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1 Introduction

Fluid dynamics [1, 2] is an effective long-wavelength description of most classical or quan-

tum many-body systems at nonzero temperature. For neutral fluids in flat space, the hydro-

dynamic equations are derivable from conservation of the fluid’s stress-energy tensor Tµν ,

∂µTµν = 0. (1.1)

For relativistic fluids, Tµν is conveniently written as

Tµν = (ε+ P )uµuν + Pηµν + Π〈µν〉, (1.2)

where ε, uµ are the fluid’s energy density and four-velocity field, whereas ηµν stands for

Minkowski metric tensor. The pressure P is specified through equation of state P = P (ε),

calculable from underlying microscopic theory. Deviations from thermal equilibrium are

collectively encoded in dissipation tensor Πµν ,

Π〈µν〉 ≡
1

2
PαµPβν (Παβ + Πβα)− 1

3
PµνPαβΠαβ . (1.3)

where Pµν = ηµν + uµuν is a projector on spatial directions.

At each order in derivative expansion, Πµν is fixed by thermodynamics and symme-

tries, up to some transport coefficients. The latter have to be calculated from microscopic

description of the fluid rather than from hydrodynamics itself. In what follows, we focus

on conformal fluids in 4D Minkowski spacetime, so the condition Tµµ = 0 implies ε = 3P .

The first order derivative expansion gives the Navier-Stokes term

ΠNS
µν = −2η0∂µuν , (1.4)
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where η0 is a shear viscosity. At second order, there are five additional transport coeffi-

cients [3, 4].

AdS/CFT correspondence [5] relates strong coupling physics of gauge theories with

large number of colors N to weakly coupled gravity in (asymptotic) AdS space. As a partic-

ular example, it maps hydrodynamic fluctuations of a boundary fluid into long-wavelength

gravitational perturbations of a stationary black brane in asymptotic AdS space [6–8]. Vis-

cosity and all other transport coefficients could be computed from the gravity side of the

correspondence. The ratio of η0 over the entropy density s was computed in [6, 7, 9]

η0
s

=
1

4π
(1.5)

and was found to be universal for all gauge theories with Einstein gravity duals [10–12].

The value (1.5) was further conjectured to be Nature’s lower bound for η0/s [13].

The relativistic Navier-Stokes hydrodynamics is well known to violate causality, that is

it admits propagation of signal faster than the speed of light. Inclusion of any finite number

of additional derivative terms in Πµν would not render the theory into causal. All-order

derivative resummation is necessary to restore causality. In [14–16], we built upon the work

of [17] and linearly resummed derivative terms (see [18–22] for boost invariant case) for

fluids dual to pure Einstein gravity. In a parametrically controllable approximation, where

we only collect terms linear in amplitude of the fluid velocity, Πµν has a compact form,

Πµν = −2η [uα∂α, ∂
α∂α] ∂µuν − ζ [uα∂α, ∂

α∂α] ∂µ∂ν∂
αuα. (1.6)

Here η and ζ are derivative operators, which upon expansion in a series would generate

the usual gradient expansion. Thanks to linearization, we can study these operators in

Fourier space, via replacement ∂µ −→ (−iω, i~q). Then the operators η and ζ are turned

into functions of momenta and are referred to as viscosity functions. In momentum space,

the constitutive relation (1.6) is

Πµν(ω, q) = −2η(ω, q2)iqµuν(ω, q) + ζ(ω, q2)iqµqνq
αuα(ω, q). (1.7)

The viscosity functions η and ζ were computed exactly in [14–16] and were observed to

vanish at very large momenta, signaling restoration of causality in the dual CFT. For

self-consistency of presentation we will flash these results in section 3 below.

Vanishing of the viscosities at large frequencies is a necessary condition for causality

restoration. To better understand the physical role of the viscosity functions, we turn them

into memory functions via inverse Fourier transform of (1.7)

Πµν(t) = −
∫ ∞
−∞

dt′
[
2η̃(t− t′, q2)∂µuν(t′) + ζ̃(t− t′, q2)∂µ∂ν∂αuα(t′)

]
, (1.8)

where

η̃(t, q2) ≡
∫ ∞
−∞

dω√
2π
η(ω, q2)e−iωt, ζ̃(t, q2) ≡

∫ ∞
−∞

dω√
2π
ζ(ω, q2)e−iωt. (1.9)
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Figure 1. Memory function η̃(t, q2) evaluated in [16] for hydrodynamics dual to pure Einstein

gravity. Left: 3D plot as function of t and q2. Right: 2D plots as functions of time t: different

curves display results with different q2 (from the rightmost: q2 = 0, 1, 2, 3).

Here η̃(t, q2) and ζ̃(t, q2) are memory functions in mixed-(t, q2) representation. Causality1

requires memory functions to have no support in the future: η̃(t − t′) ∼ Θ(t − t′) and

ζ̃(t− t′) ∼ Θ(t− t′). In other words, the current Πµν(t) at time t should be affected by the

state of the system in the past only. So, for a causal theory Πµν becomes

Πµν(t) =

∫ t

−∞
dt′
[
η̃(t− t′, q2)∂µuν(t′) + ζ̃(t− t′, q2)∂µ∂ν∂αuα(t′)

]
. (1.10)

As has been discussed in [16], a typical memory function-based formalism [2, 24], as a

phenomenological model, would set the low limit of integration in (1.10) to zero, turning

thus defined hydrodynamics into a well-posed initial value problem.

In [16], the memory function η̃(t) was evaluated from exact computations in the dual

Einstein gravity. It was indeed found to be proportional (up to numerical noise) to Θ(t)

as could be seen from figure 1 (in units πT = 1).

Beyond N → ∞ and ’t Hooft coupling λ → ∞ limits, the ratio (1.5) gets corrected.

