entropy and the Bekenstein-Hawking entropy SBH ≡ AH/4`
2
P , where AH ≡ 16πM2

is the area of the event horizon [24, 34]. By definition of SBH, the quantity TH∆SBH is

equal to minus the radiated energy ∆E = FH∆v. Given our result that ∆Sext = 2 ∆E,

we have

∆Sext = −2 ∆SBH. (4.17)

This identity is consistent with the generalized second law of thermodynamics [24, 34],

according to which the Bekenstein-Hawking entropy of the black hole plus the entropy of

exterior matter can never decrease,

∆Smatter + ∆SBH ≥ 0, (4.18)
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Figure 6. Ray-tracing mapping w = w(u) (left) and radiation entropy ∆Srad(u) (right) in a Vaidya

spacetime with M = 10mP .

if ∆Smatter interpreted as the exterior entropy production ∆Sext. From this perspective,

the fact that

∆Smatter + ∆SBH =
∆v

96M
> 0 (4.19)

can be interpreted as expressing the irreversibility of the Hawking evaporation process.

4.4 Radiation entropy and a monotonic Page curve

Finally we compute the radiation entropy at I+. Inverting formula (4.6) for the map

u = u(w) between I− and I+ we find

w(u) = vs − 4M

{
1 +W

(
vs − 4M

4M
exp

[
−u− vs + 4M

4M

])}
. (4.20)

Plugging (4.20) into the expression (3.11) for the radiation entropy, we arrive at

∆Srad(u) =
1

12
log

(
1 +W

(
vs−4M

4M exp
[
−u−vs+4M

4M

])
W
(
vs−4M

4M exp
[
−u−vs+4M

4M

]) )
. (4.21)

In the limit u → −∞ the radiation entropy goes to zero, ∆Srad(u) → 0. At u ≈ 0

(the retarded time when the in-falling shell reaches radius 3M), the entropy start growing

monotonically, and at late times u→ +∞, we have

∆Srad(u) ∼ u

48M
. (4.22)

That is, the radiation entropy of a Vaidya black hole grows linearly and without bounds,

corresponding to the monotonic “Page curve” shown in figure 6. Such linear growth is

again consistent with the Vaidya black hole acting — from the perspective of asymptotic

observers at I+ — as a steady source of thermal radiation.

5 Radiation entropy: models of evaporation with and without horizon

In this section we extend our analysis of entanglement entropy production in gravitational

collapse to other black-hole-like geometries: a collapsing star which stops just before cross-

ing its Schwarzschild radius, a “Hawking-like” evaporating black hole (with event horizon),
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i+

i−

i0

uL

wL

vs

r = 3M

u = 0

v = 0

r = R

I+

I−

Figure 7. Geometry of a ‘ε-star’ collapse model, eq. (5.2). Left: Carter-Penrose diagram. Right:

outgoing null geodesics in Eddington-Finkelstein coordinates. Both diagrams show the infalling

shell (thick line). Note the existence of a “Hawking region” (w ∼ vs − 4M), where a thermal flux

is recorded by stationary observers, in spite of the absence of a trapped region or event horizon.

a nonsingular “Bardeen-like” evaporating black hole (without event horizon), and a model

of black-to-white hole tunneling. We focus our attention on the radiation entropy ∆Srad(u)

measured at future null infinity and discuss the features of the corresponding “Page curve”.

5.1 Collapse to an ε-star

Let us begin by repeating the above calculations in an model of gravitational collapse

which leads to the formation a compact star, with no event or trapping horizon. In this

model, considered in [38, 39] and called ε-star in this paper, a collapsing shell of mass M

“freezes” at

R ≡ 2M + ε , (5.1)

with ε� 2M , see figure 7. The corresponding metric, with parameters M and ε, is

ds2 = −
(

1− 2M

r
Θ
(
v − vs

)
Θ
(
R− r)

)
dv2 + 2dvdr . (5.2)

Solving the geodesic equation for outgoing light rays as in section 4.1, we find the canonical

map u 7→ w(u) between I+ and I−. Defining wL as the advanced time when the in-falling

shell stops, i.e. r(vs, wL) = R, the canonical map w = w(u) is given by

w(u) =


vs − 4M

{
1 +W

(
vs − 4M

4M
exp

[
−u−vs+4M

4M

])}
if u ≤ uL (5.3)

u−uL+vs−4M

{
1 +W

(
vs − 4M

4M
exp

[
−uL−vs+4M

4M

])}
if u > uL
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Figure 8. Ray-tracing mapping w = w(u) (left) and radiation entropy ∆Srad(u) (right) in an

‘ε-star’ collapse model with M = 10mP and ε = 2M/103. The duration of the thermal “Hawking

phase”, before the sudden purification of the ougoing radiation, is uL ∼ 4M log(2M/ε).

where

uL = vs − 4M − 2ε+ 4M log

(
vs − 4M

2ε

)
∼ 4M log(2M/ε) (5.4)

is defined by w(uL) = wL. The map w(u) is onto: there is no event horizon and the

spacetime with metric (5.2) has the same causal structure as Minkowski space. Plug-

ging (5.4) into the expression (3.11) for the radiation entropy we find the “Page curve”

shown in figure 8. For u < uL the function w(u) coincides with the one of the Vaidya

spacetime (4.20) and therefore the entropy of the radiation coincides with formula (4.21).

