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1 Introduction

Supersymmetric solutions are pivotal in the study of supergravity theories since they pos-

sess stability properties that survive quantum deformations. Assuming supersymmetry

renders the solution space more tractable too. This is because studying the first-order

Killing spinor equations is easier than the second-order equations of motion.

There are various related methods of attacking the problem of finding supersymmetric

solutions. In the approach that is based on spinorial geometry one considers the reduction

of the local symmetry of the theory, including the spacetime spin group, to the stability

subgroup of Killing spinors. This method has been widely successful, especially so for max-

imally supersymmetric theories where the reduction of the spin bundle is straightforward

(see for instance [1]), but also because the method can be applied to the reduction of the

generalized (hidden) structure group of the theory (see for instance [2]). An equivalent ap-

proach is to study the various tensors formed by the Killing spinor bilinears as initiated by

Tod in [3, 4], a method successful in various dimensions and theories (see for instance [5]).

The latter approach was applied to study supersymmetric solutions of three-dimen-

sional half-maximal supergravity in [6]. It follows from the algebra of supersymmetry

variations that in any supergravity theory the vector formed by squaring a Killing spinor

is at least Killing which is either null or timelike. For this model the null case has been

completely solved in [6] and the most general solution is found to be a pp-wave. However,

for the timelike case only few explicit solutions were obtained in [6]. In this paper our aim

is to classify and solve for all supersymmetric timelike solutions of this model for which

the metric is

ds2 = dt2 − e2ρ(x,y)(dx2 + dy2) .

The scalar content of the theory parametrizes the coset

V ∈ G/K ,

where we define the Lie group G

G = SO(8, n) ,

its maximally compact subgroup

K = SO(8)× SO(n)× Z2

and their Lie algebras as g = so(8, n) and k = so(8) ⊕ so(n), respectively. The coset

representative is time independent, so the pull-back of the Maurer-Cartan form

P +Q = V
−1dV
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only depends on the adapted coordinates x and y. Here P is the scalar current and Q is

the SO(8)× SO(n) connection.

Recently a novel classification of supersymmetric backgrounds of the three-dimensional,

maximally supersymmetric, ungauged supergravity was given in [7]. The motivation there

was primarily the construction of interesting supersymmetric solutions with what is termed

non-geometric monodromy. Rather than fixing a Killing spinor and thus reducing the

symmetry of the theory, the authors instead fixed the element P under the action of some

group. In a sense, the problem is turned on its head by asking which elements P admit

one Killing spinor, two Killing spinors, etc. The general problem of fixing P this way is

feasible. Moreover, the assumption of at least one supersymmetry implies that P has to

be nilpotent in some Lie algebra. More precisely, by using the Zariski topology argument,

the element

Pz =
1

2
(Px − i Py) ∈ (g/k)C,

which transforms under the local group of the theoryK, is shown to be necessarily nilpotent

as an element in the complexified version gC of g, where g is the Lie algebra of the global

symmetry G. Note that the complexified version kC of the local algebra k acts on Pz and

preserves nilpotency in gC. What is then left is to classify nilpotent orbits of (g/k)C under

KC, to which Pz should belong. This is particularly attractive as nilpotent orbits are finite

and can be classified for all classical groups. For the classification one then uses the Kostant-

Segikuchi correspondence that asserts a one-to-one correspondence of nilpotent orbits in

(g/k)C under KC to nilpotent orbits in g under G [7]. Although the method in [7] is applied

to maximally supersymmetric ungauged supergravity in three dimensions, where the global

symmetry G is E8 and the local symmetry K is the maximally compact subgroup SO(16),

their topology argument applies identically to the half-maximal ungauged supergravity

as well.

Note that an element Pz of a background that admits timelike supersymmetry is neces-

sarily nilpotent in gC but the converse is not true. Therefore, after we obtain the nilpotent

orbits in (g/k)C under KC we need to check for supersymmetry. This can be done by testing

the element Pz on the algebraic dilatino variation. We will show that this is sufficient as

the integrability of the gravitino variation is indeed satisfied on-shell. The classification of

nilpotent orbits under KC that admits supersymmetry is pretty concise to summarise. The

supersymmetric orbits under KC to which such a Pz belongs correspond to the partitioning

of (8, n) into sums of (2, 2), (2, 1), (1, 0) and (0, 1). This decomposition can be thought

of1 as the decomposition of R8,n into orthogonal subspaces R2,2, R2,1, R1,0 and R
0,1. The

multiplicity µ of (2, 2) and multiplicity ν of (2, 1), and only these, determine the supersym-

metry by the simple rule that each of them halve supersymmetry by a projection equation.

Each class of elements, up to the action of KC, corresponds to a unique partition. We call

the class N(µ, ν). That is, the classes are defined by

N(µ, ν) = {P ′
z : P

′
z
KC

∼ Pz} .
1For a concrete comparison, recall that a two-form in so(n) under conjugation decomposes into two-forms

in R
2 and R subspaces.
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A representative element for the class N(µ, ν) is called a normal form. They are useful as

they allow us to work with a concrete element and are pretty easy to write down. However,

note that the group used to identify the elements Pz is the complexification KC of the

symmetry of the theory K. Therefore, the orbits under KC may contain more than one,

or even no solutions. For instance, a normal form under KC may not satisfy the equations

of motion but some other representative that is KC-conjugate to it might do. That is,

it does not make sense to use the normal form in order to start solving the equations of

motion because the equations of motion are not covariant under KC. Therefore, we have

to move on to classify the elements Pz under the real local symmetry of the theory K in

order to obtain exact solutions. This means that for each class N(µ, ν) and each element

P ′
z ∈ N(µ, ν), we need to find all the elements Pz that are distinct to P ′

z under the action of

K but are identical to P ′
z under KC. We may call this space N(µ, ν)/K. The most general

element Pz ∈ N(µ, ν)/K is still easy to write and are given in (4.21). The equations of

motion and in particular the integrability equations for P+Q = V
−1dV severely restrict the

coefficients in Pz. Consequently, the classification of the on-shell nilpotent elements that

are in N(µ, ν) should be refined into spaces N(µ, νr, νc), where ν = νr+νc. If Pz ∈ N(µ, ν)

and is indeed part of a solution, then Pz ∈ N(µ, νr, νc). After this classification we analyze

the field equations and integrability conditions and arrive at the following result:

Main result. The timelike supersymmetric backgrounds of the three-dimensional, half-

maximal, ungauged supergravity are locally parametrized by µ+νr+2νc meromorphic func-

tions which are solutions to µ+ νr copies of Liouville’s equation and νc copies of an SU(3)

Toda system. The µ and νr copies of Liouville’s equation are distinguished by their con-

tribution to the coset space connection P +Q and to the spacetime curvature. Each ν, νr
and νc copy is responsible for halving supersymmetry once.

We begin in section 2 with an introduction to the theory and set up our conventions

for the timelike backgrounds. In section 3 we present the nilpotency classification. In

section 4, we do not yet use the equations of motion but we present the elements Pz in the

classes up to the real symmetry. The restriction of Pz due to the equations of motion and

the solutions themselves are in section 5. We conclude in section 6 with some brief remarks.

Most of the technical material is to be found in the appendices. In appendix A we review

our spinorial conventions. We also give in appendix A some useful formulae for comparison

with other methods in the literature. In appendix B we comment on a more direct matrix

factorization of Pz. Supersymmetry closure in the Zariski topology and construction of

normal forms are explained in detail in appendices C and D, respectively.

2 Set up

2.1 Theory

Half-maximal ungauged supergravity in three dimensions is described in the bosonic sector

by a metric g on a three-dimensional spin manifold M and the coset map

V : M −→ G/K , (2.1)
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where the groups G and K are

G = SO(8, n) , (2.2)

K = S
(
O(8)×O(n)

)
= SO(8)× SO(n)× Z2 , (2.3)

and their Lie algebras are g and k = so(8) ⊕ so(n). We pull-back and split the Maurer-

Cartan form on the symmetric decomposition g = k⊕ p,

V
−1dV = Q+ P ∈ (k⊗ T ∗M)⊕ (p⊗ T ∗M) , (2.4)

where p = g/k = R
8 ⊗ R

n. The action of the model is

S =

∫

dvolg(−R+ gµνP Ir
µ P Ir

ν ) , (2.5)

where µ, ν = 0, 1, 2 are spacetime indices, I, A, Ȧ = 1, 2, . . . , 8 are respectively the vector,

chiral and anti-chiral indices for Spin(8), and r, s = 1, . . . , n are SO(n) vector indices. Note

that we use a mostly minus signature. The full theory was constructed already in [8].

The gaugings of the theory were classified in [9]. For other gauged three-dimensional

supergravities with various amounts of supersymmetry see [10, 11].

From the action we derive the equations of motion

Rµν = P Ir
µ P Ir

ν , (2.6)

DµP
µIr ≡ ∇µP

µIr +Qµ
IJPµJr +Qµ

rsPµIs = 0 . (2.7)

The integrability of P +Q = V
−1dV is dP + dQ+ (P +Q) ∧ (P +Q) = 0, or explicitly

dP Ir +QIJ ∧ P Jr +Qrs ∧ P Is = 0 , (2.8)

R(Q)IJ ≡ dQIJ +QIK ∧QKJ +QJK ∧QIK = −P Ir ∧ P Jr, (2.9)

R(Q)rs ≡ dQrs +Qrt ∧Qts +Qst ∧Qrt = −P Ir ∧ P Is. (2.10)

The full theory has 16 real supersymmetries, which are locally given by ǫAα but we

usually suppress the spacetime spinor index α = 1, 2. With the gravitino ψµ and dilatino

χ put to zero, a Killing spinor should satisfy

δψµ = Dµǫ
A = ∇µǫ

A − 1

4
QIJ

µ ΓIJ
ABǫ

B = 0 , (2.11)

δχ = γµP Ir
µ ΓI

AȦ
ǫA = 0 . (2.12)

We will use {γa, γb} = −2ηab, where ηab has mostly minus signature, and {ΓI ,ΓJ} = −2δIJ ,

so that all representations are real. We refer to appendix A for more details on our spinorial

conventions.

2.2 Timelike backgrounds

Let us define the vector

V µ = ǭAγµǫA. (2.13)
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Since the derivative D in the gravitino variation (2.11) is in spin(1, 2)⊕ spin(8), the vector

V µ is easily shown to be parallel, i.e. ∇µVν = 0. We may define the Killing spinor bilinear

FAB = ǭAǫB = −FBA, (2.14)

in order to derive via the Fierz identity

ǫAǭB = −1

2
ǭBγµǫAγµ +

1

2
ǭBǫA, (2.15)

which shows that V is either null or timelike:

V µVµ = FABFAB ≥ 0 . (2.16)

The null case was completely solved and few explicit solutions for the timelike case were

obtained in [6]. In this paper we only consider the timelike case and so V µ is a timelike

covariantly constant vector. It follows that we can find adapted coordinates (t, x, y) so that

V = ∂t and the metric is

ds2 = dt2 − e2ρ(x,y)(dx2 + dy2) . (2.17)

It is shown in [6] that ∂t also leaves the coset representative invariant up to a local K

transformation, so in particular we may choose a gauge where Qt = Pt = 0.

The Einstein equations of motion for the metric (2.17) are only non-trivial in the (x, y)

components,

gij e
−2ρ∂k∂kρ = P Ir

i P Ir
j , i, j = 1, 2 . (2.18)

It thus follows that

P Ir
x P Ir

y = 0 , (2.19)

P Ir
x P Ir

x = P Ir
y P Ir

y = −∂i∂iρ . (2.20)

If we then define z = x+ iy and

P Ir
z ≡ 1

2
(P Ir

x − iP Ir
y ) , (2.21)

the non-trivial components of the Einstein’s equation are:

P Ir
z P Ir

z = 0 , (2.22)

P Ir
z̄ P Ir

z = −2∂z∂z̄ρ . (2.23)

Equation (2.23) is the only equation involving the conformal factor in our formalism.