Finite N or λ corrections arising from stringy or quantum effects introduce, beyond Einstein

gravity, terms with higher derivatives of curvature. Exact forms of these terms generated in

string theory are not known in general: the first higher derivative correction is expected to

be the curvature squared. Of particular interest is a ghost-free Gauss-Bonnet combination,

which generates equations of motion of second order only. Adding a Gauss-Bonnet term to

the gravitational action is equivalent to introducing some O(1/N) corrections in the dual

gauge theory, whereas the Gauss-Bonnet coupling α is related to the difference between

two central charges of the dual CFT.

From the string theory point of view, the Einstein-Gauss-Bonnet (EGB) gravity should

be considered as phenomenological effective low energy theory. One may, however, con-

sider EGB gravity on its own, as a UV complete theory. Still applying the rules of the

AdS/CFT correspondence, one finds that the Gauss-Bonnet correction violates the lower

1In the limit N → ∞ and λ → ∞, causality of N = 4 super-Yang-Mills plasma was analyzed [23] by

studying pole structures of retarded correlators.
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bound (1.5) [25, 26] (see also [27–32]). Non-perturbative Gauss-Bonnet corrections to sec-

ond order transport coefficients in conformal fluids dual to EGB gravity were considered

in [33–35]. Furthermore, causality of the dual CFT sets constraints on possible values of the

Gauss-Bonnet coupling. In [26, 36–38], the coupling α (stripped of units) was constrained

to be

− 7

72
≤ α ≤ 9

200
, (1.11)

where the lower (upper) bound was obtained by requiring the front-velocity in the sound

(scalar) channel of the dual CFT not to exceed the speed of light. Positivity of energy flux

in thought experiments done in conformal colliders [39] also constrains values of α [40–42].

Remarkably, constraints on α from causality and positivity of energy flux were found to

match [38, 40–42]. Stability of the dual plasma also sets constraints on α [43, 44]. More

recently, causality violating effects due to higher derivative corrections to Einstein-Hilbert

action were discovered in high energy scattering processes of gravitons off shock waves [45]

and strings off branes [46]. Pure EGB gravity was concluded to be a-causal for α of order

one. Causality is restored by adding an infinite tower of extra massive particles with spins

higher than two [45].

In this work, we would like to explore the effects of the Gauss-Bonnet corrections on

transport coefficients, beyond known results at first and second order. To this goal we

consider hydrodynamics dual to EGB gravity and calculate Gauss-Bonnet correction to

viscosity functions η and ζ. Given previous constraints on α, we limit our study to small

α only. To linear order in α, the fluid’s energy density and pressure are

ε = 3P = 3 (1 + 3α) (πT )4 . (1.12)

The entropy density is evaluated from s = dP/dT

s = 4π(1 + 3α) (πT )3 . (1.13)

In the hydrodynamic limit, the viscosity functions are expandable in momenta,

η(ω, q2) = (1− 5α) +
1

2
[(2− ln 2)− (21− 5 ln 2)α] iω −

[
1

48

(
6π − π2 + 24

−36 ln 2 + 12 ln2 2
)
− 6.53(280)α

]
ω2 −

(
1

8
− 2.11(320)α

)
q2 + · · · , (1.14)

ζ(ω, q2) =
1

12
[(5− π − 2 ln 2) + (15π − 87 + 30 ln 2)α] + · · · ,

where the fluid’s temperature is normalized to πT = 1 and all the momenta are set to be

measured in these units. For a positive α, the first term in η yields violation of the viscosity

to entropy bound [25, 26, 47, 48],

η0
s

=
1

4π
(1− 8α) . (1.15)

The second term in η is the relaxation time, calculated in [33, 49]. The remaining terms are

new third order transport coefficients. The underlined terms are our numerical results for
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α-corrected pieces. To resum the derivative terms to all orders, we numerically compute the

viscosity functions for generic ω and q2. The viscosity functions are formally expanded in α

η = η(0) + αη(1) +O
(
α2
)
, ζ = ζ(0) + α ζ(1) +O

(
α2
)
, (1.16)

where η(0) and ζ(0) are the viscosity functions computed for pure Einstein gravity in [14, 15].

The results of this calculation, particularly new results on η(1) and ζ(1), are presented in

subsection 3.2.2. When Fourier transformed into memory functions, we find that the Gauss-

Bonnet correction η̃(1)(t) (and also ζ̃(1)(t)) is also vanishing at negative times (see figure 9).2

In section 2, we present the holographic setup. A boosted black hole solution of the

EGB gravity in asymptotic AdS5 space is introduced. Following [4], gravitational pertur-

bation is induced by locally varying boost velocity and black hole temperature. We then

parameterize additional bulk metric corrections in terms of ten functions h, k, ji and αij ,

which are both functions of holographic coordinate and functionals of the fluid velocity

uµ. The boundary stress-energy tensor is read off from holographic renormalization, being

expressed in terms of near-boundary behavior of h, k, ji and αij . In section 3, we solve

the Einstein equations for the metric corrections. Thanks to linearization in the velocity

amplitude, all bulk metric corrections can be decomposed in the basis formed from ui. As a

result, in Fourier space, the Einstein equations turn into second order ordinary differential

equations for decomposition coefficients. Solutions to these equations reveal the informa-

tion about the viscosities. We then discuss effects of the Gauss-Bonnet correction on the

viscosity functions. Section 4 is devoted to summary and discussion. Some computational

details are provided in appendix A.

