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1 Introduction

One of the most important progress in theoretical physics in the last two decades is the

discovery of the AdS/CFT correspondence [2–4], which reveals the duality between gauge

theories in flat spacetime and gravity theories in higher dimensions. This duality is a

strong/weak duality, namely the weak coupling limit of one theory is dual to the strong

coupling limit of the other theory and vice versa. On the one hand, this fact creates the

exciting possibility of tackling gauge theories at strong coupling. On the other hand, this

also makes it notoriously hard to check the duality in full generality. Early checks of this

correspondence mainly concentrate on BPS objects which are protected by symmetry and

do not depend on the coupling constant at all. An important breakthrough was made by

Berenstein, Maldacena and Nastate [5] who suggested to study a specific sector of strongly

coupled N = 4 SYM theory which contains operators of infinite length and finite number

of excitations, such as

Tr(. . . ZZZφiZZ . . . ZZψjZZZ . . .) (1.1)

where the complex scalar field Z is regarded as the ‘vacuum’ and the other fields are

regarded as ‘excitations’. This sector is the so-called BMN limit of the N = 4 SYM theory.

In the BMN limit, both the scaling dimension ∆ and the R-charge J of an operator are

divergent, but their difference ∆− J remains finite and allows a perturbative computation

in terms of an effective coupling constant λ′ = λ
J2 . The BMN limit provides a regime where

one can compare the quantities from both sides of duality directly. Nevertheless it’s been

shown that gauge and string theory computations in BMN limit can have some deviations

at loop order, which are generally explained by the argument that in gauge and string

theories the limits J →∞, λ′ → 0 are taken in different orders.
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From string theory side the BMN limit is obtained by taking the Penrose limit of the

AdS5 × S5 string sigma model [6]. The metric takes the form

ds2 = −4dX+dX− − µ2X2(dX+)2 + dXidX
i, (1.2)

and describes a point-like string sitting at the center of AdS5 and moving close to the speed

of light along the equator of S5. The parameter µ has dimension of mass and putting it

to zero corresponds to taking flat space limit. Although the pp-wave background is curved

the quantization in light-cone gauge can be performed readily.

The holographic dictionary between parameters is given by the following relations:

λ′ =
λ

J2
=

1

(µp+α′)2
,

J2

N
= 4πgs(µp

+α′)2. (1.3)

The spectral problem of N = 4 SYM theory is now considered to be solved, at least

conceptually. The natural next step is to compute the three-point functions, which contains

the dynamical information of the theory. In recently years, substantial progress have

been made both at strong coupling [7–14] and weak coupling [15–22] from integrability.

The most important problem is to identify common integrable structures and look for a

framework which is applicable at any coupling. In general, it is very hard to construct such

a framework. However, it the much simpler BMN limit, this seems feasible and its better

understanding might shed some light on the general case.

The string interactions in the pp-wave geometry are described by the light-cone string

field theory (SFT). The central object of SFT is the cubic string vertex which is a special

entangled state living in the three-string Hilbert space. It contains all information of string

interactions. In our recent publication [1] (see also [23]), we constructed a weak coupling

counterpart of the string vertex, which is termed the spin vertex. The spin vertex also

contains all information about operator/spin chain interactions. We constructed the spin

vertex explicitly at tree level. While the string vertex is applicable in the BMN limit, the

spin vertex works for general spin chain states at leading order. In this work, we examine

the BMN limit of the spin vertex and show that it reproduces the string vertex in SFT at

the leading order of λ′ expansion.

The rest of the paper is organized as follows. In section 2, we give a brief review of

the light-cone string field theory and the string vertex. In particular, we will focus on

the proposal by Dobashi and Yoneya [24, 25] (see also [26]) since their proposal works not

only for the extremal correlation functions but also non-extremal correlation functions. At

weak coupling, it is much easier to consider the non-extremal case since there is no mixture

between single trace and double trace operators. In section 3, we shall provide a polynomial

representation for the spin vertex in the pure scalar sector, which allows taking the BMN

limit straightforwardly and comparing to SFT. After these preparations, we show how to

reproduce the string vertex from spin vertex at leading order of λ′ expansion in section 4.

Finally, we conclude and present further directions to pursue in section 5.
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2 A brief review of light-cone string field theory

In this section we review briefly the light-cone string field theory for strings on the pp-wave

background [27–31] and refer the interested readers to [32, 33] and references therein for

more detail.