However this emission phase stops at the finite time uL where the radiation entropy reaches

its maximum

∆Smax
rad =

1

12
log
(

1 + 2M/ε
)
∼ 1

12
log(2M/ε) . (5.5)

The radiation emitted is approximately thermal with temperature T = 1/(8πM) for a finite

time of order9 4M log(2M/ε). If a shell of one solar mass stops at a Planck length from the

would-be event horizon, i.e. ε = `P , the emission phase would last only ∆u ≈ 10−3 s. After

this phase the entanglement entropy and the energy flux vanish as in Minkowski space. No

information is lost.

5.2 Singular black hole evaporation

In section 4.4 we found that the formation of a black hole by a collapsing shell produces

radiation with a linearly increasing entanglement entropy at late times. The analysis

however does not take into account the fact that, by energy conservation, the black hole

loses mass during the emission process. Given the asymptotic flux FH = 1/(768πM2), one

finds that in a finite time τH the mass of the black hole decreases to zero. Solving the

equation Ṁ = −FH one finds the evaporation time to be

τH ' α
M3

m2
P

(5.6)

9Notice that a similar-looking expression has been discussed recently under the names “information

retention time” [40] and “scrambling time” [41, 42]. Here it appears as the time during which a collapsing

matter distribution that does not cross its Schwarzschild horizon cannot be distinguished from an incipient

black hole.
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with α = 256π. We now consider a toy model of gravitational collapse and subsequent

evaporation that can be solved analytically. In this model a black hole forms by the

collapse of a null shell falling at the advanced time vs. The mass of the black hole remains

constant and equal to M for a time ∼ τH after the onset of Hawking evaporation, and

then instantaneously vanishes. The evaporation process is modeled following [43, 44]. At

the advanced time vs and at distance r = Rs > 2M (e.g. Rs = 3M) two null shells are

produced: an out-going shell of mass M and an in-going shell of mass −M . The out-going

shell models the back-reaction on the metric of the positive energy flux brought by the

Hawking radiation, the in-going shell models the mass loss of the black hole.

Let us define the function r0(v, w) as in (4.3),

r0(v, w) = 2M

{
1 +W

(
vs − 4M − w

4M
exp

[
v − w
4M

− 1

])}
, (5.7)

We call (vs, ws) the point where the two null shells modeling the evaporation process are

produced. Once fixed the advanced time vs, the condition that the production happens at

the distance r = Rs determines ws via the equation

r0(vs, ws) = Rs, (5.8)

i.e.

ws = vs − 4M

{
1 +W

(
Rs − 2M

2M
exp

[
2Rs − 4M −∆v

4M

])}
. (5.9)

where ∆v ≡ vs − vs. The metric defining this model, with parameters M , Rs and ∆v, has

the form

ds2 = −F (v, r) dv2 + 2 dvdr (5.10)

with

F (v, r) =



1 if v < vs, (5.11)

1− 2M

r
if vs ≤ v < vs,

1− 2M

r
if v ≥ vs and r > r0(v, ws),

1 if v ≥ vs and r ≤ r0(v, ws).

For v < vs this metric coincides with the model of collapse discussed in section 4. After the

advanced time vs, however, the metric is flat for r < r0(v, ws) modeling the disappearance

of the black hole. This geometry has a spacelike singularity at r = 0 and a trapping horizon

TH at

wTH ≡ vs − 4M (5.12)

where F
(
v, r) = 0. There is also an event horizon H at

wH ≡ vs − 4M

{
1 +W

(
− exp

[
− ∆v

4M
− 1
])}

, (5.13)

inside the trapping horizon.
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i−
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i0
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r = 3M

u = 0

v = 0

uTH

wTH

r = 0 u
=
uH

r
=

0

I+

I−

Figure 9. Geometry of a singular black-hole evaporation model. Left: Carter-Penrose diagram,

with the trapped region shaded. Right: outgoing null geodesics in Eddington-Finkelstein coordi-

nates. Both diagrams show: the shells (thick line), the event horizon (thin dotted line) and the

trapping horizon (thick dotted line). Note the difference between the event and trapping horizons,

and the existence of (quantum) null singularity along u = uH .

