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1 Introduction

The hypermultiplet is the most general on-shell matter multiplet with rigid N = 2 su-

persymmetry in four dimensions. It consists of a complex doublet of scalar fields and a

pair of Weyl fermions (equivalently, a single Dirac fermion), whose supersymmetry trans-

formations close only on the equations of motion. For this reason, specifying the hy-

permultiplet is equivalent to specifying the action, or equivalently, specifying the target

space of the sigma model parametrized by the hypermultiplet scalars. It has long been

known that such target spaces must be hyperkähler manifolds [1, 2]. For locally super-

symmetric theories — by which one usually means those coupled to supergravity with a

canonically normalized Einstein-Hilbert Lagrangian — the target space must instead be

quaternion-Kähler [3]. This distinction recalls that between rigid N = 1 theories, where

the target space is Kähler [4], and their locally supersymmetric counterparts, which must

be Hodge-Kähler [5].1

It is known that off-shell formulations of the hypermultiplet, employing N = 2 super-

space and involving (an infinite number of) auxiliary fields, provide a means to generate

the required target space geometry from some unconstrained generating function. To un-

derstand this better, let us elaborate first on the rigid N = 1 case. Recall that the chiral

multiplet φ, the natural N = 1 cousin of the hypermultiplet, admits a simple off-shell

representation {φ, ζα, F} with a single complex auxiliary field. (We employ a convention

where a single symbol φ may stand for both a superfield and its lowest component.) Zu-

mino showed that the most general two-derivative function of off-shell chiral multiplets φa

is described by a superspace integral [4]
∫

d4x d2θ d2θ̄ K(φ, φ̄) (1.1)

for an arbitrary real function K.2 When the auxiliary fields F a are eliminated, the com-

ponent Lagrangian takes a sigma model form3

L =− gab̄∂mφ
a∂mφ̄b̄ −

i

4
gab̄

(
ζaσmD̂mζ̄

b̄ + ζ̄ b̄σ̄mD̂mζ
a
)
+

1

16
Raābb̄(ζ

aζb)(ζ̄ āζ̄ b̄) ,

ζaα := Dαφ
a , D̂mζ

a := ∂mζ
a + Γbc

a ∂mφ
bζc . (1.2)

The metric is determined in terms of the function K, gab̄ := ∂a∂b̄K; of course, this is the

well-known Kähler metric — in using chiral multiplets we have automatically diagonalized

the complex structure — and this construction gives the explicit proof that N = 1 sigma

models in four dimensions must possess a Kähler target space geometry [4]. The key

point is that the general off-shell supersymmetric action (1.1) provides both the means to

construct the on-shell action and the generating function for the target space geometry.

This narrative can be repeated for N = 2 theories. There one has two complementary

formulations of a general off-shell hypermultiplet, depending on whether one uses harmonic

1See also [6–9] for a new perspective on these results.
2For now we ignore the possibility of a superpotential or gauged isometries.
3The fermion ζaα is normalized here in an unconventional way. We use the same normalization for N = 2

models, following [10].
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superspace [10, 11] or projective superspace [12–14]. In harmonic superspace, which aug-

ments N = 2 superspace with an auxiliary S2 manifold with harmonic coordinates ui±,

one has n pseudoreal superfields qa+, q̃a+ = −qb+Ωba where Ω is the canonical symplectic

form of Sp(n), obeying the analyticity condition

u+i D
i
αq

a+ ≡ D+
α q

a+ = 0 , Di
α ≡ (Di

α, D̄
i
α̇) . (1.3)

This q+ hypermultiplet is the natural off-shell matter multiplet of harmonic superspace

and is defined globally on the S2. The most general two-derivative action is

∫
du

∫
d4x d4θ+

(
1

2
Ωab q

a+D++qb+ +H+4(q+, u±)

)
(1.4)

with H+4(q+, u±) an arbitrary real function [15, 16]. The striking resemblance to a Hamil-

tonian system was explained in [16] (see also [17]), where it was shown that any hyperkähler

manifold locally possesses a Hamiltonian structure.

For projective superspace, one uses the same auxiliary manifold CP 1 ∼= S2 as in

harmonic superspace, but superfields are taken to be holomorphic on an open domain

of CP 1 rather than globally defined on S2, which is the main distinction between the

two approaches.4 We denote the auxiliary coordinates by vi± to distinguish them from

harmonic superspace. Sigma models are described by n complex arctic superfields ΥI+

and their antarctic conjugates ῨĪ+ = Υ̃I+. These are Grassmann analytic, D+
αΥ

I+ = 0,

and holomorphic on an open domain of CP 1, D++ΥI+ = 0. Arctic multiplets are taken

to be holomorphic near the north pole and antarctics are holomorphic near the south

pole. The combination of ΥI+ and ῨĪ+, collectively known as a polar multiplet, serves

as the general off-shell matter multiplet in projective superspace, and the most general

two-derivative action is given by [13] (see also [23] for a recent discussion)

−
1

2π

∮

C
v+i dv

i+

∫
d4x d4θ+F++(Υ+, Ῠ+, vi+) , (1.5)

involving an arbitrary real function F++ that is homogeneous of weight two in its param-

eters, F++(λΥ+, λῨ+, λvi+) = λ2F++(Υ+, Ῠ+, vi+). This function can be interpreted as

the generating function for symplectic transformations on the hyperkähler manifold [24]

(see also the pioneering work of [25] and the recent approach of [26]) and turns out to

possess a simple relationship to the harmonic Hamiltonian H+4 [27].

In both the projective and harmonic cases, the data necessary to define the hyperkähler

geometry are encoded in their respective superspace Lagrangians. In evaluating the com-

ponent actions, one must find a way to eliminate the infinite number of auxiliary fields. In

doing so, one generates a hyperkähler metric and associated complex structures that de-

scribe the sigma model parametrized by the physical scalars. In principle this can be done

explicitly for a specific generating function, although only certain classes of hyperkähler

metrics have been explicitly constructed in this way. Once the auxiliaries are eliminated

4We follow the projective superspace conventions of [18] (similar to those of [19–22]), to which we refer

for definitions, notations, and further references.
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and the geometric data constructed, the component action takes its final form. These are

distinct steps because the component reduction is just as easily done for a general geometry

as a specific one, since one can treat the conversion from generating function to hyperkähler

geometry completely formally. Our concern in this paper will be with the general action

and with the formal elimination of the auxiliaries; we will return to the subject of specific

solvable classes in the conclusion.

What about locally supersymmetric theories? In this case, there are two options,

depending on whether one couples minimally to conformal supergravity or to Poincaré

supergravity with a canonical Einstein-Hilbert term. In the N = 1 setting, a sigma model

coupled to conformal supergravity is given by
∫

d4x d2θ d2θ̄ E K(φ, φ̄) , E = sdetEM
A , (1.6)

except now the superconformal algebra includes both dilatations (D) and chiral U(1)R
rotations (A) under which φa and K must transform as

δφa = ΛDχ
a +

2i

3
ΛAχ

a , δK = δφaKa + h.c. = 2ΛDK . (1.7)

The chiral function χa(φ) describes a homothetic conformal Killing vector,

∇bχ
a = δb

a , ∇b̄χ
a = 0 , (1.8)

where ∇a and ∇ā are the target space covariant derivatives. The Kähler potential is

K ≡ χaχb̄gab̄ and describes a Kähler cone [28]. At the component level, the Lagrangian

includes a contribution from the Ricci scalar of the form 1
6RK. Usually one prefers instead

a canonically-normalized Einstein-Hilbert term, which can be achieved by imposing the

dilatation gauge K = −3 and simultaneously fixing the U(1)R symmetry. This eliminates

two scalar fields from the sigma model and converts the Kähler cone of dimension 2n into

a Hodge-Kähler manifold of dimension 2(n− 1).

In the N = 2 setting, a similar picture emerges. A sigma model coupled to N = 2

conformal supergravity must be a hyperkähler cone [29] (see [28, 30] for the rigid super-

conformal case and [31] for a discussion in general dimensions), which is a hyperkähler

manifold possessing a homothetic conformal Killing vector and SU(2)R isometries that

rotate the complex structures; such spaces are also known as Swann bundles [32]. There

exists a one-to-one correspondence between 4n-dimensional hyperkähler cones and 4(n−1)-

dimensional quaternion-Kähler manifolds [32] (see also [33] as well as [34, 35] for recent

discussions and references). The component action for a hyperkähler cone coupled to

conformal supergravity was given in [29], where its relation to the Poincaré supergravity-

coupled quaternion-Kähler action of [3] was also discussed: the elimination of four scalars

in the target space comes from fixing the dilatation and SU(2)R gauges.

Our goal in this paper is to reproduce in a systematic way the component action

of [29] for a hyperkähler cone coupled to conformal supergravity directly from (curved)

projective superspace.5 This construction is in principle sufficient because the one-to-one

5The corresponding actions in harmonic superspace were discussed in [36]. The relation between the

unconstrained harmonic potentials and general quaternion-Kähler geometry was established in [37]. The

derivation of the bosonic Lagrangian from harmonic superspace appeared in [38].
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correspondence between hyperkähler cones and quaternion-Kähler manifolds guarantees

one may construct the general action for supergravity coupled to a quaternionic-Kähler

sigma model by gauge-fixing the superconformal case appropriately [29, 33, 34]. We will

return to the question of a native superspace approach in the conclusion; until then, we

will always be referring to conformal supergravity when we mention locally supersymmetric

sigma models. To accomplish our goal, we require a covariant approach to supergravity-

matter systems employing projective superspace. Such an approach was developed in 4D

by Kuzenko, Lindström, Roček, and Tartaglino-Mazzucchelli [19–22] using conventional

N = 2 superspace (in turn based on the work of Kuzenko and Tartaglino-Mazzucchelli in

5D [39–41]). This approach was later extended in [18], which clarified a number of issues

and changed the superspace geometry to conformal superspace [42], which has a close

relationship with the superconformal tensor calculus. For this paper, we will employ the

conventions and projective superspace geometry of [18], but one could also employ those

of [19–22]. The hypermultiplet action is given in curved superspace by

−
1

2π

∮

C
dτ

∫
d4x d4θ+ E−−F++(Υ+, Ῠ+) . (1.9)

We explicitly parametrize the SU(2) contour C by the coordinate τ , and the measure

E−− is a superdeterminant of the relevant superspace vielbein.6 The generating function

F++ possesses no explicit dependence on vi+: this generalizes to curved superspace the

superconformal version of (1.5), constructed originally in flat space [43] and ensures that

the target space describes a hyperkähler cone [44]. The major barrier to this calculation

is that the usual method of eliminating the infinite number of auxiliary fields in the flat

superspace action (1.5) depends on introducing an intermediate N = 1 superspace. This is

easy to do in flat superspace and has been accomplished recently in AdS superspace [45–48],

but it is quite daunting in a general curved geometry.7 Instead, we will take inspiration from

rigid harmonic superspace and proceed directly from N = 2 superspace to the component

action. The elimination of the auxiliary fields will seem rather different at first glance from

the N = 1 approach, but will actually involve solving the same set of equations; this implies

that the coupling to conformal supergravity will in no way affect the elimination of the

hypermultiplet auxiliaries.8 Along the way, we will derive explicit formulae in projective

superspace for all of the geometric quantities necessary for describing the hyperkähler cone

and its sigma model.

This paper is laid out as follows. Section 2 provides a review of how hyperkähler ge-

ometry can be derived from flat projective superspace via the N = 1 superspace method.

Although this method seems to be useful mainly for rigid supersymmetric spaces such as

Minkowski or AdS, many of the same formulae and notation will reoccur in later sections,

6In the flat space limit, E−− = v+i dvi+/dτ so that dτ E−− reduces to the flat measure v+i dvi+. Further

details can be found in [18].
7The approach of reducing curved N = 2 superfields to N = 1 superfields has been discussed in [49–53],

but its application in this case would seem to be very difficult.
8In the quaternion-Kähler case, this is more subtle. As is evident from the corresponding harmonic [37]

and projective [35] descriptions, a hypermultiplet compensator plays the role of the effective auxiliary

variable for the on-shell hypermultiplet superfields.
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so some familiarity will be necessary. In section 3, we describe how the full N = 2 su-

perfield equations of motion lead to on-shell N = 2 hypermultiplets whose target space

is a hyperkähler cone, and we derive all the geometric data we will need from projective

superspace. We then describe in section 4 how to restrict the N = 2 equations of motion

to only the auxiliary sector, eliminating the infinite tail of auxiliary fields while keeping

the physical fields off-shell. In section 5 we test this approach by deriving the component

action in the rigid supersymmetric case, before addressing the curved case in section 6. We

comment on our results and speculate about some open questions in the conclusion.

Two appendices are included. The first gives our conventions for vector multiplets and

their component fields (these conventions were absent in [18]). The second provides some

technical details necessary to calculate the final component action.

2 A review of hyperkähler geometry from flat projective superspace

Let us begin by reviewing how projective superspace permits the construction of hy-

perkähler sigma models in flat space. This material is well-known and we refer to the

lecture notes [54] as well as [24] and [23, 55] for further details and the relevant references.

We begin with the flat projective superspace Lagrangian F++

F++ = F++(Υ+, Ῠ+, vi+) (2.1)

depending on arctic multiplets ΥI+, antarctic multiplets ῨĪ+ and the coordinate vi+. It is

analytic and holomorphic, D+
αF

++ = D++F++ = 0, by construction. The action is

S = −
1

2π

∮

C
v+i dv

i+

∫
d4x d4θ+F++ = −

1

2π

∮

C
v+i dv

i+

∫
d4x (D−)4F++ . (2.2)

This can be evaluated as an integral in N = 1 superspace. To do this, recast all superfields

so that they depend solely on the complex coordinate ζ = v2+/v1+ rather than v1+ and

v2+ separately. For example, one introduces a new arctic superfield ΥI(ζ),

ΥI :=
1

v1+
ΥI+ = ΦI + ζΣI +

∞∑

n=2

ζnΥI
n . (2.3)

If we interpret the components in this expansion as N = 1 superfields, then ΦI is chiral

and ΣI is complex linear, while the infinite tail of superfields ΥI
n are unconstrained N = 1

superfields. The antarctic superfield possesses a similar expansion

ῨĪ =
1

v2+
ῨI+ = Φ̄Ī −

1

ζ
Σ̄Ī +

∞∑

n=2

(−1)nζ−nῩĪ
n . (2.4)

Rewriting the projective superspace Lagrangian as F++ = iv1+v2+F(ζ), we find

S =

∫
d4x d2θ1 d

2θ̄1L , L =

∮

C

dζ

2πiζ
F(Υ, Ῠ, ζ) , (2.5)
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in terms of the N = 1 superspace Lagrangian L . Note that while F++ had to be homo-

geneous of weight two in its parameters, no such constraint is imposed on F .

Because the superfields ΥI
n with n ≥ 2 are unconstrained N = 1 superfields, their

equations of motion are purely algebraic9

∮

C

dζ

2πiζ

∂F

∂ΥI
ζn = 0 ,

∮

C

dζ

2πiζ

∂F

∂ῨĪ
ζ−n = 0 , n ≥ 2 . (2.6)

Imposing these, the Lagrangian becomes solely a function of ΦI , ΣI and their complex con-

jugates. Now perform a duality transformation, exchanging the complex linear superfield

ΣI for a chiral superfield ΨI ,

S =

∫
d4x d2θ1 d

2θ̄1
(
L − ΣIΨI − Σ̄IΨ̄I

)
. (2.7)

The equation of motion for ΨI enforces the complex linearity of ΣI , recovering (2.5).

Alternatively, we can eliminate ΣI using its own equation of motion, effecting a Legendre

transformation

K(Φ, Φ̄,Ψ, Ψ̄) = L (Φ, Φ̄,Σ, Σ̄)− ΣIΨI − Σ̄IΨ̄I . (2.8)

The resulting function K is a Kähler potential with complex coordinates φa = (ΦI ,ΨI).