2 Holographic setup for Einstein-Gauss-Bonnet gravity

Our representation is largely based on [50]. We start from the EGB gravity with a negative

cosmological constant Λ = −6/l2 in 5D spacetime manifold M,

S =
1

16πGN

∫
M
d5x
√
−g
(
R− 2Λ + αl2LGB

)
+ Ssur + Sc.t., (2.1)

where the Gauss-Bonnet term LGB is

LGB = RMNPQR
MNPQ − 4RMNR

MN +R2. (2.2)

We use a mostly plus signature for the bulk metric gMN . To have a well-defined variational

principle, the surface term Ssur computed in [51, 52] was added to (2.1),

Ssur =
1

8πGN

∫
∂M

d4x
√
−γ
[
K − 2αl2 (J + 2GµνK

µν)
]
, (2.3)

where the first term is the Gibbons-Hawking surface action. The tensor Jµν is defined as

Jµν = −1

3

(
2KKµρK

ρ
ν +KρσK

ρσKµν − 2KµρK
ρσKσν −K2Kµν

)
, (2.4)

2In the first version of this preprint, we made a wrong statement on causality violation based on numerical

Fourier transform, which was later found to be lacking sufficient accuracy.
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where Kµν = γαµ ∇̄αnν and γµν , nµ are the induced metric/outing normal vector on/to a

constant r-slice ∂M. The Einstein tensor Gµν and ∇̄µ are compatible with γµν .

In asymptotic AdS space, UV divergences near conformal boundary can be removed

by holographic renormalization [53, 54]. For the EGB gravity, the counter-term action Sc.t.
was first constructed in [50] following previous studies [55–57],

Sc.t. =
1

8πGN

∫
∂M

d4x
√
−γ
(
δ1 −

δ2
2
R[γ]

)
, (2.5)

with the coefficients δ1 and δ2 having the forms

δ1 =
−1− 8α+

√
1− 8α

√
4αl2

√
1−
√

1− 8α

α→0−→ −3

l
+
α

l
+O(α2),

δ2 =

√
4αl2

(
3− 8α− 3

√
1− 8α

)
2
(
1−
√

1− 8α
)3/2 α→0−→ l

2
+

3l

2
α+O(α2).

(2.6)

Up to a conformal factor, the stress-energy tensor of the boundary CFT is obtained by

varying (2.1) with respect to γµν . The boundary stress-energy tensor is [50],

Tµν = lim
r→∞

T̃µν(r)

= − lim
r→∞

r2

8πGN

{
Kµν −Kγµν − δ1γµν − δ2Gµν − 2αl2

(
Qµν −

1

3
Qγµν

)}
.

(2.7)

The tensor Qµν is defined as

Qµν = 3Jµν − 2KRµν −RKµν + 2KρσRρµσν + 4RµλKλ
ν , (2.8)

where the calligraphic tensor Rµρνσ is the Riemann curvature of γµν . For convenience, we

set the overall scale of the stress tensor to one, l = 16πGN = 1.

The field equations for the metric gMN are

0 = EMN ≡ RMN −
1

2
gMNR− 6gMN −

1

2
αgMNLGB

+ 2α
(
RMABCR

ABC
N − 2RMANBR

AB − 2RMAR
A
N +RRMN

)
.

(2.9)

A black hole solution with a flat boundary was found in [58] following previous work [59].

In the ingoing Eddington-Finkelstein coordinate, the metric is

ds2 = 2N#dvdr −N2
#r

2f(br)dv2 + r2δijdx
idxj , i, j = 1, 2, 3. (2.10)

To linear order in α, we have

N# = 1− α+O(α2),

f(r) = 1− 1

r4
+ 2α

(
1 +

1

r8

)
+O(α2).

(2.11)

Thermodynamics of the EGB black holes was analyzed in [58, 59]. The horizon radius rH
and Hawking temperature T are

rH =
1− α

b
, T =

1− 2α

πb
. (2.12)

The conformal boundary is at r =∞.
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To construct fluid dynamics from gravity, we follow [4]. First, the static black hole

geometry (2.10) is boosted along boundary directions xα with a constant boost parameter

uµ. Then, uµ and b are promoted into arbitrary local functions of xα, resulting in an

inhomogeneous geometry

ds2 = −2N#uµ(xα)dxµdr −N2
#r

2f (b(xα)r)uµ(xα)uν(xα)dxµdxν + r2Pµνdxµdxν , (2.13)

where uµ(xα) is identified with the fluid velocity and is normalized as ηµνuµ(xα)uν(xα) =

−1. In general, the metric (2.13) no longer solves the field equations (2.9). Suitable metric

corrections to (2.13) are needed to make (2.9) satisfied. These corrections are dual to

parts of Π〈µν〉. Instead of the order-by-order boundary expansion [4], we will collect the

derivatives in a unified way, as proposed in [14–16] to resum all order linear structures in

Tµν . We linearize uµ(xα) and b(xα)

uµ(xα) = (−1, ε ui(x
α)) , b(xα) = b0 + εb1(x

α), (2.14)

where ε is an order-counting parameter to be set to unity at the end. Subsequent calcu-

lations are accurate up to linear order in ε. The constant b0 corresponds to equilibrium

temperature. For convenience of calculation we set b0 = 1. This is equivalent to setting

πT = 1 − 2α, whereas eventually we would like to present our results in units of πT = 1.

This is easily achieved by rescaling all the momenta by the corresponding (1− 2α)-factors.