We now turn to the equation of motion and integrability equation for P Ir
z , (2.7)

and (2.8). They respectively become

Re
(
∂zP

Ir
z̄ +QIJ

z P Jr
z̄ +Qrs

z P Is
z̄

)
= 0 , (2.24)

Im
(
∂zP

Ir
z̄ +QIJ

z P Jr
z̄ +Qrs

z P Is
z̄

)
= 0 . (2.25)

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
7

Combining them, the equation of motion for P Ir
z is

Dz̄P
Ir
z ≡ ∂z̄P

Ir
z +QIJ

z̄ P Jr
z +Qrs

z̄ P Is
z = 0 . (2.26)

Finally, the two integrability equations for QIJ and Qrs are written as

Im
(
Dz̄Q

IJ
z

)
= Im

(
∂z̄Q

IJ
z +QIK

z̄ QKJ
z +QJK

z̄ QIK
z

)
= − Im

(
P Ir
z̄ P Jr

z

)
, (2.27)

Im
(
Dz̄Q

rs
z

)
= Im

(
∂z̄Q

rs
z +Qrt

z̄ Q
ts
z +Qst

z̄ Q
rt
z

)
= − Im

(
P Ir
z̄ P Is

z

)
. (2.28)

The full set of equations of motion, including the coset integrability equations,

are (2.22), (2.23), (2.26), (2.27) and (2.28). Only (2.23) involves the conformal factor

e2ρ and we can solve the latter three independent of the first two. Now we will analyze

them assuming that the solution preserves some supersymmetry.

2.3 Timelike Killing spinors

Let us define the complex Spin(8) spinor

ǫAz ≡ ǫA1 + iǫA2 , (2.29)

which under a rotation in the (x, y) plane has weight −1/2, see also appendix A. The

dilatino Killing spinor equation (2.12) becomes

P Ir
z ΓI

AȦ
ǫAz̄ = 0 , (2.30)

where P Ir
z was defined in (2.21). We will first show that the gravitino Killing spinor

equation (2.11) is integrable provided that the equations of motion and the dilatino vari-

ation (2.30) hold. Note that the t-component of the equation (2.11) is simply ∂tǫ
A
z = 0,

whence Killing spinors are time-independent. The curvature of the supersymmetric con-

nection (2.11) should stabilize a Killing spinor,

(

− 1

4
Rµνabγ

abδAB − 1

4
R(Q)

µν
IJΓIJ

AB

)

ǫB = 0 , (2.31)

a condition with non-vanishing components only for µ, ν = i, j. In particular, the only

non-trivial Riemann curvature tensor component is R1212 = e2ρ∂i∂iρ. The integrability

equation for Killing spinors (2.31) is directly equivalent to

− 2i∂z∂z̄ρ ǫ
A
z + Im

(
Dz̄Q

IJ
z

)
ΓIJ
ABǫ

B
z = 0 . (2.32)

However, combining the Einstein equation (2.23) and the coset integrability equation (2.27),

we may show that the curvature of the supersymmetry connection (the operator acting on

ǫAz in (2.31)) is identically zero:

ΓI
AȦ

ΓJ
BȦ

(
− 2i ∂z∂z̄ρ δ

IJ + Im(Dz̄Q
IJ
z )

)
= 0 . (2.33)

The algebraic equation (2.30) is therefore a necessary and sufficient condition for the exis-

tence of Killing spinors.

– 6 –
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One may also show that the zz-component of the Einstein equation (2.23) is redundant.

Indeed, multiplying (2.30) with P Js
z ΓJ

BȦ
= 0 and symmetrizing over (r, s) one arrives at

P Ir
z P Ir

z ǫAz = 0 , (2.34)

which for a non-zero spinor gives precisely P Ir
z P Ir

z = 0. Timelike supersymmetric solutions

are thus entirely described by the coset equations (2.27), (2.28) and (2.26) that determine

P and Q, the Einstein equation (2.23) that determines ρ, and finally the condition that Pz

admits Killing spinors via the algebraic equation (2.30). Therefore, when the equations of

motion are satisfied, Killing spinors are characterized only by (2.30). Note that if ǫAz is a

Killing spinor, then so is i ǫAz . We may thus assert the following:

Theorem 1. Supersymmetric solutions with a timelike Killing vector admit an even

amount of real supersymmetry and form a complex vector space.

We will see in theorem 3 that not only is the amount of supersymmetry even, but it

comes in powers of two: 16, 8, 4, 2.

3 Nilpotency

Our strategy in this section is to set aside the equations of motion for P , Q and ρ, and

classify instead all elements Pz that admit supersymmetry via equation (2.30). The clas-

sification is with respect to KC, the complexification of the local symmetry of the theory.

That is, we identify all admissible Pz up to the action of KC. The classes are parametrized

by integers µ and ν and we call each class N(µ, ν).

3.1 Proof of nilpotency

We note that the symmetry of the dilatino supersymmetry equation (2.30) is SO(8)C ×
GL(n,C). Indeed, SO(8)C is the group that preserves the gamma matrices of the 8-

dimensional Clifford algebra. For instance, take m ∈ so(8) and note that since2

mI
JΓ

J
AȦ

= ΓI
BȦ

mB
A + ΓI

AḂ
mḂ

Ȧ , (3.1)

and all representations are real, we can complexify the Lie algebra element m. On the

other hand, the index r in (2.30) is a free index, whence the symmetry GL(n,C).

Classifying Pz up to the action of SO(8)C×GL(n,C) turns out to be too strong. How-

ever, it does prove that the algebraic supersymmetry equation (2.30) is a set of projection

equations that halve the real supersymmetries according to 16, 8, 4, 2, we give the proof in

appendix B. Instead, we classify the elements Pz up to the action of

KC = SO(8)C × SO(n)C × Z2 . (3.2)

Since it is a symmetry of the algebraic supersymmetry equation, we may consider the orbit

space of the (g/k)C where Pz belongs to, up to the action of KC : (g/k)C → (g/k)C That

2mAB = − 1
4
mIJΓ

IJ
AB and similarly for mȦḂ .

– 7 –
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is, since any other element in the same orbit admits the same amount of supersymmetry

we may consider the orbit as a whole. The group KC is not a symmetry of the theory,

in contrast to the group K, but one may hope to move from this classification to orbits

under K once the first are obtained, which we do in section 4. Note also that relative to

SO(8)C×GL(n,C), the orbit space of the action KC is more fine grained and thus perhaps

more useful. In fact, it turns out that the orbit space under SO(8)C ×GL(n,C) is labeled

by the amount of supersymmetry. Similar to the case of maximal supergravity [7], we will

now show that the element Pz ∈ pC = (g/k)C is nilpotent in the adjoint representation of

gC. That is, with the symmetric decomposition

gC = so(8, n)C = kC ⊕ pC, (3.3)

we will now show that (adPz)
p+1 = 0 for some positive integer p.

Our proof closely follows [7]. Consider an element Pz ∈ pC. The Jordan-Chevalley

decomposition tells us that it can be written as a sum of a semi-simple element and a

nilpotent element

Pz = PS + PN , (3.4)

with PS , PN ∈ pC ⊂ so(8, n)C and [PS , PN ] = 0, see proposition 3 in [12]. Assume that (3.4)

admits ñ > 0 algebraic Killing supersymmetries according to (2.30). Consider then the

orbit O of Pz under KC and assume PS 6= 0. The algebraic supersymmetry equation (2.30)

implies that elements in the closure Ō of the orbit O in the Zariski topology preserve at

least ñ supersymmetries, a result of [7] that we review3 in appendix C. At the same time,

it can be shown that in the Jordan-Chevalley decomposition, the semi-simple element PS

is in the closure of the orbit, PS ∈ Ō, see lemma 11 in [12]. Furthermore, any semi-

simple element PS in pC is KC-conjugate to an element in the Cartan subalgebra in pC,

by virtue of its semi-simplicity alone. In summary, if Pz preserves ñ supersymmetries and

PS 6= 0, then there is an element in the Cartan subalgebra in pC that preserves at least ñ

supersymmetries. Yet, it is easy to show that an element in the Cartan subalgebra in pC

does not preserve any supersymmetry and hence PS has to vanish. In order to show this,

assume first an orthonormal basis eI of R8 and an orthonormal basis êr of Rn. Then an

element in the Cartan subalgebra in pC has to be diagonal and is expanded in this basis as

P Ir
S eI ⊗ êr = P 11

S e1 ⊗ ê1 + P 22
S e2 ⊗ ê2 + · · · . (3.5)

The algebraic supersymmetry equation (2.30) for r = 1 becomes (if the component P 11
S is

zero, take instead the first non-zero element)

Γ1
AȦ

ǫAz = 0 . (3.6)

Since the gamma matrix Γ1 squares to −1, this equation cannot admit a non-zero solution

for ǫAz . Hence, if Pz admits some supersymmetry then Pz = PN and the orbit O of Pz

under KC is nilpotent.

3The reader may consult the definition of the Zariski topology also in the appendix C.
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Our task is then to classify the nilpotent orbits in pC under KC, a space we may

write as

Nil[pC]/KC. (3.7)

To this aid, we use the Kostant-Segikuchi correspondence, which is a correspondence be-

tween nilpotent elements in g up to the action of G and nilpotent elements in pC up to the

action of KC:

Nil[g]/G = Nil[pC]/KC. (3.8)

For more details, see appendix (D.1).

3.2 Indecomposable types and their normal forms

Our goal now is to classify nilpotent elements of so(m,n) up to conjugacy by O(m,n). In

particular we will construct normal forms, which are representatives in each class. We begin

by developing the notions of decomposable and indecomposable types of elements in the

Lie algebra. Note that this will not be the same as the notion of a module’s decomposition

into indecomposable submodules, one should rather think here of a block diagonal form of a

matrix. Consider for example a two-form in so(n) up to the action of SO(n). We know that

one can decompose it in some orthonormal basis into a block diagonal form of antisymmetric

2×2 matrices, each proportional to the same antisymmetric real Pauli matrix, and trailing

zeros. In this case, the 2×2 antisymmetric matrices are indecomposable, that is to say they

cannot be decomposed into smaller block diagonal forms. We wish to do the equivalent for

the nilpotent elements in so(8, n). Normal forms for elements in the classical linear groups

have been described but not explicitly written in [13] (see also [14]).

Consider the Lie algebra L(V, τ, σ) of a linear group that acts on a complex vector

space V , preserves the bilinear τ and is compatible with the real or pseudoreal structure

σ, where the latter is compatible with τ .4 Let A ∈ L(V, τ, σ) and A′ ∈ L(V ′, τ ′, σ′). We

take (A, V ) and (A′, V ′) as equivalent if there is an isomorphism φ such that:

φ : V → V ′, (3.9a)

φA = A′φ , (3.9b)

φσ = σ′φ , (3.9c)

τ
(
φ(·), φ(·)

)
= τ ′(·, ·) . (3.9d)

The equivalence class defines a so-called type ∆, that is (A, V ) ∈ ∆.