This Kähler potential describes a hyperkähler manifold. In addition to the manifest

N = 1 supersymmetry, there is a hidden second supersymmetry on-shell, which manifests

in N = 1 language as [59]

δφa = ωab ρ̄α̇ D̄
α̇Kb = ωa

b̄ ρ̄α̇ D̄
α̇φ̄b̄ (2.9)

for constant ρ̄α̇ ≡ ξ̄α̇
2, the second supersymmetry parameter. The tensor ωab is antisym-

metric, covariantly constant, and obeys ωa
b̄ω

b̄
c = ωabωbc = −δac. The special coordinates

φa = (ΦI ,ΨI) are Darboux coordinates for which [24, 55]

ωab =

(
0 δIJ

−δI
J 0

)
, ωab =

(
0 δI

J

−δIJ 0

)
. (2.10)

The presence of such an antisymmetric covariantly constant tensor ensures that the Kähler

manifold is actually hyperkähler, with a triplet of closed hyperkähler two-forms Ωij ,

Ω11 =
1

2
ωab dφ

a ∧ dφb = dΦI ∧ dΨI , (2.11a)

Ω12 = Ω21 =
1

2
gab̄ dφ

a ∧ dφ̄b̄ , (2.11b)

Ω22 =
1

2
ω̄āb̄ dφ̄

ā ∧ dφ̄b̄ = dΦ̄Ī ∧ dΨ̄I . (2.11c)

9These equations of motion were described in [13]. They were given explicitly in [56, 57], for a class of

ζ-independent functions F whose resulting hyperkähler manifolds were shown to be cotangent bundles of

Kähler manifolds, building off a related observation in [58]. The full explicit form, discussed here, appeared

later in [24].
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The three hyperkähler two-forms are related to three covariantly constant complex struc-

tures (Jij)
µ
ν = gµρ(Ωij)ρν ,

(J11)
µ
ν =

(
0 0

ωā
b 0

)
, (J12)

µ
ν =

(
−1

2δ
a
b 0

0 1
2δ

ā
b̄

)
, (J22)

µ
ν =

(
0 ωa

b̄

0 0

)
, (2.12)

which obey the multiplication rule

JijJkl =
1

2
ǫi(kǫl)j +

1

2

(
ǫi(kJl)j + ǫj(kJl)i

)
. (2.13)

Introducing JA := −i(τA)
i
jJ

j
i, A = 1, 2, 3 with the Pauli matrices (τA)

i
j , the multipli-

cation rule becomes that of the quaternions, JAJB = −δAB + ǫABCJC . The complex

structures in this form are given by

(J1)
µ
ν =

(
0 −iωa

b̄

iωā
b 0

)
, (J2)

µ
ν =

(
0 ωa

b̄

ωā
b 0

)
, (J3)

µ
ν =

(
iδab 0

0 −iδāb̄

)
. (2.14)

J3 = −2iJ12 is the complex structure associated with the manifest N = 1 supersymmetry.

We will eventually be interested in the case where the model is superconformal [44].

This amounts to the condition that F++ is homogeneous of degree two, 2F++ = F+
I Υ

I++

F+
Ī
ῨĪ+, which is equivalent to requiring the projective Lagrangian F++ to be independent

of vi+. In contrast to the N = 1 situation, there is no requirement that F++ be separately

homogeneous in ΥI+. This is because arctic and antarctic multiplets are both inert under

U(1)R, so there is no superconformal symmetry that distinguishes between them.10

Now the Kähler potential K turns out to possess a chiral homothetic conformal Killing

vector (CKV) χa obeying (1.8), implying that the Kähler potential can be chosen (up to a

Kähler transformation) as K = χaχa. For the Darboux coordinate system, the homothetic

conformal Killing vector takes the simple form χa = (ΦI ,ΨI). The presence of χa ensures

that the hyperkähler manifold is actually a hyperkähler cone. In addition to the two super-

symmetry transformations, it admits a full set of N = 2 superconformal transformations,

including dilatation and SU(2)R transformations. These manifest as [55]

δφa = ΛDχ
a + λ12χa − λ22ωabχb , (2.15)

where ΛD is the scale parameter and λij is the SU(2)R transformation parameter. The

fields φa are inert under U(1)R.

3 Hyperkähler geometry and on-shell N = 2 superfields

Our goal in this section is to establish the geometric properties of the target space geometry

of (1.9) (including the results of the previous section) without explicitly reducing to N = 1

superspace. This is necessary in order to derive the component action in the presence of

10Moreover, imposing a separate homogeneity condition for the arctics and antarctics is equivalent to

assigning an additional global U(1) isometry to the projective Lagrangian, which descends to the hyperkähler

manifold as a new triholomorphic isometry. Such an isometry is not generically present in hyperkähler cones.

This issue was already noted in the context of 3D sigma models with (3, 0) AdS supersymmetry [48].
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supergravity, where anN = 1 superspace is not readily available. Our goal will be to reduce

the arctic superfields to on-shell N = 2 superfields: we will define these as φa = (ΦI ,ΨI)

in analogy to the N = 1 superfields of the previous section.

Our starting point is equivalent to that discussed in [57] and [24]: we will analyze the

full N = 2 superfield equations of motion. If the action (1.9) is stationary under arbitrary

variations of ΥI+,

−
1

2π

∮

C
dτ

∫
d4x d4θ+E−− δΥI+∂F++

∂ΥI+
= 0 , (3.1)

then ∂F++/∂ΥI+ must itself be an arctic superfield. (The integral vanishes in this case

since the contour C can be retracted to the north pole without encountering singularities.)

This result holds both in the rigid and locally supersymmetric situations. This leads one

to introduce superfields Γ+
I and Γ̆+

Ī
, defined by

Γ+
I := −i

∂F++

∂ΥI+
, Γ̆+

Ī
:= i

∂F++

∂ῨĪ+
. (3.2)

The equations of motion require Γ+
I and Γ̆+

Ī
to be, respectively, arctic and antarctic.11 The

superfields ΦI and ΨI correspond to the leading terms in the ζ expansions of ΥI+ and Γ+
I ,

ΥI+ = v1+
(
ΦI +O(ζ)

)
, Γ+

I = v1+
(
ΨI +O(ζ)

)
(3.3)

and can be defined equivalently via contour integration,12

ΦI =

∮

C

dζ

2πiζ

ΥI+

v1+
, ΨI =

∮

C

dζ

2πiζ

Γ+
I

v1+
. (3.4)

We will assume that the contour C winds around the north pole (and thus the south pole as

well) exactly once and that the arctic (antarctic) multiplets possess no singularities in the

northern (southern) chart bounded by C. Consistency with the flat space N = 1 analysis

implies that the on-shell N = 2 superfields ΥI+ and ῨĪ+ must be given by power series in

the N = 2 superfields φa = (ΦI ,ΨI) and their complex conjugates. Because no fields of

the conformal supergravity multiplet appear in the solution of the power series, the sigma

model for local supersymmetry will be identical as for the rigid superconformal case.

The N = 2 superconformal transformations of ΦI and ΨI can be derived from their

definitions (3.4),

δΦI =

∮

C

dζ

2πiζ

δΥI+

v1+
, δΨI =

∮

C

dζ

2πiζ

δΓ+
I

v1+
, (3.5)

where δ consists of any local (super)symmetry transformation. Consistency dictates that

δΥI+ can equivalently be calculated by

δΥI+ = δφa∂aΥ
I+ + δφ̄ā∂āΥ

I+ . (3.6)

Using only these results, let us briefly discuss how the geometry of the target space follows.

11These can be interpreted as dual superfields; see [60] for a discussion of polar-polar duality.
12In defining the N = 2 superfields ΦI and ΨI , we implicitly choose to work in the central gauge of

projective superspace as discussed in [18].
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3.1 Hyperkähler geometry

Here we follow closely the approach of [24]. The two-form13

Ω++ = dΥI+ ∧ dΓ+
I = dῨĪ+ ∧ dΓ̆+

Ī
(3.7)

is both arctic and antarctic when the fullN = 2 equations of motion are imposed, so it must

be globally-defined on the auxiliary manifold. This means it is given by Ω++ = Ωij v
i+vj+

for a triplet of two-forms Ωij . It is obvious from its definition that Ω11 = dΦI ∧ dΨI and

Ω22 = dΦ̄Ī ∧ dΨĪ , while Ω12 can only be a (1, 1) form, Ω12 = 1
2dφ

a ∧ dφ̄b̄gab̄, for some

tensor gab̄. The expression for Ω++ can then be written as

Ω++ = v1+v2+
(

1

2ζ
dφa ∧ dφb ωab + dφa ∧ dφ̄b̄gab̄ +

ζ

2
dφ̄ā ∧ dφ̄b̄ ωāb̄

)
, (3.8)

identifying

ωab =
1

v1+v1+
(∂aΥ

I+∂bΓ
+
I − ∂aΓ

+
I ∂bΥ

I+) , (3.9a)

gab̄ =
1

v1+v2+
(∂aΥ

I+∂b̄Γ
+
I − ∂aΓ

+
I ∂b̄Υ

I+) , (3.9b)

ωāb̄ =
1

v2+v2+
(∂āΥ

I+∂b̄Γ
+
I − ∂āΓ

+
I ∂b̄Υ

I+) . (3.9c)

These relations also hold upon replacing ΥI+ → ῨĪ+ and Γ+
I → Γ̆+

Ī
.

Because Ω++ is closed, it follows that both ωab and gab̄ must be closed when viewed

respectively as (2, 0) and (1, 1) forms. (The closure of ωab is obvious in the Darboux

coordinates.) The closure of gab̄ implies that it must be the second derivative of a function

K. This function can be chosen as in the explicit N = 1 reduction as

K = L − ΣIΨI − Σ̄ĪΨ̄Ī , L :=

∮

C

dζ

2πiζ

F++

iv1+v2+
. (3.10)

Identifying ΣI and ΣI as the second terms in the expansions of ΥI+ and Γ+
I , one can show

∂aK = ΣI∂aΦ
I − ΣI∂aΨI ,

∂b̄∂aK = ∂b̄ΣI∂aΦ
I − ∂b̄Σ

I∂aΨI =

∮

C

dζ

2πiζ

1

ζ
(∂aΥ

I∂b̄ΓI − ∂aΓI∂b̄Υ
I) ≡ gab̄ . (3.11)

Let us next establish that ωab = gac̄ω
c̄d̄gd̄b where ωāb̄ is the inverse of ωāb̄, given by

ωāb̄ =

(
0 δĪ J̄

−δĪ
J̄ 0

)
, ωāb̄ωb̄c̄ = −δāc̄ . (3.12)

A proof of this follows by using the explicit antarctic expression for gab̄ and writing

gac̄ω
c̄d̄gd̄b = −

1

(v1+v2+)2
(∂aῨ

Ī+∂K̄ Γ̆
+
Ī
− ∂aΓ̆

+
Ī
∂K̄Ῠ

Ī+)(∂K̄ῨJ̄+∂bΓ̆
+
J̄
− ∂K̄ Γ̆+

J̄
∂bῨ

J̄+)

+
1

(v1+v2+)2
(∂aῨ

Ī+∂K̄ Γ̆+
Ī
− ∂aΓ̆

+
Ī
∂K̄ῨĪ+)(∂K̄ῨJ̄+∂bΓ̆

+
J̄
− ∂K̄ Γ̆

+
J̄
∂bῨ

J̄+) ,

∂Ī :=
∂

∂Φ̄Ī
, ∂ Ī =

∂

∂Ψ̄Ī

. (3.13)

13For target space quantities such as Ω++, we follow the standard conventions for differential forms rather

than the superspace conventions of e.g. [61].
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This expression must be independent of vi+, so we can discard all terms that go as negative

powers of ζ. Using

∂J̄Ῠ
Ī+ = v2+(δĪJ̄ +O(1/ζ)) , ∂J̄ Γ̆+

Ī
= v2+(δJ̄Ī +O(1/ζ)) ,

∂aῨ
Ī+ ∼ ∂aΓ̆

Ī+ ∼ ∂J̄ῨĪ+ ∼ ∂J̄ Γ̆+
Ī
∼ v2+O(1/ζ) , (3.14)

we see that the only terms that contribute are

gac̄ω
c̄d̄gd̄b =

1

(v1+)2

(
∂aῨ

Ī+∂bΓ̆
+
Ī
− ∂aΓ̆

+
Ī
∂bῨ

Ī+
)
= ωab , (3.15)

which is what we wished to establish. This result actually guarantees that gab̄ is invertible

because both sides of (3.15) must have non-vanishing determinant. In other words, the

non-degeneracy of the metric gab̄ is implied if we can solve the equations (3.1) completely

in terms of the coordinates ΦI and ΨI . This equality also guarantees that ωab is covariantly

constant. It follows that the manifold is hyperkähler.

3.2 Gauged isometries from projective superspace

Suppose that the projective superspace Lagrangian possesses some gauge invariance —

that is, the arctic multiplets possess gauged holomorphic isometries of the form

δgΥ
I+ = λrJ I+

r , J I+
r = J I+

r (Υ+, vi+) , (3.16)

for an arctic function J I+
r , and similarly for the antarctic multiplets, with r labelling the

adjoint representation of the gauge group. Let us show how these descend to triholomorphic

isometries in the hyperkähler manifold, rederiving the results of [59].14

Because the projective Lagrangian is gauge-invariant,15

δgF
++ = iλr(Γ+

I J
I+
r − Γ̆+

Ī
J̆ Ī+
r ) = 0 , (3.17)

we may introduce a real quantity

D++
r := Γ+

I J
I+
r = Γ̆+

Ī
J̆ Ī+
r . (3.18)

This is the N = 2 moment map (or Killing potential) in projective superspace.16 By

construction, the gauge transformation of Γ+
I is

δgΓ
+
I ≡ λrJ +

rI = −λr∂I+J
J+
r Γ+

J , ∂I+ :=
∂

∂ΥI+
(3.19)

14A treatment based on N = 1 superspace methods can be found in [62] and [63] for flat 4D and 5D

cases, and [47, 48] for AdS geometries.
15It is actually not necessary for the Lagrangian to be fully gauge invariant, provided that one can

consistently introduce a naked prepotential to counter its gauge transformation property. As discussed

in [59], the prepotential can be absorbed in a covariant framework by introducing a fictitious multiplet that

drops out of the action (its metric vanishes), except for its modification of the moment map. In this way, we

retain the description above with only covariant hypermultiplets and no prepotentials. We thank Martin

Roček for pointing out this important subtlety.
16The N = 1 formulation of the N = 2 Killing potential appeared in [59]. Harmonic and projective

superspace formulations appeared explicitly in [36] and [63].
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and so it follows that D++
r transforms in the co-adjoint of the gauge group,

δgD
++
r = λsΓ+

I (J
J+
s ∂J+J

I+
r − J J+

r ∂J+J
I+
s ) = −λsfsr

tD++
t . (3.20)

When the equations of motion are imposed, the gauge transformations of the arc-

tic fields must be manifested on the target space of complex fields. As a consequence

of the transformation properties of ΥI+ and Γ+
I , the two-form Ω++ is gauge-invariant.

Interpreting the gauge transformation as a target space transformation, it follows that

LJΩ
++ vanishes, ensuring that gauged isometries in projective superspace descend to tri-

holomorphic isometries in the target space. To derive this explicitly, observe that for

J I+
r (Υ+, vi+) ≡ v1+J I

r (Υ, ζ),

δgφ
a = λrJa

r , JIr = J I
r (Φ, 0) , Jr I = −∂IJ

J
r (Φ)ΨJ . (3.21)

Now D++
r must be both arctic and antarctic and so must be given by Dr ijv

i+vj+, where

D++
r = v1+v2+

(1
ζ
Λr + iDr + ζΛ̄r

)
,

Λr = ΨIJ
I
r (Φ) , Dr = −iJa

rKa = iJ ā
rKā . (3.22)

The quantity Dr is the N = 1 Killing potential and is related to the holomorphic quantity

Λr and the Killing vector Ja
r via [59]

Ja
r = igab̄∂b̄Dr = ωab∂bΛr , J ā

r = −igāb∂bDr = ωāb̄∂b̄Λ̄r . (3.23)

The relations (3.23) can equivalently be written

∇µDr
ij = −(Ωij)µνJ

ν
r . (3.24)

From this equation, one can prove that the Killing vector Jµr is triholomorphic.

It is worth mentioning that if F++ is independent of vi+, so that the target space is a

hyperkähler cone, J I+
r must also be independent of vi+ and homogeneous in ΥI+ of degree

one, ΥJ+∂J+J
I+
r = J I+

r . The N = 2 moment map can then equivalently be defined as

D++
r =

1

2
Γ+
I XrΥ

I+ −
1

2
ΥI+XrΓ

+
I =

1

2
Γ+
I J

I+
r −

1

2
ΥI+J +

rI . (3.25)

This can be derived from Ω++, replacing one d with D0 and the other with the gauge

generator Xr, leading to an explicit expression for its components,

Dr ij = −
1

2
(Ωij)µνχ

µJνr =⇒ Λr = −
1

2
ωabχ

aJr
b , Dr = −

i

2
(Ja
rχa − J ā

rχā) , (3.26)

in terms of the homothetic conformal Killing vector χµ.
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3.3 Superconformal isometries

Now let us analyze the superconformal properties of the target space, following roughly

the same approach as [44, 55], to which we refer for further details. The arctic multiplet

ΥI+ transforms locally under dilatations and SU(2)R transformations as

δΥI+ = ΛDDΥ
I+ + λijI

j
iΥ

I+ = (ΛD + λ−+)ΥI+ − λ++D−−ΥI+ ,

λ++ = λijv+i v
+
j , λ+− = λijv+i v

−
j , (3.27)

and similarly for ῨĪ+. Both are inert under U(1)R, and so are their dual fields Γ+
I and Γ̆+

Ī
.

The above transformation should map to the target space as

δφa = ΛDk
a
D + λijk

j
i
a = ΛDk

a
D − λijkij

a (3.28)

for some choice of vectors kaD := Dφa and kij
a := Iijφ

a. Let us recover their properties

using projective superspace.

