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1 Introduction

Black holes in gauged supergravity theories provide an important testground to address

fundamental questions of gravity, both at the classical and quantum level. Among these are

for instance the problems of black hole microstates, the final state of black hole evolution,

uniqueness- or no hair theorems, to mention only a few of them. In gauged supergravity,

the solutions typically have AdS asymptotics, and one can then try to study these issues

guided by the AdS/CFT correspondence. On the other hand, black hole solutions to

these theories are also relevant for a number of recent developments in high energy- and

especially in condensed matter physics, since they provide the dual description of certain

condensed matter systems at finite temperature, cf. [1] for a review. In particular, models

that contain Einstein gravity coupled to U(1) gauge fields1 and neutral scalars have been

instrumental to study transitions from Fermi-liquid to non-Fermi-liquid behaviour, cf. [2, 3]

and references therein. In AdS/condensed matter applications one is often interested in

including a charged scalar operator in the dynamics, e.g. in the holographic modeling

of strongly coupled superconductors [4]. This is dual to a charged scalar field in the

bulk, that typically appears in supergravity coupled to gauged hypermultiplets. It would

thus be desirable to dispose of analytical black hole solutions to such theories. In the

first part of the present paper we will make a first step in this direction. Solving the

corresponding second order equations of motion is generically quite involved, such that

one is forced to resort to numerical techniques. For this reason we shall look here for

BPS black holes, which satisfy first order equations, and make essential use of the results

of [5], where all supersymmetric backgrounds of N = 2, d = 4 gauged supergravity coupled

to both vector- and hypermultiplets were classified. This provides a systematic method

1The necessity of a bulk U(1) gauge field arises, because a basic ingredient of realistic condensed matter

systems is the presence of a finite density of charge carriers.
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to obtain BPS solutions, without the necessity to guess some suitable ansätze. Let us

mention here that black holes in four-dimensional gauged supergravity with hypers were

also obtained numerically in [6]. Solutions that have ghost modes (i.e., with at least

one negative eigenvalue of the special Kähler metric) were constructed in [7]. In five

dimensions, a singular solution of supergravity with gauging of the axionic shift symmetry

of the universal hypermultiplet was derived in [8]. Finally, ref. [9] analyzed the near-horizon

geometries of static BPS black holes in four-dimensional N = 2 supergravity with gauging

of abelian isometries of the hypermultiplet scalar manifold, while the authors of [10] found

nonrelativistic (Lifshitz and Schrödinger) solutions in the same theory for the canonical

example of a single vector- and a single hypermultiplet.2

Another point of interest addressed in this paper is the attractor mechanism [12–16],

that has been the subject of extensive research in the asymptotically flat case, but for which

not very much has been done for black holes with more general asymptotics. First steps

towards a systematic analysis of the attractor flow in gauged supergravity were made in [17,

18] for the non-BPS and in [19–22] for the BPS case. Some interesting results have been

found, for instance the appearance of flat directions in the effective black hole potential for

BPS flows [20], a property that does not occur in ungauged N = 2, d = 4 supergravity [16],

at least as long as the metric of the scalar manifold is strictly positive definite.

In the second part of our paper we extend the work of [18] to include also gauged

hypermultiplets. We shall construct an effective potential Veff that depends on both the

usual black hole potential and the potential for the scalar fields. Veff governs the attractors,

in the sense that it is extremized on the horizon by all the scalar fields of the theory, and

the entropy is given by the critical value of Veff. As in [18], our analysis does not make

use of supersymmetry, so our results are valid for any static extremal black hole in four-

dimensional N = 2 matter-coupled supergravity with gauging of abelian isometries of the

hypermultiplet scalar manifold.

The remainder of this paper is organized as follows: in the next section, we briefly re-

view N = 2, d = 4 gauged supergravity coupled to vector- and hypermultiplets. Section 3

summarizes the general recipe to construct supersymmetric solutions provided in [5]. In 4,

a simple model is considered that has just one vector multiplet with special Kähler pre-

potential F = −iχ0χ1, and the universal hypermultiplet. In this setting, the equations

of [5] are then solved and a genuine BPS black hole with running dilaton and two magnetic

charges is constructed. Section 5 contains an extension of the results of [18] on black hole

attractors in gauged supergravity to the case that includes also hypermultiplets. Section 6

contains our conclusions and some final remarks.

2 Matter-coupled N = 2, d = 4 gauged supergravity

The gravity multiplet of N = 2, d = 4 supergravity can be coupled to a number nV of

vector multiplets and to nH hypermultiplets. The bosonic sector then includes the vierbein

eaµ, n̄ ≡ nV + 1 vector fields AΛ
µ with Λ = 0, . . . nV (the graviphoton plus nV other fields

2For related work cf. [11], where Lifshitz solutions in general N = 2, d = 4 supergravity models were

obtained by reducing d = 5 theories with AdS vacua.
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from the vector multiplets), nV complex scalar fields Zi, i = 1, . . . , nV , and 4nH real

hyperscalars qu, u = 1, . . . , 4nH .