If (A, V ) ∈ ∆ and A is reducible on the direct sum of τ -orthogonal, σ-invariant sub-

spaces V = V1 ⊕ V2, that is AV1 ⊂ V1 and AV2 ⊂ V2, then note that L(Vi, τ |, σ|) is

well-defined and we can write A ∈ L(Vi, τ, σ) and (A, Vi) ∈ ∆i for a type in the restricted

linear algebra. In this case, we define the decomposition of types

∆ = ∆1 ⊕∆2 . (3.10)

Note that we also have

dim∆ = dim∆1 + dim∆2 , (3.11)

4For our problem the group is O(m,n), V = C
m+n, τ is symmetric and σ is a real structure.
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Type Condition Condition Signature

∆p(ζ,−ζ, ζ̄,−ζ̄) ζ 6= ±ζ̄ p ∈ N
(
2(1 + p), 2(1 + p)

)

∆p(ζ,−ζ) ζ ∈ R
∗ p ∈ N (1 + p, 1 + p)

∆±
p (ζ,−ζ) ζ ∈ iR∗ p ∈ 2N ±(−1)p/2(p+ 2, p)

∆±
p (ζ,−ζ) ζ ∈ iR∗ p ∈ 2N+ 1 (p+ 1, p+ 1)

∆±
p (0) − p ∈ 2N ±(−1)p/2

(
p
2
+ 1, p

2

)

∆p(0, 0) − p ∈ 2N+ 1 (p+ 1, p+ 1)

Table 1. Indecomposable types of O(m,n), where the negative sign in the signature means:

−(s1, s2) ≡ (s2, s1).

for the dimensions of the corresponding vector space decomposition. For the case of sym-

metric τ , the signature of the two types ∆1 and ∆2 should also add up to that of ∆,

a property that we will use in our classification. The notion of decomposition of types

in (3.10) lends to the definition of an indecomposable type. That is, an indecomposable

type ∆ is such that it cannot be decomposed as in (3.10). Finally, the decomposition of

the type ∆ into indecomposable types ∆i,

∆ = ⊕i∆i , (3.12)

can be shown to be essentially unique.

We give the indecomposable types ∆ of so(m,n) in table 1. The types in table 1 are

denoted by ∆p(ζ, · · · ), where p is the order of its nilpotent part N in the fundamental

and in parentheses the (ζ, · · · ) are the eigenvalues of its semisimple part S. We also list

the dimension and signature that any given type belongs to. Under a decomposition into

indecomposables, see (3.12), the signatures add up as in (3.11). An algorithm to find the

types of elements in so(m,n) is to partition the signature (m,n) into numbers (mi, ni) that

correspond to the indecomposable types in table 1.

Example 1. A nilpotent element in so(2, 2) can be decomposed into indecomposables of

signature (2, 2), (1, 0), (0, 1), (2, 1) and (1, 2). These correspond, respectively, to the inde-

composable types ∆1(0, 0), ∆
+
0 (0), ∆

−
0 (0), ∆

−
2 (0) and ∆+

2 (0). The possible partitions are

found by matching up the signature. We thus get the following types of nilpotent elements

in so(2, 2)

∆1(0, 0) , ∆−
2 (0) + ∆−

0 (0) ,

∆+
2 (0) + ∆+

0 (0) , 2∆+
0 (0) + 2∆−

0 (0) .

Each nilpotent element of so(2, 2) is O(2, 2)-conjugate to exactly one of these four types.

From the table we see that if the indecomposable type is nilpotent, then there are

only two possibilities: type ∆±
p (0) and type ∆p(0, 0). We construct normal forms for these

types in appendix D.2, and in D.3 we give their corresponding Kostant-Segikuchi triples in

so(m,n). Via the Kostant-Segikuchi correspondence, we thus arrive at the normal forms

for the indecomposable nilpotent elements in pC up to the action of KC which we give in

appendix D.4.
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3.3 Supersymmetric nilpotency

In the previous subsection, we classified the complex nilpotent elements that Pz necessarily

belongs to. However, not all of them admit supersymmetry. We need to select those that

admit a non-zero amount of supersymmetry according to the algebraic supersymmetry

equation which leads us to:

Theorem 2. Assume that Pz admits some supersymmetry. If we decompose the element

Pz into nilpotent indecomposable types of SO(8, n), then the following hold

a) Type ∆p(0, 0) for p ≥ 3 does not appear in the decomposition,

b) The multiplicity µ of ∆1(0, 0) is responsible for projecting supersymmetry to a fraction

(1/2)µ,

c) Type ∆p(0) for p ≥ 4 does not appear in the decomposition,

d) The multiplicity of ∆0(0) in the decomposition does not affect supersymmetry,

e) Type ∆+
2 (0) does not appear in the decomposition. The multiplicity ν of ∆−

2 (0) is

responsible for projecting supersymmetry to a fraction (1/2)ν .

We give the proof of theorem 2 in appendix D.5. Types ∆−
2 (0) and ∆1(0, 0) are the

only ones that determine supersymmetry, because type ∆±
0 (0) is represented by Pz = 0.

Assume a basis eI of R8 and êr of Rn related to SO(8, n) ungauged supergravity. Normal

forms corresponding to each indecomposable type can be written in tensor product form

(see (D.58) and (D.50) with some relabeling):

(±e1 + i e2)⊗ ê1 ∈ ∆−
2 (0) , (3.13)

(±e1 + i e2)⊗ (ê1 ± i ê2) ∈ ∆1(0, 0) . (3.14)

If Pz in its decomposition into ∆−
2 (0) and ∆1(0, 0) does not span the whole space pC, then

one can use a parity transformation in the perpendicular directions and absorb the signs

that appear in (3.13) and (3.14). If on the other hand the element Pz spans the whole

space, then all signs are again absorbed because the sign of the last type that appears in

the decomposition is fixed to be one because of the chirality of Killing spinors. Indeed, the

algebraic supersymmetry equation for each type in (3.13) and (3.14) is manifestly that of

a BPS projection equation
(
Γ1
AȦ

+ iΓ2
AȦ

)
ǫAz = 0 , (3.15)

where Γ1 corresponds to e1 in (3.13) or (3.14) and Γ2 corresponds to e2 in (3.13) or (3.14).

Note that the ǫAz appearing in this equation is only KC-conjugate to the actual supergravity

Killing spinor.

At this point we introduce the following notation: a supersymmetric element Pz is said

to belong to type N(µ, ν) if it decomposes into types as

Pz ∈
(

∆1(0, 0)⊕ · · · ⊕∆1(0, 0)
︸ ︷︷ ︸

µ times

)

⊕
(

∆−
2 (0)⊕ · · · ⊕∆−

2 (0)
︸ ︷︷ ︸

ν times

)

. (3.16)
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By using (3.13) and (3.14), a supersymmetric element Pz ∈ N(µ, ν) is KC-conjugate to

Pz
KC

∼ (e1 + i e2)⊗ (ê1 + i ê2) + · · ·+ (e2µ−1 + i e2µ)⊗ (ê2µ−1 + i ê2µ)
︸ ︷︷ ︸

µ terms

+ (e2µ+1 + i e2µ+2)⊗ ê2µ+1 + · · ·+ (e2µ+2ν−1 + i e2µ+2ν)⊗ ê2µ+ν
︸ ︷︷ ︸

ν terms

. (3.17)

It follows from the signatures of the types in table 1 that each class N(µ, ν) corresponds to

the partition of (8, n) into the sums of (1, 0), (0, 1), (2, 1) and (2, 2), by using the convention

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) , (3.18)

with multiplicity µ of (2, 2) and multiplicity ν of (2, 1).

Example 2. A supersymmetric element Pz of type N(2, 1) is KC-conjugate to

Pz
KC

∼ (e1 + i e2)⊗ (ê1 + i ê2) + (e3 + i e4)⊗ (ê3 + i ê4)
︸ ︷︷ ︸

µ=2 terms

+(e5 + i e6)⊗ ê5
︸ ︷︷ ︸

ν=1 terms

. (3.19)

With Pz = P Ir
z eI ⊗ êr and taking the components r = 1, 3, 5, the algebraic supersymmetry

equation (2.30) is KC-invariant and becomes

(
Γ1
AȦ

+ iΓ2
AȦ

)
ǫAz = 0 , (3.20)

(
Γ3
AȦ

+ iΓ4
AȦ

)
ǫAz = 0 , (3.21)

(
Γ5
AȦ

+ iΓ6
AȦ

)
ǫAz = 0 . (3.22)

The matrices iΓ12, iΓ34 and iΓ56 are compatible projection operators such that ΓI1...I2k
AA = 0

for k 6= 0, 4. They therefore halve real supersymmetry down to 16/23 = 2.

By generalizing the above example, we reach

Theorem 3. The real supersymmetries of a timelike supersymmetric background in un-

gauged half-maximal supergravity comes in powers of 2, that is 16, 8, 4, 2. In particular,

class N(µ, ν) has 16/2µ+ν real supersymmetries for µ+ ν < 4 and 2 real supersymmetries

for µ+ ν = 4.

Note that having only one real supersymmetry is excluded because according to the-

orem 1 the vector space of Killing spinors is complex. In the case of µ + ν = 4 there are

only three independent BPS projections due to chirality. Theorem 3 can also be shown in

a more direct approach, which we do in appendix B.

4 Identification under K

The classification under KC is genuine and powerful. However, it is of little use if we

cannot access the solutions. If P1 ∈ N(µ, ν) is a normal form in the class but is not part

of a solution, it does not follow that a conjugate element P2
KC

∼ P1 is also not a solution.
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If P1 is indeed a solution, by using only P1 we miss all other potential solutions that are

related to P1 by KC but not related to it by K, where the latter is the actual symmetry of

the theory. Therefore, we should move from normal forms of a class N(µ, ν), that is under

the identification of

KC =
(
SO(8)× SO(n)

)C × Z2 , (4.1)

to all elements that are identified under

K = SO(8)× SO(n)× Z2 . (4.2)

We may think of starting with a specific normal form P1 ∈ N(µ, ν) and act on it with all

possible KC rotations, modulo its stabilizer that leaves the normal form invariant anyway,

thus obtaining all elements in N(µ, ν). Subsequently, we should identify under K and

obtain the space that we call N(µ, ν)/K. We are thus interested in the double quotient on

the right-hand side of

N(µ, ν)/K =
(
SO(8)× SO(n)

)
\
(
SO(8)× SO(n)

)C
/ Stab

(
N(µ, ν)

)
. (4.3)

Note that the normal forms in (3.17) do not contain any coefficients so the spacetime

variance of Pz comes from the double coset alone.

We will not parametrize the double quotient (4.3) directly. Instead, we will use the

action of a real orthogonal group on the complexification of its associated vector space,

which we describe in the next subsection. Then, we will be able to write the most general

form of a Pz ∈ N(µ, ν) after identifying the elements up to the real local symmetry of the

theory.

4.1 Complex vectors

We begin with the action of O(m) on complex vectors in C
m with inner product defined

as A · B =
∑

I AIBI . We will later specialize for m = 8 and m = n. This subsection will

eventually serve our goal to fix Pz ∈ C
8 ⊗ C

m under the action of SO(8)× SO(m)× Z2.

Let us first consider complex null vectors, for instance a vector v ∈ C
m such that

v ·v = 0. Let us use an orthonormal basis {eI} of Cm. It is clear that one may O(m)-rotate

the real part of v to only have a component in e1 and then rotate its imaginary part, by

using the stabilizer O(m − 1), to have components in e1 and e2. The condition v · v = 0

though implies that its expansion in components is

v = v1(e1 + i e2) , (4.4)

in terms of some real v1 that can be chosen positive. If we wish to fix v under the action

of O(m)C instead, there is a hyperbolic element in SO(2)C ⊂ SO(m)C that scales v and

so v1 can be set to one. Assume now an ordered set of µ complex null vectors {v(i)}µi=1

that are linearly independent and orthogonal to each other. We may fix the first vector

v(1) as in (4.4), fix the second vector v(2) to only have components in 〈e1, e2, e3, e4〉, etc.,
a modification of the QR decomposition. Since the vectors are orthogonal to each other,
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only half of their coefficients are independent,

v(1) = v1(1)(e1 + i e2) , (4.5)

v(2) = v1(2)(e1 + i e2) + v2(2)(e3 + i e4) , (4.6)

...

and the diagonal coefficients are positive by linear independence. If we use O(m)C instead,

the diagonal entries can be scaled to one. If we are not interested in fixing the vectors

completely, we may expand

v(i) = vj(i)(e2j−1 + i e2j) (4.7)

with the Einstein summation over j = 1, . . . , µ and use a non-degenerate µ×µ matrix vj(i).