Superconformal invariance dictates that the projective Lagrangian transforms as

δF++ = (2ΛD + 2λ+−)F++ − λ++D−−F++ , (3.29)

implying that F++ is homogeneous of degree two in the projective multiplets and possesses

no explicit dependence on vi+. It follows that the fields Γ+
I and Γ̆+

Ī
transform in the same

way as ΥI+ and ῨĪ+ under superconformal transformations. From the definitions (3.4) of

ΦI and ΨI , it is clear that they possess unit dilatation weight, so we establish kaD := Dφa =

(ΦI ,ΨI). A similar calculation with ΣI , the second component in the ζ-expansion of ΥI+,

establishes that it also has unit dilatation weight. This leads to

2K = kaD∂aK + kāD∂āK (3.30)

using the definition (3.10) of the Kähler potential.

Next, we establish the SU(2)R transformation properties of the fields. Consider first

the diagonal U(1) subgroup of SU(2)R generated by I11 = −I22.
17 It acts as

I11φ
a = −

1

2
kaD , I11φ̄

ā = +
1

2
kāD . (3.31)

Using I11Σ
I = 1

2Σ
I , it is easy to show that the Kähler potential (3.10) is inert. This

implies that kaD ≡ χa is a homothetic conformal Killing vector. Now the off-diagonal

SU(2)R component I12 = I22 annihilates the antichiral fields and acts on the chiral ones as

I22Φ
I =

∂K

∂ΨI
, I22ΨI = −

∂K

∂ΦI
=⇒ I22φ

a = ωabKb = ωa
b̄χ

b̄ . (3.32)

Putting these results together, we deduce that

Iijφ
µ = (J i

j)
µ
νχ

ν . (3.33)

This implies that the Kähler potential is invariant under all of the SU(2) generators.

17This transformation was called the shadow chiral rotation in [44, 55].
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At this stage, we should point out how these isometries act on the two-form Ω++.

Under dilatations,

δDΩ
++ = ΛDLχΩ

++ = 2ΛDΩ
++ =⇒ Lχωab = 2ωab , Lχgab̄ = 2gab̄ , (3.34)

while SU(2) transformations rotate the complex structures,

δSU(2)Ω
++ = −λ++D−−Ω++ + 2λ0Ω++ = −2λkiΩjk v

i+vj+ =⇒

δSU(2)Ωij = −2λk(iΩj)k . (3.35)

This is consistent with the target space transformations

δφµ = ΛDχ
µ + λij(J

j
i)
µ
νχ

ν . (3.36)

These comprise the isometries required of a hyperkähler cone.

3.4 Supersymmetry and fermion transformations

In addition to the 2n complex bosons φa parametrizing the target space, there must be 2n

Weyl fermions. It will be convenient for us to define the fermions to be consistent with the

N = 1 reduction — that is, we will associate one left-handed Weyl fermion with each of the

φa and one right-handed Weyl fermion with each of the φ̄ā. Using the on-shell superfields

φa and φ̄ā, we define (using the curved superspace spinor derivatives ∇i
α and ∇̄α̇i)

ζaα := ∇1
α φ

a , ζ̄ āα̇ := ∇̄α̇1 φ̄
ā . (3.37)

The set of fields {φa, φ̄ā, ζaα, ζ̄
ā
α̇} constitute the on-shell field content of the supersymmetric

sigma model. Our goal in this section is to derive their supersymmetry transformations.

We first establish the action of the spinor derivatives on the scalars φµ:18

∇1
αφ

a ≡ ζaα , ∇2
αφ

a = 0 , ∇1
αφ̄

ā = 0 , ∇2
αφ̄

ā = ωā
bζ

b
α , (3.38)

and similarly for their complex conjugates. Take the partial pullback of Ω++ to the super-

manifold, replacing one of the exterior target space derivatives with a spinor derivative:

dφµ∂µΥ
I+∇i

αΓ
+
I − dφµ∂µΓ

+
I ∇i

αΥ
I+

= v1+v2+
(1
ζ
dφa∇i

αφ
bωab + dφa∇i

αφ̄
b̄gab̄ + dφ̄b̄∇i

αφ
agab̄ + ζdφ̄ā∇i

αφ̄
b̄ωab

)
. (3.39)

Now contract with v+i and the desired results follow.

The spinor derivatives of ζaα and ζ̄ āα̇ can be derived directly. Noting, for example, that

ζaα = ∇1
αφa = −ωa

b̄∇
2
αφ̄b̄ one can evaluate any spinor derivative of ζaα by exploiting the

fact that each spinor derivative annihilates either φa or φ̄b̄. This leads to

∇1
βζ

a
α = 2 ǫβαW̄

rωa
b̄J

b̄
r − Γcb

a ζcβ ζ
b
α , ∇2

βζ
a
α = 2 ǫβαW̄

rJa
r , (3.40a)

∇̄β̇2ζ
a
α = 2i ωa

b̄∇αβ̇φ̄
b̄ − Γcd

a ωc
c̄ ζ̄

c̄
β̇
ζdα , ∇̄β̇1ζ

a
α = −2i∇αβ̇φ

a , (3.40b)

18Such superfields φµ were called deformed Fayet-Sohnius multiplets in [64].
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and similarly for their complex conjugates. The superfield W r is the chiral field strength

of the N = 2 vector multiplet, involving components {W r, Arm, λ
r
αi, Y

r ij}. We collect their

definitions and supersymmetry transformations in appendix A.

We will also need the dilatation, U(1), and SU(2)R transformations of the fermions,

Dζaα =
3

2
ζaα − Γbc

a(Dφb) ζcα , Aζaα = −iζaα , Iijζ
a
α = −Γbc

a(Iijφ
b) ζcα , (3.41)

and their S-supersymmetry transformations,

Sβ1ζ
a
α = 4ǫβαχ

a , Sβ2ζ
a
α = −4ǫβαω

a
b̄χ

b̄ , S̄β̇iζaα = 0 . (3.42)

All of the matter fields are invariant under the special conformal generator Ka.

3.5 Sp(n)-covariant formulation and summary

We have not commented yet on one important feature of hyperkähler manifolds: the tan-

gent space group is actually Sp(n)×Sp(1) (due to the existence of the covariantly constant

holomorphic tensor ωab) and the Sp(1) part of the target space connection vanishes. Fol-

lowing [65, 66] (see also [3]), we can introduce a tensor fµi
a and its inverse fa

i µ, with an

Sp(n) index a = 1, · · · , 2n. These obey the conditions

fµi
afa

i ν = δµ
ν , fa

i µfµj
b = δa

bδij , fµi
a = −ǫij ω

abgµν fb
j ν (3.43)

and allow one to convert any vector V µ into an Sp(n)× Sp(1) vector, Vi
a = V µfµi

a. They

are related to the metric, the hyperkähler two-forms and the complex structures via

gµν = ǫijωab fµi
afνj

b , (Ωij)µν = fµ
a(ifν

bj) ωab , (JA)
µ
ν = ifνi

a(τA)
i
jfa

j µ . (3.44)

Requiring fµi
a to be covariantly constant,

∇νfµi
a := ∂νfµi

a − Γνµ
ρfρi

a + Γνb
afµi

b = 0 , (3.45)

defines the Sp(n) connection Γµb
a.

We are actually interested in the situation where the indices a, b, · · · are not quite flat

tangent space Sp(n) indices, but rather complex world indices in the coordinate system

that diagonalizes the complex structure J3. We impose the pseudoreality condition

(
dφµfµi

a
)∗

= dφµfµ
iā = ǫijgāaωab dφ

µfµj
b , (3.46)

where gab̄ is the Kähler metric associated with J3. In our conventions, the tensors fµi
a,

fµ
iā and their inverses are given by

fµ1
a = δµ

a , fµ2
a = gµb ω

ba , fµ
1ā = δµ

ā , fµ
2ā = gµb̄ ω

b̄ā ,

fa
1µ = δa

µ , fa
2µ = −ωab g

bµ , fā1
µ = δā

µ , fā2
µ = −ωāb̄ g

b̄µ , (3.47)

and the Sp(n) connection is identical to the Kähler connection.
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The advantage of introducing the tensors fµi
a is that they simplify the equations given

in the preceding sections. For example, the spinor derivatives of φµ in (3.38) become

∇i
αφ

µ = ζbα fb
i µ , ∇̄α̇

i φ
µ = ζ̄α̇b̄ fb̄i

µ , (3.48)

equivalent to the supersymmetry transformations

δQφ
µ = ξiζ

b fb
iµ + ξ̄iζ̄ b̄ fb̄i

µ , (3.49)

where ξαi and ξ̄iα̇ are the supersymmetry parameters.

Similarly, if we introduce the pseudoreal Sp(n) × Sp(1) sections Ai
a associated with

the conformal Killing vectors χµ [29]

Ai
a := χµfµi

a , Aiā := χµfµ
iā , (Ai

a)∗ = Aiā = ǫijωā
bAj

b , (3.50)

then the supersymmetry and S-supersymmetry transformations of the fermions can be

written compactly as

δζaα = 2i (∇̂αβ̇Ai
a) ξ̄β̇i − 2W̄ rJri

a ǫijζαj − 4ηiαAi
a − Γbc

aδφb ζcα ,

δζ̄α̇ā = 2i (∇̂α̇βAiā) ξβi + 2W rJr
iā ǫij ζ̄

α̇j − 4η̄α̇i A
iā − Γb̄c̄

āδφ̄b̄ ζ̄α̇c̄ , (3.51)

where ηiα and η̄iα̇ are the S-supersymmetry parameters, Jri
a := Jr

µfµi
a is the Killing

vector associated with the gauged isometries, and ∇̂a includes the Sp(n) connection. For

reference, we also give the transformations of the fermions under gauged isometries,

δgζ
a
α = λrζbα∇bJ

a
r − Γbc

aδgφ
bζcα , δg ζ̄

α̇ā = λr ζ̄α̇b̄∇b̄J
ā
r − Γb̄c̄

āδgφ̄
b̄ζ̄α̇c̄ . (3.52)

Note that the scalar fields φµ and the fermions ζbα transform into each other (and

into the components of the vector multiplet) under supersymmetry. The conditions (3.38)

(equivalently (3.48)) have eliminated the hypermultiplet auxiliary fields and placed the

entire multiplet on-shell: in particular, one can check that the supersymmetry algebra closes

only up to the equations of motion. These results match those of [29], up to differences in

conventions discussed at the end of section 6.

4 Building blocks of a component reduction

In the previous section, we addressed the on-shell structure of the target space multiplets

φµ, where the auxiliary fields were completely eliminated. In a manifestly supersymmetric

setting — which we have implicitly been using — this actually is a stronger condition than

what we want. It corresponds, in the N = 1 situation, to specifying not only the algebraic

equations of motion for the auxiliaries F a but also the dynamical equations of motion for

the physical fields φa and ζaα. Our goal in this section now is to describe how to analyze

the superfield equations of motion for the arctic multiplet so that only the auxiliary fields

are placed on-shell.
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4.1 Component expansions of the projective multiplets

We begin by analyzing the component structure of the projective multiplets. The conven-

tional approach is to reduce to N = 1 superfields and superspace, but as we have already

discussed in the introduction, this is far more difficult in the curved case. Instead, it will

be more convenient to reduce directly to component fields. Much insight can be gleaned

from the harmonic superspace approach to sigma models (see section 11.4 of [10]), where

no N = 1 subspace is readily available. The first step is to choose an appropriate system

of coordinates. In projective superspace, the following coordinates are well-defined in the

north chart and suitable for arctic superfields [46, 47]:

xmN :=xm −
i

v1+
(θ+σmθ̄1 + iθ1σmθ̄+) , θ±α := v±i θα

i ,

ζ :=
v2+

v1+
, v1+ , z−−

1 :=
v1−

v1+
=

v−2
v1+

= e−2iψ ζ̄ . (4.1)

These lead to the simple expressions

D+
α =

∂

∂θα−
, D++ =

∂

∂z−−
1

, (4.2)

implying that holomorphic analytic multiplets are independent of z−−
1 and θα−. An arc-

tic multiplet ΥI+, well-defined in the north chart, is then simply specified as a function

ΥI+(xN , v
1+, ζ, θ+) possessing an arctic expansion in ζ. Schematically, such a superfield

admits a decomposition (following closely the approach of [10])

ΥI+ = ΥI+|θ+=0 + θα+ΨI
α + θ̄+α̇ Ψ̄Iα̇ + (θ+)2M I− + (θ̄+)2N I−

+ iθ+σaθ̄+AI−a − 2(θ̄+)2θα+ ΞI−−
α − 2(θ+)2θ̄+α̇ Ξ̄Iα̇−− + (θ+)2(θ̄+)2 P I(−3) , (4.3)

where the component fields ΨI
α, · · · , P

I(−3) depend on xN , v
1+ and ζ = v2+/v1+. Their

dependence on v1+ is indicated by their charge, that is,

ΨI
α = ΨI

α(xN , ζ) , · · · , P I(−3) =
1

(v1+)3
P I(xN , ζ) (4.4)

and all expressions are arctic in ζ.

In a curved background, it is more convenient to define the components of ΥI+ in a

covariant way. The closest analogue to the expansion given above is to define

ΨI
α :=

1

v1+
∇1
αΥ

I+ , ΨI
α̇ :=

1

v1+
∇̄1
α̇Υ

I+ , (4.5a)

M I− := −
1

4

1

(v1+)2
(∇1)2ΥI+ , N I− := −

1

4

1

(v1+)2
(∇̄1)2ΥI+ , (4.5b)

AI−
αβ̇

:= −i
1

(v1+)2
∇1
α∇

1

β̇
ΥI+ , (4.5c)

ΞI−−
α :=

1

8

1

(v1+)3
∇1
α(∇̄

1)2ΥI+ , ΞI−−
α̇ :=

1

8

1

(v1+)3
∇̄1
α̇(∇

1)2ΥI+ , (4.5d)

P I(−3) :=
1

16

1

(v1+)4
(∇1)2(∇̄1)2ΥI+ . (4.5e)

– 17 –



J
H
E
P
0
6
(
2
0
1
5
)
1
6
1

Each of these components is manifestly holomorphic and well-defined in the north chart.

The corresponding formulae for the components of an antarctic multiplet ῨĪ+ are found

by replacing v1+ → v2+ and ∇1
α → ∇2

α.

An inconvenient feature of these component fields is that the arctic and antarctic fields

are naturally defined in terms of different sets of spinor derivatives. Moreover, when we

actually analyze the component action, we will encounter the spinor derivatives ∇−
α :=

v−i ∇
i
α, which involve a linear combination of ∇1

α and ∇2
α. Using ∇−

α = 1
v1+

∇1
α+ z−−

1 ∇+
α , it

is straightforward to determine the relation between expressions like ∇−
αΥ

I+ and ∇1
αΥI+.

The expressions for the lowest few components are rather simple:

∇−
αΥ

I+ = ΨI
α , ∇−

α ∇̄
−

β̇
ΥI+ = iAI−

αβ̇
− 2iz−−

1 ∇αβ̇Υ
I+ , (4.6a)

−
1

4
(∇̄−)2ΥI+ = N I− − z−−

1 W rJ I+
r , −

1

4
(∇−)2ΥI+ = M I− − z−−

1 W̄ rJ I+
r . (4.6b)

Recall that the arctic function J I+
r arises from the action of the gauge generator on ΥI+,

so some of the terms in the second line above are present only when isometries are gauged.

The expressions with three spinor derivatives are

1

8
∇−
α (∇̄

−)2ΥI+ = ΞI−−
α + z−−

1

(
−

i

2
∇αβ̇∇̄

β̇−ΥI+ + 2λr−α J I+
r +

1

2
W r∇−

αJ
I+
r

−
1

2
Wα

β∇−
βΥ

I+ −
3

2
χ−
αΥ

I+ +
3

2
χ+
αD

−−ΥI+

)

− (z−−
1 )2λr+α J I+

r , (4.6c)

1

8
∇̄α̇−(∇−)2ΥI+ = Ξ̄I−−

α̇ + z−−
1

(
i

2
∇α̇β∇−

βΥ
I+ − 2λ̄α̇r−J I+

r +
1

2
W̄ r∇̄α̇−J I+

r

−
1

2
W̄ α̇

β̇∇̄
β̇−ΥI+ +

3

2
χ̄α̇−ΥI+ −

3

2
χ̄α̇+D−−ΥI+

)

+ (z−−
1 )2λ̄α̇r+J I+

r , (4.6d)

and involve the covariant conformal supergravity fields Wαβ and χαi as well as the gaugino

λrαi. The term with four spinor derivatives is the most complicated:

1

16
(∇−)2(∇̄−)2ΥI+ = P I(−3) + z−−

1

{
−

i

2
∇α̇α∇−

α∇
−
α̇Υ

I+ − 3DD−−ΥI+

+
3

2
χα+D−−∇−

αΥ
I+ −

3

2
χ̄+
α̇D

−−∇̄α̇−ΥI+

+ 2λαr−∇−
αJ

I+
r − 2λ̄r−α̇ ∇̄α̇−J I+

r

+
1

4
W̄ r(∇̄−)2J I+

r +
1

4
W r(∇−)2J I+

r + 3Y r−−J I+
r

}

+ (z−−
1 )2

{
3

2
DΥI+ − λαr+∇−

αJ
I+
r + λ̄r+α̇ ∇̄α̇−J I+

r

−
1

2
W rW̄ s {Xr, Xs}Υ

I+ − 3Y r−+J I+
r +

1

2
∇αα̇∇

α̇αΥI+

}

+ (z−−
1 )3Y r++J I+

r . (4.6e)
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component e.o.m. =⇒ constrained field

F a =⇒ D̄2Ka ∼ gab̄F̄
b̄

ζaα =⇒ DαD̄
2Ka ∼ gab̄ ∂αα̇ζ̄

b̄α̇

φa =⇒ D2D̄2Ka ∼ gab̄�φb̄

Table 1. N = 1 component equations of motion.