The fundamental object in SFT is the string field operator Φ which creates and destroys

strings. The Hilbert space on which the string field operator acts is a direct sum of n-string

Hilbert spaces:

H = |vac〉 ⊕ H1 ⊕H2 ⊕ . . . , Hn = H1 ⊗ . . .⊗H1︸ ︷︷ ︸
n

(2.1)

where H1 is the Hilbert space of a single string. The string interactions are described

by the matrix elements of the Hamiltonian which has the following expansion in coupling

constant gs

H = H2 + gsH3 + g2
sH4 + . . . , (2.2)

where H2 is the free part of the Hamiltonian and Hk describes interactions involving k

strings. In this paper, we focus on the cubic interactions which are described by the

following matrix elements

λ123 = 〈2|〈3|H3|1〉 = 〈1|〈2|〈3|H3〉, (2.3)

where 〈1|, 〈2|, 〈3| are three string states. In the second equality the matrix element is

written in a more customary way by introducing the so-called cubic string vertex |H3〉.
The principle to construct the string vertex is simple. For bosonic strings, the string

vertex |H3〉 is constructed by requiring worldsheet continuity at interacting point, which can

be realized by imposing a delta functional ∆
(
X1(σ) − X2(σ) − X3(σ)

)
in the functional

integral over all possible configurations of three strings. The integral can be computed

straightforwardly, leading to the following form of the bosonic string vertex1

|V 〉 = exp

(
− 1

2

∞∑
m,n=−∞

3∑
r,s=1

8∑
i=1

a(r)i†
m N rs

mna
(s)i†
n

)
|0〉〉. (2.4)

Here |0〉〉 denotes the vacuum of three-string Hilbert space |0〉〉 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3. The

indices r and s denote the number of strings, i denotes the polarization of the excitation

and m,n are the mode numbers of the excitations. The quantities N rs
mn are called Neumann

coefficients and characterize the interactions between excitations of different strings.

For superstrings, in addition to worldsheet continuity, one also needs to require that

supersymmetry is respected by the string vertex. This can be achieved by acting a new

operator P on the exponential part (2.4). This operator can be written as a quadratic

polynomial of creation operators a
(r)i
m (bosonic as well as fermionic, but since we consider

1Note that we use different notations from the ones in [25]. Our creation operator a
(r)i†
m is denoted by

α
(r)i†
m in [25] and our Neumann coefficient Nrs

mn is denoted by Ñrs
mn in [25].
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the bosonic sector, we will drop the fermionic part) and is called the prefactor. The string

vertex for superstring thus takes the following form

|H3〉 = P|V 〉. (2.5)

However, it turns out that supersymmetry is not restrictive enough to fix the prefactor

uniquely and there have been several proposals in the literature originating from different

motivations. In this paper, we will use the prefactor proposal by Dobashi and Yoneya [24].

The reason is that their proposal has the virtue that works for both extremal and non-

extremal2 correlation functions [25]. Interestingly, the prefactor of Dobashi and Yoneya is

the half sum of two prefactors P1 and P2 proposed in [27–30] and [34] respectively

Ph =
1

2
P1 +

1

2
P2, (2.6)

more explicitly

Ph =

3∑
r=1

(
8∑
i=5

∞∑
m=0

ω
(r)
m

α(r)
a(r)i†
m a(r)i

m +
4∑
i=1

∞∑
m=0

ω
(r)
m

α(r)
a
i(r)†
−m a

(r)i
−m

)
, (2.7)

where ω
(r)
n =

√
n2 + µ2α2

(r) and α(r) = α′p+
(r).

After one fixes the string vertex, the matrix elements of H3 can be computed straight-

forwardly. According to [24], the holographic relation between matrix element of the H3

and OPE coefficients in BMN limit is given by

C123 =

√
J1J2J3

N

G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
λ123. (2.8)

Here C123 is the structure constant of the three-point correlation function

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
(2.9)

where xµij = xµi − x
µ
j , ∆i is the conformal dimension of the operator Oi and the function

G(∆1,∆2,∆3) reads

G(∆1,∆2,∆3) =

(
f
J2J3

J1

)−(∆2+∆3−∆1)/2

Γ

(
∆2 + ∆3 −∆1

2
+ 1

)
, (2.10)

where the function f is defined in [25]. Finally, we want to emphasis that the holographic

relation between the matrix elements of H3 and the OPE coefficient in N = 4 is not com-

pletely understood. The holographic relation (2.8) works well at the leading order [25, 35].

However, at higher loop order, the large µ expansion of the function G(∆1,∆2,∆3) give

rises to non-perturbative terms such as log µ, the interpretation of which is still unclear.

2The extremal and non-extremal correlation functions corresponds to the impurity preserving and im-

purity non-preserving processes in [25] respectively.
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Figure 1. The configuration for three-point functions. The black lines correspond to the con-

tractions of Z and Z̄ and the red dashed lines correspond to the contractions of excitations φi,

i = 1, 2, 3, 4.