There is a manifest U(1)µSO(µ) ⊂ SO(m) symmetry acting on the expansion in terms

of vj(i) in (4.7). The U(1) factors are complex phase rotations

e2i−1 + i e2i 7→ eiφ(e2i−1 + i e2i) , (4.8)

and the SO(µ) rotates the e2i−1+ie2i in the fundamental representation. The group product

U(1)µSO(µ) is not a direct product, it is the group generated by the groups U(1)µ and

SO(µ) as subgroups of SO(m): the set of all possible multiplications between the group

elements of the subgroups. As these two subgroups do not commute the multiplication

generates U(µ), see lemma 1 in appendix B.

Similarly, one may fix under O(m)C and the matrix vj(i) can be made equal to the

identity matrix, see appendix B. Let us now turn to an ordered set of ν ≤ 4 linearly

independent complex vectors {r(i)}νi=1 that are mutually orthogonal among themselves

and with the previous ordered set {v(i)}µi=1 of complex null vectors, but such that the norm

of each r(i) is equal to one. Since they are orthogonal to the {v(i)}µi=1, by using O(m) and

the expansion in (4.7), we may expand the r(i) as

r(i) =

µ
∑

j=1

Bj
(i)(e2j−1 + i e2j) +R(i) , (4.9)

where the R(i) do not contain components in the complex span of 〈e1, . . . , e2µ〉. We may

use the remaining symmetry O(m− 2µ) to fix the R(i).

The first R(1) may be brought to the form

R(1) = cosh ζ1 e2µ+1 + i sinh ζ1 e2µ+2 , (4.10)

and we may choose ζ1 to be real. Continuing this way, in a QR decomposition, we may

partially fix the R(i) to be expanded in a basis

R(i) = Σ(i)
je2µ+j , (4.11)
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with an Einstein summation over j and where the matrix Σ(i)
j is given by the upper-left

ν × 2ν submatrix of the 4× 8 matrix (ν ≤ 4)

Σsup ≡








cosh ζ1 i sinh ζ1 0 0

sinh η1 sinh ζ1 i sinh η1 cosh ζ1 cosh η1 cosh ζ2 i cosh η1 sinh ζ2
0 0 sinh η2 sinh ζ2 i sinh η2 cosh ζ2
0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0

0 0 0 0

cosh η2 cosh ζ3 i cosh η2 sinh ζ3 0 0

sinh η3 sinh ζ3 i sinh η3 cosh ζ3 cosh η3 cosh ζ4 i cosh η3 sinh ζ4








.

(4.12)

The ηi might be fixed to be real or imaginary5 and the ζi are all real. It might seem that

Σ is completely fixed and there is no remaining symmetry, but this is not true if Σ is

degenerate. This happens when some of the parameters in Σ are zero. The matrix Σ has

the orthonormal property ΣΣT = Iν×ν .

We have now described in general how to fix two ordered sets of vectors {v(i)}µi=1 and

{r(i)}νi=1 that are orthogonal among themselves and each other, where the first are null

and the latter unit norm, under the action of O(m). Under SO(m) there might be a sign

ambiguity in one of the components when 2µ+2ν = m. Indeed, for 2µ+2ν < m one may

use a SO(m) rotation that contains a parity transformation perpendicular to the basis, so

the sign in the basis is restored. If 2µ+2ν = m and ν 6= 0, we may allow ηi to be negative

in (4.12). If ν = 0 and 2µ = m then we may need to replace e2i−1 + i e2i with e2i−1 − i e2i
for some i in (4.7). This sign ambiguity will not be present in what follows due to the

chirality of Killing spinors.

4.2 Elements in N(µ, ν)

We recall (3.17) that an element Pz ∈ N(µ, ν) is KC-conjugate to

Pz
KC

∼ (e1 + i e2)⊗ (ê1 + i ê2) + · · ·+ (e2µ−1 + i e2µ)⊗ (ê2µ−1 + i ê2µ)
︸ ︷︷ ︸

µ terms

+ (e2µ+1 + i e2µ+2)⊗ ê2µ+1 + · · ·+ (e2µ+2ν−1 + i e2µ+2ν)⊗ ê2µ+ν
︸ ︷︷ ︸

ν terms

.

The most general KC transformation is such that Pz should be expanded in terms of

independent orthogonal complex null vectors {u(i)}µi=1 and {v(i)}νi=1 of C
8 and independent

complex null vectors {w(i)}µi=1 and independent complex unit-norm vectors {r(i)}νi=1 of C
n,

where the w(i) and r(i) are also mutually orthogonal together:

Pz =

µ
∑

i=1

u(i) ⊗ w(i) +
ν∑

i=1

v(i) ⊗ r(i) . (4.13)

5We may choose all coefficients to be real, but not whether cosh2 ηi is larger, equal, or smaller than

unity.
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This follows by the form given in (3.17). Indeed, the action of SO(8)C × SO(n)C pre-

serves the inner product among the vectors appearing in (3.17) or the corresponding ones

appearing in (4.13). That is, in (4.13) we necessarily have

u(i) · u(j) = v(i) · v(j) = u(i) · v(j) = 0 , (4.14)

w(i) · w(j) = w(i) · r(j) = 0 , (4.15)

r(i) · r(j) = δij . (4.16)

Finally, the vectors in (4.13) should be linearly independent.

We define an orthonormal basis

{e(1)i }2µi=1 ⊕ {e(2)i′ }2νi′=1 , (4.17)

of an orthogonal subspace R
2µ ⊕ R

2ν ⊆ R
8 and an orthonormal basis

{ê(1)i }2µi=1 ⊕ {ê(2)r′ }2νr′=1 , (4.18)

of an orthogonal subspace R
2µ ⊕ R

2ν ⊆ R
n. We will use a basis of null vectors in

C
2µ+2ν ⊆ C

8

{
e
(1)
2i−1 + i e

(1)
2i

}µ

i=1
⊕
{
e
(2)
2i′−1 + i e

(2)
2i′

}ν

i′=1
, (4.19)

and a basis of null and orthonormal vectors in C
2µ+2ν ⊆ C

n

{
ê
(1)
2j−1 + i ê

(1)
2j

}µ

j=1
⊕
{
ê
(2)
r′

}ν

r′=1
. (4.20)

According to the discussion in subsection 4.1, the vectors appearing in the element in (4.13)

can be fixed under O(8)×O(n) (for m = 8 and m = n in subsection 4.1) so that they are

expanded in this basis. That is, under O(8)×O(n) the element Pz can be expanded into

P IreI ⊗ êr = N ij
(
e
(1)
2i−1 + i e

(1)
2i

)
⊗

(
ê
(1)
2j−1 + i ê

(1)
2j

)

+M i′r′
(
e
(2)
2i′−1 + i e

(2)
2i′

)
⊗ ê

(2)
r′

+Air′
(
e
(1)
2i−1 + i e

(1)
2i

)
⊗ ê

(2)
r′

+Bi′j
(
e
(2)
2i′−1 + i e

(2)
2i′

)
⊗
(
ê
(1)
2j−1 + i ê

(1)
2j

)
.

(4.21)

There are two invariants of the element as written in (4.21) that identify it as belonging

to N(µ, ν):

• The rank µ+ ν of P Ir
z eI ⊗ êr, and

• The rank ν of P Ir
z P Jr

z eI ⊗ eJ .

Note in particular that P Ir
z P Jr

z has the same rank as the square of the right-hand side

of (3.17).

The form of Pz in (4.21) is the most general element in N(µ, ν) up to partial fixing

under K = SO(8)× SO(n)×Z2 for the following reason: recall that most of the discussion

in subsection 4.1 was by using O(m), here we have so far used O(8)×O(n). If we were to
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use K it might seem that (4.21) still holds up to sign ambiguities in the bases. The mixed

parity rotation in Z2 makes this relevant only for the null basis (4.19) in C
8. That is, we

might need to replace e
(1)
2i−1 + i e

(1)
2i or e

(2)
2i−1 + i e

(2)
2i with its conjugate for at most one i.

If µ + ν < 4 then this is not necessary, as one may find an even parity transformation,

with one inversion in some complement to the basis (4.19) we use, which renders the

basis (4.19) still valid for expanding Pz. Finally, if µ+ ν = 4 then the chirality of spinors

Γ12345678
AB ǫBz = ǫAz guarantees that supersymmetric elements in this class are also necessarily

of the form (4.21).

However, we still have a lot of freedom in fixing the element under K. We are allowed

to use U(µ+ ν) ⊂ SO(8) on the basis (4.19), and U(µ)×SO(2ν) ⊂ SO(n) on (4.20). These

groups act on the form of Pz in (4.21) mixing the various coefficients but not changing the

basis. We will now proceed to fix Pz in the basis of (4.19) and (4.20) by using these groups.

4.3 Matrix factorizations

We will use both Takagi’s factorization and a singular value decomposition on certain

coefficients of Pz. Takagi’s factorization allows the diagonalization of a symmetric matrix

MMT into a diagonal matrix D via the action of a unitary matrix S by using D =

SMMTST [15]. Note that the transpose of S is taken instead of the Hermitian transpose.

The diagonalization is thus different than the spectral decomposition or diagonalization by

a unitary matrix of a diagonalizable matrix. Takagi’s factorization is always possible for

symmetric matrices. Furthermore, the diagonal elements of D are real, non-negative. On

the other hand, the singular value decomposition is the diagonalization of a not necessarily

square matrix N under the action of two unitary matrices S1 and S2 by using N 7→ S1NS†
2,

and it is always possible. The diagonal elements are again real and non-negative.

Consider the square of Pz as a symmetric complex (µ+ν)× (µ+ν) matrix in the basis

of {e(1)2i−1 + i e
(1)
2i }

µ
i=1 and {e(2)2i′−1 + i e

(2)
2i′ }νi′=1

P Ir
z P Jr

z eI ⊗ eJ =
(
MMT

)i′j′(
e
(2)
2i′−1 + i e

(2)
2i′

)
⊗

(
e
(2)
2j′−1 + i e

(2)
2j′

)

+
(
AAT

)ij(
e
(1)
2i−1 + i e

(1)
2i

)
⊗
(
e
(1)
2j−1 + i e

(1)
2j

)

+
(
AMT

)ij′(
e
(1)
2i−1 + i e

(1)
2i

)
⊗
(
e
(2)
2j′−1 + i e

(2)
2j′

)

+
(
MAT

)i′j(
e
(2)
2i′−1 + i e

(2)
2i′

)
⊗
(
e
(1)
2j−1 + i e

(1)
2j

)
.

(4.22)

We use Takagi’s decomposition by using the action of SU(µ+ ν) so that

MMT = D , (diagonal, real and positive) (4.23)

AAT = 0 , (4.24)

AMT = 0 . (4.25)

We may assert thatD does not have zero components because the rank of P Ir
z P Jr

z should be

preserved under KC-conjugation6 and is equal to the invariant ν. After this arrangement,

6More precisely, Takagi’s factorization determines here the split of the basis into {e(1)2i−1 + i e
(1)
2i }µi=1 and

{e(2)2i′−1 + i e
(2)

2i′ }νi′=1, but we have already assumed that the split is full rank on the first set.
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the diagonal form of P Ir
z P Jr

z is preserved by at least U(µ)L ⊂ U(µ + ν) ⊂ SO(8) that

acts on the e
(1)
2i−1 + i e

(1)
2i . The group that preserves P Ir

z P Jr
z might in fact contain an extra

unitary group if the diagonal elements in D are not all different, but it is not necessary

to take this into consideration. After performing Takagi’s factorization, the full remaining

symmetry is at least

U(µ)L ×U(µ)R × SO(2ν) ⊂ SO(8)× SO(n) . (4.26)

We have labeled the unitary subgroups with L (left) and R (right) to distinguish how they

act on Pz, whereas SO(2ν) ⊂ SO(n) has not been adorned.