Similar equations to (4.6) arise if we replace the arctic ΥI+ with the antarctic ῨĪ+ — the

only change is the replacement of z−−
1 with z−−

2 := v2−/v2+.

4.2 Auxiliary field equations of motion

Now we need to understand what conditions arise from placing only the auxiliary fields

on-shell. It helps to recall again the rigid N = 1 situation where, in the absence of a

superpotential, the on-shell equation of motion is given by

∫
d4x d2θ (D̄2Ka)δφ

a = 0 =⇒ D̄2Ka = 0 . (4.7)

The chiral superfield D̄2Ka is constrained to vanish. At the component level, this corre-

sponds to three distinct equations, corresponding to the equations of motion of the three

components of φa. Setting to zero the lowest component of D̄2Ka amounts to constrain-

ing the auxiliary field, while constraining the higher two components leads to dynamical

equations of motion. The situation can be rendered schematically as in table 1.

These statements apply equally well in the N = 2 setting. There we have the equa-

tions (3.1), equivalently written as

−
1

2π

∮

C
dτ

∫
d4x d4θ+E−− Γ+

I δΥ
I+ = 0 =⇒ Γ+

I arctic , (4.8)

which place the arctic multiplet on-shell and imply that the composite Γ+
I is an arctic

multiplet. If we introduce the component fields ΨαI , · · · , P
(−3)
I for Γ+

I in analogy to (4.5),

then the equations of motion for each of the ΥI+ component fields implies the corresponding

arctic nature of these components of Γ+
I . For example, by considering the component

reduction of (4.8), the equation of motion for the highest component P I(−3) of ΥI+ must

set the lowest component of Γ+
I to be arctic, and similarly throughout the multiplet. The

precise relations are given in table 2.

The key issue here is that the auxiliary field equations consist of all but the final two

lines of table 2, which for dimensional reasons must contain the field equations for the

physical fermions and scalars. Keeping in mind that Γ+
I is a composite quantity, it follows

that setting the components Γ+
I through N−

I to be arctic must correspond to fixing them

and the original quantities ΥI+ through N I− to be given by their on-shell expressions. For

the on-shell superfields discussed in the previous section, these expressions are easy to work

out. We already know that the lowest components φa = (ΦI ,ΨI) are defined by (3.3). The
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component e.o.m. =⇒ constrained arctic field

P I(−3) =⇒ Γ+
I

ΞI−−
α =⇒ ΨIα

N I− =⇒ M−
I

AI−αα̇ =⇒ A−
I αα̇

M I− =⇒ N−
I

ΨI
α =⇒ Ξ−−

Iα

ΥI+ =⇒ P
(−3)
I

Table 2. N = 2 component equations of motion.

components at next order in θ are

ΨI
α =

1

v1+
ζbα∂bΥ

I+ = −
1

v2+
ζbα ωb

b̄∂b̄Υ
I+ , (4.9a)

ΨI
α̇ = −

1

v2+
ζ̄ b̄α̇∂b̄Υ

I+ = −
1

v1+
ζ̄ b̄α̇ ωb̄

b∂bΥ
I+ . (4.9b)

Analogous expressions follow for ΨIα by replacing ΥI+ with Γ+
I . The θ2 components are

AI−αα̇ =
2

v1+v2+
∇αα̇φ̄

b̄ ∂b̄Υ
I+ +

i

v1+v2+
ζbαζ̄

b̄
α̇ ∂b∂b̄Υ

I+ , (4.10a)

AĪ−αα̇ = −
2

v1+v2+
∇αα̇φ

b ∂bῨ
I+ +

i

v1+v2+
ζbαζ̄

b̄
α̇ ∂b∂b̄Ῠ

I+ , (4.10b)

and

M I− =
1

v1+v2+

(
W̄ r J̄ b̄

r ∂b̄Υ
I+ +

1

4
ζαaζbα ωb

b̄ ∂a∂b̄Υ
I+

)
, (4.11a)

N I− =
1

v1+v2+

(
W r J̄ b̄

r ∂b̄Υ
I+ −

1

4
ζ̄ āα̇ζ̄

α̇b̄ ωb̄
b ∂ā∂bΥ

I+

)
, (4.11b)

M Ī− =
1

v1+v2+

(
− W̄ r Jb

r ∂bῨ
Ī+ +

1

4
ζαaζbα ωb

b̄ ∂a∂b̄Ῠ
Ī+

)
, (4.11c)

N Ī− =
1

v1+v2+

(
−W r Jb

r ∂bῨ
I+ −

1

4
ζ̄ āα̇ζ̄

α̇b̄ ωb̄
b ∂ā∂bῨ

I+

)
. (4.11d)

These conditions, as well as the corresponding ones for the components of Γ+
I and Γ̄+

Ī
,

constitute the set of auxiliary equations of motion. We cannot specify the components

ΞI−−
α and P I(−3) without placing the physical fields on-shell.

4.3 Some relevant quantities

In performing the component reduction, there are a number of geometric quantities that

we will encounter that arise from simple expressions in terms of the arctic superfields.

Rather than discuss them piecemeal, one at a time as we come across them, we present

them here together to emphasize their common features. They can be grouped loosely into

– 20 –



J
H
E
P
0
6
(
2
0
1
5
)
1
6
1

three classes: quantities corresponding to pullbacks of the hyperkähler two-forms, which

exist even in the flat limit; quantities associated with gauged isometries; and quantities

that arise from the cone structure.

4.3.1 Hyperkähler two-forms and their pullbacks

Recall that the hyperkähler two-forms can be represented equivalently as

Ω++ = dΥI+ ∧ dΓ+
I = dῨJ̄+ ∧ dΓ̆+

J̄

= v1+v2+
(

1

2ζ
dφa ∧ dφb ωab + dφa ∧ dφ̄b̄gab̄ +

ζ

2
dφ̄ā ∧ dφ̄b̄ ωāb̄

)
. (4.12)

We can interpret the second line as a superfield expression with on-shell superfields φa

provided we only work at most to order θ2. Taking the pullback to the supermanifold and

using two spinor derivatives of opposite chirality, we find

Ωαβ̇ :=∇−
αΥ

I+ ∇̄−

β̇
Γ+
I −∇−

αΓ
+
I ∇̄−

β̇
ΥI+ = ∇−

α Ῠ
Ī+ ∇̄−

β̇
Γ̆+
Ī
−∇−

α Γ̆
+
Ī
∇̄−

β̇
ῨĪ+ ,

=−
1

v1+v2+
ζaαζ̄

b̄
β̇

(
∂aΥ

I+ ∂b̄Γ
+
I − ∂aΓ

+
I ∂b̄Υ

I+
)
= −ζaα ζ̄

b̄
β̇
gab̄ , (4.13)

where the second line follows from (4.9) and (3.9b). Similar expressions for other quantities

can be derived:

Ωαβ := ∇−
αΥ

I+∇−
β Γ

+
I −∇−

αΓ
+
I ∇−

βΥ
I+ = ζaα ζ

b
β ωab ,

Ωα̇β̇ := ∇−
α̇Υ

I+∇−

β̇
Γ+
I −∇−

α̇Γ
+
I ∇−

β̇
ΥI+ = ζ āα̇ ζ

b̄
β̇
ωāb̄ . (4.14)

Note that each of the quantities Ωαβ , Ωαβ̇ and Ωα̇β̇ are harmonic-independent at lowest

order in their θ expansion. Similar pullbacks can be defined using the vector derivatives,

Ω+
α b := ∇−

αΥ
I+∇bΓ

+
I −∇−

αΓ
+
I ∇bΥ

I+ = v1+ζaα ωab∇bφ
b + v2+ζaα gab̄∇bφ

b̄ ,

Ω+
α̇ b := ∇−

α̇Υ
I+∇bΓ

+
I −∇−

α̇Γ
+
I ∇bΥ

I+ = −v2+ζ̄ āα̇ ωāb̄∇bφ
b̄ + v1+ζ̄ āα̇ gāb∇bφ

b , (4.15)

or with the gauge generator,

Ω+
rβ := XrΥ

I+∇−
β Γ

+
I −XrΓ

+
I ∇−

βΥ
I+ = v1+Ja

rωabζ
b
β − v2+J ā

r gābζ
b
β ,

Ω+

rβ̇
:= XrΥ

I+ ∇̄−

β̇
Γ+
I −XrΓ

+
I ∇̄−

β̇
ΥI+ = −v2+J ā

rωāb̄ζ̄
b̄
β̇
− v1+Ja

r gab̄ζ̄
b̄
β̇
. (4.16)

It is also possible to define other pullbacks such as Ω++
rb or Ω++

ab , but these will not play a

major role in our discussion so we do not give their explicit forms.

It can be useful to employ a condensed notation to simplify the right-hand sides

of (4.15) and (4.16). Using the Sp(n) vielbeins fµi
a introduced in section 3.5, we define

ζβ
iµ := ∇i

βφ
µ = ζaβfa

i µ , ζ̄β̇i
µ := ∇̄β̇iφ

µ = ζ̄ ā
β̇
fāi

µ . (4.17)

Then one can alternatively write (using also the fields Ai
a and Jri

a),

Ω+
α b = −ζ+µα gµν∇bφ

ν = −ζaα∇bA
+b̄gab̄ , Ω+

α̇ b = −ζ̄+µα̇ gµν∇bφ
ν = −ζ̄ āα̇∇bA

+bgāb ,

Ω+
r β = ζ+µα Jrµ = ζaαJ

+b̄
r gab̄ , Ω+

r β̇
= ζ̄+µα̇ Jrµ = ζ̄ āα̇J

+b
r gāb . (4.18)
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It is also useful to note some relations between these various quantities. For example,

∇j
βΩαα̇ and ∇̄j

β̇
Ωαα̇ are found by taking

∇+
βΩαα̇ = 2ǫβαW̄

sΩ+
sα̇ + 2iΩ+

αβα̇ =⇒ ∇j
βΩαα̇ = 2ǫβαW̄

sΩjsα̇ + 2iΩjα βα̇ ,

∇̄+

β̇
Ωαα̇ = −2ǫβ̇α̇W

rΩ+
rα − 2iΩ+

α̇ αβ̇
=⇒ ∇̄j

β̇
Ωαα̇ = −2ǫβ̇α̇W

rΩjrα − 2iΩj
α̇ αβ̇

. (4.19)

Relations such as these will be extremely useful in our analysis.

4.3.2 Components of the N = 2 moment map

Recall that the N = 2 moment map D++
r is given in projective superspace by (3.18). With

the auxiliary field equations imposed, D++
r is a globally defined superfield to order θ2. Its

lowest component was given already in (3.22). Its higher components can be analyzed by

applying spinor derivatives to (3.18). A single spinor derivative gives

∇+
αD

++
r = 0 , ∇−

αD
++
r = Ω+

r α . (4.20)

For two spinor derivatives, one finds

(∇−)2D++
r = −4W̄ sfsr

tD+−
t − 2W̄ sJµs Jrµ − ζaζb∇a(ωbcJ

c
r ) , (4.21)

which implies

1

3
∇ijD

ij
r = −2W̄ sJµs Jrµ − ζaζb∇a(ωbcJ

c
r ) . (4.22)

4.3.3 Hyperkähler cone potential and hyperkähler one-forms

Recall that the hyperkähler cone possesses a globally defined function, the hyperkähler

potential K. In terms of superfield quantities, K is given by the pullback of Ω++ onto the

auxiliary SU(2) manifold,

K := D−−ΥI+D0Γ+
I −D0ΥI+D−−Γ+

I = Γ+
I D

−−ΥI+ −ΥI+D−−Γ+
I . (4.23)

Let us prove this result. Because F++ is independent of vi+ in the superconformal case, this

expression is equivalent to its conjugate so K is real. It is easy to check that D++K = 0.

Because K is both arctic and antarctic, it must actually be harmonic-independent. To

prove that it is the hyperkähler potential, observe that an SU(2)R transformation acts on

projective multiplets and on the target space respectively as

λijI
j
i = −λ++D−− + λ0D0 + λ−−D++ = λij(J

j
i)
µ
νχ

ν∂µ . (4.24)

For projective multiplets ΥI+ and Γ+
I , this implies

D−− = (J −−)µνχ
ν∂µ , D0 = 2(J −+)µνχ

ν∂µ , D++ = −(J ++)µνχ
ν∂µ . (4.25)

It follows that (4.23) can be written

K = 2(J −−)µνχ
ν(J −+)ρσχ

σ(∂µΥ
I+∂ρΓ

+
I − ∂µΓ

+
I ∂ρΥ

I+)

= −2χν(J
−−J ++J −+)νσχ

σ . (4.26)
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From (2.13), one finds (J ++J −+)µν = 1
2(J

++)µν and (J −−J ++)µν = −1
2δ
µ
ν − (J +−)µν .

This implies that K = 1
2χµχ

µ, so K is indeed the hyperkähler potential. It should be

emphasized that (4.23) defines the hyperkähler potential to order θ2 if we impose only the

auxiliary equations of motion. This is because at higher order, Γ+
I ceases to be arctic (with-

out imposing all the equations of motion) and so K ceases to be harmonic-independent.

It will be useful to have explicit expressions for various derivatives of K, such as

∇±
αK = Kµ ζ

±µ
α , ∇b∇

i
αK = Kµ∇̂bζα

iµ − Ωiα b , (4.27)

where ∇̂b carries the target space connection.

Although we will not explicitly make use of them, it is also interesting to note that

the hyperkähler one-forms kij can be written in superspace as

k++ = Γ+
I dΥ

I+ −ΥI+dΓ+
I , dk++ = −2Ω++ . (4.28)

These are given by a partial pullback of Ω++, replacing one d with the derivative D0 of

the auxiliary manifold. Because they are globally defined, Ω++ is exact. Because Γ+
I and

ΥI+ are both Weyl weight one, we can rewrite this on the target space in the familiar way,

k++ = dφµ χν
(
∂µΥ

I+∂νΓ
+
I − ∂µΓ

+
I ∂νΥ

I+
)
= dφµΩ++

µν χν

= v1+v2+
(
1

ζ
dφaωabχ

b + (dφa χa − dφb̄ χb̄) + ζdφāωāb̄χ
b̄

)
. (4.29)

5 The component action in rigid projective superspace

Now that we have established a great deal of preliminary material, we now can turn to

deriving the component action from superspace. This is fairly involved, so we have chosen

to separate the task into two distinct stages. In this section, we will derive the component

action from rigid projective superspace. This calculation will yield a subset of the terms

we actually need. Of course, the result can already be derived via a reduction to N = 1

superspace as discussed in section 2, and we will be able to compare our result to the

component version of that action. The point of this exercise is to introduce the techniques

we will need in the curved case. In fact, it will turn out that reconstructing the rigid terms

is actually more involved than finding the additional supergravity contributions! For this

reason, we will be rather explicit in the calculation. To emphasize the applicability to the

rigid case, we will avoid assuming in this section that the target space is a cone.