The canonical map w = w(u) from I+ to I− can be easily computed and is given by

w(u) =


vs − 4M

{
1 +W

(
vs − 4M

4M
exp

[
−u− vs + 4M

4M

])}
if u ≤ us, (5.14)

vs−4M

{
1+W

(
uH−u−4M

4M
exp

[
−u−uH+4M+∆v

4M

])}
if us<u≤uH ,

where

us = vs − 2Rs + 4M log

(
vs − 4M

2Rs − 4M

)
(5.15)

is the retarded time of the shell-pair production event. The event horizon H has retarded

time

uH = us + 2Rs = vs + 4M log

(
vs − 4M

2Rs − 4M

)
. (5.16)

Plugging (5.16) into the expression (3.11) for the radiation entropy we find the “Page

curve” shown in figure 10. Up to the time us, the radiation entropy grows exactly as in

the Vaidya case, eq. (4.22). In particular if this evaporation phase is assumed to last a

long time ūs = τH ≡ αM3/m2
P as in the standard Hawking evaporation scenario [24], the

radiation entropy reaches the value

∆Srad(us)− ≈
α

48

M2

m2
P

. (5.17)
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Figure 10. Ray-tracing mapping w = w(u) (left) and radiation entropy ∆Srad(u) (right) in the

singular evaporation model with M = 10mP and Rs = 3M . Inset: late-time behavior of the

radiation entropy, showing the O(1) discontinuity and the divergence at u = uH .

The entropy of the radiation up to this time matches the scaling of the Bekenstein-Hawking

entropy of the black hole, i.e. SBH = A/4`2P ∼M2/m2
P .

Then at the time us, the entropy has a discontinuity

[∆Srad(us)] ≡ ∆Srad(us)+ −∆Srad(us)− = − 1

12
log(Rs/2M − 1). (5.18)

This discontinuity is an artifact of the background metric chosen to model the evaporation

process (outgoing null rays with u < us are more redshifted than outgoing null rays with

u > us), without any practical significance for macroscopic holes: [∆Srad(us)] is of order

1, while the entropy itself is of order (M/mP )2.

Finally at later times, when u → uH , the entanglement entropy of the radiation

presents a divergent behavior. In particular, for u→ uH , we find

∆Srad(u) ∼ α

48

M2

m2
P

+
1

12
log

(
4M

uH − u

)
. (5.19)

This naked “entanglement singularity” along the null ray u = uH is a consequence of the

form of the background metric and is accompanied by a quadratic divergence in the energy

flux of the radiation emitted at the last ray [43, 44],

F (u) ∼ 1

16π(uH − u)2
. (5.20)

This flux has an infinite total energy. A similar lightlike singularity was dubbed a “thun-

derbolt” in [45]. As noticed in [43, 44] the pathological behavior of the flux F (u) is a

consequence of the assumed form of the mass function. Indeed a necessary condition for

a finite total energy emitted is that the mass function goes to zero smoothly. Enforcing

the latter, however, does not garantee that ∆Srad(u) remains finite as u→ uH ; indeed we

expect that ∆Srad(u) will diverge in finite time in any model where a singularity meets an
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event horizon.10 Such null entanglement singularities would then be the manifestation of

“information loss” in singular black hole evaporation.

5.3 Nonsingular black hole evaporation

Next, we consider a model of nonsingular black hole formation and evaporation with one

closed trapped region. Such spacetimes, which have the same causal structure as Minkowski

space (in particular, there is no event horizon) were introduced in [46–57] as a toy models

for unitary black hole evaporation.

The metric has the form (5.10) with the function F (v, r) given by

F (v, r) =



1 if v < vs, (5.21)

1− 2M

r
if {vs ≤ v < vs, r > Rs},

1− r2

`2
if {vs ≤ v < vs, r ≤ Rs},

1− 2M

r
if {v ≥ vs, r > r0(v, ws)},

1 if {v ≥ vs, 0 ≤ r ≤ r0(v, ws)}.

This spacetime is flat for v < vs; in the slab vs ≤ v ≤ vs, it consists of a Schwarzschild

patch with mass M for r > Rm and a de Sitter patch with cosmological constant Λ ≡ 1/`2

for r ≤ Rm. There is no black-hole singularity in this model, only a core of Planckian

curvature. The (spacelike) matching surface Rm is assumed to lie within the trapped

region, enclosed between the inner trapping horizon r = ` and the outer trapping horizon

r = 2M . We take Rm ≡ (2M`2 )1/3. For v ≥ vs, the structure is the same as in (5.11):

a positive and a negative mass shell originating at r = Rs > 2M model the evaporation

process [43, 44].