The condition MMT = D can be solved by partially fixing SO(2ν). We write

M =
√
DΣ , (4.27)

where Σ is a ν × 2ν matrix which satisfies

ΣΣT = Iν×ν , (4.28)

and on which U(ν)L acts on the left in the dual representation and SO(2ν) acts on the

right. However, we need to mod out by the action of the symmetry of the theory, which

is precisely the orthogonal group SO(2ν) acting on the right of Σ. By using SO(2ν) and a

Gram-Schmidt orthogonalization we can fix Σ so that it is the upper-left block of the 4× 8

matrix

Σsup =








cosh ζ1 i sinh ζ1 0 0

sinh η1 sinh ζ1 i sinh η1 cosh ζ1 cosh η1 cosh ζ2 i cosh η1 sinh ζ2
0 0 sinh η2 sinh ζ2 i sinh η2 cosh ζ2
0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0

0 0 0 0

cosh η2 cosh ζ3 i cosh η2 sinh ζ3 0 0

sinh η3 sinh ζ3 i sinh η3 cosh ζ3 cosh η3 cosh ζ4 i cosh η3 sinh ζ4








.

(4.29)

This is the same decomposition we described in subsection 4.1. If Σ is degenerate, for

instance if some of the parameters are zero, there is remaining freedom in SO(2µ) to

further fix its form. This will turn out to be the case when we consider in section 5 the

scalar coset integrability relation. We will then be able to fix Σ completely.

We still have a U(µ)L freedom acting on the basis e
(1)
2i−1 + i e

(1)
2i and a U(µ)R acting on

the basis ê
(1)
2j−1+ i ê

(1)
2j . Their action does not spoil the form of M =

√
DΣ with Σ described

by (4.29), since we may always use a complementary SO(2ν) transformation. We use the

singular value decomposition on N , N 7→ S1NS†
2 with (S1, S2) ∈ U(µ)L ×U(µ)R, in order

to make N diagonal, real, non-negative. We split the basis

{e(1)2i−1 + i e
(1)
2i }

µ
i=1 −→ {e(1a)2i−1 + i e

(1a)
2i }µa

i=1 ⊕ {e(1b)2i−1 + i e
(1b)
2i }µb

i=1 , (4.30)

{ê(1)2i−1 + i ê
(1)
2i }

µ
i=1 −→ {ê(1a)2i−1 + i ê

(1a)
2i }µa

i=1 ⊕ {ê(1b)2i−1 + i ê
(1b)
2i }µb

i=1 , (4.31)
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so that N is non-zero on the first µa components and zero on the rest of the µb components.

There is some remaining symmetry in K, an anti-diagonal U(1)µa generated by

(
e
(1a)
2i−1 + i e

(1a)
2i

)
−
(
ê
(1a)
2i−1 + i ê

(1a)
2i

)
, i = 1, . . . , µa (4.32)

and a U(µb), both of which act on the matrices A and B. We will not fix A and B though,

because the equations of motion will eventually force A = B = 0 and µb = 0.

We have (partially) fixed the most general element Pz ∈ N(µ, ν) under the action of

K, which can be summarized as follows: the class N(µ, ν) of an element Pz is characterised

by the rank µ+ ν of Pz and the rank ν of P Ir
z P Jr

z , in which case the element is expanded

as in (4.21) in an adapted basis. The coefficients M and A in its expansion should satisfy

the Takagi relations (4.23)–(4.25) and N should be diagonal, real, non-negative. At this

point, we cannot prove that N is strictly positive, as it will turn out to be. There is some

remaining symmetry acting on A and B and possibly on M from the right that we do not

take advantage of. The basis we are using is

{
e
(1a)
2i−1 + i e

(1a)
2i

}µa

i=1
⊕
{
e
(1b)
2i−1 + i e

(1b)
2i

}µb

i=1
⊕
{
e
(2)
2i′−1 + i e

(2)
2i′

}ν

i′=1
(4.33)

in C
8 and

{
ê
(1a)
2j−1 + i ê

(1a)
2j

}µa

j=1
⊕
{
ê
(1b)
2j−1 + i ê

(1b)
2j

}µb

j=1
⊕

{
ê
(2)
r′

}ν

r′=1
(4.34)

in C
n, but we will eventually show that µb = 0 (so µ = µa) and drop the label a on which

N is diagonal, real and strictly positive.

5 Solutions

In this section we impose the equations of motion on the scalar current Pz whose form is

now fixed in (4.21). We first show that the scalar connection Qz is also restricted in form

because it has to act on Pz and preserve the basis that we use for the latter. We may then

turn to the coset integrability equations in order to show that the form of Pz is further

restricted, for instance it turns out that the matrices A and B must be zero. The equations

of motion for Pz and Qz reduce more and we finally arrive at our main result: all solutions

decompose into solutions of Liouville and SU(3) Toda systems.

5.1 Restricting the connection

In order to restrict the possible values of Qz, we make a general analysis of the equation

of motion of Pz (2.26), which we rewrite using the notation ‘◦’:

∂z̄Pz +Qz̄ ◦ Pz = 0 . (5.1)

We will assume that the stabilizer of Pz,

stab(Pz) = {X ∈ K : X ◦ Pz = 0} , (5.2)

is trivial. Hence we focus on those elements that act effectively on Pz and enter (5.1).

– 19 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
7

From (5.1) we calculate the equation of motion for D

∂z̄
(
P Ir
z P Jr

z

)
+
(
QIK

z̄ δJL +QJK
z̄ δIL

)
PKr
z PLr

z = 0 . (5.3)

Due to the Takagi decomposition, (5.3) involves only the diagonal, positive, real D and we

may restrict

Qz̄

∣
∣
SO(8)

∈ u(1)ν ⊕ u(µ) . (5.4)

The u(1)ν act on the

e
(2)
2i′−1 + i e

(2)
2i′ 7→ i

(
e
(2)
2i′−1 + i e

(2)
2i′

)
(5.5)

and enter (5.3) in the form ∂z̄D+Qz̄|u(1)ν ◦D = 0, while the u(µ) acts on the e
(1)
2i−1 + i e

(1)
2i

and do not enter (5.3).

We turn to (5.1) again because, since we have restricted Qz̄|SO(8) to a unitary group

as in (5.4), we may assert that

Qz̄

∣
∣
SO(8)

∈ u(1)ν ⊕ u(1)µa ⊕ u(µb) , (5.6)

Qz̄

∣
∣
SO(n)

∈ u(1)µa ⊕ u(µb)⊕ so(2ν) . (5.7)

The two factors of u(1)µa act on the positive components of the diagonal, real N

e
(1a)
2i−1 + i e

(1a)
2i 7→ i

(
e
(1a)
2i−1 + i e

(1a)
2i

)
, (5.8)

ê
(1a)
2i−1 + i ê

(1a)
2i 7→ i

(
ê
(1a)
2i−1 + i ê

(1a)
2i

)
, (5.9)

and the remaining u(µb) preserves the diagonal form of N in Pz but acts on the A and B.

Finally, there is a so(2ν) that acts on the ê
(2)
r′ and thus on M and A from the right. These

are the most general subgroups that acting on Pz should preserve the form of ∂z̄Pz and

should thus enter (5.1).

In summary, we have restricted the connection Qz to take values in

Qz ∈ u(1)ν ⊕ u(1)µa ⊕ u(µb)L ⊕ u(µb)R ⊕ so(2ν) . (5.10)

Explicitly, we have the following expansion

Qz = q(2)z e
(2)
2i′−1 ∧ e

(2)
2i′ + q(1a)iz

1

2

(
e
(1a)
2i−1 ∧ e

(1a)
2i + ê

(1a)
2i−1 ∧ ê

(1a)
2i

)

+ q(1b)ijz

(
e
(1b)
2i−1 + i e

(1b)
2i

)
⊗
(
e
(1b)
2j−1 − i e

(1b)
2j

)

+ q̂(1b)ijz

(
ê
(1b)
2i−1 + i ê

(1b)
2i

)
⊗
(
ê
(1b)
2j−1 − i ê

(1b)
2j

)

+ Λrs
z ê(2)r ∧ ê(2)s .

(5.11)

This may look intimidating at first, but we will soon show that µb = 0 and the middle two

lines are absent. The components in so(2ν) will also be restricted.
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5.2 Integrability of the connection

Now we are ready to analyze the integrability equations for Q which will restrict Pz even

further. Calculating the right-hand side of the integrability equation (2.27) for QIJ as

(recall that N is diagonal, real and non-negative)

− Im
(
P Ir
z̄ P Jr

z

)
eI ⊗ eJ = − Im

[(
A∗AT

)ij(
e
(1)
2i−1 − i e

(1)
2i

)
⊗
(
e
(1)
2j−1 + i e

(1)
2j

)

+
(
A∗MT

)ij′(
e
(1)
2i−1 − i e

(1)
2i

)
⊗
(
e
(2)
2j′−1 + i e

(2)
2j′

)

+
(
A∗MT

)ij′(
e
(2)
2j′−1 − i e

(2)
2j′

)
⊗
(
e
(1)
2i−1 + i e

(1)
2i

)

+
(
M∗MT

)i′j′(
e
(2)
2i′−1 − i e

(2)
2i′

)
⊗
(
e
(2)
2j′−1 + i e

(2)
2j′

)

+ 2
(
NNT

)i(
e
(1)
2i−1 − i e

(1)
2i

)
⊗
(
e
(1)
2i−1 + i e

(1)
2i

)

+ 2
(
NBT

)ij′(
e
(1)
2i−1 − i e

(1)
2i

)
⊗
(
e
(2)
2j′−1 + i e

(2)
2j′

)

+ 2
(
NBT

)ij′(
e
(2)
2j′−1 − i e

(2)
2j′

)
⊗
(
e
(1)
2i−1 + i e

(1)
2i

)

+ 2
(
B∗BT

)i′j′(
e
(2)
2i′−1 − i e

(2)
2i′

)
⊗
(
e
(2)
2j′−1 + i e

(2)
2j′

)]
.

(5.12)

From the form of Q|SO(8) in (5.6) we deduce that

M∗MT + 2B∗BT ∈ u(1)ν , (5.13)

A∗MT + 2NBT = 0 . (5.14)

Similarly, we calculate the right-hand side of the integrability equation (2.28) for Qrs as

− Im
(
P Ir
z̄ P Is

z

)
êr ⊗ ês = −2 Im

[(
A†A

)rs
ê(2)r ⊗ ê(2)s

+
(
A†N

)rj
ê(2)r ⊗

(
ê
(1)
2j−1 + i ê

(1)
2j

)

+
(
NTA

)jr(
ê
(1b)
2j−1 + i ê

(1b)
2j

)
⊗ ê(2)r

+i
(
N2

)ii
ê
(1)
2i−1 ∧ ê

(1)
2i

+
(
M †M

)rs
ê(2)r ⊗ ê(2)s

+
(
M †B

)rj
ê(2)r ⊗

(
ê
(1)
2j−1 + i ê

(1)
2j

)

+
(
B†M

)jr(
ê
(1)
2j−1 − i ê

(1)
2j

)
⊗
(
ê
(1)
2r−1 + i ê

(1)
2r

)

+
(
B†B

)ij(
ê
(1)
2i−1 − i ê

(1)
2i

)
⊗
(
ê
(1)
2j−1 + i ê

(1)
2j

)]
.

(5.15)

From the form of Q|SO(n) in (5.7) we deduce that

A†N +M †B = 0 . (5.16)

We first show that B = 0 and that A is further restricted. Multiplying (5.16) with M∗

from the left gives
(
MAT

)∗
N +

(
MMT

)∗
B = 0 . (5.17)

However, the Takagi relations (see (4.23) and (4.25)) are MAT = 0 and that MMT = D

is invertible. Hence B = 0. We also have that N is invertible only in the first µa diagonal
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components. With B = 0, (5.16) becomes A†N = 0, hence Air′ = 0 for i = 1, . . . , µa.

Using B = 0 in (5.14), one finds that

AM † = 0 (5.18)

and recall the Takagi condition (4.25) on A:

AMT = 0 . (5.19)

We now turn to solving M , which will later lead us to A = 0.