The linearized version of (2.13) is

ds2seed = 2N#dvdr −N2
#r

2f(r)dv2 + r2δijdx
idxj

− ε
{

2N#uidx
idr + 4N2

#

(
1− 4α

r4

)
b1

r2
dv2 + 2r2

[
1−N2

#f(r)
]
uidvdx

i

}
(2.15)

which is referred to as a seed metric. Formally, we write the full metric as

ds2 = gMNdx
MdxN = ds2seed + ds2corr, (2.16)

where ds2corr represents metric corrections. We choose a “background field” gauge [4]

grr = 0, grµ ∝ uµ, Tr

[(
g(0)
)−1

g(1)
]

= 0, (2.17)

where g(0) corresponds to the first line in (2.15) and g(1) denotes metric corrections. Un-

der (2.17), ds2corr can be parameterized in the form

ds2corr = ε

{
k

r2
dv2 − 3N#hdvdr + r2hd~x2 + 2r2 [1− f(r)] jidx

idv + r2αijdx
idxj

}
, (2.18)

where αij is a traceless symmetric tensor of rank two. The functions h, k, ji and αij depend

on the holographic coordinate r and, through the field equations (2.9), are functionals of

the fluid velocity uµ.

Boundary conditions for the metric corrections were discussed in details in [15]. The

first one is that all the metric components in (2.18) are required to be regular over the

– 7 –
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whole range of r. Second, since the boundary metric is fixed to be ηµν , near r = ∞ we

demand

h < O
(
r0
)
, k < O

(
r4
)
, ji < O

(
r4
)
, αij < O

(
r0
)
. (2.19)

Finally, the fluid velocity uµ is defined in Landau frame

uµTµν = −εuν =⇒ uµΠ〈µν〉 = 0. (2.20)

Under these boundary conditions, expressions for T̃µν greatly simplify. We summarize them

in appendix A.

3 From gravity to fluid dynamics

In this section, we derive the stress-energy tensor of the boundary fluid by solving the

field equations (2.9). There are fourteen independent components, which are split into ten

dynamical equations and four constraints. As in [14–16], our strategy will be to first solve

the dynamical equations, without imposing the constraints. This turns out to be sufficient

to uniquely fix the transport coefficients, or in other words we construct an “off-shell”

stress-energy tensor of the dual fluid. The remaining four constraints are the conservation

law of the stress-energy tensor. This equivalence is demonstrated in appendix A.

3.1 Deriving the fluid dynamics

The dynamical equation Err = 0 yields

(
1− 4α+ 4αr−4

) (
5∂rh+ r∂2rh

)
= 0. (3.1)

The asymptotic constraint h < O
(
r0
)

and Landau frame convention Π〈00〉 = 0 lead to

h = 0. The dynamical equation for k is read off from Erv = 0,

0 = 3r2∂rk − 6r4∂u− r3∂v∂u+ 2∂j + r∂r∂j + r3∂i∂jαij

+
α

r4
[
−48rk + 3

(
4r2 − 3r6

)
∂rk + 8

(
3r8 + r4

)
∂u+

(
5r7 − 4r3

)
∂v∂u

−4
(
3r4 + 5

)
∂j − 2

(
3r5 − r

)
∂r∂j −

(
5r7 + 4r3

)
∂i∂jαij

]
,

(3.2)

which will be solved by direct integration, once solutions for ji and αij are obtained.

From Eri = 0, we arrive at the dynamical equation for ji,

0 = r∂2r ji − 3∂rji + r3∂r∂jαij + r∂2ui − r∂i∂u+ 3r2∂vui

− α

r4
[(

5r5 − 2r
)
∂2r ji − 3

(
5r4 − 2

)
∂rji + 4

(
r7 + r3

)
∂r∂jαij

+
(
5r5 + r

) (
∂2ui − ∂i∂u

)
+ 4

(
3r6 + r2

)
∂vui

]
,

(3.3)
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which is coupled with αij only. For the tensor mode αij , we find it more convenient to

consider the combination Eij − 1
3δijEkk = 0,

0 =
(
r7 − r3

)
∂2rαij +

(
5r6 − r2

)
∂rαij + 2r5∂v∂rαij + 3r4∂vαij + r3[[α]]ij

+ (1− r∂r) [[j]]ij +
(
6r4 + 2r3∂v

)
σij −

α

r4
[
2
(
r11 − 3r3

)
∂2rαij

+2
(
5r10 + 9r2

)
∂rαij + 2

(
3r9 + 4r5

)
∂v∂rαij +

(
9r8 − 4r4

)
∂vαij

+4
(
r7 − 3r3

)
[[α]]ij + 5

(
r4 + 6

)
[[j]]ij −

(
5r5 + 6r

)
[[j]]ij

+
(
18r8 − 8r4

)
σij + 8

(
r7 + r3

)
∂vσij

]
,

(3.4)

where the notations [[α]]ij , [[j]]ij and σij are defined as

[[α]]ij ≡ ∂2αij −
(
∂i∂kαjk + ∂j∂kαik −

2

3
δij∂k∂lαkl

)
,

[[j]]ij ≡ ∂ijj + ∂jji −
2

3
δij∂j, 2σij ≡ ∂iuj + ∂jui −

2

3
δij∂u.

(3.5)

Notice that, as in [15], source terms in (3.3), (3.4) are only constructed from ui. To

solve these partial differential equations, we first decompose ji and αij in a basis formed

from ui, {
ji = a

(
∂v, ∂

2, r
)
ui + b

(
∂v, ∂

2, r
)
∂i∂u,

αij = 2c
(
∂v, ∂

2, r
)
σij + d

(
∂v, ∂

2, r
)
πij ,

(3.6)

where σij is defined in (3.5) and πij ≡ ∂i∂j∂u− 1
3δij∂

2∂u. Then, in Fourier space, dynamical

equations (3.3), (3.4) translate into a system of second order ordinary differential equations