3 Polynomial representation of spin vertex

The notion of spin vertex was introduced in [1, 36] where the spin vertex at tree level was

constructed in terms of a set of bosonic and fermionic oscillators. In this paper we will the

compact sector of N = 4 SYM, which is built from six fundamental scalar fields: X, X̄,

Y , Ȳ , Z, Z̄ and forms a representation of SO(6) group. The spin vertex for the compact

sector is constructed by fermionic oscillators. On the other hand, the cubic string vertex

in SFT is constructed in terms of bosonic oscillators. In order to derive SFT from spin

vertex, we introduce a polynomial representation for the spin vertex in the compact sector.

From the polynomial representation, it is then straightforward to construct the spin vertex

using bosonic oscillators and make contact with SFT.

In what follows, as a convention, we choose operator O1 to be the “incoming” state

and O2, O3 to be “outgoing” states, as is depicted in figure 1. The BMN vacuum for the

incoming and outgoing states at each site are a scalar field Z and Z̄ respectively, where

Z =
1√
2

(φ5 + iφ6), Z̄ =
1√
2

(φ5 − iφ6) (3.1)

The “vacuum” can have different excitations, namely scalars excitations, vector excitations

and fermionic excitations. As mentioned before, we consider here only scalar excitations.

The three operators are thus made of the following fields

O1 : {Z, φi}, O2 : {Z̄, φi}, O3 : {Z̄, φi}, i = 1, 2, 3, 4 (3.2)

Following [25], we normalize the operators as

〈Oi(x1)Oi(x2)〉 =
1

(x1 − x2)2∆i
, i = 1, 2, 3 (3.3)

where ∆i is the scaling dimension of the i-th operator and at leading order we have ∆i = Li.

The three-point function of three scalar operators is determined up to a constant called

structure constant by conformal symmetry

〈O1(x1)O2(x2)O3(x3)〉 =

√
L1L2L3

N

c123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
. (3.4)
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At the leading order, we have

∆i + ∆j −∆k = Li + Lj − Lk = 2Lij , i, j, k = 1, 2, 3 (3.5)

where Lij is the number of propagators between operators i and j. The structure constant

c123 is related to the one in (2.9) by C123 =
√
L1L2L3
N c123 . The computation of c123 can be

formulated in the spin vertex formalism. In our case, we only need the scalar sector of the

spin vertex, which can be obtained by a truncation from the full spin vertex [1]. The scalar

sector corresponds to the fermionic part of the spin vertex. Let us recall the fermionic part

of the two-point spin vertex at each site from [1]

|v12〉 = exp
∑
i=1,2

(
d

(1)†
i d

(2)
i + c

(1)†
i c

(2)
i

)
|0〉(1) ⊗ |0̄〉(2) (3.6)

where ci, c
†
i and di, d

†
i are two sets of fermionic oscillators, satisfying the usual anti-

commutation relations

{ci, c†j} = δij , {di, d†j} = δij (3.7)

The rest anti-commutation relations vanish. The vacuum |0〉 and dual vacuum |0̄〉 corre-

spond to the scalar field Z and Z̄ respectively and satisfy

ci|0〉 = di|0〉 = 0, c†i |0̄〉 = d†i |0̄〉 = 0, i = 1, 2. (3.8)

More explicitly, we can write |0̄〉 = c†1c
†
2d
†
1d
†
2|0〉. We want to expand (3.6) and write

the spin vertex in a more transparent way. The expansion leads to a sum of many terms,

among which we keep only the terms with Nc = Nd, where Nc and Nd counts the number of

operators ci, c
†
i and di, d

†
i , respectively. The reason is that only the terms satisfying Nc = Nd

corresponds to scalar fields. The terms which satisfy this condition in the expansion read

|v12〉scalar ≡ |v12〉Nc=Nd = |0〉 ⊗ |0̄〉+

2∑
i,j=1

d
(1)†
i c

(1)†
j |0〉 ⊗ d(2)

i c
(2)
j |0̄〉+ |0̄〉 ⊗ |0〉 (3.9)

Let us define the following states corresponding to the scalar fields X,Y and their hermitian

conjugates X̄, Ȳ

|X〉 ≡ d†1c
†
1|0〉 = d2c2|0̄〉, |X̄〉 ≡ d†2c

†
2|0〉 = d1c1|0̄〉 (3.10)

|Y 〉 ≡ d†1c
†
2|0〉 = c1d2|0̄〉, |Ȳ 〉 ≡ c†1d

†
2|0〉 = d1c2|0̄〉.