By using B = 0, (5.13) states that M∗MT is diagonal, which after the Takagi relation

M =
√
DΣ becomes

Σ∗ΣT = diagonal . (5.20)

Recall that we have partly fixed Σ in (4.29) by (partly) using SO(2µ). The condition (5.20)

is satisfied provided that the parameters in Σsup (4.29) satisfy

sinh η1 sinh ζ1 = 0 , (5.21)

sinh η2 sinh ζ2 = 0 , (5.22)

sinh η3 sinh ζ3 = 0 . (5.23)

When these hold, Σ becomes degenerate and can be reduced to a non-degenerate block form

by use of SO(2µ). In particular, we can reduce Σ to be of the form of a (νr+νc)×(νr+2νc)

matrix with values

Σ =









Iνr×νr 0 0 0 0 · · ·
0 cosh ζ1 i sinh ζ1 0 0 · · ·
0 0 0 cosh ζ2 i sinh ζ2 · · ·
...

. . .









. (5.24)

We may also write for the matrix D

D = diag(D1
r , . . . , D

νr
r , D1

c , . . . , D
νc
c ) , (5.25)

in which case M is now given by

M =









√
Dr 0 0 0 0 · · ·
0

√

D1
c cosh ζ1 i

√

D1
c sinh ζ1 0 0 · · ·

0 0 0
√

D2
c cosh ζ2 i

√

D2
c sinh ζ2 · · ·

...
. . .









. (5.26)

We may now return to imposing both (5.18) and (5.19) with this particular M and we

arrive at A = 0.

Let us summarise what we found: by using the general element Pz ∈ N(µ, ν) given

as (4.21), the form of Qz in (5.6) and (5.7), and the integrability equations for the connec-

tion Q, the right-hand side of which are in (5.12) and (5.15), the most general element Pz

up to the action of K is shown to be equal to

P IreI ⊗ êr = N i
(
e
(1)
2i−1 + i e

(1)
2i

)
⊗
(
ê
(1)
2i−1 + i ê

(1)
2i

)
+M i′r′

(
e
(2)
2i′−1 + i e

(2)
2i′

)
⊗ ê

(2)
r′ , (5.27)
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where all the µ components N i are positive real and M i′r′ is as in (5.26). Here, we have

set µb = 0 and dropped any label a from the basis e
(1a)
2i−1+ i e

(1a)
2i and ê

(1a)
2i−1+ i ê

(1a)
2i . Indeed,

with A = B = 0 the diagonal non-negative N should be strictly positive in order for Pz

to have rank µ+ ν. The (νr + νc)× (νr + 2νc) matrix M has a special decomposed block

diagonal form according to (5.26). We thus say that the element Pz belongs to the refined

class N(µ, νr, νc),

Pz ∈ N(µ, νr, νc) , (5.28)

a filtering of the elements we were thus far considering in N(µ, ν).

5.3 Field equations and Toda blocks

The block form of M in (5.26) suggests that we refine the basis we are using. We split the

basis as

{
e
(2)
2i′−1 + i e

(2)
2i′

}ν

i′=1
−→

{
e
(r)
2i′−1 + i e

(r)
2i′

}νr
i′=1

⊕
{
e
(c)
2i′−1 + i e

(c)
2i′

}νc
i′=1

(5.29)
{
ê
(2)
r′

}2ν

r′=1
−→

{
ê
(r)
r′

}νr
r′=1

⊕
{
ê
(c)
r′

}2νc
r′=1

⊕
{
rest

}
, (5.30)

where by “rest” we mean those orthonormal basis vectors in R
n that do not appear in Pz.

That is, we are now using the basis vectors

{
e
(1)
2i−1 + i e

(1)
2i

}µ

i=1
⊕
{
e
(r)
2i−1 + i e

(r)
2i

}νr
i=1

⊕
{
e
(c)
2i−1 + i e

(c)
2i

}νc
i=1

(5.31)

in C
8 and

{
ê
(1)
2i−1 + i ê

(1)
2i

}µ

i=1
⊕
{
ê
(r)
r′

}νr
r′=1

⊕
{
ê
(c)
r′

}2νc
r′=1

(5.32)

in C
n. The expansion of an element Pz ∈ N(µ, νr, νc) in this basis is

Pz =

µ
∑

i=1

N i
(
e
(1)
2i−1 + i e

(1)
2i

)
⊗
(
ê
(1)
2i−1 + i ê

(1)
2i

)

+

νr∑

i=1

√

Di
r

(
e
(r)
2i−1 + i e

(r)
2i

)
⊗ ê

(r)
i

+

νc∑

i=1

(
e
(c)
2i−1 + i e

(c)
2i

)
⊗
(√

Di
c cosh ζi ê

(c)
2i−1 + i

√

Di
c sinh ζi ê

(c)
2i

)

.

(5.33)

As a matrix in the {eI ⊗ êr} basis of C8 ⊗ C
n, the element P Ir

z eI ⊗ er is block diagonal

with µ, νr and νc blocks of (respectively) the type
(

N i iN i

iN i −N i

)

,

(√

Di
r

i
√

Di
r

)

,

( √

Di
c cosh ζi i

√

Di
c sinh ζi

i
√

Di
c cosh ζi −

√

Di
c sinh ζi

)

(5.34)

and trailing zeros.7 The N i, Di
r, D

i
c and ζi are real functions of z and z̄. The right-hand

side of the integrability equations (5.12) and (5.15) become

− Im
(
P Ir
z̄ P Jr

z

)
eI ⊗ eJ = −Di

re
(r)
2i−1 ∧ e

(r)
2i −Di

c cosh 2ζi e
(c)
2i−1 ∧ e

(c)
2i

− 2(N i)2e
(1)
2i−1 ∧ e

(1)
2i

(5.35)

7Trailing zeros evidently happen when µ+ νr + νc = 4 or 2µ+ 2νc + νr = n.
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and

− Im
(
P Ir
z̄ P Is

z

)
êr ⊗ ês = −2(N i)2ê

(1)
2i−1 ∧ ê

(1)
2i −Di

c sinh 2ζi ê
(c)
2i−1 ∧ ê

(c)
2i , (5.36)

respectively. With this, we can now reduce the connection to be

Qz = q(1)iz

1

2

(
e
(1)
2i−1 ∧ e

(1)
2i + ê

(1)
2i−1 ∧ ê

(1)
2i

)
+ q(r)iz e

(r)
2i−1 ∧ e

(r)
2i

+ q(c)iz e
(c)
2i−1 ∧ e

(c)
2i + q̂(c)iz ê

(c)
2i−1 ∧ ê

(c)
2i .

(5.37)

Any other component can be gauged to zero, because the curvature of the connection is

non-trivial only in these components. We observe that the blocks decouple and we can

solve the equations of motion separately for each sector N i, Di
r and (Di

c, ζi). We call each

independent sector a Toda block.

For the N functions we have

∂z̄N
i + iq

(1)i
z̄ N i = 0 , (5.38)

Im
(
∂z̄q

(1)i
z

)
= −4(N i)2, (5.39)

from which we derive the Liouville equation

∂z∂z̄ lnN
i = 4(N i)2. (5.40)

We proceed by writing the equations of motion that involve D

∂z̄D
i
r + 2iq

(r)i
z̄ Di

r = 0 , (5.41)

∂z̄D
i
c + 2iq

(c)i
z̄ Di

c = 0 , (5.42)

with integrability conditions

Im
(
∂z̄q

(r)i
z

)
= −Di

r , (5.43)

Im
(
∂z̄q

(c)i
z

)
= −Di

c cosh 2ζi . (5.44)

These give the equations

∂z∂z̄ lnD
i
r = 2Di

r , (5.45)

∂z∂z̄ lnD
i
c = 2Di

c cosh 2ζi . (5.46)

Finally, the equations of motion for the ζi can be found from Dz̄Σ = 0 and are

∂z̄ cosh ζi − i q
(c)i
z̄ cosh ζi + i q̂

(c)i
z̄ sinh ζi = 0 , (5.47a)

∂z̄ sinh ζi − i q
(c)i
z̄ sinh ζi + i q̂

(c)i
z̄ cosh ζi = 0 , (5.47b)

while there is a remaining integrability equation,

Im
(
∂z̄ q̂

(c)i
)
ê
(c)
2i−1 ∧ ê

(c)
2i = −1

2
Im

(
Σ†DcΣ

T
)rs

ê(2)r ∧ ê(2)s , (5.48)

which yields

Im
(
∂z̄ q̂

(c)i
z

)
= −Di

c sinh 2ζi . (5.49)

The equation (5.45) for the Dr is another copy for the Liouville equation, where-

as (5.42), (5.44), (5.47) and (5.49) describe an SU(3) Toda system. All equations are

integrable and indeed solvable. Furthermore, having solved the coset integrability equa-

tions, V−1dV = P +Q can be integrated to obtain the coset representative V.
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5.4 General solutions

We are interested in solving the equations of the Toda blocks in a punctured bounded

domain of the complex plane. The solution to the positive Liouville modes N i in (5.40) is

(N i)2 =
1

4

∂zfi∂z̄ f̄i
(1− |fi|2)2

= −1

4
∂z∂z̄ ln

(
1− |fi(z)|2

)
. (5.50)

Similarly, the solution to the positive Di
r is

Di
r =

∂zgi∂z̄ ḡi
(1− |gi|2)2

= −∂z∂z̄ ln
(
1− |gi(z)|2

)
. (5.51)

The complex functions fi(z) and gi(z) are allowed here to be meromorphic. However, only

simple poles of the fi and gi give smooth solutions in (5.40) and (5.45). A concrete answer

on the nature of the singularities can be given by requiring finite coset space charge, which

we do not analyze here. The solutions we presented above are a rewriting of Liouville’s

general solution such that the modes are manifestly positive. As such, the domain of the

solution should not contain roots of 1− |fi(z)|2 = 0 or 1− |gi(z)|2 = 0.

In order to solve the SU(3) Toda system, we should write it canonically. In particular,

we should diagonalize the first-order equations for Di
c and cosh ζi. Define

Φi
1 ≡

1

2

√

Di
ce

ζi , (5.52)

Φi
2 ≡

1

2

√

Di
ce

−ζi . (5.53)

Their gauge-invariant equations of motion are derived from (5.42) and (5.47):

∂z̄Φ
i
1 + i q̂

(c)i
z̄ Φi

1 = 0 , (5.54)

∂z̄Φ
i
2 − i q̂

(c)i
z̄ Φi

2 = 0 , (5.55)

while (5.49) becomes

Im
(
∂z q̂

(c)i
z̄

)
= 4(Φi

1)
2 − 4(Φi

2)
2. (5.56)

The connection q
(c)i
z can thus be found from (5.44) once we solve the above three equations

and q̂
(c)i
z can be found from (5.56) if we have a solution for the Φi

1 and Φi
2. We gauge fix

(Φi
1,Φ

i
2) to be real and positive. We can then eliminate q̂

(c)i
z̄ from the three equations:

∂z∂z̄ lnΦ
i
1 = 2(Φi

1)
2 − (Φi

2)
2, (5.57)

∂z∂z̄ lnΦ
i
2 = 2(Φi

2)
2 − (Φi

1)
2. (5.58)

This has the form of the SU(3) Toda field equations

∂z∂z̄ lnΦ
i
a =

∑

b

Cab(Φ
i
a)

2, (5.59)

where Cab is the SU(3) Cartan matrix.
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A simple form for the general solution of the SU(N) Toda equation in two-dimensional

Minkowski spacetime and with negative coupling constant that is reminiscent of the Li-

ouville solution was derived in [16] from Kostant’s solution. We amend that solution for

N = 3, Euclidean signature and positive coupling constant:

(Φi
1)

2 = −1

2
∂z∂z̄ ln











1

−F̄i(z̄)

−Ḡi(z̄)






T




1

Fi(z)

Gi(z)









 , (5.60)

(Φi
2)

2 = −1

2
∂z∂z̄ ln det











1 0

−F̄i(z̄) −∂z̄F̄i(z̄)

−Ḡi(z̄) −∂z̄Ḡi(z̄)






T




1 0

Fi(z) ∂zFi(z)

Gi(z) ∂zGi(z)









 . (5.61)

Note that we keep the index i of the νc copies. For Gi(z) = 0 the solution indeed matches

Liouville’s. Similarly to the Liouville solutions, we may allow the functions to be mero-

morphic but restrictions should be applied to ensure that the coset charge is finite.