The complex scalars Zi of the vector multiplets parametrize an nV -dimensional special

Kähler manifold, i.e. a Kähler-Hodge manifold, with Kähler metric Gī(Z, Z̄), which is the

base of a symplectic bundle with the covariantly holomorphic sections.3

V =

(
LΛ

MΛ

)
, Dı̄V ≡ ∂ı̄V −

1

2
(∂ı̄K)V = 0 , (2.1)

obeying the constraint 〈
V|V̄

〉
≡ L̄ΛMΛ − LΛM̄Λ = −i , (2.2)

where K is the Kähler potential. Alternatively one can introduce the explicitly holomorphic

sections of a different symplectic bundle,

Ω ≡ e−K/2V ≡

(
χΛ

FΛ

)
. (2.3)

In appropriate symplectic frames it is possible to choose a homogeneous function of second

degree F(χ), called prepotential, such that FΛ = ∂ΛF . In terms of the sections Ω the

constraint (2.2) becomes 〈
Ω|Ω̄

〉
≡ χ̄ΛFΛ − χΛF̄Λ = −ie−K. (2.4)

The couplings of the vector fields to the scalars are determined by the n̄× n̄ period matrix

N , defined by the relations

MΛ = NΛΣ LΣ, Dı̄M̄Λ = NΛΣDı̄L̄
Σ
. (2.5)

If the theory is defined in a frame in which a prepotential exists, N can be obtained from

NΛΣ = F̄ΛΣ + 2i

(
NΛΓχ

Γ
) (
NΣ∆χ

∆
)

χΩNΩΨχΨ
, (2.6)

where FΛΣ = ∂Λ∂ΣF and NΛΣ ≡ Im(FΛΣ).

The 4nH real hyperscalars qu parametrize a quaternionic Kähler manifold with metric

Huv(q). A quaternionic Kähler manifold is a 4n-dimensional Riemannian manifold admit-

ting a locally defined triplet ~K
v

u of almost complex structures satisfying the quaternion

relation

K1K2 = K3 , (2.7)

and whose Levi-Civita connection preserves ~K up to a rotation,

∇w~K
v

u + ~Aw × ~K
v

u = 0 , (2.8)

with SU(2) connection ~A ≡ ~Au(q) dqu. An important property is that the SU(2) curvature

is proportional to the complex structures,

Fx ≡ dAx +
1

2
εxyzAy ∧ Az = −2Kx . (2.9)

3The conventions and notation used in this paper are those of refs. [5, 23].
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We will only consider gaugings of abelian symmetries of the action. Under the action of

abelian symmetries, the complex scalars Zi transform trivially, so that we will be effectively

gauging abelian isometries of the quaternionic-Kähler metric Huv. These are generated by

commuting Killing vectors kΛ
u(q), [kΛ, kΣ] = 0, and the requirement that the quaternionic-

Kähler structure is preserved implies the existence of a triplet of Killing prepotentials, or

moment maps, PΛ
x for each Killing vector such that

PΛ
x =

1

2nH
Kxu

v∇vkΛ
u , DuPΛ

x ≡ ∂uPΛ
x + εxyzAyuPΛ

z = −2KxuvkΛ
v . (2.10)

The bosonic action reads

S =

∫
d4x
√
|g|
[
R+ 2Gī ∂µZi∂µZ̄ ̄ + 2HuvDµq

uDµqv

+2 IΛΣ F
ΛµνFΣ

µν − 2RΛΣ F
Λµν ? FΣ

µν − V (Z, Z̄, q)
]
, (2.11)

where the scalar potential has the form

V (Z, Z̄, q) = g2

[
2L̄ΛLΣ(HuvkΛ

ukΣ
v − PΛ

xPΣ
x)− 1

4
IΛΣPΛ

xPΣ
x

]
, (2.12)

the covariant derivatives acting on the hyperscalars are

Dµq
u = ∂µq

u + gAΛ
µkΛ

u , (2.13)

and

IΛΣ ≡ Im(NΛΣ) , RΛΣ ≡ Re(NΛΣ) , IΛΣIΣΓ = δΛ
Γ . (2.14)

3 Supersymmetric solutions

All the timelike supersymmetric solutions to N = 2 gauged supergravity in four dimensions

were characterized by Meessen and Ort́ın in [5]. Here we summarize their results, restricted

to the case of abelian gauging.