The action we seek to evaluate is

S = −
1

2π

∮
v+i dv

i+

∫
d4x eL−− , L−− =

1

16
(D−)2(D̄−)2F++ (5.1)

with DA the gauge covariant derivative associated with rigid projective superspace. It

will be convenient for later reference in the curved case to refer to L−− above as T0 :=
1
16(D

−)2(D̄−)2F++. In the curved case, there will be additional terms.
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The function F++ depends on the collective set of projective multiplets Q+ =

(ΥI+, ῨĪ+). We will suppress any index on Q+ to keep the notation compact, denoting

derivatives of the function F++ as F+
Q , FQQ, etc. The Lagrangian T0 can now be written

T0 =
1

16
(D−)2(D̄−)2Q+F+

Q +
1

8
Dα−D̄α̇−Q+D−

α D̄
−
α̇F

+
Q

+
1

8
(D−)2D̄−

α̇Q
+ D̄α̇−F+

Q +
1

8
(D̄−)2Dα−Q+D−

αF
+
Q

+
1

32
(D−)2Q+ (D̄−)2F+

Q +
1

32
(D̄−)2Q+ (D−)2F+

Q

+
1

32
(D−)2Q+ D̄−

α̇Q
+ D̄α̇−Q+F−

QQQ +
1

32
(D̄−)2Q+Dα−Q+D−

αQ
+F−

QQQ

+
1

8
Dα−D̄α̇−Q+D−

αQ
+ D̄−

α̇Q
+F−

QQQ

+
1

16
Dα−Q+D−

αQ
+ D̄−

α̇Q
+ D̄α̇−Q+F−−

QQQQ . (5.2)

In the first three lines, we have chosen to write explicit spinor derivatives of F+
Q rather than

expanding them out. The reason is that F+
Q = (iΓ+

I ,−iΓ̆+
Ī
) is arctic or antarctic to order

θ2, and applying the auxiliary field equations tells us quite a bit about these quantities. In

contrast, we cannot say anything aboutD+
α (D̄

+)2F+
Q without applying dynamical equations

of motion, so we have written T0 in a particular way to avoid such terms.

Even in the rigid case, the expressions for the various terms we will encounter can be

involved. To simplify the analysis, we will first consider only those terms that contribute in

the rigid ungauged limit. Afterwards, we will include the covariant terms associated with

the gauged isometries.

5.1 Rigid ungauged terms

Denote the first line of (5.2) by T0.1. It can be rewritten as

T0.1 =
i

16
(D−)2(D̄−)2ΥI+ Γ+

I +
i

8
Dα−D̄α̇−ΥI+D−

α D̄
−
α̇Γ

+
I

−
i

16
(D−)2(D̄−)2ῨĪ+ Γ̆+

Ī
−

i

8
Dα−D̄α̇−ῨĪ+D−

α D̄
−
α̇ Γ̆

+
Ī
. (5.3)

Now let us apply the equations (4.6) for the components of the arctic multiplet. Taking

only those terms that survive in the rigid ungauged limit, we find

T0.1 ∼ iΓ+
I P I(−3) +

1

2
z−−
1 Γ+

I Dα̇αD−
α D̄

−
α̇Υ

I+ +
i

2
(z−−

1 )2Γ+
I Dαα̇D

α̇αΥI+

−
i

8
Aα̇αI−Aαα̇

−
I +

i

4
z−−
1 Aα̇αI−Dαα̇Γ

+
I +

i

4
z−−
1 Dα̇αΥI+Aαα̇

−
I

−
i

2
(z−−

1 )2Dα̇αΥI+Dαα̇Γ
+
I − (antarctic term) . (5.4)

The antarctic term is found by replacing ΥI+ → ῨĪ+, Γ+
I → Γ̆+

Ī
and z−−

1 → z−−
2 . We will

use the symbol ∼ to denote the terms we are examining at each stage of the calculation.

The above expression is valid off-shell, that is, without assuming that Γ+
I is an arctic

superfield. If we did not make this assumption, we could begin to derive it now. The
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above expression is the only place where the arctic component field P I(−3) appears, and

so it acts as a Lagrange multiplier enforcing that the lowest component of Γ+
I is arctic.

We could proceed in this way, rederiving all of the auxiliary equations of motion, but it

would be quite involved. Because we already know their content — the lower components

of Γ+
I must be arctic — it is easier to simply assume them without comment. Proceeding

in this way, we see that in the expression (5.4), the terms Γ+
I P

I(−3) and Aα̇αI−Aαα̇
−
I drop

out under the contour integral as they are purely arctic expressions — that is, they are

of the form 1
(v1+)2

∑∞
n=0Cnζ

n for some field-dependent coefficients Cn, and these vanish

under the contour integral. Similarly, their antarctic conjugates, which take the form
1

(v2+)2

∑∞
n=0(−1)nC̄nζ

−n also vanish. The remaining terms can be rearranged to

T0.1 ∼
i

4
z−−
1 Dα̇αΥI+Aαα̇

−
I −

i

4
z−−
1 Aα̇αI−Dαα̇Γ

+
I

+
1

2
Dα̇α

(
z−−
1 Γ+

I D−
α D̄

−
α̇Υ

I+ + i(z−−
1 )2Γ+

I D
α̇αΥI+

)
− (antarctic term) . (5.5)

The total derivative can be discarded in the rigid case. Now we exploit the on-shell condi-

tions (4.10) for Aαα̇
I− and Aαα̇

−
I . Using the definition (3.9b) of gab̄ as well as the relations

z−−
1 − z−−

2 =
1

v1+v2+
, Dαα̇Υ

I+ = Dαα̇φ
µ ∂µΥ

I+ , (5.6)

one finds

T0.1 ∼
i

2

1

v1+v2+
Dα̇αφaDαα̇φ

b̄ gab̄

+
1

4

1

v1+v2+
ζbα ζ̄

b̄
α̇D

α̇αφµ
(
z−−
1 ∂b∂b̄Υ

I+∂µΓ
+
I − z−−

1 ∂b∂b̄Γ
+
I ∂µΥ

I+ − a.t.
)
. (5.7)

(We will occasionally abbreviate antarctic terms as “a.t.”)

Next, we consider the second line of T0. We have

T0.2 =
i

8
D̄−
α̇Γ

+
I (D−)2D̄α̇−ΥI+ −

i

8
D̄−
α̇ Γ̆

+
I (D−)2D̄α̇−ῨĪ+ + h.c. ,

∼ iΨIα̇ Ξ̄
α̇I−− −

z−−
1

2
ΨIα̇D

α̇αΨI
α − (antarctic term) + h.c. (5.8)

The leading term is purely arctic and vanishes under the contour integral, leaving

T0.2 ∼
1

4
z−−
1 Ψα

I

←→
D αα̇Ψ

Iα̇ −
1

4
z−−
1 ΨIα̇

←→
D α̇αΨI

α

+
1

4
Dα̇α

(
z−−
1 D−

αΓ
+
I D̄

−
α̇Υ

I+ − z−−
1 D̄−

α̇Γ
+
I D

−
αΥ

I+
)
− (antarctic term) . (5.9)

In the rigid case, we can discard the total derivative. Using the relations (4.9),

Ψα
I

←→
D αα̇Ψ

Iα̇ =
1

v1+v2+
(ζαb∂bΓ

+
I )

←→
D αα̇(ζ̄

α̇b̄∂b̄Υ
I+) (5.10)

which leads to

T0.2 ∼
1

4

1

v1+v2+
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄) +
1

4

1

v1+v2+
ζαbζ̄α̇b̄Dαα̇φ

µ×
(
z−−
1 ∇µ∂bΓ

+
I ∂b̄Υ

I+ − z−−
1 ∇µ∂b̄Υ

I+ ∂bΓ
+
I − z−−

1 ∇µ∂bΥ
I+ ∂b̄Γ

+
I

+ z−−
1 ∇µ∂b̄Γ

+
I ∂bΥ

I+ − a.t.
)
. (5.11)
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At this stage we have recovered the kinetic terms for both scalars and fermions, along

with some extra terms involving two fermions and a spacetime derivative of φµ that should

be absent in the final action. The only other contribution involving such terms is in the

fifth line of T0:

T0.5 =
1

8
Dα−D̄α̇−ΥI+D−

αQ
+ D̄−

α̇Q
+F−

IQQ + a.t.

∼
i

4

(
1

v1+v2+
Dα̇αφ̄b̄∂b̄Υ

I+ − z−−
1 Dαα̇ΥI+

)
D−
αQ

+ D̄−
α̇Q

+F−
IQQ

−
i

4

(
1

v1+v2+
Dα̇αφb∂bῨ

Ī+ + z−−
2 Dαα̇ῨĪ+

)
D−
αQ

+ D̄−
α̇Q

+F−
ĪQQ

−
1

8

1

v1+v2+
ζαbζ̄α̇b̄∂b∂b̄Q

+D−
αQ

+ D̄−
α̇Q

+F−
QQQ . (5.12)

The terms in question can be written as

T0.1 + T0.2 + T0.5 ∼
1

4v1+v2+
ζαb ζ̄α̇b̄Dαα̇φ

cScbb̄ + h.c. (5.13)

where Scbb̄ is given by

Scbb̄ = z−−
1 (∇c∂bΓ

+
I ∂b̄Υ

I+ −∇c∂bΥ
I+ ∂b̄Γ

+
I ) + 2z−−

1 ∇[c

(
∂b]Υ

I+ ∂b̄Γ
+
I − ∂b]Γ

+
I ∂b̄Υ

I+
)

− z−−
2 (∇c∂bΓ̆

+
Ī
∂b̄Ῠ

Ī+ −∇c∂bῨ
Ī+ ∂b̄Γ̆

+
Ī
)− 2z−−

2 ∇[c

(
∂b]Ῠ

Ī+ ∂b̄Γ̆
+
Ī
− ∂b]Γ̆

+
Ī
∂b̄Ῠ

Ī+
)

+ iz−−
1 ∂cQ

+ ∂bQ
+ ∂b̄Q

+F−
QQQ . (5.14)

We want to show that this expression vanishes. The second and fourth terms of Scbb̄ are

proportional to ∇[cgb]b̄, which vanishes. With the useful identity

∂µQ
+ ∂νQ

+ ∂ρQ
+F−

QQQ = −i ∂µ∂νΥ
I+ ∂ρΓ

+
I + i ∂ρΥ

I+ ∂µ∂νΓ
+
I

+ i ∂µ∂νῨ
Ī+ ∂ρΓ̆

+
Ī
− i ∂ρῨ

Ī+ ∂µ∂ν Γ̆
+
Ī
, (5.15)

the remaining terms can be rewritten as

Scbb̄ =
1

v1+v2+

[
∇c(∂bΓ̆

+
Ī
∂b̄Ῠ

Ī+ − ∂bῨ
Ī+ ∂b̄Γ̆

+
Ī
)− (∂bΓ̆

+
Ī
∂b̄∂cῨ

Ī+ − ∂bῨ
Ī+ ∂b̄∂cΓ̆

+
Ī
)
]
.

(5.16)

The first set of terms involves ∇cgbb̄, which vanishes. The second set is purely antarctic

and so vanishes under the contour integral. Thus Scbb̄ does indeed drop out. This leaves

T0.1 + T0.2 + T0.5 ∼
i

2

1

v1+v2+
Dα̇αφaDαα̇φ

b̄ gab̄ +
1

4

1

v1+v2+
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄)

+
1

8

1

(v1+v2+)2
ζaζbζ̄ āζ̄ b̄ ∂a∂āQ

+ ∂bQ
+∂b̄Q

+F−
QQQ . (5.17)

The only term we must still reconstruct is the four fermion term involving the hy-

perkähler curvature. It should be found by including the remaining terms in the third,
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fourth and sixth lines of T0. The third line is purely arctic or antarctic in the absence of

gauged isometries so we may ignore it. The fourth and sixth lines give

T0.4 =
1

32
(D−)2ΥI+ D̄−

α̇Q
+ D̄α̇−Q+F−

IQQ +
1

32
(D̄−)2ΥI+Dα−Q+D−

αQ
+F−

IQQ + a.t.

∼
1

32

ζaζbζ̄ āζ̄ b̄

(v1+v2+)2

(
∇a∂bQ

+ ∂āQ
+ ∂b̄Q

+ +∇ā∂b̄Q
+ ∂aQ

+ ∂bQ
+
)
F−
QQQ , (5.18)

T0.6 ∼
1

16

1

(v1+v2+)2
ζaζb ζ̄ āζ̄ b̄(∂aQ

+ ∂bQ
+ ∂b̄Q

+ ∂b̄Q
+F−−

QQQQ) (5.19)

Combining all terms, we have

T0 ∼
i

v1+v2+

[
1

2
Dα̇αφaDαα̇φ

b̄ gab̄ −
i

4
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄)

]
+

1

16

1

(v1+v2+)2
ζaζbζ̄ āζ̄ b̄R++

abāb̄

(5.20)

where

R++
abāb̄

=
1

2
∇ā∆

++
b̄ab

+ h.c. ,

∆++
ābc := ∂āQ

+ ∂bQ
+ ∂cQ

+F−
QQQ (5.21)

= −i∇b∂cΥ
I+ ∂āΓ

+
I + i∇b∂cΓ

+
I ∂āΥ

I+ + i∂ā∂bῨ
Ī+ ∂cΓ̆

+
Ī
− i∂ā∂bΓ̆

+
Ī
∂cῨ

Ī+ .

The contribution to ∆++
b̄ab

from the antarctic fields is purely antarctic when divided by

(v1+v2+)2, so it drops out. The remaining terms contribute to R++
abāb̄

as

R++
abāb̄

∼ −i∇ā∇b∂aΥ
I+ ∂b̄Γ

+
I + i∇ā∇b∂aΓ

+
I ∂b̄Υ

I+

− i∇b∂aΥ
I+∇ā∂b̄Γ

+
I + i∇b∂aΓ

+
I ∇ā∂b̄Υ

I+ + h.c. (5.22)

The second line vanishes under the contour integral since

∇ā∂b̄Υ
I+ =

(
v2+

v1+

)2

ωb̄
bωā

a∇a∂bΥ
I+ (5.23)

is purely arctic when divided by (v1+v2+)2. The first line simplifies in the same way after

commuting ∇ā to act on the arctic superfields. This leaves

R++
abāb̄

∼ −i[∇ā,∇b]∂aΥ
I+ ∂b̄Γ

+
I + i[∇ā,∇b]∂aΓ

+
I ∂b̄Υ

I+ + h.c.

= iRbāa
c
(
∂cΥ

I+ ∂b̄Γ
+
I − ∂cΓ

+
I ∂b̄Υ

I+
)
= iv1+v2+Raābb̄ . (5.24)

The final result for the rigid ungauged contributes to T0, including the previously

discarded total covariant derivatives, is

T0 ∼
i

v1+v2+

(
1

2
Dα̇αφaDαα̇φ

b̄ gab̄ −
i

4
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

)

+Dα̇α

(
1

2
z−−
1 Γ+

I D−
α D̄

−
α̇Υ

I+ +
i

2
(z−−

1 )2Γ+
I D

α̇αΥI+

+
1

4
z−−
1 D−

αΓ
+
I D̄

−
α̇Υ

I+ −
1

4
z−−
1 D̄−

α̇Γ
+
I D

−
αΥ

I+ − a.t.

)
. (5.25)
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We will return to this expression later when we address the supergravity contributions.

Now let us remain with the rigid case and simplify. The contour integral is completely

trivial since only the prefactor varies along C,

−
1

2π

∮

C
v+i dv

i+ i

v1+v2+
=

∮

C

dζ

2πiζ
= 1 . (5.26)

This leads (dropping the total covariant derivative) to

L =
1

2
Dα̇αφaDαα̇φ

b̄ gab̄ −
i

4
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄ (5.27)

for the component Lagrangian. This is the general form of the hypermultiplet action in

holomorphic coordinates φa in a rigid background in the absence of gauged isometries.

5.2 Rigid gauged terms

Our next step is to collect the terms corresponding to gauged isometries. We return to the

expression (5.2) and collect the terms involving the scalar field W r, the gaugino λrαi and

the auxiliary field Y rij of the vector multiplet.

Let us begin with terms involving Y rij . These come only from the first term of T0,

which gives

T0 ∼ 3i z−−
1 Y r−−J I+

r Γ+
I − 3i(z−−

1 )2 Y r−+J I+
r Γ+

I + i(z−−
1 )3Y r++J I+

r Γ+
I − a.t.

∼ i(z−−
1 − z−−

2 )
[
Y r−−D++

r − 2Y r−+D+−
r + Y r++D−−

r

]
(5.28)

+D−−

[
i(z−−

1 − z−−
2 )

(
2Y r+−D++

r − Y r++D+−
r −

1

2
(z−−

1 + z−−
2 )Y r++D++

r

)]

after identifying J I+
r Γ+

I ≡ D++
r as the N = 2 moment map. The argument of D−− is

holomorphic away from the poles, so it can be discarded, leaving

T0 ∼
i

v1+v2+
Y r
ij D

ij
r . (5.29)

Now let’s collect all terms involving the chiral gaugino λrαi. These are

T0 ∼ iΓ+
I (2z

−−
1 λαr−D−

αJ
I+
r − (z−−

1 )2λαr+D−
αJ

I+
r )

+ iDα−Γ+
I (2z

−−
1 λr−α J I+

r − (z−−
1 )2λr+α J I+

r )− (antarctic term)

= i(z−−
1 − z−−

2 )λαr−D−
αD

++
r − i(z−−

1 − z−−
2 )λαr+D−−D−

αD
++
r

+ iD−−
[
(z−−

1 − z−−
2 )λαr+D−

αD
++
r

]
. (5.30)

Recalling that D−
αD

++
r = Ω+

r α = v+i Ωir α is holomorphic, the argument of D−− is clearly

holomorphic so it can be discarded. The remaining terms can be rewritten as

T0 ∼
i

v1+v2+
λαi

rΩir α . (5.31)
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Now let’s address all terms involving W r or its conjugate. Those from the first two

lines of T0 give (after some algebra)

T0.1+T0.2 ∼
i

12
z−−
1

(
W̄ s D̄ijD

ij
s + h.c.