Let us define the relevant advanced times for this metric. As before we call w1 ≡ ws the

time when the two shells modeling the evaporation process are produced, i.e. r0(vs, ws) =

Rs. Moreover we define w2 as the advanced time when the negative-energy shell reaches the

matching surface, i.e. r0(vs, w2) = Rm, w3 and w4 as the times when the positive-energy

shell reaches respectively the matching surface, r0(vs, w3) = Rm, and the inner horizon,

r0(vs, w4) = `, w5 as the time when w5 = vs and w6 = vs. As before we denote

wTH ≡ vs − 4M (5.22)

the position of the outer trapping horizon and ∆v ≡ vs − vs.
In this toy model the canonical map u 7→ w(u) from I+ to I− can be computed

analytically. It shares the main features of the metrics considered in [48, 54–56], for which

10Let us emphasize, however, that truncating the quantum field at some high energy scale, e.g. the Planck

scale, would regulate the divergence of both F (u) and ∆Srad(u). Moreover regulating the logarithmic

divergence in eq. (5.19) with a Planck scale cut-off would lead to a maximum of the entropy ∆Srad ∼
α
48

M2

m2
P

+ 1
12

log
(

4M
mP

)
that still scales quadratically with the mass of the black hole.
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a numerical integration is needed. We find

w(u) =



wTH − 4MW
(
wTH
4M exp[−u−wTH

4M ]
)

if u < u1, (5.23)

wTH − 4MW
(
us−u+2Rs−4M

4M exp
[
−u−us−2Rs+4M+∆v

4M

] )
if u1 ≤ u < u2,

wTH − 4MW
(
Rm−2M

2M exp[−J(u−u6)−2Rm+4M+∆v
4M ]

)
if u2 ≤ u < u3,

vs + 2` coth
[

∆v
2` + coth-1

[
u−u6

2`

]]
if u3 ≤ u < u4,

vs + 2` tanh
[

∆v
2` + tanh-1

[
u−u6

2`

]]
if u4 ≤ u < u5,

vs + 2` tanh-1
[
u−u6

2`

]
if u5 ≤ u < u6.

u+ 4M log
(
u−u6+2Rs−4M

vs−4M

)
if u ≥ u6,

where the function J(u) is

J(u) ≡ 2`
(

coth-1
[
u/2`

]
+ coth-1[Rm/`]

)
(5.24)

and we defined the retarded times corresponding to w1, . . . , w5:

u1 = us , (5.25)

u2 = us + 2(Rs −Rm) ,

u3 = us + 2Rs − 2` coth

[
∆v

2`
+ coth-1

[
Rm
`

]]
,

u4 = us + 2Rs − 2` ,

u5 = us + 2Rs − 2` tanh

[
∆v

2`

]
,

u6 = us + 2Rs.

The first two lines in (5.23) coincide with (5.14) and describe the propagation of light rays

that never enter the core of the non-singular black hole, while the 3rd, 4th, 5th and 6th line

describe outgoing light rays that travel through the de Sitter core to finally reach future

infinity. The 7th line describes light rays that propagate in Schwarzschild space and then

in flat space after the disappearance of the non-singular black hole.

The entanglement entropy of the radiation emitted by the non-singular black hole can

be computed using the formula derived in (3.11), see figure 12. We distinguish four phases

of the evolution of the non-singular black hole, phase A, B, C and D.

Phase A is indistinguishable from the standard Hawking evaporation phase in the

spacetime studied in section 5.2. This phase lasts for a retarded time ∆uA approximately

given by

∆uA ≡ u2 ≈ αM3/m2
p . (5.26)

In this phase the entropy grows monotonically and reaches a maximum at

Smax ≡ ∆Srad(u2) ≈ α

48

M2

m2
P

+
1

12
log

2M

Rm
. (5.27)
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i+

i−

i0

vs = w5

u5

r = 3M

u = 0

v = 0

vs = w6

us = u1

ws = w1

u6

u4

dS

Sch

w4

r = Rm

u2

w2

u3

w3

r
=

0

I+

I−

Figure 11. Geometry of a non-singular black-hole evaporation model. Left: Carter-Penrose dia-

gram, with the trapped region (shaded) and a matching surface (horizontal line) between the de Sit-

ter core (dS) and the Schwartzschild region. Right: outgoing null geodesics in Eddington-Finkelstein

coordinates, together with the shells (thick lines) and the trapping horizon (thick dotted line).

Figure 12. Ray-tracing mapping w = w(u) (left) and radiation entropy ∆Srad(u) (right) in the

nonsingular evaporation model, with M = 10mP , ` = M/10 and Rs = 3M . Inset: late-time

behavior of the radiation entropy, showing that ∆Srad(u) < 0 in phase C.

The first term matches the scaling of the Bekenstein-Hawking entropy SBH = A/4`2P ∼
M2/m2

P . The second diverges for Rm → 0 and gives a small logarithimc correction to the

Bekenstein-Hawking-like scaling for Rm ≡ (2M`2 )1/3.

Phase B corresponds to outgoing radiation that has been trapped by the null shell

falling at vs, it has entered de Sitter core of the black hole, and then been expelled when

the black hole terminates its evaporation. This phase lasts a short retarded time

∆uB ≡ u5 − u2 ≈ 2Rm − 2` . (5.28)

In this phase the entropy decreases monotonically and reaches its minimum at the nega-
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tive value

Smin ≡ ∆Srad(u5) ≈ − α

12

M3

`m2
P

. (5.29)

The fact that the excess entanglement entropy of the radiation becomes negative means

that the state is less correlated than the Minkowski vacuum state.