Then we have

|v12〉scalar =
∑

a=X,Y,Z

(|a〉 ⊗ |ā〉+ |ā〉 ⊗ |a〉) , (3.11)

We can further define the states corresponding to the real scalar fields φi, i = 1, 2, 3, 4 as

the following

|X〉 =
1√
2

(|φ1〉+ i|φ2〉), |X̄〉 =
1√
2

(|φ1〉 − i|φ2〉) (3.12)

|Y 〉 =
1√
2

(|φ3〉+ i|φ4〉), |Ȳ 〉 =
1√
2

(|φ3〉 − i|φ4〉)

– 6 –
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which gives

|v12〉scalar = |Z〉 ⊗ |Z̄〉+ |Z̄〉 ⊗ |Z〉+

4∑
i=1

|φi〉 ⊗ |φi〉 (3.13)

The spin vertex for three-point functions of our set-up is obtained by taking the appropriate

tensor products of the vertex in (3.13), which reads

|V3〉 =

L12∏
k=1

(
|Z〉(1)

L1−k+1 ⊗ |Z̄〉
(2)
k + |Z̄〉(1)

L1−k+1 ⊗ |Z〉
(2)
k +

4∑
i=1

|φi〉(1)
L1−k+1 ⊗ |φi〉

(2)
k

)
⊗ (3.14)

L13∏
k=1

(
|Z〉(1)

k ⊗ |Z̄〉
(3)
L3−k+1 + |Z̄〉(1)

k ⊗ |Z〉
(3)
L3−k+1 +

4∑
i=1

|φi〉(1)
k ⊗ |φi〉

(3)
L3−k+1

)
⊗

L23∏
k=1

(
|Z〉(2)

L2−k+1 ⊗ |Z̄〉
(3)
k + |Z̄〉(2)

L2−k+1 ⊗ |Z〉
(3)
k +

4∑
i=1

|φi〉(2)
L2−k+1 ⊗ |φi〉

(3)
k

)
.

where the upper indices denote the spin chains and the lower indices denote the positions

on the corresponding spin chains. In order to obtain a polynomial representation, let us

define the following generating states for the three spin chains

|F1〉 =

L1∏
k=1

(
|Z〉k +

4∑
i=1

xik|φi〉k

)
(3.15)

|F2〉 =

L2∏
k=1

(
|Z̄〉k +

4∑
i=1

yik|φi〉k

)

|F3〉 =

L3∏
k=1

(
|Z̄〉k +

4∑
i=1

zik|φi〉k

)
where we couple each excitation with an auxiliary variable. The three states can be ob-

tained in the following way

|1〉 = Ψ1(∂x)|F1〉|xi=0 , |2〉 = Ψ2(∂y)|F2〉|yi=0 , |3〉 = Ψ3(∂z)|F3〉|zi=0 (3.16)

where Ψ1(∂x),Ψ2(∂y) and Ψ3(∂z) are three differential operators of the following form

Ψ(∂x) =
∑
n,I

cIn

L∏
k=1

(∂ikk )nk , ∂ikk ≡
∂

∂xikk
, nk = 0, 1 (3.17)

Here n = {n1, · · · , nL} and I is a collective index indicating the polarizations of the

excitations. Each differential operator specifies one spin chain state. Integrability of the

spin chain usually provides systematic way to construct the differential operators. In our

case, for example, the differential operator can be constructed systematically by the nested

Bethe ansatz. According the the spin vertex formalism

c123 =〈1|〈2|〈3|V3〉 (3.18)

= Ψ1(∂x)Ψ2(∂y)Ψ3(∂z)〈F1|〈F2|〈F3|V3〉|xi,yi,zi=0

= Ψ1(∂x)Ψ2(∂y)Ψ3(∂z)V3(x,y, z)|xi,yi,zi=0

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
1
7
2

where V3(xi,yi, zi) is the polynomial representation of the spin vertex which reads

V3(xi,yi, zi) =

L12∏
k=1

(1 + yikx
i
L1−k+1)

L13∏
k=1

(1 + xikz
i
L3−k+1)

L23∏
k=1

ziky
i
L2−k+1 (3.19)

In the polynomial representation, the spin vertex (3.19) is given by a polynomial in terms

auxiliary variables xi,yi, zi. The states are given by three differential operators, which can

be constructed by Bethe ansatz. Note that the commutation relations of ∂/∂x and x are the

same as commutation relations of bosonic creation and annihilation operators. Therefore,

we can map the auxiliary variables and the corresponding derivatives into creation and

annihilation operators

xik → α
(1)i†
k , yik → α

(2)i†
k , zik → α

(3)i†
k (3.20)