The full connection Qz can always be solved from the Toda block solutions of this sec-

tion. What finally remains is the Einstein equation. Recall that its non-trivial component

is given by (2.23) and allows us to solve for the conformal factor in the metric given by an

exponential of ρ. Not only can ρ be solved for each Toda block, the Einstein equation is

linear in the block decomposition:

− 2∂z∂z̄ρ = 4

µ
∑

i=1

(N i)2 + 2

νr∑

i=1

Di
r + 2

νc∑

i=1

Di
c cosh 2ζi . (5.62)

We have presented the Toda block solutions in the form ∂z∂z̄(· · · ) for this rea-

son: the Einstein equation is thence easily integrated. By using the explicit solu-

tions (5.50), (5.51), (5.60) and (5.61), the solution up to boundary terms is given by

ρ =
1

2

µ
∑

i=1

ln
(
1− |fi(z)|2

)
+

νr∑

i=1

ln
(
1− |gi(z)|2

)

+

νc∑

i=1

ln det












1

−F̄i(z̄)

−Ḡi(z̄)






T




1

Fi(z)

Gi(z)











1 0

−F̄i(z̄) −∂z̄F̄i(z̄)

−Ḡi(z̄) −∂z̄Ḡi(z̄)






T




1 0

Fi(z) ∂zFi(z)

Gi(z) ∂zGi(z)












.

(5.63)

With this, we have locally found the metric (2.17) of the most general timelike supersym-

metric solution. The scalar curvature can then be computed from R = 2e−2ρ∂z∂z̄ρ.

If the meromorphic functions are defined at infinity, in which case there are necessarily

singularities elsewhere on the Riemann sphere, the function ρ will also have a well-defined

limit at infinity. As an example let us look at the simplest solution, namely N(1, 0, 0),

for the metric, but a similar analysis applies to the N(0, 1, 0) solution. The metric is of

the form

ds2 = dt2 −
(
1− |f(z)|2

)
dzdz̄ . (5.64)
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If f(z) has a simple pole only at the origin of the Riemann sphere, then f(z) = a+ c/z. If

we further choose c > 0 and a = 0, then the metric becomes

ds2 = dt2 −
(

1− c2

r2

)

(dr2 + r2dθ2) . (5.65)

We may consider then the exterior of r = c and the metric is manifestly asymptotically

flat. We leave a more thorough analysis of the properties of the solutions for future work.

We note that the half-BPS solutions of SO(8, n) with n > 2 are always given by the

Toda blocks N(1, 0, 0), N(0, 1, 0) and N(0, 0, 1). Other examples are given in the following:

Example 3. The only timelike supersymmetric solution of SO(8, 1) supergravity is

N(0, 1, 0) and it preserves 8 real supersymmetries. The timelike supersymmetric solutions

of SO(8, 2) supergravity are given by N(1, 0, 0), N(0, 1, 0), N(0, 2, 0) and N(0, 0, 1). They

preserve 8, 8, 4 and 8 real superymmetries respectively . The timelike supersymmetric so-

lutions of SO(8, 3) supergravity are given by those of SO(8, 2) and the solutions N(0, 3, 0),

N(1, 1, 0) and N(0, 1, 1) that preserve respectively 2, 4 and 4 real supersymmetries. In each

case, we need to fit the Toda blocks (5.34) in a 8× n matrix P Ir
z .

Example 4. The supersymmetric solution presented in subsection 5.2 of [6] is restricted to

n ≤ 4. Since it has Qrs
z = 0, we identify it initially with the N(0, νr, 0) class. Then P Ir

z is

taken proportional to a constant matrix U ir, P Ir
z ∼ P

IiU ir, with U †U = In×n where P
Ii is

the null basis {e2i−1+i e2i}4i=1, see also the discussion around (A.44) in appendix A.2. The

matrix U is thus effectively proportional to the n× n identity matrix and we identify8 the

solution with N(0, n, 0) and with all Toda fields Di
r equal, that is Di

r = Dr for i = 1, . . . , n.

6 Discussion and comments

In this article we have classified and explicitly obtained all timelike supersymmetric so-

lutions of three-dimensional half-maximal ungauged supergravity. The structure of the

supersymmetric solutions that we found, which are in blocks of Liouville and SU(3) Toda

systems, is new and surprisingly simple. With the null supersymmetric waves having al-

ready been solved in [6], all supersymmetric solutions of the ungauged SO(8, n) theory are

now known.

It may at first seem surprising that the supersymmetric solutions of half-maximal D=3

supergravity have only been classified and solved for more than 30 years after its construc-

tion in [8]. It is therefore of importance to trace our method and pinpoint its novelty. The

classification under KC, as introduced first in [7], characterizes classes uniquely by two

invariants: the rank µ + ν of Pz and the rank ν of P Ir
z P Jr

z . When we refine this classifi-

cation with respect to the real symmetry of the theory, these two invariants are preserved.

One could do away with the detour into the indecomposable types of the complex group

8The reduced equations of motion of [6] match with ours, as they should, provided we identify the fields ζ

and g that appear there according to eρζ = 2
√
Dr and q

(r)i
z = gζ2, but we solve them essentially differently.

Note also that in [6] the local coset symmetry SO(8) breaks into SO(2)× SO(6), whereas here it is broken

to µ+ νr + νc ≤ 4 copies of SO(2).
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and with some work arrive at the same classes N(µ, νr, νc) provided one uses the same two

invariants.

Given the elements of Pz in these classes, and in particular due to the invariant ν, we

were naturally led to the use of Takagi’s factorization. This is a rather uncommon method

compared to the spectral or eigenvalue decomposition that does not preserve the invariant

ν. Furthermore, an eigenvalue decomposition or singular value decomposition on Pz would

have been impossible unless one enlarged the symmetry of the theory, for instance one

might consider SO(2νr) → SU(2νr) or SO(n) → SU(n). The subsequent factorization of

N that we employed by using the singular value decomposition comes as a concession, in

the sense that we are manifestly allowed to use it after Takagi’s factorization. We finally

enforced the equations of motion, which further reduced the possible form of the coset

representative.

The success of our method seems promising in employing it perhaps to the maximally

supersymmetric supergravity. The classification under the complex local symmetry was

already achieved in [7] and perhaps finding all elements up to the real local symmetry is

possible. Certainly though, the SO(8, n) representations appearing here are easier to work

with. Another interesting extension of our work is to examine interesting monodromies,

similar to the reasoning in [7]. One now has the advantage that all solutions are known

and requiring single-center monodromies is straightforward.

More generally, one would like to have a more thorough analysis of solutions to the

Toda blocks and their geometric analysis. We have already noted that if the holomorphic

functions are well-defined at infinity, then under some conditions one can conformally

compactify the space that is now asymptotically flat. The fundamental BPS states, that

are the non-smooth single-center solutions, are particularly interesting also for quantum

considerations. Even classically, the smooth solutions of the theory are the smearing of

the fundamental solutions, and a careful analytic study of the Toda blocks is lacking in

our work.

Let us briefly comment on one more extension of our work. The success of our method

might imply that it has a place in the non-abelian gauged version of the theory [9], in

which a subgroup of the global SO(8, n) is gauged by Chern-Simons gauge fields. Although

the gauged theory upon imposing supersymmetry possesses a corresponding structure, the

starting equation (2.30) is deformed in such a way that the nilpotency argument can no

longer be applied. It would be interesting to find a solution to this problem.
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A Spin structure of timelike backgrounds

A.1 Representations

For the mostly minus metric

ds2 = +dt2 − e2ρ(x,y)(dx2 + dy2) , (A.1)

we use the vielbein θ0 = dt, θ1 = eρdx and θ2 = eρdy. From

dθa + ωa
b ∧ θb = 0 , (A.2)

we find the non-zero spin coefficient

ωij = −∂jρ dx
i + ∂iρ dx

j i, j = 1, 2 . (A.3)

The Riemann curvature has non-zero component, in flat coordinates,

R1212 = e−2ρ∂i∂iρ , (A.4)

the non-zero components of the Ricci tensor is

Rij = −e−2ρ∂k∂kρ δij (A.5)

and the Ricci scalar is R = 2e−2ρ∂k∂kρ.

By using the complex coordinate z = x + i y and ∂z = 1
2(∂x − i∂y), we define the

complex components (φz, φz̄) for a one-form with φt = 0,

φxdx+ φydy =
1

2
(φx − i φy)dz +

1

2
(φx + i φy)dz̄ = φzdz + φz̄dz̄ . (A.6)

For two such one-forms, we have

φz̄χz =
1

4
φiχi −

1

4
iǫijφiχj (A.7)

with the antisymmetric ǫ12 = 1. That is, both the inner product and the wedge of the two

one-forms φ and χ are recovered from the Hermitian product of complex functions φz̄χz.

We use the three-dimensional gamma matrices

γ0 =

(

0 1

−1 0

)

, γ1 =

(

0 1

1 0

)

, γ2 =

(

1 0

0 −1

)

. (A.8)

These satisfy the Clifford algebra {γa, γb}=−2ηab, they are real and satisfy γ012=γ012=1.

The Levi-Civita connection acting on spinors is

∇µ = ∂µ − 1

4
ωµabγ

ab. (A.9)

For a real chiral spinor, we define complex coefficients as

ǫ =

(

ǫ1
ǫ2

)

⇐⇒ ǫz = ǫ1 + i ǫ2 . (A.10)
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The complex coefficients have the property that Clifford multiplication by a two-

dimensional one-form corresponds to

(φiγ
iǫ)z = 2 i e−ρ φz ǫz̄ . (A.11)

With the image of φz in the Clifford algebra φz(γ
1 + iγ2), the generator L = −1

2γ
12 acts

on φz 7→ −iφz and ǫz 7→ −1
2 iǫz. Equation (A.11) preserves the action as it should. The

Levi-Civita connection becomes ∇tǫz = ∂tǫz and

∇zǫz =

(

∂z −
1

2
∂zρ

)

ǫz , (A.12)

∇z̄ǫz =

(

∂z̄ +
1

2
∂z̄ρ

)

ǫz . (A.13)

If we define the antisymmetric inner product by

(ǫ, ǫ′) = ǫTγ0ǫ′, (A.14)

then

ǫz̄ǫ
′
z = −(ǫ, γ0 ǫ′) + i(ǫ, ǫ′) (A.15)

ǫz̄ǫ
′
z̄ =

(
ǫ, (γ1 + iγ2)ǫ′

)
. (A.16)

Requiring that two spinors ǫz and ǫ′z do not square to a two-dimensional one-form is thus

equivalent to ǫz̄ǫ
′
z̄ = 0.

We now introduce our notation for chiral spinors in S8+ of Spin(8). We define the

Clifford algebra matrices

ΓI
AȦ

ΓJ
BȦ

+ ΓJ
AȦ

ΓI
BȦ

= +2δIJδAB (A.17)

ΓI
AȦ

ΓJ
AḂ

+ ΓJ
AȦ

ΓI
AḂ

= +2δIJδȦḂ (A.18)

and

ΓI =

(

0 ΓI
BȦ

−ΓI
AḂ

0

)

(A.19)

acting on a non-chiral spinor (ǫA, ǫȦ) 7→ (ǫB, ǫḂ). The spin-invariant inner product is

the identity matrix and the spin matrices ΓIJ
AB = −Γ

[I

AȦ
Γ
J ]

BȦ
and ΓIJ

ȦḂ
= −Γ

[I

AȦ
Γ
J ]

AḂ
are

antisymmetric with respect to the spin inner product and all matrices can be chosen to be

real. The representation is chiral with Γ12345678 = 1 on the real eight-dimensional spinors

ǫA ∈ S8+.