)
−

i

4
z−−
1 W̄ s(D̄−)2Γ+

I J I+
s −

i

4
z−−
1 W r(D−)2Γ+

I J I+
r

−
i

2
(z−−

1 )2W rW̄ sΓ+
I {Xr, Xs}Υ

I+ − (antarctic term) . (5.32)

Now we combine these with those terms from T0.3, which can be rewritten as

T0.3 ∼
i

2

(
M−
I − z−−

1 W̄ sJ +
sI

)(
N I− − z−−

1 W rJ I+
r

)

+
i

2

(
N−
I − z−−

1 W rJ +
rI

)(
M I− − z−−

1 W̄ sJ I+
s

)
− (antarctic term) . (5.33)

The terms in T0.3 independent of z−−
1 vanish under the contour integral as they are purely

arctic. Combining all the other terms gives

T0.1 + T0.2+T0.3 ∼
i

2

1

v1+v2+
W rW̄ sJµr J

ν
s gµν +

i

12

1

v1+v2+

(
W̄ s D̄ijD

ij
s + h.c.

)
(5.34)

+

[
i

8

z−−
1

v1+v2+
W rJµr ζaζbωb

b̄
(
∂µΥ

I+ ∂a∂b̄Γ
+
I − ∂µΓ

+
I ∂a∂b̄Υ

I+
)
− a.t.

]

−

[
i

8

z−−
1

v1+v2+
W̄ rJµr ζ̄ āζ̄ b̄ωb̄

b
(
∂µΥ

I+ ∂ā∂bΓ
+
I − ∂µΓ

+
I ∂ā∂bΥ

I+
)
− a.t.

]
.

The only other term containing explicit W r or W̄ r contributions comes from T0.4:

T0.4 ∼
1

8

1

v1+v2+
W̄ sJµs ζ̄

āζ̄ b̄ωb̄
b
(
z−−
1 ∂µΥ

I+ ∂āQ
+ ∂bQ

+F−
IQQ + a.t.

)

−
1

8

1

(v1+v2+)2
W̄ sJ c̄

s ζ̄
āζ̄ b̄ωb̄

b
(
∂c̄Υ

I+ ∂āQ
+ ∂bQ

+F−
IQQ

)

+
1

8

1

(v1+v2+)2
W̄ sJc

s ζ̄
āζ̄ b̄ωb̄

b
(
∂cῨ

Ī+ ∂āQ
+ ∂bQ

+F−
ĪQQ

)
+ h.c. (5.35)

Combining all terms that go as W rζaζb, we find (after some simplifications)

1

8

1

(v1+v2+)2
W rJc

r ζ
aζbωb

b̄
(
i∂cῨ

Ī+ ∂a∂b̄Γ̆
+
Ī
− i∂cΓ̆

+
Ī
∂a∂b̄Ῠ

Ī+
)

+
1

8

1

(v1+v2+)2
W rJ c̄

r ζ
aζbωb

b̄
(
i∂c̄Υ

I+ ∂a∂b̄Γ
+
I − i∂c̄Γ

+
I ∂a∂b̄Υ

I+
)
. (5.36)

The first line is purely antarctic and the second is arctic, so these drop out.

The full contribution from gauged isometries yields

T0 ∼
i

v1+v2+

(
Y r
ij D

ij
r +

1

2
W rW̄ sJµr J

ν
s gµν + (λαi

rΩir α +
1

12
W r DijD

ij
r + h.c.)

)
. (5.37)

Using the explicit relation (4.22) forDijD
ij
r , performing the contour integral, and combining

with the result (5.27) of the previous section, we find the full rigid Lagrangian

L =
1

2
Dα̇αφaDαα̇φ

b̄ gab̄ −
i

4
gbb̄ (ζ

αb
←→
D̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

+ Y r
ij D

ij
r + (λαi

rΩir α + h.c.)−
1

2
W rW̄ sJµr J

ν
s gµν

−
1

4
W rζaζb∇a(ωbcJ

c
r )−

1

4
W̄ r ζ̄ āζ̄ b̄∇a(ωb̄c̄J

c̄
r ) . (5.38)
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This coincides with the component version of the N = 1 action [59]

S =

∫
d4x d4θK −

∫
d4x d2θW rΛr −

∫
d4x d2θ̄ W̄ rΛ̄r (5.39)

upon eliminating the auxiliary fields associated with the N = 1 chiral multiplets φa.19 The

superpotential contribution couples the chiral superfield W r of the N = 2 vector multiplet

to the chiral component Λr of the N = 2 moment map. The remaining component of the

moment map is contained implicitly within the Kähler potential.

6 The component action in curved projective superspace

Having derived the correct component action in the rigid limit, we must now include all of

the effects of supergravity. The component action from curved projective superspace is

S = −
1

2π

∮

C
v+i dv

i+

∫
d4x eL−− +

1

2π

∮

C
v−i dv

i−

∫
d4x eL++ , (6.1)

where

L−− =
1

16
(∇−)2(∇̄−)2F++ −

i

8
(ψ̄−

mσ̄
m)α∇−

α (∇̄
−)2F++ −

i

8
(ψ−

mσ
m)α̇∇̄

α̇−(∇−)2F++

+
1

4

(
(ψ−

n σ
nm)αψ̄m

α̇− + ψn
α−(σ̄nmψ̄−

m)
α̇ − iV−−

m (σm)αα̇

)
[∇−

α , ∇̄
−
α̇ ]F

++

+
1

4
(ψ−

mσ
mnψ−

n )(∇
−)2F++ +

1

4
(ψ̄−

mσ̄
mnψ̄−

n )(∇̄
−)2F++

−

(
1

2
ǫmnpq(ψ−

mσnψ̄
−
p )ψ

α−
q − 2(ψ−

mσ
mn)αV−−

n

)
∇−
αF

++

+

(
1

2
ǫmnpq(ψ̄−

mσ̄nψ
−
p )ψ̄

−
qα̇ − 2(ψ̄−

mσ̄
mn)α̇V

−−
n

)
∇̄α̇−F++

+ 3ǫmnpq(ψ−
mσnψ̄

−
p )V

−−
q F++ , (6.2)

L++ = −
[
3D + 4fa

a − 4(ψ̄−
mσ̄

mn ˆ̄φ+
n ) + 4(ψ−

mσ
mnφ̂+

n )− 3 ǫmnpq(ψ−
mσnψ̄

−
p )V

++
q

]
F++

+

[
3

2
χα+ − i(φ̄+

mσ̄
m)α + 2(ψ−

mσ
mn)αV++

n

]
∇−
αF

++

−

[
3

2
χ+
α̇ − i(φ+

mσ
m)α̇ + 2(ψ̄−

mσ̄
mn)α̇V

++
n

]
∇̄α̇−F++

−
i

4
V++
m (σ̄m)α̇α[∇−

α , ∇̄
−
α̇ ]F

++ . (6.3)

As discussed in [18], it is always possible to complexify the auxiliary SU(2) manifold to

SL(2,C) and then choose a contour where ui is constant. The resulting formulation of pro-

jective superspace is exactly that given in [19–22] and is clearly advantageous for evaluating

component actions: the integral involving L++ automatically vanishes.

19A proof using flat projective superspace was given in [62] for the case of a single frozen vector multiplet

(see also [34, 47, 48, 63]).
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However, we will take an even larger shortcut which avoids the need to make any such

choice. Because we are dealing with a hyperkähler cone, we can write, using (3.2),

F++ =
i

2
Γ+
I Υ

I+ −
i

2
Γ̆+
Ī
ῨĪ+ . (6.4)

If we were to take all of the component fields to be on-shell, then Γ+
I would be an arctic

multiplet to all orders in its θ expansion. But then the superspace Lagrangian would be

built out of the sum of an arctic and an antarctic superfield and such Lagrangians vanish

even in curved space. The proof of this statement is quite simple (see [21] for an equivalent

argument in SU(2) superspace) and we will review it in appendix B.

Of course, what we seek to do is to put only the auxiliary fields on-shell, so that the

above argument holds only up through θ2. This means that we can use (6.4) to evaluate

all terms except the leading ones in L−−. If we write the action S as

S = −
1

2π

∮

C
v+i dv

i+

∫
d4x e (T0 + T1) + Srest ,

T0 =
1

16
(∇−)2(∇̄−)2F++ , T1 = −

i

8
(ψ̄−

mσ̄
m)α∇−

α (∇̄
−)2F++ + h.c. , (6.5)

we will find that all contributions to the component action arise solely from T0 and T1.

There will be additional remainder terms within T0 and T1 that involve only the combi-

nation Γ+
I Υ

I+ and its conjugate; when combined with Srest, which also depends solely on

this combination, all these terms will turn out to vanish.

One final point: to avoid confusing the CKV χµ of the target space with the spinor

field χαi of the conformal supergravity multiplet, we will from now on always arrange to

lower the target space index of the CKV so that we deal instead with Kµ = (Ka,Kā) ≡ χµ
or we will rewrite it as Ai

a = χµfµi
a.

6.1 Remaining evaluation of T0

The first term T0 is the most complicated as it must generate all the interactions present

even in the rigid supersymmetric theory. For this reason, we have already performed the

majority of its evaluation in the previous section. We again can decompose T0 as in (5.2),

replacing gauged covariant derivatives with supergravity covariant derivatives. Taking all

the terms that contributed in the rigid limit, we found

T0 ∼
i

v1+v2+

[
1

2
∇α̇αφa∇αα̇φ

b̄ gab̄ −
i

4
gbb̄ (ζ

αb
←→
∇̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

+ Y r
ij D

ij
r + (λαi

rΩir α + h.c.)−
1

2
W rW̄ sJµr J

ν
s gµν

−
1

4
W rζaζb∇a(ωbcJ

c
r )−

1

4
W̄ sζ̄ āζ̄ b̄∇a(ωb̄c̄J

c̄
r )

]

+∇α̇α

[
1

2
z−−
1 Γ+

I ∇−
α ∇̄

−
α̇Υ

I+ +
i

2
(z−−

1 )2Γ+
I ∇

α̇αΥI+

+
1

4
z−−
1 ∇−

αΓ
+
I ∇̄

−
α̇Υ

I+ −
1

4
z−−
1 ∇̄−

α̇Γ
+
I ∇

−
αΥ

I+ − a.t.

]
, (6.6)
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up to terms involving covariant supergravity fields. The reader may check that all of the

steps followed in the rigid case to derive this expression follow equally well here. Now we

must include the covariant supergravity fields. The steps required to derive these terms

are quite similar to those used for the covariant fields of the vector multiplet, so we will

omit an explicit discussion. Finally, it will be convenient to rewrite

1

2
∇αα̇φa∇αα̇φ

b̄ gab̄ =
1

4
∇α̇α∇αα̇K +

1

2
Kµ∇̂a∇

aφµ (6.7)

where ∇̂a carries the target space connection. (This formula is valid when K describes a

hyperkähler cone.) After this rewriting, we find

T0 =
i

v1+v2+

[
1

2
Kµ�̂φµ −

i

4
gbb̄ (ζ

αb
←→
∇̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

+ Y r
ij D

ij
r + (λαi

rΩir α + h.c.)−
1

2
W rW̄ sJµr J

ν
s gµν

−
1

4
W rζaζb∇a(ωbcJ

c
r )−

1

4
W̄ r ζ̄ āζ̄ b̄∇a(ωb̄c̄J

c̄
r ) .

−
3

2
DK −

1

4
(Wαβζbβζ

a
α ωba + h.c.)−

3

4
(χ̄jα̇ ∇̄

α̇
jK + h.c.)

]

+
3

2

[
iz−−

1 χ̄−
α̇ ∇̄

α̇−(Γ+
I Υ

I+)−
i

2
(z−−

1 )2χ̄+
α̇ ∇̄

α̇−(Γ+
I Υ

I+)− (antarctic term) + h.c.

]

+∇α̇αB−−
αα̇ +D−−B . (6.8)

In the final line, we have collected a total covariant derivative, with

B−−
αα̇ = z−−

1

(
1

2
Γ+
I ∇−

α ∇̄
−
α̇Υ

I+ +
1

4
∇αΓ

+
I ∇̄α̇Υ

I+ −
1

4
∇̄α̇Γ

+
I ∇αΥ

I+

)

+
i

2
(z−−

1 )2Γ+
I ∇

α̇αΥI+ − a.t. +
1

4

i

v1+v2+
∇αα̇K (6.9)

and a total contour derivative with

B = −
3i

2
z−−
1 DΥI+Γ+

I +
3i

2
z−−
2 D ῨĪ+Γ̆+

Ī

−
3

4

(
iz−−

1 χ̄+
α̇ ∇̄α̇−(Γ+

I Υ
I+)− iz−−

2 χ̄+
α̇ ∇̄α̇−(Γ̆+

Ī
ῨĪ+) + h.c.

)
. (6.10)

Because B is not holomorphic, it cannot be dropped.

Before moving on to evaluate the first set T1 of gravitino terms, we must address what

to do with ∇α̇αB−−
αα̇ . Because the vector derivative contains a number of connections —

including supersymmetry, S-supersymmetry, and SU(2) which are quite non-trivial — it

does not vanish identically and must be separately analyzed.
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6.2 Simplification of the total covariant derivative

Let us denote the total covariant derivative by T0.TD = ∇α̇αB−−
αα̇ . This can be rewritten as

T0.TD = −
1

2
ψα̇α βj∇

j
βB

−−
αα̇ −

1

2
ψα̇α β̇

j∇̄β̇
jB

−−
αα̇

− V α̇α−−D++B−−
αα̇ +D−−(V α̇α++B−−

αα̇ )

−
1

2
φα̇α βjSβjB

−−
αα̇ −

1

2
φα̇αβ̇jS̄

β̇jB−−
αα̇ − f α̇αbKbB

−−
αα̇

+ 2Tmn
cec

nBa−−ea
m − 2e−1∂m(eB

a−−ea
m) . (6.11)

Note that the last line contains an actual total derivative (which can be discarded) and a

torsion term that arises from the gravitino dependence of the spin connection.

Before addressing this, let us recall the guiding principle discussed at the beginning of

this section. The superfield Γ+
I is arctic to order θ2, so any expressions involving at most

two spinor derivatives can be treated more simply than those involving three or more.

Therefore, we will separate the first line of T0.TD, which involves gravitinos and up to three

spinor derivatives, and denote it by T0.TD|Q. We will analyze it shortly, but first let us

discuss what happens to the remaining terms. Denote these by T0.TD|rest. Assuming that

Γ+
I is an arctic superfield to this order, B−−

αα̇ can be written as

B−−
αα̇ =

1

4
z−−
1 ∇−

α ∇̄
−
α̇ (Γ

+
I Υ

I+) +
i

4
(z−−

1 )2∇αα̇(Γ
+
I Υ

I+)− (antarctic term)

+D−−

(
1

8

1

v1+v2+
∇+
α ∇̄

+
α̇K

)
(6.12)

We emphasize that this equation holds only if we do not apply any further spinor deriva-

tives. Now when we insert this expression into T0.TD|rest, the last term of B−−
αα̇ will vanish

as it leads to a total contour derivative of a holomorphic quantity. This means that the

contribution of T0.TD|rest to the contour integral can be taken as

T0.TD|rest = −V α̇α−−D++B̂−−
αα̇ +D−−(V α̇α++B̂−−

αα̇ )− f α̇αbKbB̂
−−
αα̇

−
1

2
φα̇α βjSβjB̂

−−
αα̇ −

1

2
φα̇αβ̇jS̄

β̇jB̂−−
αα̇ + 2 ea

mTmn
cec

nB̂a−− , (6.13)

B̂−−
αα̇ =

1

4
z−−
1 ∇−

α ∇̄
−
α̇ (Γ

+
I Υ

I+) +
i

4
(z−−

1 )2∇αα̇(Γ
+
I Υ

I+)− (antarctic term) . (6.14)

The important feature of T0.TD|rest is that it depends only on Γ+
I Υ

I+ and its antarctic

conjugate. For now we set these aside and focus on the terms first order in the gravitino.

6.3 Gravitino terms

Now we must address terms involving a single explicit gravitino field. There are two:

T0.TD|Q arises from the total covariant derivative ∇α̇αB−−
αα̇ and T1 arises from the original

action. First we will need several formulae for the spinor derivatives of B−−
αα̇ . There are

a number of ways to potentially organize the resulting expression. We wish to construct

as much as possible expressions involving the arctic combination Γ+
I Υ

I+, the hyperkähler
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potential K and its derivatives, and various pullbacks of the hyperkähler two-form Ω++.