for the decomposition coefficients

0 = r∂2ra− 3∂ra− q̄2r3∂rc− q̄2r − 3iω̄r2 − α

r4
[(

5r4 − 2
) (
r∂2ra− 3∂ra

)
−4q̄2

(
r7 + r3

)
∂rc− q̄2

(
5r5 + r

)
− 4iω̄

(
3r6 + r2

)]
,

0 = r∂2r b− 3∂rb−
2

3
q̄2r3∂rd+

1

3
r3∂rc− r −

α

r4
[(

5r4 − 2
) (
r∂2r b− 3∂rb

)
−4

3

(
r7 + r3

)
∂r
(
2q̄2d− c

)
−
(
5r5 + r

)]
,

0 =
(
r7 − r3

)
∂2r c+

(
5r6 − r2

)
∂rc− 2iω̄r5∂rc− r∂ra+ a− 3iω̄r4c

− iω̄r3 + 3r4 − α

r4
[
2
(
r11 − 3r3

)
∂2r c+ 2

(
5r10 + 9r2

)
∂rc

−2iω̄
(
3r9 + 4r5

)
∂rc− iω̄

(
9r8 − 4r4

)
c+ 5

(
r4 + 6

)
a

−
(
5r5 + 6r

)
∂ra+ (9r8 − 4r4)− 4iω̄

(
r7 + r3

)]
,

0 =
(
r7 − r3

)
∂2rd+

(
5r6 − r2

)
∂rd− 2iω̄r5∂rd−

1

3
r3
(
2c− q2d

)
+ 2b

− 2r∂rb− 3iω̄r4d− α

r4
[
2
(
r11 − 3r3

)
∂2rd+ 2

(
5r10 + 9r2

)
∂rd

−2iω̄
(
3r9 + 4r5

)
∂rd− iω̄

(
9r8 − 4r4

)
d− 4

3

(
r7 − 3r3

) (
2c− q̄2d

)
+10

(
r4 + 6

)
b− 2

(
5r5 + 6r

)
∂rb
]
.

(3.7)
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Equation (3.2) becomes

0 =

(
1− 3α+

4α

r4

)
∂rk −

16α

r5
k −

{
2r2 − 1

3
iω̄r − 2

3r2
(
a− q̄2b

)
− 1

3r

(
∂ra− q̄2∂rb

)
− 2

9
q̄2r
(
q̄2d− 2c

)
+
α

r4

[
1

3
iω̄(5r5 − 4r)

+
2

3r

(
3r4 − 1

) (
∂ra− q̄2∂rb

)
+

2

9
q̄2r
(
5r5 + 4r

) (
q̄2d− 2c

)
+

4

3r2
(
3r4 + 5

) (
a− q̄2b

)
− 8

3

(
3r6 + r2

)]}
∂u.

(3.8)

The barred momenta are defined as ω̄ ≡ (1− 2α)ω and q̄ ≡ (1− 2α)q, which emerge as a

result of the above mentioned rescaling of units.

We first study the large r behavior of the metric corrections, which propagates into

the expression for the fluid’s stress tensor. The velocity dependence of Tµν enters via the

decomposition (3.6). Examining equations (3.7) near the conformal boundary r =∞, it is

straightforward to show that

a
r→∞−−−→ −iω̄ (1 + α) r3 +O

(
1

r

)
, b

r→∞−−−→ −1

3
r2 +O

(
1

r

)
,

c
r→∞−−−→ 1− α

r
+
C4
b

(
ω̄, q̄2

)
r4

+O
(

1

r5

)
, d

r→∞−−−→
D4
b

(
ω̄, q̄2

)
r4

+O
(

1

r5

)
,

(3.9)

where C4
b and D4

b are unknown coefficients, which cannot be determined from the asymp-

totic analysis alone. To compute them, we have to integrate (3.7) over the entire bulk.

Regularity of the metric components in (2.18) imposes two boundary conditions at r = rH,

which are sufficient to fix C4
b and D4

b uniquely. The large r behavior of k is

k
r→∞−−−→

{
2

3
(1− α) r3 +

2

3
(1− 2α) iω̄r2

}
∂u+O

(
1

r

)
. (3.10)

Boundary conditions (2.19), (2.20) were imposed in deriving (3.9), (3.10).

Plugging (3.9), (3.10) into (A.1), (A.2), (A.3), we obtain the boundary stress-energy

tensor
T00 = 3 (1− 5α) (1− 4b1) ,

T0i = Ti0 = −4 (1− 5α)ui,

Tij = δij (1− 5α) (1− 4b1)

+ 4 (1− 3α)
[
2C4

b

(
ω̄, q̄2

)
(1 + 6α)σij +D4

b

(
ω̄, q̄2

)
(1 + 2α)πij

]
.

(3.11)

Covariantization of (3.11) gives standard expressions (1.2), (1.6) of Tµν , with ε and P given

by (1.12). The viscosity functions η and ζ re-expressed in units of πT = 1 are

η
(
ω, q2

)
= −4 (1− 3α)C4

b

[
(1− 2α)ω, (1− 4α) q2

]
(1 + 6α) ,

ζ
(
ω, q2

)
= −4 (1− 3α)D4

b

[
(1− 2α)ω, (1− 4α) q2

]
(1 + 2α) .

(3.12)
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3.2 Gauss-Bonnet corrections to the viscosity functions

To determine the viscosity functions, we are now ready to fully solve the dynamical equa-

tions (3.7). In the next subsection, we start with the hydrodynamic limit and solve (3.7)

perturbatively in momenta. In this way, we reproduce some known results in the literature

and also obtain a set of new third order transport coefficients. In the subsection to follow,

we address our main goal of resumming all-order derivative terms. This will be achieved

by numerically solving (3.7) for generic values of ω̄ and q̄2.