∂

∂xik
→ α

(1)i
k ,

∂

∂yik
→ α

(2)i
k ,

∂

∂zik
→ α

(3)i
k

and the spin vertex can be written as

|V3〉B ≡ V3

(
α

(1)i†
k , α

(2)i†
k , α

(3)i†
k

)
|0〉B (3.21)

here we use |V3〉B to emphasis that this vertex is constructed by bosonic oscillators instead

of fermionic ones as in (3.14). The new Fock vacuum is defined to be the state that is

annihilated by all the bosonic annihilation operators

α
(r)i
k |0〉B = 0 (3.22)

The corresponding states can be written as

〈1| ≡ 〈0|Ψ1

(
α

(1)i
k

)
, 〈2| ≡ 〈0|Ψ2

(
α

(2)i
k

)
, 〈3| ≡ 〈0|Ψ3

(
α

(3)i
k

)
(3.23)

and the structure constant is given by

c123 = 〈1|〈2|〈3|V3〉B. (3.24)

where both the spin vertex and the states are now constructed by bosonic oscillators. The

formulation we described up to now is applicable to any three states in our set-up. In the

next section, we will take the BMN limit of (3.21) and show that it reproduces the string

vertex in SFT.

4 BMN limit of the spin vertex

The BMN limit for N = 4 SYM mainly contains two approximations. The first is a dilute

gas approximation, which means the number of excitations is finite and are distributed

sparsely. The second approximation is that the momenta of the excitations are small and

scales like ∼ 1/L where L is the length of the spin chain, which is taken to be very large.

– 8 –
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We start by recalling the spin vertex in polynomial representation in (3.19)

V3(xi,yi, zi) =

L12∏
k=1

(1 + xiL1−k+1y
i
k)

L13∏
k=1

(1 + ziL3−k+1x
i
k)

L23∏
k=1

yiL2−k+1z
i
k (4.1)

The length of each spin chain is equal to the sum of number of vacuum field Z or Z̄ and

number of excitations. We denote the number of vacuum fields by Ji and the number of

excitations by Ni so that the length of the spin chain Li is given by Li = Ji+Ni. By dilute

gas assumption, we have Ji � Ni and hence Li ' Ji. Due to charge conservation, we have

J1 = J2 + J3, hence we can write J1 = J , J2 = rJ , J3 = (1 − r)J , where 0 < r < 1. The

number of contractions between different operators are approximately

L12 ' J2 = rJ, L13 ' J3 = (1− r)J, L23 = M =
1

2
(N2 +N3 −N1). (4.2)

In what follows, we use M to denote the number of contractions between the two ‘out-

going’ operators. By BMN assumption, M � J . The three-point functions for M = 0 are

called impurity preserving, or extremal while for M 6= 0 are called impurity non-preserving

or non-extremal. For the extremal correlator, when diagonalizing anomalous dimension

matrix one have to deal with the mixing between single trace and double trace operators.

On the contrary, for the non-extremal cases, the contribution from double trace operators

are 1/N -suppressed and can be neglected in the planar limit, which makes the computation

much simpler from gauge theory aspect. On the other hand, the earlier proposals for string

field theory and duality relations work only for the extremal cases. A string field theory

applicable to non-extremal cases as well as extremal is the holographic string field theory

proposed by Dobashi and Yoneya [24, 25]. In this paper, we consider only the non-extremal

cases so we always assume M 6= 0.

By (3.20), we map xik, y
i
k and zik to creation operators. In order to obtain creation

operators in the momentum space, we perform the mode expansion of the bosonic oscillator

α
(r)i†
k =

1√
Jr

∞∑
n=−∞

e
2πnk
Jr a(r)i†

n , r = 1, 2, 3 (4.3)

Let us investigate the part of spin vertex corresponding to the contractions between oper-

ators 1 and 2.

V12 =

L12∏
k=1

(1 + α
(1)i
L1−k+1α

(2)i
k ) ≈ exp

(
1

J
√
r

∑
n
(1)
i ,n

(2)
i

J2∑
k=0

e
2πin

(2)
i

k

J2
−

2πin
(1)
i

k

J1 a
(1)i†
n
(1)
i

a
(2)i†
n
(2)
i

)

= exp

(
−

∑
n
(1)
i ,n

(2)
i

N 12

n
(1)
i n

(2)
i

a
(1)i†
n
(1)
i

a
(2)i†
n
(2)
i

)
. (4.4)

In the first line, the summation over k gives

J2∑
k=0

e
2πin

(2)
i

k

J2
−

2πin
(1)
i

k

J1 ' Je−πirn
(1)
i

sinπrn
(1)
i

π(n
(1)
i − n

(2)
i /r)