To accomplish this, it is convenient to rewrite B−−
αα̇ into the equivalent form

B−−
αα̇ =

1

4
z−−
1 ∇−

α ∇̄
−
α̇ (Γ

+
I Υ

I+) +
i

4
(z−−

1 )2∇αα̇(Γ
+
I Υ

I+)

+
1

4
z−−
1

(
Γ+
I ∇

−
α ∇̄

−
α̇Υ

I+ −ΥI+∇−
α ∇̄

−
α̇Γ

+
I

)
+

i

4
(z−−

1 )2(Γ+
I ∇αα̇Υ

I+ −ΥI+∇αα̇Γ
+
I )

− (antarctic term) +
1

4

i

v1+v2+
∇αα̇K . (6.15)

The first line involves only the arctic combination Γ+
I Υ

I+ while the second line is manifestly

antisymmetric in Γ+
I and ΥI+ and leads to pullbacks of Ω++. Using relations such as

Γ+
I ∇

−
βΥ

I+ = −
1

2
∇+
βK +

1

2
∇−
β (Γ

+
I Υ

I+) ,

∇−
β (Γ

+
I ∇αα̇Υ

I+)−∇αα̇(Γ
+
I ∇

−
βΥ

I+) = −Ω+
β αα̇ + Γ+

I [∇
−
β ,∇αα̇]Υ

I+

one can show that

∇+
βB

−−
αα̇ =

i

2
z−−
1 ∇βα̇∇

−
α (Γ

+
I Υ

I+)− 2z−−
1 ǫβαλ̄

−r
α̇ D++

r + (z−−
1 )2ǫβαλ̄

+r
α̇ D++

r − a.t.

+
1

v1+v2+

(
i

4
∇αα̇∇

+
βK −

i

2
∇βα̇∇

+
αK −

i

2
Ω+
αβα̇

−
3

4
ǫβαχ̄

+
α̇K +

1

4
ǫβαW̄α̇β̇∇̄

β̇+K +
1

2
ǫβαW̄

sΩ+
sα̇

)
, (6.16)

and

∇−
βB

−−
αα̇ =

1

4
z−−
1 ǫβα(∇

−)2(Γ+
I ∇̄

−
α̇Υ

I+) +
i

4
(z−−

1 )2∇αα̇∇
−
β (Γ

+
I Υ

I+)−
i

4
(z−−

1 )2∇αα̇∇
+
βK

−
i

2
(z−−

1 )2Ω+
β αα̇ +

3

4
(z−−

1 )2ǫβαχ̄
+
α̇D

−−(Γ+
I Υ

I+) +
3

4
(z−−

1 )2ǫβαχ̄
+
α̇K

−
3

2
(z−−

1 )2ǫβαχ̄
−
α̇Γ

+
I Υ

I+ +
1

4
(z−−

1 )2ǫβαW̄α̇β̇∇̄
β̇−(Γ+

I Υ
I+)

−
1

4
(z−−

1 )2ǫβαW̄α̇β̇∇̄
β̇+K + (z−−

1 )2ǫβαλ̄
−r
α̇ D++

r − (antarctic term)

+
1

v1+v2+

(
i

4
∇αα̇∇

−
βK +

i

2
Ω−
αβα̇ −

3

4
ǫβαχ̄

−
α̇ K

+
1

4
ǫβαW̄α̇β̇∇̄

β̇−K +
1

2
ǫβαW̄

sΩ−
sα̇

)
. (6.17)

It helps to rewrite T1 + T0.TD|Q as

T1 + T0.TD|Q =
1

8
ψαα̇−α (∇−)2

(
Γ+
I ∇̄

−
α̇Υ

I+
)
−

1

4
ψα̇α+α ∇β−B−−

βα̇ +
1

4
ψα̇α−α ∇β+B−−

βα̇

−
1

2
ψα̇αβ−∇+

(βB
−−
α)α̇ +

1

2
ψα̇αβ+∇−

(βB
−−
α)α̇ + h.c. (6.18)
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The first and second terms involve a common expression (∇−)2(Γ+
I ∇̄

−
α̇Υ

I+) given by

1

8
(∇−)2(Γ+

I ∇̄
α̇−ΥI+) = Γ+

I Ξ
Iα̇− −

1

2
M−
I ΨIα̇ −

i

4
ΨI
αA

I αα̇−

+ z−−
1

(
i

4
∇α̇α∇−

α (Γ
+
I Υ

I+)−
1

4
W̄ α̇

β̇∇̄
β̇−(Γ+

I Υ
I+) +

3

2
χ̄α̇−Γ+

I Υ
I+

−
3

4
χ̄α̇+D−−(Γ+

I Υ
I+)−

i

4
∇α̇α∇+

αK −
i

2
Ω+
α
α̇α

+
1

4
W̄ α̇

β̇∇̄
β̇+K −

3

4
χ̄α̇+K − 2λ̄α̇r−D++

r

)

+ (z−−
1 )2

(
λ̄α̇r+D++

r

)
. (6.19)

The coefficient of this term in (6.18) involves ψαα̇−α − z−−
1 ψα̇α+α = ψαα̇

1
α/v1+ and so the

first line of (6.19) contributes a purely arctic expression to (6.18) that can be discarded

under the contour integral. This had to be the case as otherwise we would need to impose

the explicit form for ΞIα̇−, which involves the field equation for the physical fermion. Now

we can analyze the remaining terms in (6.18). Discarding a total contour derivative,

T1 + T0.TD|Q ∼ −
1

4
z−−
1 ψαα̇−α W̄α̇β̇∇̄

β̇−(Γ+
I Υ

I+) +
1

8
(z−−

1 )2ψαα̇+α W̄α̇β̇∇̄
β̇−(Γ+

I Υ
I+)

+
3

2
z−−
1 ψαα̇−α χ̄

α̇−Γ+
I Υ

I+ −
3

4
z−−
1 ψαα̇−α χ̄

α̇+D−−(Γ+
I Υ

I+)

−
3

4
(z−−

1 )2ψαα̇+α χ̄
α̇−Γ+

I Υ
I+ +

3

8
(z−−

1 )2ψαα̇+α χ̄
α̇+D−−(Γ+

I Υ
I+)

−
3i

8
z−−
1 ψαα̇−α∇βα̇∇

β−(Γ+
I Υ

I+) +
3i

16
(z−−

1 )2ψαα̇+α∇βα̇∇
β−(Γ+

I Υ
I+)

+
i

4

(
1

2
(z−−

1 )2ψα̇(αβ)+ − z−−
1 ψα̇(αβ)−

)
∇αα̇∇

−
β (Γ

+
I Υ

I+)− a.t.

+
1

4

i

v1+v2+
ψαα̇αj

(
∇βα̇∇

βjK +Ωβjβα̇ − iW̄α̇β̇∇̄
β̇jK + iχ̄jα̇K

− iW̄ sΩjsα̇ + 4iλ̄rα̇kD
jk
r

)
(6.20)

Combining all of the above results, we find

T0 + T1 =
i

v1+v2+

[
1

2
Kµ�̂φµ −

i

4
gbb̄ (ζ

αb
←→
∇̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

+ Y r
ij D

ij
r + (λαi

rΩir α + h.c.)−
1

2
W rW̄ sJµr J

ν
s gµν

−
1

4
W rζaζb∇a(ωbcJ

c
r )−

1

4
W̄ r ζ̄ āζ̄ b̄∇a(ωb̄c̄J

c̄
r )

−
3

2
DK −

1

4
(Wαβζbβζ

a
α ωba + h.c.)−

3

4
(χ̄jα̇ ∇̄

α̇
jK + h.c.)

+
1

4
ψαα̇αjKµ∇̂βα̇ζ

βjµ +
3i

4
ψαα̇αjχ̄

j
α̇K

+
i

4
ψα̇αjαW̄α̇β̇∇̄

β̇
jK −

i

4
ψα̇ααjW̄

sΩjsα̇ + iψαα̇αj λ̄
r
α̇kD

jk
r

]
+ R

−− . (6.21)
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The terms within square braces are independent of vi+, so their contour integral can be

done immediately. This actually gives the final Lagrangian L. The component action is

S =

∫
d4x eL −

1

2π

∮

C
v+i dv

i+

∫
d4x eR

−− + Srest . (6.22)

In addition to the many terms Srest that we separated out at the start of the calculation,

there are still a large number of terms left within the remainder term R−−,

R
−− =

3i

2
z−−
1 χ̄−

α̇ ∇̄
α̇−(Γ+

I Υ
I+)−

3i

4
(z−−

1 )2χ̄+
α̇ ∇̄

α̇−(Γ+
I Υ

I+)

+ iz−−
1 ψa

α−(σab)α
β∇b∇

−
β (Γ

+
I Υ

I+)−
i

2
(z−−

1 )2ψa
α+(σab)α

β∇b∇
−
β (Γ

+
I Υ

I+)

+
3

2
z−−
1 ψαα̇−α χ̄

−
α̇ (Γ

+
I Υ

I+)−
3

4
z−−
1 ψαα̇−α χ̄

+
α̇D

−−(Γ+
I Υ

I+)

−
3

4
(z−−

1 )2ψαα̇+α χ̄
−
α̇ (Γ

+
I Υ

I+) +
3

8
(z−−

1 )2ψαα̇+α χ̄
+
α̇D

−−(Γ+
I Υ

I+)

−
1

4
z−−
1 ψαα̇−α W̄α̇β̇∇̄

β̇−(Γ+
I Υ

I+) +
1

8
(z−−

1 )2ψαα̇+α W̄α̇β̇∇̄
β̇−(Γ+

I Υ
I+)

− (antarctic term) + h.c.+D−−B + T0.TD|rest , (6.23)

where B and T0.TD|rest are given by (6.10) and (6.13). All of these are written in terms

of the arctic combination Γ+
I Υ

I+ and its antarctic conjugate, using the relation (6.4). In

fact, it turns out that all of these terms actually vanish up to a total derivative — that is,

0 = −
1

2π

∮

C
v+i dv

i+

∫
d4x eR

−− + Srest . (6.24)

The proof is somewhat indirect, so we postpone it until appendix B.

6.4 Final result

Our final component Lagrangian is

L =
1

2
Kµ�̂φµ −

i

4
gbb̄ (ζ

αb
←→
∇̂ αα̇ζ̄

α̇b̄) +
1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

+ Y r
ij D

ij
r + (λαi

rΩir α + λ̄i rα̇ Ωr
α̇
i )−

1

2
W rW̄ sJµr J

ν
s gµν

−
1

4
W rζaζb∇a(ωbcJ

c
r )−

1

4
W̄ r ζ̄ āζ̄ b̄∇ā(ωb̄c̄J

c̄
r )

−
3

2
DK −

1

4
(Wαβζbβζ

a
α ωba + W̄ α̇β̇ ζ̄ b̄

β̇
ζ̄ āα̇ ωb̄ā)−

3

4
Kµ(χ

α
j ζ

jµ
α + χ̄jα̇ ζ̄

α̇
j
µ)

+ ψαα̇αj

(
1

4
Kµ∇̂βα̇ζ

βjµ −
i

4
KµW̄α̇β̇ ζ̄

β̇jµ +
3i

4
χ̄jα̇K −

i

4
W̄ rΩjrα̇ + iλ̄rα̇kD

jk
r

)

+ ψαα̇
α̇j

(
1

4
Kµ∇̂

β̇αζ̄β̇
µ
j +

i

4
KµW

αβζβj
µ +

3i

4
χαjK +

i

4
W rΩrαj − iλrαkDr jk

)
. (6.25)

It is convenient to relabel the tensor auxiliary field as T−
ab = 4(σab)α

βWβ
α, in accordance

with tensor calculus conventions, where T−
ab ≡ Tab

ijεij . (Note that this changes the defini-

tion of self-duality used in [42] so as to agree with component conventions.) Also, a number
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of terms can be rewritten to involve the fields Ai
a, with the result

L =
1

2
Kµ�̂φµ −

3

2
DK −

1

2
W rW̄ sJµr J

ν
s gµν + Y r

ij D
ij
r +

1

16
ζaζbζ̄ āζ̄ b̄Raā bb̄

−
1

4
(ζ̄ āα̇ − i(ψmjσ

m)α̇A
jā)×

(
igāb∇̂

α̇αζbα +
1

8
ωāb̄(σ̄

bcζ̄ b̄)α̇T+
bc + 3gābAk

bχ̄α̇k + ζ̄α̇b̄W̄ r∇ā(ωb̄c̄J
c̄
r )− 2λ̄α̇rkJrāk

)

−
1

4
(ζαa − i(ψ̄jmσ̄

m)αAj
a)×

(
igab̄∇̂αα̇ζ̄

α̇b̄ +
1

8
ωab(σ

bcζb)αT
−
bc + 3gab̄A

kb̄χαk + ζbαW
r∇a(ωbcJ

c
r )− 2λrαkJra

k

)

+
1

2
ζαaλrαiJra

i +
1

2
ζ̄ āα̇λ̄

rα̇iJrāi . (6.26)

Two useful checks can be made. First, in the rigid supersymmetric limit, this matches

the component Lagrangian constructed from (5.39). Second, the Lagrangian must be S-

supersymmetric. To check this, it helps to note that the parenthetical terms in the third

and fifth lines, which multiply explicit gravitinos, must vanish under S-supersymmetry. It

is straightforward to check that the remaining terms all cancel against each other.

This result can be compared with eq. (5.4) of [29], where superconformal tensor

calculus conventions (see e.g. [67]) were used. The relation between those conventions and

ours for conformal supergravity are spelled out in [42]; for example, one must swap the

locations of SU(2) indices, taking care to observe that tensor calculus conventions employ

ε12 = ε12 = 1 while we use ǫ12 = ǫ21 = 1. This amounts to the exchange of εij → −ǫij
and εij → ǫij . The target space conventions of [29] also differ in several ways from ours.

For example, their Sp(n) indices (ᾱ, α) correspond to our (a, ā), and we use a different

normalization for the fermions. For the sigma model component fields, one must exchange

φA → φµ , Ai
α → Aiā , Aiᾱ → Ai

a , ζ β̄ →
1

2
ζbα , ζβ →

1

2
ζ̄α̇b̄ . (6.27)

The target space geometric quantities are related as

Ωᾱβ̄ → ωab , Gᾱβ → gab̄ , γAiᾱ → fa
iµ , V iᾱ

A → fµi
a ,

(J ij)AB → −(Jij)
µ
ν , (kI)

α
β → ∇b̄J

ā
r , P ij

I → Dr ij . (6.28)

The components of the vector multiplet are also defined slightly differently:

XI → −
1

2
W r , ΩIi → − ǫijλrαj , ΩIi → ǫij λ̄

rα̇j , Y I
ij → Y r ij . (6.29)

Other quantities can be derived from these relations and the equations given in [29].

7 Conclusion

Our goal in this paper was quite specific: to recover the component action of a hyperkähler

cone coupled to conformal supergravity given in [29] using projective superspace methods.

Our approach was based on the formal solution of the equations (3.1), corresponding to
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the requirement that the dual multiplets Γ+
I and Γ̆+

Ī
were respectively arctic and antarctic,

as advocated in [24, 56]. We have not attempted to actually solve these equations for any

specific models — the formal solutions were sufficient to yield the component action — but

it should be mentioned that many specific cases do admit solutions. A major class involve

O(2n) hypermultiplets and the generalized Legendre transform construction [12, 13, 25, 68]:

here the number of auxiliary fields is finite from the outset. Another major class involve

target spaces that are cotangent bundles of Hermitian symmetric spaces [56, 57, 69–73]

(see also [54] for a pedagogical discussion).

As discussed in [29, 34], the component action (6.26) does not directly yield the general

action of canonically normalized supergravity coupled to matter. One must fix the Weyl

gauge and the SU(2)R gauge: this effectively eliminates four degrees of freedom from

the hypermultiplet manifold, reducing the 4n-dimensional hyperkähler cone to a 4(n −

1)-dimensional quaternion-Kähler manifold. In addition, one must add another matter

sector (e.g. vector multiplets parametrizing a special Kähler manifold) to yield a consistent

equation of motion for the auxiliary D. This can all be understood at the component level,

but what about in superspace?

Here again comparing with N = 1 superspace is helpful. Recall the geometry of

an N = 1 superconformal sigma model is a Kähler cone. If the chiral superfields are

reorganized into the set {φ0, φ
i} with χa = (φ0, 0), then without loss of generality the

Kähler cone potential can be written as20

K = −3φ0φ̄0 e
−K/3 , (7.1)

for a real function K(φi, φ̄ı̄), subject to the Kähler transformations,

φ0 → φ0 e
F/3 , K → K + F + F̄ , F = F (φi) . (7.2)

Imposing the dilatation+U(1)R gauge φ0 = eK/6 leads to the standard formulation of an

N = 1 supergravity-matter system (including a superpotential is straightforward) in the

so-called Kähler superspace [74] with a simple Lagrangian

−3

∫
d4x d2θ d2θ̄ E . (7.3)

The function K is absorbed within the superspace structure and the original Kähler trans-

formations become associated with an effective U(1)R symmetry of the component fields.

This Kähler superspace is extremely useful: for example, it eliminates the need for compli-

cated field redefinitions to attain a canonically normalized action and even allows higher

derivative interactions to be easily incorporated in a Kähler-covariant way.