Phase C corresponds to outgoing radiation that has entered the black hole after it

formed at vs and before it disappeared completely at the time vs. This radiation traveled

through the de Sitter core and is expelled at the end of the evaporation. This phase lasts

a finite time

∆uC ≡ u6 − u5 ≈ 2` . (5.30)

in which the entanglement entropy of the radiation grows monotonically from its minimum

and approaches zero from below, quadratically for u→ u6

∆Srad(u) ∼ −(u− u6)2

48 `2
. (5.31)

At the end of phase C the black hole has disappeared and the entropy of radiation vanishes.

Note however that this is not yet the end of the process.

Phase D corresponds to late outgoing radiation that that has never entered the black

hole as it fell in after its disappearance at vs. Therefore this radiation travels through

Schwarzschild space (for u < us), then through flat space, and it reaches I+ at a time

u > u6, see figure 12. The entanglement entropy for this phase is

∆Srad(u) = − 1

12
log

(
1 +

4M

u− u6 + 2Rs − 4M

)
. (5.32)

In particular at the beginning of phase D the entanglement entropy is negative and equal

to ∆Srad(u6) ' −0.1 for Rs = 3M , while at late times it goes as

∆Srad(u) ∼ − 1

12

4M

u− u6
(5.33)

and vanishes in the limit u → +∞, see figure 12. This result is consistent with the

unitary evolution of a quantum massless field from I− to I+; in particular, as expected no

information is lost in this model.

It should be noted however that the “fast purification” present in phase B and C of

this model cannot be considered physically realistic: this behavior clashes with the general

expectation that, because of energy conservation, the purification phase should be slow [58–

60] with a Page curve that turns over when the mass of the black hole is still large [25, 61].

The origin of the pathology can be identified in the fact that the back-reaction of the

quantum field on the non-singular geometry (5.21) does not remain small at all times

in the evaporation process. Therefore the methods of quantum field theory in a curved

background cannot be applied in phase B and C. This is most easily shown by computing

the energy-flux F (u) of the non-thermal radiation emitted. Using standard methods [11],

or directly from the entropy using the formula derived in [35], F (u) = 1
2π (6Ṡ(u)2 + S̈(u))

with S(u) ≡ ∆Srad(u), one can show that the total energy of the radiation emitted between
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the time u2 and u3 is negative and in modulus much larger than the initial mass of the

black hole. The origin of this pathological behavior is to be identified in the fact that the

model (5.21) does not take into account the large backreaction of the purifying radiation

due to the exponential blueshift at the inner horizon. We expect a similar behavior for the

non-singular geometries considered in [52–57].

A remark on the generalized second law is in order. This law states that the entropy of

a black hole SBH = AH/4`
2
P plus the entropy matter outside the black hole never decreases

in time [24, 34]. The existing proofs of this law rely on the existence of an event horizon

and AH is understood as the area of a section of the event horizon at a given time [30–

33, 62, 63]. In the model of nonsingular black hole evaporation considered here, no event

horizon is present, only a trapped region bounded by a trapping horizon. Nevertheless in

phase A, i.e. up to the time u2, the evolution of the the quantum field and of the nonsingular

black hole is undistinguishable from the one of a singular black hole with an event horizon.

In this phase, lasting a time ∆uA ∼ M3/m2
P , we expect the generalized second law to

hold. However after this phase the distinction between event horizon and trapping horizon

becomes crucial: information eventually leaks out in the second case and the generalized

entropy SBH(u) + ∆Srad(u) decreases in time. Therefore our results on the vanishing of

the entropy of radiation at late times indicate that there is no generalized second law for

nonsingular black holes.

5.4 Black hole to white hole tunnelling: “black hole fireworks”

As a last example we consider the model of bouncing black hole — or “black hole fireworks”

— proposed by Haggard and Rovelli in [64]. In this scenario information is preserved in

gravitational collapse by a quantum-gravitational tunnelling process, of which Hawking

evaporation is only a higher-order “dissipative” correction.

The corresponding spacetime is shown in figure 13. Start from the Kruskal-Szekeres

diagram of an eternal black hole and pick a point ∆ in the exterior region; ∆ has Kruskal-

Szekeres coordinates (U∆ = −V∆, V∆). Choose then a null surface V = Vs such that

V∆ > Vs and a point E on it, with coordinates (UE , VE = Vs). Finally pick a spacelike

surface connecting ∆ to E . Call the resulting patch of Kruskal-Szekeres spacetime Region

II. This region automatically determines its time-symmetric partner (Region tII) by taking

the null surface Us = −Vs and the point E on it, with coordinates (VE = −Vs, UE = −UE).
See figure 13(left). The Carter-Penrose diagram in figure 13(right) is then obtained by

“opening up the wings” of Region II and tII, inserting interpolating III+tIII Regions in

between, and gluing two flat Regions (I and tI) respectively along the surface V = Vs
and U = Us.