= J
√
r(−1)n

(1)
i +n

(2)
i e−πirn

(1)
i N12

n
(1)
i n

(2)
i

(4.5)
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Therefore our Neumann coefficient from spin vertex is related to the Neumann coefficient

in SFT [37, 38] by a simple phase factor

N 12

n
(1)
i n

(2)
i

= (−1)n
(1)
i +n

(2)
i e−πirn

(1)
i N12

n
(1)
i n

(2)
i

. (4.6)

The explicit form of Neumann coefficient at the leading order of large µ expansion can be

found in appendix A. Similarly, for the contractions between operators 1 and 3, we have

V13 =

L13∏
k=1

(1 + α
(1)i
k α

(3)i
L3−k+1) ' exp

√1− r
J

∑
n
(1)
i ,n

(3)
i

J3∑
k=0

e
2πin

(1)
i

k

J1
−

2πin
(3)
i

k

J3 a
(1)i†
n
(1)
i

a
(3)i†
n
(3)
i


= exp

(
−

∑
n
(1)
i ,n

(3)
i

N 13

n
(1)
i n

(3)
i

a
(1)i†
n
(1)
i

a
(3)i†
n
(3)
i

)
(4.7)

where our Neumann coefficient is related to the SFT Neumann coefficient by

N 13

n
(1)
i n

(3)
i

= (−1)n
(1)
i e−iπrn

(1)
i N13

n
(1)
i n

(3)
i

(4.8)

For the contractions between operators 2 and 3, we have

V23 =

M∏
k=1

α
(3)i
k α

(2)i
L2−k+1 =

M∏
k=1

1

J
√
r(1− r)

∑
n
(2)
i ,n

(3)
i

e
2πikn

(3)
i

J3
−

2πikn
(2)
i

J2 a
(2)i†
n
(2)
i

a
(3)i†
n
(3)
i

(4.9)

By dilute gas approximation N � Ji, so that in the above product k ≤ N � J2, J3.

Also we assume that the momentum of the excitations are small, meaning n
(2)
i � J2 and

n
(3)
i � J3. Therefore the phase factor in (4.9) is trivial

e
2πikn

(3)
i

J3
−

2πikn
(2)
i

J2 ≈ 1 (4.10)

and V23 simplifies to

V23 =

(
1

J
√
r(1−r)

∑
n
(2)
i ,n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i

)M
=

(
J

4πµ|α(1)|

)−M(
−
∑

n
(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i

)M
.

(4.11)

where our Neumann coefficient is given by

N 23

n
(2)
i n

(3)
i

= (−1)n
(2)
i N23

n
(2)
i n

(3)
i

. (4.12)

Let us consider the following vertex

Ṽ23 = exp

(
−

∑
n
(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i

)
. (4.13)
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which can be expanded as

Ṽ23 =

∞∑
M=0

1

M !

(
−

∑
n
(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i

)M
(4.14)

For a given configuration, the number M is fixed and the action of states will automatically

pick out the term in Ṽ23 with the corresponding M . Hence we can replace V23 by

V23 −→
(

J

4πµ|α(1)|

)−M
M ! · Ṽ23 (4.15)

Recalling that at leading order

M =
1

2
(L2 + L3 − L1) =

1

2
(∆2 + ∆3 −∆1), (4.16)

we can write the factors in front of Ṽ23 in (4.15) as(
J

4πµ|α(1)|

)−M
M ! =

(
J

4πµ|α(1)|

)−(∆2+∆3−∆1)/2

Γ

(
∆2 + ∆3 −∆1

2
+ 1

)
(4.17)

In SFT [25], the factor J1/4πµ|α(1)| is the leading term of the large µ expansion of the

following factor

f
J2J3

J1
=

J

4πµ|α(1)|
+O

(
1

µ2

)
(4.18)

so that at the leading order, we have(
J

4πµ|α(1)|

)−M
M ! '

(
f
J2J3

J1

)−(∆2+∆3−∆1)/2

Γ

(
∆2 + ∆3 −∆1

2
+ 1

)
(4.19)

The right hand side is nothing but the function G(∆1,∆2,∆3) in (2.8) and (2.10). From our

derivation, it is clear that the function G(∆1,∆2,∆3) is intimately related to the interaction

between the two outgoing states. Therefore it is crucial for the matching between SFT

calculation and the non-extremal three-point functions.