It would be extremely interesting to construct the N = 2 analogue of the above

superspace geometry: a proposal along the lines discussed above has already been made

in [19]. Of course, there is already a harmonic superspace description of quaternionic sigma

models coupled to supergravity [36–38], so finding a direct link between the projective and

harmonic approaches, as was done for the hyperkähler case [27], would be enlightening. It

20The overall sign must be negative to yield the correct sign for the Einstein-Hilbert term.
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would presumably make use of the technology of [35], developed to address quaternionic

sigma models in twistor language. It would also be nice to understand the quaternionic

examples in harmonic superspace (see e.g. the quaternionic Taub-NUT [75, 76] and the

general two-center metrics [77, 78]) in this context.

We should note that the projective superspace description of quaternionic sigma models

takes a particularly elegant form if the hyperkähler cone possesses an additional U(1)

isometry that separately rotates the arctics and antarctics. Then it is always possible to

perform a duality transformation, exchanging one polar multiplet for a tensor multiplet

G++, giving the supergravity-matter action [22, 79]

−
1

2π

∮

C
dτ

∫
d4x d4θ+ E−−

(
G++ log(G++/iΥ+

0 Ῠ
+
0 ) + G++K(Υ, Ῠ)

)
(7.4)

where K(Υ, Ῠ) is a real function of weight-zero arctics Υ and antarctics Ῠ. (The arctic Υ+
0

drops out of the component action but is necessary to keep the argument of the logarithm

dimensionless.) This is the natural N = 2 generalization of the N = 1 new minimal

supergravity action coupling the tensor multiplet compensator to a Kähler potential. The

component Lagrangian of (7.4) gives the general supergravity-matter system (after gauge-

fixing) involving a quaternion-Kähler target space arising from a hyperkähler cone with a

triholomorphic U(1) isometry.

An interesting open question would be to address hypermultiplet couplings in the pres-

ence of various higher derivative terms. Higher derivative tensor multiplet actions were dis-

cussed at the component level in [80]; their lift to projective superspace (and generalization

to include O(2n) multiplets) was addressed in [81]. In principle, one should be able to ap-

ply the latter construction to include higher derivative actions for off-shell polar multiplets.

However, the elimination of the auxiliaries in the presence of such terms becomes (even

formally) a formidable process. Nevertheless, superspace would seem to be the natural

mechanism for constructing such terms in a systematic way, and the calculation under-

taken here is an important first step. It would be intriguing to explore these issues further.
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Mazzucchelli for valuable comments and suggestions. This work was supported in part

by the ERC Advanced Grant no. 246974, “Supersymmetry: a window to non-perturbative

physics” and by the European Commission Marie Curie International Incoming Fellowship

grant no. PIIF-GA-2012-627976.

A Vector multiplet conventions and supersymmetry transformations

The introduction of a gauge connection to the curved projective superspace [18] is straight-

forward and can be found in [20, 22]. We introduce a superspace connection AM = AM
rXr,

with Xr the formal gauge generator which acts on a field Ψ in a given representation as
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XrΨ = TrΨ for matrices Tr. Note that the algebra of the operators possesses a different

sign from the algebra of the matrices,

[Xr, Xs] = −frs
tXt =⇒ [Tr,Ts] = +frs

tTt . (A.1)

For a compact gauge group, Tr are anti-Hermitian matrices, and so are frequently defined

with an additional factor of i to make them Hermitian. For a non-linear sigma model with

gauged isometries, the scalars φµ = (φa, φ̄ā) transform as Xrφ
µ = Jr

µ into a Killing vector

Jr
µ. The fermions ζbα and ζ̄ b̄α̇ transform as

Xrζ
b
α = ζcα ∂cJr

b , Xr ζ̄
b̄
α̇ = ζ̄ c̄α̇ ∂c̄Jr

b̄ . (A.2)

The gauge covariant derivative ∇A is defined implicitly by

∂M = EM
A∇A +

1

2
ΩM

abMba +AMA+BMD+ FM
AKA +AM

rXr . (A.3)

The algebra of the SU(2) covariant derivatives ∇±± and ∇0 with themselves and with the

other operators remains unchanged. Similarly, the algebra of spinor covariant derivatives

obeys the integrability conditions {∇±
α ,∇

±
β } = 0, which implies the dimension-1 curvatures

{∇±
α , ∇̄

∓

β̇
} = ∓2i∇αβ̇ , {∇±

α ,∇
∓
β } = ±2ǫαβW̄ , {∇̄α̇±, ∇̄β̇∓} = ±2 ǫα̇β̇W . (A.4)

Now the curvature operator W receives a new contribution W rXr,

W =
1

2
WαβMβα +

1

4
∇β+Wβ

αS−
α −

1

4
∇β−Wβ

αS+
α +

1

4
∇α̇βWβ

αKαα̇ +W rXr (A.5)

and similarly for its complex conjugate. The new superfieldW r is the covariant non-abelian

vector multiplet. It is chiral, inert under the SU(2) covariant derivatives, and obeys the

Bianchi identity (∇+)2W r = (∇̄+)2W̄ r. The dimension-3/2 curvatures

[∇±
β ,∇αα̇] = −2ǫβαW̄

±
α̇ , [∇̄±

β̇
,∇αα̇] = −2ǫβ̇α̇W

±
α . (A.6)

receive a new contribution from the gauge sector,

W±
α ∋ −

i

2
∇±
αW

rXr , W̄±
α̇ ∋ −

i

2
∇̄±
α̇ W̄

rXr . (A.7)

Finally, the dimension-2 curvatures [∇b,∇a] = −Fba include a contribution Fba
rXr, with

Fba
r = −

1

4
(σba)

αβ
(
∇+

(α∇
−
β)W

r − 2WαβW̄
r
)
−

1

4
(σ̄ba)

α̇β̇
(
∇̄+

(α̇∇̄
−

β̇)
W̄ r − 2W̄α̇β̇W

r
)
. (A.8)

We also use the symbol W r to denote the lowest component of the vector multiplet.

The other covariant components of the vector multiplet are given by

λrαi =
1

2
ǫij∇

j
αW

r , λ̄rα̇i = −
1

2
ǫij∇̄α̇

j W̄
r , Y r ij =

1

4
∇ijW r , (A.9)
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while the component one-form Am
r and two-form Fmn

r are given by the projections of

the corresponding superspace quantities Am
r and Fmn

r. The supersymmetry and S-

supersymmetry transformations are given by

δAm
r = i(ξiσ

mλ̄ir)− ǫij(ξiψmj)W̄
r + h.c. ,

δW r = 2 ξiλ
ir ,

δλrαi = (σabξi)α

(
Fab

r +
1

8
T−
abW̄

r

)
− Yi

jξαj +
1

2
ξαiW̄

sW tfts
r + i∇αβ̇W

r ξ̄β̇j − 2 ηαiW
r ,

δY r ij = 2iξαi∇αα̇λ̄
α̇
j
r − ξαiλjα

s W̄ tfts
r − 2iξ̄α̇

i∇α̇αλjα
r − ξ̄α̇

iλ̄α̇jsW tfts
r . (A.10)

The transformation law of the gaugino involves the supercovariant curvature tensor Fab
r,

whose component form is given by

em
aen

bFab
r := Fmn

r −
i

2
(ψmjσnλ̄

jr − ψnjσmλ̄
jr)−

i

2
(ψ̄m

j σ̄nλ
r
j − ψ̄n

j σ̄mλ
r
j)

+
1

2
ǫij(ψmiψnj) W̄

r −
1

2
ǫij(ψ̄m

iψ̄n
j)W r . (A.11)

B Vanishing of a pure arctic action and the remainder terms in eq. (6.22)

We begin this appendix by reviewing an important lemma: the projective superspace action

−
1

2π

∮

C
dτ

∫
d4x d4θ+ E−−Λ++ (B.1)

vanishes if Λ++ is a purely arctic (or antarctic) superfield. A nearly identical statement

was established in [21] for the choice Λ++ = G++Λ for G++ a tensor multiplet and Λ an

arctic (or antarctic) superfield; the proof is exactly the same so let’s briefly review it.

As discussed in [18], it is possible to complexify the auxiliary manifold SU(2) to

SL(2,C), taking vi+ = vi and v−i = ui/(v, u). This modifies the component Lagrangian

only by a total derivative. In particular, we may choose ui to be a fixed coordinate so long

as (v, u) 6= 0 along the contour C. This has the benefit of eliminating the second integral

in (6.1), and so significantly simplifies the evaluation of component actions. This approach

is exactly the formulation of projective superspace presented in [19–22].

Let us suppose now that Λ++ is arctic. Following [21], we may choose ui = (1, 0), so

that v−i = (1, 0)/v1+ while vi+ = v1+(1, ζ). Examining the component Lagrangian (6.2)

with F++ = Λ++, it is immediately apparent that L−− is a purely arctic expression. That

is, after factoring out a common factor of 1/(v1+)2, the remaining terms are all free of

singularities at ζ = 0. Such a Lagrangian exactly vanishes under the contour integral.

This is the most direct proof, but not the only one. One could also remain with the

real SU(2) manifold and explicitly analyze the component reduction of (B.1). This would

require defining the component fields of Λ++ as we did for ΥI+ in section 4.1 and then

proceeding to massage each term of the component action meticulously until everything

vanished. This approach is clearly much more laborious.

It turns out that this more difficult approach actually has an excellent use. If we

recall the situation in section 6, we argued that the projective superspace Lagrangian
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F++ = i
2Γ

+
I Υ

I++h.c. is the sum of an arctic and antarctic piece up to the θ2 level without

imposing dynamical equations of motion. Then in analyzing the component action of

F++, we stopped at (6.22) once everything had been reduced to the physical component

fields or to expressions involving Γ+
I Υ

I+ and its complex conjugate. These we isolated

into a remainder term R−−, given in (6.23), as well as the terms Srest neglected in (6.5).

All of these residual terms involved Γ+
I Υ

I+ (and its conjugate) with at most two spinor

derivatives. We claimed that the sum of all these terms vanished. Now we will provide

a proof. We will start by analyzing the component action of (B.1) using the real SU(2)

manifold, proceeding systematically order by order in the number of gravitinos and other

connection fields. We will stop after eliminating the leading terms: what remains will be

those terms left over in (6.22) after choosing Λ++ = i
2Γ

+
I Υ

I+, which is indeed arctic up to

the θ2 level. These must vanish, of course, because the original action (B.1) vanishes.

We begin anew with the action (B.1) and evaluate the component Lagrangian (6.2)

with F++ = Λ++. As before, we will organize the calculation as in (6.5), taking the leading

terms T0 and T1 and placing the others into Srest. The leading term T0, involves the highest

component of Λ++. This can be decomposed as

(∇−)4Λ++ = P−− −
i

2
z−−
1 ∇α̇α∇−

α ∇̄
−
α̇Λ

++ +
1

2
(z−−

1 )2∇α̇α∇αα̇Λ
++

+
3

2
z−−
1 χα+D−−∇−

αΛ
++ −

3

2
z−−
1 χ̄+

α̇D
−−∇̄−

α̇Λ
++

−
3

2
z−−
1 χα−∇−

αΛ
++ +

3

2
z−−
1 χ̄−

α̇ ∇̄
−
α̇Λ

++

− 3z−−
1 DD−−Λ++ + 3(z−−

1 )2DΛ++ (B.2)

where P−− is a purely arctic expansion. This can be discarded under the contour and so

the relevant contributions to T0 are

T0 = −3z−−
1 χα−∇−

αΛ
++ +

3

2
(z−−

1 )2χα+∇−
αΛ

++ + h.c.

+∇α̇αB−−
αα̇ +D−−

(
3

2
z−−
1 χα+∇−

αΛ
++ + h.c.− 3z−−

1 DΛ++

)
(B.3)

with

B−−
αα̇ = −

i

2
z−−
1 ∇−

α ∇̄
−
α̇Λ

++ +
1

2
(z−−

1 )2∇αα̇Λ
++ . (B.4)

Denoting the contribution of the B−−
αα̇ to T0 as T0.TD, we evaluate it as in section 6.2,

T1 + T0.TD|Q = −
i

8
(ψα̇α−α − z−−

1 ψα̇α+α )(∇
−)2∇̄−

α̇Λ
++

−
1

4

(
z−−
1 ψα̇α−α +

1

2
(z−−

1 )2ψα̇α+α

)
∇βα̇∇

β−Λ++

−
3i

2
(z−−

1 )2ψα̇α+α

(
χ̄−
α̇Λ

++ −
1

2
χ̄+
α̇D

−−Λ++

)

+
i

4
(z−−

1 )2ψα̇α+α W̄α̇β̇∇̄
β̇−Λ++

−
1

2
z−−
1 ψα̇(αβ)−∇βα̇∇

−
αΛ

++ +
1

4
(z−−

1 )2ψα̇(αβ)+∇βα̇∇
−
αΛ

++ + h.c. (B.5)
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In the first line, we require the expression

1

8
(∇−)2∇̄α̇−Λ++ = Ξα̇− + z−−

1

(
i

2
∇α̇β∇−

β Λ
++ −

1

2
W̄ α̇

β̇∇̄
β̇−Λ++

+ 3χ̄α̇−Λ++ −
3

2
χ̄α̇+D−−Λ++

)
. (B.6)

The contribution of Ξα̇− to the action is purely arctic so we can discard it, leaving

T1 + T0.TD|Q =

(
z−−
1 ψα̇α−α −

1

2
(z−−

1 )2ψα̇α+α

)
×

(
i

2
W̄α̇β̇∇̄

β̇−Λ++ − 3iχ̄−
α̇Λ

++ +
3i

2
χ̄+
α̇D

−−Λ++

)

+ (2z−−
1 ψ−

a σ
ab − (z−−

1 )2ψ+
a σ

ab)α∇b∇
−
αΛ

++ + h.c. (B.7)

for the terms involving a single gravitino. Now we define R−− as everything that has not

yet canceled out from T0 and T1:

R
−− = −3z−−

1 χα−∇−
αΛ

++ +
3

2
(z−−

1 )2χα+∇−
αΛ

++

+

(
z−−
1 ψα̇α−α −

1

2
(z−−

1 )2ψα̇α+α

)(
i

2
W̄α̇β̇∇̄

β̇−Λ++ − 3iχ̄−
α̇Λ

++ +
3i

2
χ̄+
α̇D

−−Λ++

)

+
(
2z−−

1 (ψ−
a σ

ab)α − (z−−
1 )2(ψ+

a σ
ab)α

)
∇b∇

−
αΛ

++ + h.c.+ T0.TD|rest

+D−−

(
3

2
z−−
1 χα+∇−

αΛ
++ −

3

2
z−−
1 χ̄+

α̇ ∇̄
α̇−Λ++ − 3z−−

1 DΛ++

)
. (B.8)

When combined with the terms in Srest, this must vanish up to a total derivative.

Note that Λ++ now has at most two spinor derivatives acting on it, so we can choose

Λ++ = i
2Γ

+
I Υ

I+ to be arctic without any difficulty. This exactly matches the arctic part

of (6.23). The part of the action Srest that did not involve T0 and T1 is also identical. But

we know that all these contributions must vanish, and so it follows that the unevaluated

terms in (6.22) involving Γ+
I Υ

I+ all cancel out. The antarctic ones also vanish in like

fashion.

Lest the reader find this proof too indirect, it should be added that we have explicitly

checked that the remaining terms do indeed vanish. To do so is fairly involved and requires

the contributions from both integrals in (6.1). To demonstrate some of the manipulations

that occur, we will show here how the cancellation occurs when all fermionic terms are

turned off. The relevant bosonic terms remaining in L−− are

L−− ∼ −3D−−
(
z−−
1 DΛ++

)
−

i

4
Vm

−−(σ̄m)αα̇[∇
α−, ∇̄α̇−]Λ++

− V α̇α−−D++B−−
αα̇ +D−−(V α̇α++B−−

αα̇ )− f α̇αbKbB
−−
αα̇

= −D−−

(
i

2
z−−
1 V α̇α++∇−

α ∇̄
−
α̇Λ

++ −
1

2
(z−−

1 )2V α̇α++∇αα̇Λ
++

+ 3z−−
1 DΛ++ + 4z−−

1 fa
aΛ++

)
. (B.9)
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Those contributing to L++ are given by

L++ = −
(
3D + 4fa

a
)
Λ++ −

i

2
V α̇α++∇−

α ∇̄
−
α̇Λ

++ , (B.10)

which can be rewritten as

L++ = −D++

(
i

2
z−−
1 V α̇α++∇−

α ∇̄
−
α̇Λ

++ −
1

2
(z−−

1 )2V α̇α++∇αα̇Λ
++

+ 3z−−
1 DΛ++ + 4z−−

1 fa
aΛ++

)
. (B.11)

The combination of L−− and L++ is a total contour derivative and can be discarded.

Similar cancellations occur with the fermionic terms, but these require much more work.
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