The expressions and equations that follow are given in terms of bilinears constructed

out of the Killing spinors,

X =
1

2
εIJ ε̄IεJ , Va = iε̄IγaεI , V x

a = i(σx) J
I ε̄

IγaεJ , (3.1)

and of the real symplectic sections of Kähler weight zero

R ≡ Re(V/X) , I ≡ Im(V/X) . (3.2)

The metric and vector fields take the form

ds2 = 2 |X|2 (dt+ ω)2 − 1

2 |X|2
hmndy

mdyn , (3.3)

AΛ = −1

2
RΛV + ÃΛ

mdy
m , (3.4)
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where the 3-dimensional metric hmn must admit a dreibein V x satisfying the structure

equation4

dV x + εxyz
(
Ay − gÃΛPΛ

y
)
∧ V z +

g√
2
IΛPΛ

yV y ∧ V x = 0 . (3.5)

|X|2 can be determined from R and I,

1

2 |X|2
= 〈R|I〉 , (3.6)

the 1-form V is given by

V = 2
√

2 |X|2 (dt+ ω) , (3.7)

and the spatial 1-form ω satisfies

(dω)xy = 2 εxyz

[
〈I|∂zI〉 −

g

2
√

2|X|2
RΛPΛ

z

]
. (3.8)

The complex scalars Zi, the sections R and I, the 1-form ω, the function X and the

hyperscalars qu are all time-independent.

The complex scalars depend, in a way that depends on the chosen parametrization

of the special Kähler manifold, on the sections R and I. A common simple choice of

parametrization is χ0 = 1, χi = Zi, in which case

Zi =
Li

L0 =
Ri + i Ii

R0 + i I0 . (3.9)

The effective 3-dimensional gauge connection ÃΛ must satisfy

(dÃΛ)xy = F̃Λ
xy = − 1√

2
εxyz

(
∂zIΛ + gBΛ

z

)
, (3.10)

with

BΛ
x ≡
√

2

[
RΛRΣ +

1

8|X|2
IΛΣ

]
PΣ

x , (3.11)

from which follows the integrability condition

∇̃2IΛ + g∇̃xBΛ
x = 0 . (3.12)

A similar condition holds for the IΛ’s,

∇̃2IΛ + g∇̃xBΛx =
g√
2
〈I|∂xI〉 PΛ

x +
g2

4|X|2
RΣ [kΛukΣ

u − PΛ
xPΣ

x] , (3.13)

where

BΛx ≡
√

2

[
RΛRΣ +

1

8|X|2
RΛΓI

ΓΣ

]
PΣ

x . (3.14)

Finally, the hyperscalars must satisfy the equation

KxuvV
xµDµq

v +
√

2g|X|2IΛkΛ
u = 0 . (3.15)

For a given special geometric model the sections R can always, at least in principle, be

determined in terms of the sections I, by solving the so-called stabilization equations. This

means that to obtain a supersymmetric solution one needs to solve the above equations for

IΛ, IΛ, ω, V x and qu.

4Eq. (3.5) corrects a typo in [5]; the terms containing the moment maps must have the opposite sign

w.r.t. the one in [5].
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4 A black hole solution

We now turn to the task of obtaining an explicit solution with non-trivial hyperscalars. To

do so, we consider a simple theory with just one vector multiplet and one hypermultiplet,

nV = nH = 1.

More specifically, let the hypermultiplet be the universal hypermultiplet [24]. The

scalar fields in this multiplet, denoted by (φ, a, ξ0, ξ0), parametrize the quaternionic space

SU(2, 1)/U(2), with metric

Huvdq
udqv = dφ2 +

1

4
e4φ

(
da− 1

2
〈ξ|dξ〉

)2

+
1

4
e2φ
[
(dξ0)2 + (dξ0)2

]
, (4.1)

where 〈ξ|dξ〉 ≡ ξ0dξ
0 − ξ0dξ0, and the corresponding SU(2) connection has components

A1 = eφdξ0 , A2 = eφdξ0 , A3 =
e2φ

2

(
da− 1

2
〈ξ|dξ〉

)
. (4.2)

As for the vector multiplet, we choose a special geometric model specified by the prepotential

F(χ) = −iχ0χ1 , (4.3)

with the parametrization χ0 = 1, χ1 = Z. Then it is easy to obtain from (2.4) the Kähler

potential K = − log [4Re(Z)] and the Kähler metric

GZZ̄ = ∂Z∂Z̄K =
1

4Re(Z)2
, (4.4)

while the period matrix NΛΣ, giving the scalar-vector couplings, is calculated from eq. (2.6)

to be

N = −i

(
Z 0

0 1
Z

)
. (4.5)