We can define our spin vertex operator as

VBMN = G(∆1,∆2,∆3)V12V13Ṽ23. (4.20)

This is very close to the 3-point vertex from string theory including the correct G-factor,

except that our Neumann coefficients seem to be different from those of SFT by some phase

factors. We shall show that these phase factors are trivial if we consider the physical states

that satisfy the level matching conditions. When acting physical states on the spin vertex,

we obtain the product of Neumann coefficients of the following type

(−1)L12+L23+L13
∏
12

N 12

p
(1)
i p

(2)
i

∏
13

N 13

q
(2)
i q

(3)
i

∏
23

N 23

r
(2)
i r

(3)
i

(4.21)

= phase · (−1)L12+L23+L13
∏
12

N12

p
(1)
i p

(2)
i

∏
13

N13

q
(2)
i q

(3)
i

∏
23

N23

r
(2)
i r

(3)
i

.
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From (4.6), (4.8) and (4.12), the phase factor is

phase =
∏
12

(−1)p
(1)
i +p

(2)
i e−πirp

(1)
i

∏
13

(−1)q
(1)
i e−πirq

(1)
i

∏
23

(−1)r
(2)
i (4.22)

=(−1)
∑
i p

(1)
i +q

(1)
i (−1)

∑
i p

(2)
i +r

(2)
i e−

∑
i πi(p

(1)
i +q

(1)
i ) = 1

where we have used the level matching conditions∑
i

p
(1)
i + q

(1)
i =

∑
i

p
(2)
i + r

(2)
i = 0. (4.23)

This means that if we consider the physical states, we can replace our Neumann coefficients

N rs
m,n by the Neumann coefficients of SFT Ñ rs

m,n since the phase factors cancels out. To sum

up, from the spin vertex in the BMN limit, we obtain at the leading order the following

cubic vertex

|VBMN〉 = G(∆1,∆2,∆3) exp

[
− 1

2

3∑
r,s=1
r 6=s

a(r)i†
m N rs

mna
(s)i†
n

]
|0〉. (4.24)

Notice that in the exponent we impose the condition r 6= s, while in SFT the Neumann

coefficients Ñ rr
mn, which corresponds to interactions between the excitations of the same

string, are non-zero. However these Neumann coefficients will appear only at higher orders

in the large µ expansion. It is an interesting question whether we can obtain this kind

of Neumann coefficients from weak coupling at higher loops, which we leave for future

investigation. Therefore at the leading order, we have

|VBMN〉 = G(∆1,∆2,∆3)|V 〉. (4.25)

To complete our derivation, we also need to show that the spin chain states in the

BMN limit also takes the same form as the ones in SFT. In the BMN limit, the scattering

phases are zero which means there is no interaction between excitations. Therefore, the

wave functions of the spin chain states are simply given by plane waves. In terms of bosonic

oscillators, a BMN state at the leading order can be represented by

〈n1, · · · , nN | =
1√
LN

L∑
x1,··· ,xN=1

〈0|αiix1 · · ·α
iN
xN
e−

2πi
L

(n1x1+···+nNxN ) (4.26)

where L is the length of the spin chain, αikxk is the bosonic oscillator introduced in (3.20)

and creates an excitation at position xk with polarization ik from the dual vacuum. Here

n1, · · · , nN are the mode numbers of the excitations. Performing the mode expansion

in (4.3), we have simply

〈n1, · · · , nN | = 〈0|ai1n1
· · · aiNnN (4.27)

which takes exactly the same form as the states in SFT.

There is another difference between the spin vertex and string vertex. In SFT, one

has to take into account the non-trivial prefactor while we do not have similar prefactor in

– 12 –
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the spin vertex formalism. However, as argued by Dobashi and Yoneya [25], at the leading

order, the action of prefactor on the states gives rise to a simple factor, which cancels

neatly the holographic factor 1/µ(∆2 + ∆2 − ∆1). Let us briefly review how this works.

The prefactor for scalar excitations at the leading order reads

Ph =µ(a
(2)i†
0 a

(2)i
0 + a

(3)i†
0 a

(3)i
0 − a(1)i†

0 a
(1)i
0 ) (4.28)

+
µ

2

∞∑
m=1

(a(2)i†
m a(2)i

m + a(3)i†
m a(3)

m − a(1)i†
m a(1)i

m + [m→ −m])

+
µ

2

∞∑
m=1

(a(2)i†
m a

(2)i
−m + a(3)i†

m a
(3)i
−m − a(1)i†

m a
(1)i
−m + [m→ −m])

The operators in the first two lines take the form of counting operators a†mam, hence once

acted on physical states, they just count the number of difference of excitations between

the incoming state 1 and out-going states 2 and 3, which is N2 + N3 − N1 = 2M . The

contribution from the first two lines is simply µM . In order to calculate the contribution

from the third line, we need to make use of the symmetry of the Neumann coefficients