The resulting spacetime represents the dynamics of a null infalling shell that bounces

at r = 0 and comes out as a null outgoing shell. To allow for this, geodesics must tun-

nel through a non-classical Region, represented by the unknown quantum Regions III and

tIII. The point E is the point where the ingoing shell reaches Planckian density and quan-

tum effects start to be important, while ∆ is considered as the outmost boundary of the

quantum regions. The spacetime is event-horizon-free, but displays a trapping and an

“anti-trapping” surface.
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i+
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r = 0

r = 0

I−

I+
Us
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Ē

E

r
=

2M

r
=

2M

t = 0

∆

II

tII

i+

i−

i0

us

vs

∆

u = 0

v = 0

ū∆

v∆

w∆

u∆

Ē

E

I+

I−
I

tI

III

tIII

r = 3M

II

tII

∆r
=

0

Figure 13. Geometry of a time-symmetric bouncing shell. Left: Kruskal-Szekeres diagram of

the extended Schwarzschild spacetime from which the model is constructed. Right: the resulting

Carter-Penrose diagram of the Haggard-Rovelli fireworks spacetime.

Here we are interested in studying the general features of the Page curve for this model.

To do this, let us first observe that Region I and II can be described by the Eddington-

Finkelstein coordinates (v, r) and a metric of type (5.10) with

F (v, r) =


1 if v < vs (5.34)

1− 2M

r
if v ≥ vs and (v, r) ∈ II.

Here v in Region II is related to the Kruskal-Szekeres V by the usual relation V ∝
exp(v/4M). In the same way, Region tI and tII can be described by retarded Eddington-

Finkelstein coordinates (u, r), where U ∝ − exp(−u/4M) in Region tII, and a metric of

the type

ds2 = −F (u, r)du2 − 2dudr. (5.35)

with

F (u, r) =


1 if u > us, (5.36)

1− 2M

r
if u ≤ us and (u, r) ∈ tII.

As before we take the origin u = 0 at the retarded time when the infalling shell crosses

r = 3M . The two parameters of the model are r∆ > 2M and ∆v ≡ v∆ − vs > 0. The

retarded time u∆ is given by

u∆ = vs + ∆v − 2r∆ − 4M log

(
2r∆ − 4M

vs − 4M

)
. (5.37)
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Figure 14. Ray-tracing mapping w = w(u) (left) and radiation entropy ∆Srad(u) (right) in the

Haggard-Rovelli ‘fireworks’ model, with M = 10mP , r∆ = 7M/3 and ∆v = 1.4M . The shaded

region represents the unspecified “quantum tunnelling” phase.

The canonical map u 7→ w(u) from I+ to I− giving the entanglement entropy produc-

tion can be divided in a classical phase, corresponding to the light rays that don’t enter in

the quantum region when traced back (red thick region on I+ in figure 13(right)), and the

remaining quantum phase. The relevant advanced times are u∆, that by construction gives

us − u∆ = ∆v, and u∆ defined by w(u∆) = v∆. The two phases give us different informa-

tion: the choice of the matching surface connecting ∆ to E and of the semiclassical metric

in the quantum region strongly influence the Page curve in the domain u∆ < u < u∆, while

the result in the classical regime is completely insensitive to these choices and captures the

general features of the model. Since the geometry of the quantum regions III and tIII

remains essentially unknown, we will only compute w(u) in the classical phase.

We obtain w(u) for u ≤ u∆ and u ≥ u∆, finding

w(u) =


vs − 4M

{
1 +W

[
vs − 4M

4M
exp

(
−u− vs + 4M

4M

)]}
if u ≤ u∆, (5.38)

u+ 4M log
u− us − 4M

vs − 4M
if u ≥ u∆ .

where u∆ is given by

u∆ = us + 4M

{
1 +W

[
r∆ − 2M

2M
exp

(−∆v + 2r∆ − 4M

4M

)]}
. (5.39)

The ray-tracing map at early times is the identical to the standard Vaidya case, as we

expected since in this domain the path of the ray is exactly the same. At late times, on

the other hand, it easy to see that w(u) can be obtained from the solution at early times

implementing the substitution u− u∆ ↔ v∆ − w and solving for w.

We can distinguish three phases in the dynamics of the radiation entropy ∆Srad(u):

phase A, B and C. What we computed in equation (5.38) is the ray-tracing map for the

phases A and C, plotted in figure 14. Exactly as before, phase A is identical to the standard

Hawking evaporation in a Vaidya spacetime, eq. (4.21): the entropy grows monotonically
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and reaches a maximum at

Smax ≡ ∆Srad(u∆) =
1

12
log

1 +W
[
r∆−2M

2M exp
(
−∆v+2r∆−4M

4M

)]
W
[
r∆−2M

2M exp
(
−∆v+2r∆−4M

4M

)]
 . (5.40)

In this phase, standard Hawking radiation is emitted. The requirement of time symmetry

fixes the duration of phase B,

∆uB ≡ ū∆ − u∆ = ∆v + 4M

{
1 +W

[
2r∆ − 4M

4M
exp

(−∆v + 2r∆ − 4M

4M

)]}
. (5.41)

The radiation entropy in this phase depends on the geometry in the quantum region III,

tIII and cannot be computed without a specific model of the effective geometry in this

region. The radiation entropy in phase C, i.e. for u ≥ ū∆, is given by the formula

∆Srad(u) = − 1

12
log

(
1 +

4M

u− ū∆ + 4MW
[
r∆−2M

2M exp
(−∆v+2r∆−4M

4M

)]) . (5.42)

The entropy increases monotonically from a minimum negative value to zero, see figure 14.