Using the definition (3.2), the dependence of the R section on the I section for this

special geometric model is readily seen to be

R0 = −I1 , R1 = −I0 , R0 = I1 , R1 = I0 , (4.6)

so that the complex scalar is given by

Z =
R1 + iI1

R0 + iI0 =
I0 − iI1

I1 − iI0 , (4.7)

and
1

2 |X|2
= 〈R|I〉 = 2

(
I0I1 + I0I1

)
. (4.8)

Since the theory includes two vector fields, we can choose to gauge up to two isometries of

the metric Huv. We choose to gauge the (commuting) isometries generated by the Killing

vectors

kΛ = kΛ∂a + δ0
Λc
(
ξ0∂ξ0 − ξ0∂ξ0

)
, (4.9)

– 6 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
0

where kΛ and c are constants. This means that we are gauging the R group of the trans-

lations along a with the combination AΛkΛ, and the U(1) group of rotations in the ξ0–ξ0

plane with the field A0. (4.9) is a subcase of the Killing vector considered in [6], and

corresponds to setting

QΛA = QΛ
A = 0 , U =

(
0 c

−c 0

)
(4.10)

in eqs. (3.8) and (3.9) of [6]. The triholomorphic moment maps associated with the Killing

vectors (4.9) can be obtained from (2.10), and are

PΛ
1 = −δ0

Λc ξ
0eφ , PΛ

2 = δ0
Λc ξ0e

φ ,

PΛ
3 = δ0

Λc

[
1− 1

4
e2φ
(
(ξ0)2 + (ξ0)2

)]
+

1

2
kΛe

2φ .
(4.11)

With these choices the scalar potential (2.12) reads

V =
g2

2

{
1

Z + Z̄

[
e4φ

4

[
k0 −

c

2

(
(ξ0)2 + (ξ0)2

)]2
− c2 − k0c e

2φ

]
+

ZZ̄

Z + Z̄

e4φ

4
k2

1 − k1c e
2φ

}
. (4.12)

For simplicity we will look for solutions with R0 = R1 = I0 = I1 = 0, which implies

from (4.7) that the scalar Z is real and from (3.4) that the gauge fields are in a purely

magnetic configuration. From eq. (3.8) follows that ω is a closed 1-form, and can be

reabsorbed by a redefinition of the coordinate t, leading to static solutions. This choice

also implies that eq. (3.13) is trivially satisfied.

We will also take the hyperscalar a to be constant and ξ0 = ξ0 = 0. Note that

the scalar potential (4.12) has then a critical point at Z = −k0/k1 and e2φ = −c/k0,

with Vcrit = 3k1g
2c2/(8k0). Since the absence of ghost modes requires Z > 0, one needs

k0/k1 < 0 (and of course c/k0 < 0) to have a critical point of the potential. With the

choice ξ0 = ξ0 = 0, the moment maps (4.11) become

PΛ
1 = PΛ

2 = 0 , PΛ
3 = δ0

Λc+
1

2
kΛe

2φ . (4.13)

Eq. (3.5) implies then dV 3 = 0, hence there exists a function r (that we will use as a

coordinate) such that locally

V 3 = dr . (4.14)

We shall impose radial symmetry on the solution by requiring the scalar fields Z, φ and

the sections IΛ to depend only on r.

The φ, ξ0 and ξ0 components of equation (3.15) reduce then to the constraint

AΛ
xkΛ = 0 =⇒ ÃΛkΛ = 0 , (4.15)

while the a component becomes

φ′ =
g

2
√

2
e2φ IΛkΛ , (4.16)

where the prime stands for a derivative with respect to r.

– 7 –
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If we now introduce the remaining coordinates ϑ and φ by choosing

V 1 = eW (r)dϑ , V 2 = eW (r)f(ϑ)dϕ , (4.17)

where at this stage f is an arbitrary function of ϑ, the remaining components of eq. (3.5)

are satisfied provided that the following conditions are met

W ′(r) = − g√
2
PΛ

3IΛ = − g√
2

(
c I0 +

e2φ

2
IΛkΛ

)
, (4.18)

Ã0 = −f
′(ϑ)

gc
dϕ . (4.19)

From (4.19) and the constraint (4.15) we also have

Ã1 =
k0

k1

f ′(ϑ)

gc
dϕ . (4.20)

Finally, (3.10) leads to the two equations[(
IΛkΛ

)′ − g√
2

(
IΛ
)2
kΛPΛ

3

]
e2W (r) = (−1)Λ

√
2k0

gc

f ′′(ϑ)

f(ϑ)
(no sum over Λ) , (4.21)

while (3.12) is automatically satisfied since we obtained F̃Λ as the exterior derivative of

the effective connection ÃΛ.