3.2.1 Analytical results: hydrodynamic expansion

We introduce power counting parameter λ by ω̄ → λω̄ and q̄i → λq̄i, and expand the

decomposition coefficients (3.6) in powers of λ,

a (ω̄, q̄i, r) =
∞∑
n=0

λnan (ω̄, q̄i, r) , b (ω̄, q̄i, r) =
∞∑
n=0

λnbn (ω̄, q̄i, r) ,

c (ω̄, q̄i, r) =

∞∑
n=0

λncn (ω̄, q̄i, r) , d (ω̄, q̄i, r) =

∞∑
n=0

λndn (ω̄, q̄i, r) .

(3.13)

At each order in λ, there is a system of ordinary differential equations for an etc, whose

solutions are double integrals. In appendix A, we summarize these results. Then, C4
b and

D4
b are expanded as

C4
b (ω̄, q̄2) = −1

4
(1− 8α)− 1

8
iω̄ [(2− ln 2)− (23− 6 ln 2)α] + q̄2

[
1

32
− 0.497(227)α

]
+ω̄2

{
1

192

(
6π − π2 + 24− 36 ln 2 + 12 ln2 2

)
− 1.56(140)α

}
+ · · · , (3.14)

D4
b (ω̄, q̄

2) =
1

48
(π − 5 + 2 ln 2) +

1

24
(41− 7π − 14 ln 2)α+ · · · ,

where in C4
b we have only numerical results for the linear in α second order terms. The

viscosities (1.14) are obtained by substituting (3.14) in (3.12).

Taking plane wave ansatz for ui and b1, the conservation law ∂µTµν = 0 results in

dispersion equations

shear wave : (1 + 3α)ω +
1

4
iq2η

(
ω, q2

)
= 0,

sound wave : (1 + 3α)
(
q2 − 3ω2

)
− iωq2η

(
ω, q2

)
+

1

2
iωq4ζ

(
ω, q2

)
= 0.

(3.15)

In the hydrodynamic limit, the dispersion equations (3.15) could be solved perturbatively.

For the lowest modes they read

shear wave : ω = − i
4

(1− 8α) q2 − i

32
[1− log 2 + (8#1 − 40 + 16 log 2)α] q4 + · · · ,

sound wave : ω = ± q√
3
− i

6
(1− 8α) q2 ± 1

24
√

3
[3− 2 log 2 + (16 log 2− 38)α] q3

− i

864

[
π2 − 24 + 24 log 2− 12 log2 2 + (#1 + 144#2 − 294

−90π − 3π2 + 60 log 2 + 36 log2 2
)
α
]
q4 + · · · , (3.16)
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Figure 2. The viscosity η as function of ω and q2.

where #1 = 6.53(280) and #2 = 2.11(320) are known numerically only. These hydrody-

namic modes should agree with the lowest quasi-normal modes of the EGB gravity.

3.2.2 Numerical results: all-order resummed hydrodynamics

For generic values of ω and q2, we resort to a shooting technique and solve (3.7) numerically.

Our numerical procedure is essentially the same as that of [15]. We start with a guess

solution at the horizon r = rH and integrate (3.7) until the conformal boundary r = ∞.

Then, we fine-tune the initial guess until thus generated solution satisfies the boundary

conditions at r =∞.

Numerical results for the viscosities are shown as 3D plots in figures 2 and 3, and then

sliced at q = 0 or ω = 0 in figures 4, 5 and 6. A marking behavior of all the functions is

that they vanish at very large momenta, a behavior necessary for restoration of causality.

Damped oscillations are clearly visible reflecting a complex pole structure of the viscosities

as functions of complex ω. These are the quasi-normal modes of the so-called scalar (or

tensor) channel [60–62].

Without the Gauss-Bonnet corrections, the viscosities η(0) and ζ(0) display only a weak

dependence on spatial momentum q, meaning the dissipation is quasi-local in space. In

contrast, η(1) and ζ(1) introduce a much more noticeable space dependence. In order to

see relative correction to viscosity function due to Gauss-Bonnet term, in figure 7 we com-

bined η(0) and η(1) for upper and lower bounds of α. We observed that the Gauss-Bonnet

correction does introduce a profound spatial dependence for the viscosity. In addition,
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Figure 3. The viscosity ζ as function of ω and q2.
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Figure 4. The viscosity η as function of ω with q = 0.
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Figure 5. The viscosity ζ as function of ω with q = 0.

0 2 4 6 8

0.6

0.7

0.8

0.9

1.0

q
2

Re@ΗH0LD

0 2 4 6 8

0.010

0.015

0.020

0.025

0.030

0.035

0.040

q
2

Re@ΖH0LD

0 2 4 6 8
-5

-4

-3

-2

-1

q
2

Re@ΗH1LD

0 2 4 6 8
-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

q
2

Re@ΖH1LD

Figure 6. The viscosities η and ζ as functions of q2 with ω = 0.
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Figure 7. The viscosity η as function of ω and q2 for α = 9/200 (top) and α = −7/72 (down).

the Gauss-Bonnet correction changes shape of the viscosity noticeably in the intermediate

regime of momenta where the amplitude of oscillation is enhanced.

Another interesting observation concerns imaginary parts of η. While Im[η(0)] is always

positive, Im[η(1)] changes sign. This implies that for certain values of α, both positive and

negative, Im[η] may become negative. To clearly see this behavior, in figure 8 we plot

Im[η] as function of ω (q = 0) and α (within the causality interval (1.11)). Im[η] becomes

negative when α goes below the critical value −0.05. With q increased, this critical value

gets larger. If the viscosity function had an interpretation of a correlation function, then its

imaginary part would be a spectral function and would have to be positive. Yet, beyond the

first order in the gradient expansion the correlation functions get additional contributions

from so-called gravitational susceptibilities of the fluid [3, 16, 17]. So, while the possibility

that Im[η] becomes negative for some values of α does not immediately imply a problem,

we take it as a signal for possible issues with causality in the theory.