The minimum value at the beginning of phase C equals the opposite of the maximum value

found in eq. (5.40),

Smin ≡ ∆Srad(u∆) = −Smax. (5.43)

At late times the entropy approaches zero from below with the law

∆Srad(u) ∼ − 1

12

4M

u− ū∆
(5.44)

for u → +∞. As expected, the evolution of the quantum massless field from I− to I+ is

unitary and no information is lost.

We consider now two different scenarios for the scales involved in the model of bouncing

black hole. The difference is in the duration of phase A, while we assume in both cases that

the quantum region III extends outside the horizon up to a macroscopic scale11 r∆ & 2M .

In the first scenario ∆v = αM3/m2
P and phase A lasts a long time ∆uA ∼ τH ≈

αM3/m2
P that is Hawking-like, i.e. it scales cubically with the mass of the black hole.

In this case the entanglement entropy of radiation reaches a maximum Smax ∼ M2/m2
P

at the end of phase A, and a minimum Smin ∼ −M2/m2
P and the beginning of phase C.

Moreover, phase B lasts a time ∆uB ∼ αM3/m2
P and in phase C the entropy reaches a

value of order one, |∆Srad(uf )| ∼ 1, in a time of order ∆uC = uf − ū∆ ∼M . It should be

noted that if phase A lasts a time τH ≈ αM3/m2
P , most of the mass of the black hole is

emitted in Hawking radiation and “dissipative” effects in the bounce cannot be neglected.

In the second scenario ∆v ∼ M2/mP and phase A lasts a time ∆uA ∼ M2/mP

quadratic in the mass of the black hole. This is the scenario proposed by Haggard and

Rovelli in [64] on the basis of an estimate of cumulative quantum effects. In this case the

entanglement entropy of radiation reaches a maximum Smax ∼M/mP at the end of phase

11Fon instance r∆ = 7M/3, as proposed in [64].
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A, and a minimum Smin ∼ −M/mP and the beginning of phase C. Phase B lasts a time

∆uB ∼ M2/mP and in phase C the entropy becomes of order one, |∆Srad(uf )| ∼ 1, in a

time of order ∆uC = uf − ū∆ ∼ M . We emphasize that in this scenario the total energy

emitted in phase A in the form of Hawking radiation is small, of order mP , consistently

with the assumption that the process is essentially non-dissipative.12 The purifying phase

lasts a time ∆uB + ∆uC ∼ M2/mP , e.g. for a solar mass black hole a time of the order

∼ 1025 years.

6 Conclusions

In this paper we studied the phenomenon of entanglement entropy production during grav-

itational collapse and black hole evaporation. The entropy production is defined introduc-

ing a covariant regularization of the entanglement entropy, with the regulator given by

the spacetime volume of the splitting region (section 2). The main formula of the pa-

per, eq. (2.17), is derived assuming spherical symmetry and working in the standard two-

dimensional approximation: we consider only s-wave modes of a massless scalar field and

neglect contributions from backscattering off the curved geometry. This formula allows us

to give a precise, cut-off independent definition of the entanglement entropy of the exterior

of a black hole [1, 2] and of the radiation that escapes from a collapsing body and reaches

infinity (the Page curve) [25], (section 3). We studied in detail the behavior predicted by

this formula in some solvable models of gravitational collapse (section 4–5). In particu-

lar we found that, when near-equilibrium thermodynamics and the standard description

of the Hawking process of particle production apply, the entanglement entropy production

matches the dynamics of the thermodynamic entropy of the radiation (section 4). Remark-

ably the main formula holds beyond thermodynamic equilibrium and predicts interesting

new features relevant for the puzzle of information loss as summarized below.

In section 5.1 we studied the entropy of a quantum field on the geometry of a collapsing

null shell that stops just before forming a black hole, at r = 2M + ε. The entanglement

entropy of the early radiation emitted up to a (small) finite time matches exactly the one

of the radiation emitted by the incipient black hole described in section 4.4. However, after

a time ∼ 4M log(2M/ε), the entanglement entropy drops down to zero. This phenomenon

shows clearly that it is dangerous to think of the entropy as a substance: the late radiation

purifies the early radiation and lowers the entropy instead of increasing it.13 This phe-

nomenon reproduces qualitatively the behavior described in [25] for the evolution of the

radiation entropy in a unitary process.