Equation (4.16) allows us to use the chain rule to trade the coordinate r for φ in (4.21),

which after summing over Λ becomes

1

2
∂φ

[(
IΛkΛ

)2]− (IΛkΛ

)2
+ 2 I0k0

(
I1k1 − I0c e−2φ

)
= 0 . (4.22)

If we impose the condition

I1k1 = I0c e−2φ , (4.23)

this equation is solved by

I0 =
αeφ

k0 + c e−2φ
, I1 =

c

k1

αe−φ

k0 + c e−2φ
, (4.24)

where α is an integration constant. Substituting these expressions back in (4.21) for Λ = 0

or Λ = 1, we obtain an expression for the function W (r),

e2W (r) =

[
2

αgc

(
k0 + c e−2φ

)
e−φ
]2 f ′′(ϑ)

f(ϑ)
. (4.25)

The expression (4.25) is also a solution of equation (4.18), which is non-trivial, proving

the constraint (4.23) to be consistent with all the equations. From (4.25) we also conclude

that f ′′(ϑ)/f(ϑ) should be a positive constant, therefore f(ϑ) in general takes the form

f(ϑ) = γ sinh (δϑ+ ρ) , (4.26)

– 8 –
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where γ, δ and ρ are constants. We can now go back to the coordinate r by solving

equation (4.16) to obtain the dependence of φ on r, obtaining

φ = −1

3
log

(
− 3αg

2
√

2
r + β

)
, (4.27)

where β is yet another integration constant. Note that all the integration constants can be

reabsorbed by the coordinate change

( t , r , ϑ , ϕ ) −→

(
4
√

2α

gk1c
t , −2

√
2

3αg

(
r3 − β

)
,
ϑ− ρ
δ

,
ϕ

δγ

)
, (4.28)

that allows to write the complete solution as

ds2 =
16 r2

g2k1c

[(
1 +

k0

c

1

r2

)2

r2dt2 −
(

1 +
k0

c

1

r2

)−2dr2

r2
− 1

2

(
dϑ2+ sinh2 ϑ dϕ2

)]
, (4.29)

A0 = −coshϑ

gc
dϕ , A1 =

k0

k1

coshϑ

gc
dϕ , (4.30)

φ = − log r , Z =
c

k1
r2 . (4.31)

We start the analysis of the solution by noting that it has no free parameters, since all the

constants appearing in (4.29)–(4.31) are completely determined by the choice of gauging.

Observe also that in order to maintain the correct signature and to have Z > 0, which is

required to have a real Kähler potential, we have to impose k1c > 0.

The metric (4.29) is singular in r = 0 and, if k0c < 0, also in r =
√
−k0/c. The

singularity in r = rS ≡ 0 is a true curvature singularity, while the one in r = rH ≡√
−k0/c is not and corresponds instead to a Killing horizon, always covering the curvature

singularity.

With the metric written in the form (4.29), it is immediate to see that in the asymptotic

limit r → +∞ it reduces to

ds2 =
16r2

g2k1c

[
r2dt2 − dr2

r2
− 1

2

(
dϑ2 + sinh2 ϑ dϕ2

)]
, (4.32)

which is manifestly conformally equivalent to AdS2×H2. Note that (4.32) is very similar

to hyperscaling violating geometries, which in d dimensions have the form

ds2 = r−
2θ
d−2

(
r2zdt2 − dr2

r2
− r2(dxi)2

)
, (4.33)

where i = 1, . . . , d − 2. Here, z is the dynamical critical exponent and θ the so-called

hyperscaling violation exponent. Under the scaling r → r/λ, xi → λxi, t → λzt, (4.33) is

not invariant, but transforms covariantly, ds → λθ/(d−2)ds. Geometries of the form (4.33)

have been instrumental in recent applications of AdS/CFT to condensed matter physics,

cf. e.g. [25]. (4.32) exhibits actually a scaling behaviour similar to that of (4.33). To see

this, introduce new coordinates x, y on H2 according to

x+ iy =
eiϕ tanh ϑ

2 + 1

eiϕ tanh ϑ
2 − 1

, (4.34)
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which casts (4.32) into the form

ds2 =
16r2

g2k1c

[
r2dt2 − dr2

r2
− dx2 + dy2

2x2

]
. (4.35)

Under the scaling

r → r

λ
, t→ λt , x→ λx , y → λy , (4.36)

(4.35) transforms as ds→ ds/λ.