N rs
−n,m = N rs

n,−m, N rs
mn = N rs

−m,−n. The operators in the third line a†ma−m change the sign

of mode numbers. Consider first the contractions between operators 1 and 2. Changing

the sign of mode numbers of either operator gives the same result due to the symmetry

of the Neumann coefficient. It is the same for the contractions between operators 1 and

3. Therefore the contributions for the impurity preserving part cancel and we only need

to consider the contractions between impurity non-preserving part 2↔3. We recall the

the Neumann coefficient N23
m,n at the leading order does not depend on mode number at

all, hence the sign changing operators have the same effect as counting operators. The

contribution is again µM . To sum up, the action of the prefactor on physical states gives

rise to a multiplication of the simple factor 2µM , which can be written in the following

way at the leading order

2µM = µ(∆2 + ∆3 −∆1). (4.29)

Therefore, we have

1

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|H3〉 =

1

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|Ph|V 〉 = 〈1|〈2|〈3|V 〉 (4.30)

Finally, gathering all the pieces, we have

C123 =

√
J1J2J3

N
〈1|〈2|〈3|VBMN〉 =

√
J1J2J3

N
G(∆1,∆2,∆3) 〈1|〈2|〈3|V 〉

=

√
J1J2J3

N

G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|Ph|V 〉

=
G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|

√
J1J2J3

N
|H3〉 (4.31)

where the first line is from the spin vertex while the last line is exactly the holographic

relation (2.8) proposal by Dobashi and Yoneya. Therefore we have shown that gauge theory

computation reproduces exactly SFT result at tree level.
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5 Conclusion and outlook

In this paper, we performed the BMN limit of the spin vertex at leading order of λ′ for

the scalar excitations and showed that it matches the string vertex in SFT. The match

between CFT and SFT computations at tree level was proved in [25]. Our aim here was

to obtain this match using the spin vertex approach. In this way the exponential form of

the spin vertex appears naturally, and allows to introduce the Neumann coefficients from

the CFT side of the duality. The string vertex consists of three parts at any order in the

expansion parameter: the exponential with the Neumann coefficients, the prefactor Ph and

the G-factor. We hope the same structure holds for the spin vertex in BMN limit at any

loop. When taking into account the radiative corrections there are two parts which receive

corrections: the Neumann coefficients and the G-factor. The Neumann coefficients for pp-

wave string vertex were computed in [37] and [38] to all orders in 1/µ2. If the structure

of the spin vertex holds at any order of coupling constant and one manage to establish

the connection between the CFT and the SFT Neumann coefficients at any loop, then we

can reproduce exponential part of the spin vertex at any coupling. Another problem is the

G-factor. As it has been already mentioned, its expansion in coupling constant gives rise

to log µ dependent terms and it’s not clear how to deal with them. Fixing the G-factor at

any loop order from CFT and SFT sides, together with all-loop expression for Neumann

coefficients, would provide us with the all-loop result for three-point functions in BMN

limit, at least in the compact sector.

Another interesting direction to explore is to extend this approach to other sectors,

that is to include vector and fermionic excitations. The main problem is that in general in

N = 4 SYM the space-time dependence of three-point function is more complicated than

in the compact sector and there are more than one structure constants to be fixed. On

the contrary, the SFT calculation provides us with only one quantity. It is important to

understand the relation between it and the structure constants from the gauge theory side.

This problem was discussed in the literature for vector [25] as well as for fermionic [39, 40]

excitations, but the full understanding is still missing.

Very recently, the authors of [41] reinterpreted the Neumann coefficients as a kind of

generalized form factor. They found that the Neumann coefficients satisfy a set of func-

tional equations similar to the axioms of form factor bootsrap equations. This observation

provides us a novel point of view to understand and construct Neumann coefficients.

A Large µ behavior of Neumann coefficients

In this appendix, we list the leading order of Neumann coefficients in the large µ expansion.

We take the same convention as in [25]. For (m,n) 6= (0, 0)

N22
mn =

(−1)m+n

4πµ|α(1)|r
, N23

mn =
(−1)m+1

4πµ|α(1)|
√
r(1− r)

(A.1)

N33
mn =

1

4πµ|α(1)|(1− r)
, N11

mn =
(−1)m+n+1 sin(πmr) sin(πnr)

πµ|α(1)|

N21
mn =

(−1)m+n+1 sinπnr

π
√
r(n−m/r)

, N31
mn =

(−1)n sin(πnr)

π
√

1− r(n−m/(1− r))
.
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For (m,n) = (0, 0), we have

N11
00 = 0, N12

00 = −
√
r, N13

00 = −
√

1− r (A.2)

N23
00 = − 1

4πµ|α(1)|
√
r(1− r)

, N22
00 =

1

4πµ|α(1)r
, N33

00 =
1

4πµ|α(1)|(1− r)
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