To better explore the effect of the Gauss-Bonnet corrections, we now represent our

results as memory functions in real time. Let perform an inverse Fourier transform of

η(ω, q2) with respect to ω only,

η̃(t, q2) =

∫ ∞
−∞

dω√
2π
η(ω, q2)e−iωt. (3.17)
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Figure 8. The viscosity η as function of ω (q = 0) and α within the causality interval (1.11). The

hole around ω = 4 indicates the region where Im[η] < 0.
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Figure 9. Memory function η̃(t, q2). Left: 3D plot as a function of time t and momentum squared

q2. Right: 2D plots as function of time t: different curves correspond to different q2 (q2 = 0, 1, 2, 3

from the rightmost for η̃(0) and from the bottommost for η̃(1)).

In figure 9, we plot the time dependence of the memory function η̃(t, q2). As has been

pointed out in Introduction, η̃(0) vanishes for negative times, consistency with causality

requirement. The Gauss-Bonnet correction η̃(1) also has support in positive times only.

Similar effect is also found for the second memory function ζ̃.
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4 Summary and discussion

In this work, we discussed effects of Gauss-Bonnet corrections on holographically dual fluid

dynamics. For bulk EGB gravity, we found a boosted black brane solution with locally

perturbed horizon. Our construction is accurate to linear order in amplitudes of fluid

velocity uµ(x), temperature T (x), and the Gauss-Bonnet coupling α. This black brane

solution is dual to all-order linearly resummed fluid dynamics, and α-corrected viscosity

functions were read off from it.

In the hydrodynamic limit, we reproduced known results for α-corrected shear viscosity

and relaxation time. As a new result, we expanded the knowledge on transport coefficients

by computing α corrections to the third order coefficients. Beyond the hydrodynamic limit,

we computed Gauss-Bonnet-corrected viscosity functions. We observe two qualitatively

new effects induced by the corrections. First, the viscosities become less local in real space.

Second, due to α corrections, Im[η] can become negative.

Finally, we Fourier transformed the viscosity functions into real time, where they play

a role of memory functions. For positive times, we observed a pattern of damped oscillation

reflecting a structure of complex poles. Interestingly, the poles of η(1) are apparently shifted

compared to the ones of η(0). Given that the EGB memory function does not display any

causality violation, we do not expect any dramatic α-induced effects on EGB quasi-normal

modes. However, we think a study of EGB quasi-normal modes might provide additional

insight on the problem. This is, however, beyond the scope of the current paper.

A Computational details

In this appendix, we provide some computational details which were omitted in deriving

the boundary fluid dynamics.

In terms of the metric corrections (2.18), the tensor T̃µν is

T̃00 =3(1− 5α)(1− 4εb1) + ε

(
3k − 2r3∂u+

2

r
∂j − 9r4h− 3r5∂rh− r2∂2h

−3r3∂vh+
1

2
r2∂i∂jαij

)
+ εα

(
8r3∂u− 9k − 12

r
∂j − 27r4h+ 9r5∂rh

+5r2∂2h+ 12r3∂vh−
5

2
r2∂i∂jαij

)
,

(A.1)

T̃i0 =− 4ε(1− 5α)ui + ε

(
4ji − r3∂vui +

1

r
∂ik − r∂rji −

1

2r2
∂2ji +

1

2r2
∂i∂j

+
1

2
r2∂v∂kαik − r2∂v∂ih−

3

2
r3∂ih

)
+ εα

(
20ji − 4r3∂vui −

7

2r2
∂2ji

+
4

r
∂ik − 5r∂rji +

7

2r2
∂i∂j +

5

2
r2∂v∂kαik − 5r2∂v∂ih− 6r3∂ih

)
,

(A.2)
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T̃ij = δij (1− 5α) (1− 4εb1) + εδij

(
2r3∂u+ 9r4h+ 2r5∂rh− r3∂vh+

1

2
r2∂2h

−r2∂2vh+ k − r∂rk +
1

r
∂vk −

1

2r2
∂2k − 2

r
∂j +

1

r2
∂v∂j −

1

2
r2∂k∂lαkl

)
+ ε

[
1

2r2
∂i∂jk − r3 (∂iuj + ∂jui)−

1

2
r2∂i∂jh− r5∂rαij −

1

2
r2∂2αij

−r3∂vαij +

(
1

r
− 1

2r2
∂v

)
(∂ijj + ∂jji) +

1

2
r2 (∂i∂kαjk + ∂j∂kαik)

+
1

2
r2∂2vαij

]
− εαδij

(
8r3∂u+ 3k − 3r∂rk +

4

r
∂vk −

5

2r2
∂2k − 27r4h

+3r5∂rh+ 4r3∂vh+
5

2
r2∂2h− 5r2∂2vh+

7

r2
∂v∂j −

12

r
∂j − 5

2
r2∂k∂lαkl

)
− εα

[
5

2r2
∂i∂jk − 4r3 (∂iuj + ∂jui)−

5

2
r2∂i∂jh+

(
6

r
− 7

2r2
∂v

)
(∂ijj + ∂jji)

−3r5∂rαij − 4r3∂vαij −
5

2
r2∂2αij +

5

2
r2∂2vαij +

5

2
r2 (∂i∂kαjk + ∂j∂kαik)

]
,

(A.3)

where we have dropped terms that explicitly vanish at r =∞.