In the near-horizon limit, r → rH , after the coordinate change t → t/4, the metric

takes the form

ds2 = − 4

g2c2

k0

k1

[
r2dt2 − dr2

r2
− 2

(
dϑ2 + sinh2 ϑ dϕ2

)]
, (4.37)

which is AdS2×H2, while the scalar fields take the values

φ = −1

2
log

(
−k0

c

)
, Z = −k0

k1
. (4.38)

The magnetic charges are given by

PΛ =
1

4π

∫
FΛ = pΛV , V =

∫
sinhϑ dϑ ∧ dϕ , (4.39)

yielding for the magnetic charge densities

p0 = − 1

4πgc
p1 =

k0

k1

1

4πgc
. (4.40)

The Bekenstein-Hawking entropy density can then be written as

s =
S

V
= −k0

k1

2

g2c2
= 32π2p0p1 . (4.41)

5 Attractor mechanism

In [18] the authors presented a generalization of the well-known black hole attractor mech-

anism [12–16] to extremal static black holes in N = 2, d = 4 gauged supergravity coupled

to abelian vector multiplets. In this section we closely follow their argument, generalizing

it by taking into account the presence of gauged hypermultiplets. As in [18], we make no

assumption on the form of the scalar potential, of the vectors’ kinetic matrix N or on the

scalar manifolds, so that our results are valid not only for N = 2 supergravity, but for any

theory described by an action of the form (2.11).

The equations of motion obtained from the variation of (2.11) are

Rµν + Tµν + 2Gī ∂(µZ
i∂ν)Z̄

̄ + 2HuvDµq
uDνq

v − 1

2
gµνV = 0 , (5.1)

∇ν (?FΛ
νµ) +

g

2
kΛuD

µqu = 0 , (5.2)

D2Zi + ∂iFΛ
µν ? FΛ

µν +
1

2
∂iV = 0 , (5.3)

D2qu +
1

4
∂uV = 0 , (5.4)
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where

Tµν ≡ IΛΣ

(
4FΛ ρ

µ FΣ
νρ − gµνFΛ

ρσF
Σρσ
)
, (5.5)

the dual field strengths are given by

FΛµν ≡ −
1

4
√
|g|

δS

δ ? FΛµν
= RΛΣF

Σ
µν + IΛΣ ? F

Σ
µν , (5.6)

and the second covariant derivatives on the scalars act as

D2Zi = ∇µ∂µZi + Γijk∂µZ
j∂µZk , (5.7)

D2qu = ∇µDµqu + ΓuvwDµq
vDµqw + gAΛ

µ∂vkΛ
uDµqv . (5.8)

The metric for the most general static extremal black hole background with flat, spherical

or hyperbolic horizon can be written in the form

ds2 = e2U(r)dt2 − e−2U(r)
[
dr2 + e2W (r)

(
dϑ2 + fκ(ϑ)2dϕ2

)]
, (5.9)

with

fκ(ϑ) =


sinϑ , κ = 1 ,

ϑ , κ = 0 ,

sinhϑ , κ = −1 .

(5.10)

We require that all the fields are invariant under the symmetries of the metric, namely

the time translation isometry generated by ∂t and the spatial isometries generated by the

Killing vectors

∂ϕ , cosϕ∂ϑ −
f ′κ
fκ

sinϕ∂ϕ , sinϕ∂ϑ +
f ′κ
fκ

cosϕ∂ϕ . (5.11)

The scalar fields can then only depend on the radial coordinate r, and the request of

invariance of the field strength 2-forms FΛ leads to

FΛ =
1

2
FΛ

µν(x)dxµdxν = FΛ
tr(r)dt ∧ dr + FΛ

ϑϕ(r, ϑ)dϑ ∧ dϕ , (5.12)

with

FΛ
ϑϕ(r, ϑ) = 4πpΛ(r)fκ(ϑ) , (5.13)

where pΛ(r) is a generic function of r. The Bianchi identities

∇ν
(
?FΛνµ

)
= 0 ⇐⇒ ∂[µF

Λ
νρ] = 0 (5.14)

imply that pΛ must be constant. With field strengths of this form, it is always possible to

choose a gauge in which the gauge potential 1-forms can be written as

AΛ = AΛ
t(r)dt+AΛ

ϕ(ϑ)dϕ . (5.15)

The r-component of the Maxwell equations (5.2) reduces then to the condition

kΛu(q)∂rq
u = 0 , (5.16)
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while the ϑ-component is automatically satisfied and the ϕ-component gives

AΣ
ϕkΣ

ukΛu = 0 (5.17)

for every value of Λ, or equivalently

kΛ
u(q) pΛ = 0 . (5.18)

Finally if we define a function eΛ(r) such that

FΛ
tr(r) = 4πIΛΣ

(
eΣ(r)−RΣΓp

Γ
)
e2(U−W ) , (5.19)

we have FΛϑϕ = 4πeΛ(r)fκ(ϑ) and the t-component of the Maxwell equations becomes

4πe2(U−W )∂reΛ =
g2

2
e−2UAΣ

tkΣ
ukΛu . (5.20)