In the presence of an event horizon one does not expect the entanglement entropy of

the radiation to ever go back to zero: modes of the field at infinity and across the event

horizon are correlated and, when the black hole evaporates completely, the information

stored in this correlations is lost for observers at infinity. In section 5.2 we studied the

12The purifying radiation emitted in phases B and C, however, can carry away a large energy depending

on the effective geometry in regions III, tIII.
13In the model considered the purifying radiation is emitted instantaneously at the retarded time uL.

The phenomenon persists when the halting of the shell is not instantaneous but takes a short finite time.
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entanglement entropy of the radiation emitted by an evaporating black hole with an event

horizon. We considered a solvable model of evaporation consisting in the production of a

single pair of shells [43, 44]: one of positive energy radiating away all the mass of the black

hole at the time us, the other of negative energy that makes the black hole disappear. The

entropy of the radiation emitted up to the time us matches the scaling of the Bekenstein-

Hawking entropy of the black hole, S(us) ∼ M2/m2
P . After this time the entropy keeps

increasing. We notice that this model presents a pathology right before the last ray uH : the

total energy emitted in a finite time is divergent. This thunderbolt appears together with

a divergence of the entanglement entropy. While the former can be cured by a smoothly

decreasing mass functions, the divergence of the entanglement entropy at the event horizon

appears to be generic.

We also considered a solvable model of non-singular black hole formation and evapo-

ration. In this model the core of the black hole consists of a de Sitter region of Planckian

curvature. As a result there is no event horizon but only a closed trapped region [46–57].

We showed that in this model the entanglement entropy of the radiation emitted grows

monotonically up to a finite time us and matches exactly the curve obtained for a more

standard singular black hole. This is however the first of four phases: after having reached

a maximum, the entropy decreases to negative values, and then increases approaching zero

from below. As expected, because of the absence of an event horizon, the entropy at late

times goes back to zero. The same qualitative behavior — though with radically different

time scales — was found in the Haggard-Rovelli “black hole fireworks” model. In both

cases, evolution can go through a phase where the radiation is less correlated than the

vacuum and ∆Srad(u) is negative.

General arguments indicate that, when full quantum gravity effects are taken into

account, the entropy of the radiation emitted by the black hole should start decreasing

before the Page time [25], i.e. before the black hole mass M shrinks to M/
√

2. This

expected qualitative behavior can be compared to the Page curve for the radiation entropy

computed analytically for the effective metrics studied in section 5.3 and 5.4. The analytic

curve in figure 12 shows that in the first case (model of non-singular evaporation) the

entropy decreases abruptly at the end of the evaporation process when the de Sitter core

of the black hole opens up. The model however does not provide a realistic scenario of

unitary black hole evaporation: it does not take into account the large backreaction due to

the strong blue-shift at the inner horizon that accompanies the the purification phase and

results in a breakdown of the semiclassical approximation. In the second case (fireworks

scenario) the entropy of the radiation starts showing a non-thermal behavior already well

before the Page time, figure 14. The extent to which this behavior is consistent with energy

conservation, namely the requirement that the energy radiated matches the mass loss of

the black hole, will be discussed elsewhere.

This work focused on the study of the entanglement entropy production of s-wave

radiation in spherically symmetric gravitational collapse. To extend our analysis to `-

modes, a careful study of backscattering off the gravitational potential V`(v, w) is needed.

In this case the conformal field theory result (2.17) does not apply and one may need to

resort to numerical methods to compute the entanglement entropy production ∆S`(λ) ≡
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S`+(Dλ)− S`+(Dλ0) for each `-mode. It should be noticed that the entanglement entropy

of the radiation in all modes is simply given by a sum of entropies because a spherically

symmetric background cannot generate any entanglement between modes with different `.

The entanglement entropy production ∆S(λ) =
∑

` ∆S`(λ) will be finite only if the family

of diamonds Dλ is chosen to have area that does not change in time. For instance in the

case of the exterior entropy (section 3.3), when the area A(v) of a slice of the event horizon

decreases in time, a divergent contribution proportional to A(v) is expected from modes

with large `. On the other hand the notion of radiation entropy ∆Srad(u) introduced in

section 3.4 and discussed in section 5 results to be more robust: in this case it is natural to

hold the asymptotic area fixed and the contribution to the entanglement entropy production

from radiation in all `-modes is expected to be finite.

The analysis presented is completely semiclassical: it rests on the assumption that

the quantum gravity effects that resolve the singularity can be encoded in an effective

background metric. To test the reliability of this approach it is important to show that

both the backreaction of the quantum field and the variance of the energy emitted remain

small at all times. This analysis can lead to insights relevant for the puzzle of information

loss. In particular a detailed analysis of concrete models can clarify which of the subtle

quantum gravity effects expected can be encoded using semiclassical quantum field theory

on an effective metric.
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