For consistency, constraints in (2.9) have to be satisfied by the gravity solution pre-

sented in section 3. We find it more convenient to consider suitable combinations of

EMN = 0. The first one is Evv + r2f(r)Evr = 0,

0 = 4r3∂u+ r2∂2b1 − 12r3∂vb1 −
(
r2 + r6

)
∂r∂u− 4r3∂j − r2∂2k + 3r3∂vk

+ 2r2∂v∂j +
(
r4 − 1

)
∂r∂j −

α

r2
[
2r5
(
3r4 + 7

)
∂u+ 24r4∂2b1 − 60r5∂vb1

−
(
3r8 + 3r4 − 2

)
∂v∂u− 2

(
11r5 − r

)
∂j − 4

(
r4 − 1

)
∂2k −

(
r8 − r4

)
∂i∂jαij

+3
(
3r5 − 4r

)
∂vk + 4

(
3r4 − 1

)
∂v∂j − 3

(
r7 − r3

)
∂rk + 4

(
r6 − 2r2

)
∂r∂j

]
.

(A.4)

The combination Evi + r2f(r)Eri = 0 yields

0 = r4∂2ui − r4∂i∂u+ 4r∂ib1 − 4r∂vui − r4∂2vui − ∂2ji + ∂i∂j − r∂ik + 4r∂vji

+ r4∂v∂kαik +
(
r6 − r2

)
∂r∂kαik + r2∂r∂ik − r2∂r∂vji −

α

r4
[(

3r9 − 23r5
)
∂vui

+20r5∂ib1 +
(
5r8 + 3r4

) (
∂2ui − ∂i∂u

)
− 4

(
r8 − r4

)
∂2vui −

(
3r5 − 20r

)
∂ik

−6
(
r4 + 1

) (
∂2ji − ∂i∂j

)
+ 20r5∂vji − 3

(
r7 − r3

)
∂rji +

(
3r6 − 4r2

)
∂r∂ik

−
(
5r6 − 2r2

)
∂r∂vji +

(
r8 − r4

)
∂2r ji + 2

(
2r10 − r6 − 3r2

)
∂r∂kαik

+4
(
r8 + r4

)
∂v∂kαik

]
.

(A.5)

With the near r =∞ behaviors (3.9), (3.10) at hand, the large r limit of (A.4), (A.5) can

be shown to produce the conservation law ∂µTµν = 0.
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In the hydrodynamic limit, we perturbatively solved holographic RG flow equa-

tions (3.7). Recall the formal expansion (3.13)

a (ω̄, q̄i, r) =
∞∑
n=0

λnan (ω̄, q̄i, r) , b (ω̄, q̄i, r) =
∞∑
n=0

λnbn (ω̄, q̄i, r) ,

c (ω̄, q̄i, r) =

∞∑
n=0

λncn (ω̄, q̄i, r) , d (ω̄, q̄i, r) =

∞∑
n=0

λndn (ω̄, q̄i, r) .

(A.6)

Then, perturbative solutions for the metric corrections can be expressed as double integrals.

We here summarize the main results,

a0 = 0, (A.7)

c0 =−
∫ ∞
r

dx

(x5 − x)− 2α (x5 − 3x−3)

∫ x

rH

[
−3y2 + α

(
9y2 − 4y−2

)]
dy

r→∞−−−→ 1− α
r
− 1− 8α

4r4
+O

(
1

r5

)
, (A.8)

a1 =− iω̄
[
(1 + α) r3 +

2α

r

]
, (A.9)

c1 = −
∫ ∞
r

dx

x5 − x− 2α (x5 − 3x−3)

∫ x

rH

dy
{

3iω̄y2c0(y) + 2iω̄y3∂yc0(y)− iω̄y

−α iω̄
[(

9y2 − 4y−2
)
c0(y) + 2

(
3y3 + 4y−1

)
∂yc0(y)− 4y + 12y−3

]}
(A.10)

r→∞−−−→ − iω̄

8r4
[2− ln 2− α (23− 6 ln 2)] +O

(
1

r5

)
,

b0 =−
∫ r

rH

x3 dx

∫ ∞
x

dy
y − y3∂yc0(y)/3 + α

[
4
(
y3 + y−1

)
∂yc0(y)−

(
5y + y−3

)]
y4 − α (5y4 − 2)

− 3

8
+

2

3
α

r→∞−−−→ −1

3
r2 +O

(
1

r

)
, (A.11)

a2 =

∫ ∞
r

dxx3
∫ ∞
x

dy
q̄2y3∂yc0(y) + q̄2y − α

[
4q̄2

(
y3 + y−1

)
∂yc0(y) + q̄2

(
5y + y−3

)]
y4 − α (5y4 − 2)

r→∞−−−→ 1

5r
q̄2 (1− 7α) +O

(
1

r2

)
, (A.12)

d0 =−
∫ ∞
r

dx

x5 − x− 2α (x5 − 3x−3)

∫ x

rH

{
2

y
∂yb0(y)− 2

y2
b0(y) +

2

3
yc0(y)

−α
[(

10

y
+

12

y5

)
∂yb0(y)−

(
10

y2
+

60

y6

)
b0(y) +

8

3

(
y − 3y−3

)
c0(y)

]}
(A.13)

r→∞−−−→ − 1

48r4
[5− π − 2 ln 2− α (82− 14π − 28 ln 2)] +O

(
1

r5

)
,

c2 =−
∫ ∞
r

dx

x5 − x− 2α (x5 − 3x−3)

∫ x

rH

dy
{

2iω̄y3∂yc1(y) + 3iω̄y2c1(y) + y−1∂ya2(y)

−y−2a2(y)− α
[
2iω̄

(
3y3 + 4y−1

)
∂yc1(y) + iω̄

(
9y2 − 4y−2

)
c1(y) (A.14)

−5
(
y−2 + 6y−6

)
a2(y) +

(
5y−1 + 6y−5

)
∂ya2(y)

]}
,
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where rH = 1− α as defined in (2.12). From large r behavior of these functions, we arrive

at the power expansion (1.14) of the viscosity functions.
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