The quantities pΛ and eΛ(r) are the magnetic and electric charge densities inside the 2-

surfaces Sr of constant r and t,

pΛ =
1

4πV

∫
Sr

FΛ , eΛ(r) =
1

4πV

∫
Sr

FΛ , V =

∫
Sr

fκ(ϑ)dϑ ∧ dϕ . (5.21)

The non-vanishing components of Tµν are given by

T tt = T rr = −T θθ = −Tϕϕ = (8π)2e4(U−W )ṼBH , (5.22)

where ṼBH is the so-called black hole potential,

ṼBH = −1

2

(
pΛ , eΛ(r)

)(IΛΣ +RΛΓI
ΓΩRΩΣ −RΛΓI

ΓΣ

−IΛΓRΓΣ IΛΣ

)(
pΣ

eΣ(r)

)
, (5.23)

which however, unlike the usual definition, has an explicit dependence on r through the

varying electric charges eΛ. It is also straightforward, using the expressions (5.13), (5.19)

and the definition (5.6), to verify that

∂iFΛ
µν ? FΛ

µν = (8π)2e4(U−W )∂iṼBH , (5.24)

where on the left-hand side only the dual field strengths FΛ are taken to depend on the

complex scalars Zi and only through the matrices RΛΣ and IΛΣ appearing in (5.6), while

on the right-hand side the charges eΛ(r) are considered to be independent of the Zi.

Equations (5.1), (5.3) and (5.4) then reduce to

e2U
(
2U ′W ′ + U ′′

)
− (8π)2e4(U−W )ṼBH − 2g2e−2UAΛ

tkΛuA
Σ
tkΣ

u +
V

2
= 0 , (5.25)

e2U
(
U ′2 +W ′2 +W ′′

)
− (8π)2e4(U−W )ṼBH + e2UGīZi′Z̄ ̄′ + e2UHuvq

u′qv′

−g2e−2UAΛ
tkΛuA

Σ
tkΣ

u +
V

2
= 0 , (5.26)

e2U
(
−κe−2W + 2W ′2 +W ′′

)
− 2g2e−2UAΛ

tkΛuA
Σ
tkΣ

u + V = 0 , (5.27)

e2U
(
Zi′′ + 2W ′Zi′ + Gī∂lGk̄Z l′Zk′

)
− (8π)2e4(U−W )∂iṼBH −

1

2
∂iV = 0 , (5.28)

e2U
(
qu′′ + 2W ′qu′ + Γuvzq

v′qz′
)
− g2e−2UAΛ

tkΛ
vAΣ

t∇vkΣ
u − 1

4
∂uV = 0 , (5.29)

where a prime denotes a derivative with respect to r.
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In the near horizon limit (r → 0) one has

U ∼ log
r

rAdS
, W ∼ log

(
rH
rAdS

r

)
, (5.30)

where rAdS is the AdS2 curvature radius. We require all the fields, their derivatives, the

scalar potential and the couplings to be regular on the horizon. Then we can choose a

gauge such that

AΛ
t

∣∣
r=0

= 0 =⇒ AΛ
t
r→0∼ FΛ

rt

∣∣
r=0

r . (5.31)

It is also reasonable to assume that the derivative of the electric charges ∂reΛ remains finite

on the horizon. In this case, eq. (5.20) implies that in the near-horizon limit the quantity

AΣ
tkΣukΛ

u is at least of order r2. If we expand in powers of r, in the gauge (5.31) the

order zero term automatically vanishes, while for the order one term we have

0 = ∂r
(
AΣ

tkΣukΛ
u
)∣∣
r=0

= −FΣ
trkΣukΛ

u
∣∣
r=0

=⇒ FΛ
trkΛ

u
∣∣
r=0

= 0 . (5.32)

Using (5.31) and (5.32) one can see that the terms with AΛ
t in the equations of motion,

e−2UAΛ
tkΛuA

Σ
tkΣ

u and e−2UAΛ
tkΛ

vAΣ
t∇vkΣ

u, go to zero in the near-horizon limit. In

this limit the equations of motion (5.25)–(5.29) thus reduce to

1

r2
AdS

= (8π)2VBH

r4
H

− V

2
, (5.33)

κ

r2
H

=
1

r2
AdS

+ V , (5.34)

∂i

[
(8π)2VBH

r4
H

+
V

2

]
= 0 , (5.35)

∂uV = 0 , (5.36)

where VBH ≡ ṼBH|eΛ(r)→eΛ(0). Solving the first two equations for r2
H and r2

AdS one gets

r2
H =

κ±
√
κ2 − 2(8π)2VBHV

V

∣∣∣∣∣
r=0

, (5.37)

r2
AdS = ∓

r2
H√

κ2 − 2(8π)2VBHV

∣∣∣∣∣
r=0

, (5.38)

and since of course r2
AdS > 0 we have to choose the lower sign. We also have to require

r2
H > 0, which means that flat or hyperbolic geometries, κ = 0,−1, are only possible if

the scalar potential takes negative values on the horizon, V |r=0 < 0. Spherical geometry

(κ = 1), on the other hand, is compatible with both positive or negative values of V on

the horizon, but for V |r=0 > 0 there is the restriction VBHV |r=0 <
1

2(8π)2 , since VBH is

always positive.

We can introduce an effective potential as a function of the scalars,

Veff(Z, Z̄, q) ≡
κ−

√
κ2 − 2(8π)2VBHV

V
, (5.39)
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defined for VBHV < 1
2(8π)2 , and write

r2
H = Veff|ZH ,qH , (5.40)

r2
AdS =

Veff√
κ2 − 2(8π)2VBHV

∣∣∣∣∣
ZH ,qH

, (5.41)

with ZiH ≡ limr→0 Z
i, quH ≡ limr→0 q

u. Because of equations (5.35)–(5.36), Veff is extrem-

ized on the horizon by all the scalar fields of the theory,

∂iVeff|ZH ,qH = 0 , ∂uVeff|ZH ,qH = 0 . (5.42)

The values ZiH , q
u
H of the scalars on the horizon are then determined by the extremiza-

tion conditions (5.42), and the Bekenstein-Hawking entropy density is given by the critical

value of Veff,

s =
S

V
=

A

4V
=
r2
H

4
=
Veff(ZH , Z̄H , qH)

4
. (5.43)

For a given theory this critical value, and thus also the entropy, depend only on the charges

(on the horizon) pΛ and eΛ(0), so that the attractor mechanism still works. On the other

hand ZiH and quH may not be uniquely determined, since in general Veff may have flat

directions.

The limit for V → 0 of Veff only exists for κ = 1, in which case Veff → (8π)2VBH and

one recovers the attractor mechanism for ungauged supergravity. The fact that this limit

does not exist for κ = 0,−1 is not surprising since flat or hyperbolic horizon geometries

are incompatible with vanishing cosmological constant.

For the black hole we presented in section 4, the fact that the entropy only depends

on the charges is not really surprising, since the solution has no free parameters at all. It

is however straightforward to verify that the near-horizon geometry does indeed extremize

the effective potential Veff. In particular one has on the horizon

∂qV = ∂ZV = ∂ZVBH = 0 . (5.44)

6 Final remarks

In this paper, we considered N = 2 supergravity in four dimensions, coupled to vector- and

hypermultiplets, where abelian isometries of the quaternionic Kähler manifold are gauged.

In the first part, we analytically constructed a magnetically charged supersymmetric black

hole solution of this theory for the case of just one vector multiplet with prepotential

F = −iχ0χ1, and the universal hypermultiplet. This black hole has a running dilaton,

and interpolates between AdS2 × H2 at the horizon and a hyperscaling-violating type ge-

ometry at infinity, which is conformal to AdS2 × H2. To the best of our knowledge, this

represents the first example of an analytic genuine BPS black hole in gauged supergravity

with nontrivial hyperscalars; previously known solutions of this type were only constructed

numerically [6].
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Diverging scalars fields of the form (4.31) are common in two and three dimensions,

but are sometimes regarded as a sign of pathology in four or higher dimensions. However,

similar to the linear dilaton black holes of [26], our solutions have finite entropy, magnetic

charges and curvature at large r, in spite of the diverging scalars, and should thus be

regarded as physically meaningful.5 In any case, it may be interesting to consider more

general models and gaugings, and to look for asymptotically AdS black holes with running

hyperscalars, that might be more relevant for gauge/gravity duality applications. Unfortu-

nately the equations of [5] become immediately quite involved once the complexity of the

model increases, but perhaps our solution may serve as a starting point that helps solving

analytically the equations of [5] in a more complicated setting. We hope to come back to

this point in a future publication.

In the second part of the paper, we extended the work of [18] on black hole attractors

in gauged supergravity to the case where also hypermultiplets are present. The attractors

were shown to be governed by an effective potential Veff, which is extremized on the horizon

by all the scalar fields of the theory. Moreover, the entropy is given by the critical value

of Veff, and in the limit of vanishing scalar potential, Veff reduces (up to a prefactor) to

the usual black hole potential. The resulting attractor equations (5.42) do not make use of

supersymmetry; they are valid for any static extremal black hole. It would be interesting

to analyze them for some specific models, for instance the ones worked out in [27] and

considered also in [6] that arise from M-theory compactifications.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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