By using these conventions we have the spin equivariant map from the square of real

chiral spinors into the Clifford algebra

S2S8+ = Λ0
R
8 ⊕ Λ4

+R
8 (A.20)

Λ2S8+ = Λ2
R
8. (A.21)
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However, we are interested in complex chiral spinors in SC
8+ that are isomorphic to the real

tensor product of spacetime spinors with the spinors in S8+,

ǫAz = ǫA1 + iǫA2 ∈ SC
8+ . (A.22)

In the above equation, ǫAα for α = 1, 2 are the spin coefficients for each A = 1, · · · , 8 and

our previous conventions apply.

A.2 Basis of timelike spinors

In finding supersymmetric solutions of a theory, the form of the Killing spinor is usually

fixed by using the symmetry of the theory. For our model this was done in [6]. In this

work we have instead used the symmetry K to fix P Ir
z . Furthermore, we do not need to

explicitly solve for the Killing spinors because the integrability of the gravitino variation

is guaranteed in our analysis. Here we present a few complementary details on the Killing

spinors once we have fixed Pz to a certain form.

We choose a representation of the ΓIJ
AB matrices, such that the generators of the Cartan

subalgebra Γ12
AB, Γ

34
AB, Γ

56
AB, Γ

78
AB are block diagonal and proportional to

Γσ1σ2σ3σ4 =



















σ1

(

0 1

−1 0

)

σ2

(

0 1

−1 0

)

σ3

(

0 1

−1 0

)

σ4

(

0 1

−1 0

)



















. (A.23)

This follows from Darboux’s theorem, or equivalently because a two-form in SO(8) decom-

poses into a sum of ∆0(σi,−σi) and ∆−
0 (0) in table 1. Since they need to square to −1,

the σi are all signs. The choice of which of the commuting ΓIJ
AB correspond to which of the

Γ±±±± is restricted by the following rule: any two products should trace to zero and the

product of the four should be proportional to the identity.

Up to reflections, there are only two choices for the signs σi. This is to be expected

since the two chiral algebras are not isomorphic. We freely choose9

Γ12 = Γ++++ (A.24)

Γ34 = Γ++−− (A.25)

Γ56 = Γ+−+− (A.26)

Γ78 = Γ+−−+ . (A.27)

The condition iΓ12
ABǫ

B
z = ǫAz requires

ǫAz =
(

iǫ1 ǫ1 iǫ2 ǫ2 iǫ3 ǫ3 iǫ4 ǫ4

)T
. (A.28)

9The other choice is given by having only one (non-overlapping) signs different for each of the four

generators.
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In fact, we can define a basis ǫ(±±±) by

iΓ12ǫ(σ1σ2σ3) = σ1ǫ(σ1σ2σ3) (A.29)

iΓ34ǫ(σ1σ2σ3) = σ2ǫ(σ1σ2σ3) (A.30)

iΓ56ǫ(σ1σ2σ3) = σ3ǫ(σ1σ2σ3) (A.31)

iΓ78ǫ(σ1σ2σ3) = σ1σ2σ3ǫ(σ1σ2σ3) (A.32)

so that

ǫ(+++) =
(

i 1 0 0 0 0 0 0
)T

(A.33)

ǫ(++−) =
(

0 0 i 1 0 0 0 0
)T

(A.34)

ǫ(+−+) =
(

0 0 0 0 i 1 0 0
)T

(A.35)

ǫ(+−−) =
(

0 0 0 0 0 0 i 1
)T

. (A.36)

The basis satisfies manifestly the condition ǫAz ǫ
A
z = 0 so squaring any two timelike spinors,

(ǫA, γµǫ′A) will be zero for components in the µ = 1, 2 directions, see (A.16).

If a timelike background allows 8 real supersymmetries, the Killing spinors span the

timelike spinor basis and we can fix a basis ǫA(i)z such that each basis Killing spinor is

proportional to one and only one of the ǫA(+σ1σ2)
. The most general N = 8 Killing spinor is

ǫAz =
∑

σ1,σ2=±

F σ1σ2ǫA(+σ1σ2)
, (A.37)

where F σ1σ2 are functions of z. If a timelike background allows 4 real supersymmetries,

this arises from the algebraic supersymmetry equation (2.30) imposing both iΓ12ǫz = ǫz
and iΓ34ǫz = ǫz. The Killing spinor is now in the span of ǫ++± and we can choose a basis

of Killing spinors proportional to ǫ++±,

ǫAz = F+ǫA(+++) + F−ǫA(++−) , (A.38)

where F± are functions of z. Finally 2 real supersymmetries mean that there is a single

basis Killing spinor proportional to ǫ+++.

For ñ = 1, 2, 4 complex supersymmetries

ǫA(i)z (i) = 1, . . . , ñ , (A.39)

there is an action of SU(ñ) on the Killing spinors in the R-linear span of the ǫA(i)z, which

we now describe. First note that the matrix

∆(i)(j) = ǫA(i)zǫ
A
(j)z (A.40)

is diagonal and constant. We can use a constant GL(ñ,C) action ∆ 7→ M∆MT in order

to make it proportional to the identity. The matrices

MAB
(i)(j) = ǫA(i)zǫ

B
(j)z̄ − ǫB(i)zǫ

A
(j)z̄ (A.41)
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have some interesting properties. Since (MAB
(i)(j))

∗ = −MAB
(j)(i) we have a map from su(ñ)

into spin(8) = Λ2S8+. For a constant su(ñ) matrix (Tij)
† = −Tij , the map is

Tij 7→ TAB = T ijMAB
ij . (A.42)

Indeed, the right hand side is real and antisymmetric in A,B. The group SU(ñ) acts on

the Killing spinor basis via spin rotations

TABǫB(i)z = T ijǫA(j)z . (A.43)

Under the SU(ñ) we can essentially bring any timelike Killing spinor to be proportional

to ǫ+++.

The SU(ñ) action is important because we can make precise contact with other for-

mulations. For instance, the so(8) element F IJ , which was called ΩIJ in [6], is given by

the square of ǫ+++:

F = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 + e7 ∧ e8 . (A.44)

One can then find the eigenstates of F IJ , which were called P
Ii in [6], and are simply the

null basis

e1 + i e2 , e3 + i e4 , e5 + i e6 , e7 + i e8 . (A.45)

We thus understand that the result of [6], that Pz should be expanded in P
Ii, is equivalent

to our complex null basis e2i−1 + i e2i of the main text.

B Direct matrix factorizations of Pz

We give here a direct analysis of how the form of Pz can be fixed if we useKC or the maximal

symmetry of (2.30), namely SO(8)C × GL(n,C), without the nilpotency argument. This

gives an alternative proof that the real supersymmetries come in powers of two. We begin

with two useful lemmas.

Lemma 1. The subgroups U(1)µ and SO(µ) of GL(µ,C) generate U(µ).

Proof. Consider a complex orthonormal basis {ei}µi=1 of Cµ with respect to the Hermitian

inner product on C
µ and its Hermitian dual {(ei)♭}µi=1. The generators Lij of so(µ) are

Lij = ei ⊗ (ej)♭ − ej ⊗ (ei)♭ i 6= j (B.1)

and the u(1)µ generators are

Li = i ei ⊗ (ei)♭ (no sum over i) . (B.2)

Their commutator is

[Li, Lij ] = i
(
ei ⊗ (ej)♭ + ej ⊗ (ei)♭

)
. (B.3)

All of the generators of SU(µ) are thus generated from the group product U(1)µSO(µ). On

the other hand, the group generated preserves the Hermitian inner product on C
µ so it

cannot be larger than U(µ). Finally, we can assert that the group contains the non-special

unitary U(1) and is fully U(µ).
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Lemma 2. The groups
(
R
+ ×U(1)

)µ
and SO(µ)C in GL(µ,C) generate GL(µ,C).

Proof. The scaling R
+ is given by i Li, where we use Li and Lij of lemma 1. Clearly,

all matrices in GL(µ,C) can now be generated (symmetric and antisymmetric, real and

imaginary) similarly to (B.3).

Assume an element Pz that admits some supersymmetry according to the algebraic

supersymmetry equation (2.30). Multiplying the equation with P Is
z ΓI and symmetrizing

over (r, s) we derive

P Ir
z P Is

z = 0 . (B.4)

By using SO(8)C, we fix it as

P Ir
z eI ⊗ êr

SO(8)C∼
4∑

i=1

P̃ ir(e2i−1 + i signi e2i)⊗ êr , (B.5)

with the group
(
R
+ ×U(1)

)4 · SO(4)C = GL(4,C) (B.6)

acting on the left. The equality in (B.6) follows from lemma 2. The factors of U(1) come

from the rotation e2i−1 + i e2i 7→ i(e2i−1 + i e2i), the SO(4)C is manifestly a subgroup of

SO(8)C, and the scalings R+ are the complex SO(2)C rotations that are not in SO(2).

The element Pz is represented by a 4 × n matrix P̃ ir in (B.5) and inherited from

SO(8)C×SO(n)C is the group GL(4,C)×SO(n)C acting on P̃ ir by left/right multiplication.

Similarly, the group inherited from SO(8)C×GL(n,C) acting on P̃ ir is GL(4,C)×GL(n,C).

The rank of P̃ ir is not necessarily full.

The action of GL(4,C) and permutations in SO(n)C can be used to rotate the P̃ ir to

one of the following forms








0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0








,








1 ∗ · · · ∗
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0








,








1 0 ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 0 · · · 0
0 0 0 · · · 0








,








1 0 0 ∗ · · · ∗
0 1 0 ∗ · · · ∗
0 0 1 ∗ · · · ∗
0 0 0 0 · · · 0








,








1 0 0 0 ∗ · · · ∗
0 1 0 0 ∗ · · · ∗
0 0 1 0 ∗ · · · ∗
0 0 0 1 ∗ · · · ∗








(B.7)

for respectively 16, 8, 4, 2, 2 real supersymmetries. Stars signify here possibly non-zero

elements. The reason why the upper-left square block is the identity matrix rather than

a triangular matrix is because of the action of the stabilizers of one, two, three and four

complex vectors in GL(4,C):

GL(4,C) ⊃ GL(3,C)⋉R
3

⊃ GL(2,C)⋉ (R2 ⊕ R
2)

⊃ GL(1,C)⋉ (R⊕ R⊕ R)

⊃ 1 .

(B.8)

In particular, the p copies of R4−p (for p = 1, 2, 3) are translations that set the first p

components of the next column to be fixed (the (p+ 1)’th column) equal to zero.
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The matrices in (B.7) describe the QR decomposition of P̃ ir with respect to GL(4,C)

acting on the left. On the other hand, the group SO(8)C ×GL(n,C) is such that all stars

in (B.7) may be fixed to zero. The classification under SO(8)C × GL(n,C), the maximal

symmetry of the supersymmetry equation, thus describes finite classes with each class

representing uniquely a certain fraction of supersymmetry. Whichever of these two groups

we use, or indeed if we use the factorization of Pz under K with a similar method to the

above, the real supersymmetry can be shown to come in powers of two.

C Supersymmetry in the Zariski topology

We review here the result 2(a) of [7]. The proof is identical with minor changes. More

precisely, we prove the statement “if an orbit O of an element Pz admits (at least) ñ

supersymmetries, then elements in the closure Ō in the Zariski topology preserve at least

ñ supersymmetries”. The Zariski topology is defined in terms of its closed sets. A closed

set in the Zariski topology on a space M (in this case M = gC is a complex Lie algebra)

is by definition the solution space of a finite set of homogeneous polynomial equations on

M. That is, V (S) is a closed set if

V (S) = {X ∈ M : f(X) = 0 ∀f ∈ S} ,

where S is an ideal of homogeneous polynomials on M.

Let us first consider all elements Pz that preserve at least ñ complex supersymmetries.

The condition is that

P Ir
z ΓI

AȦ
ǫAz̄ = 0 , (C.1)

for at least ñ linearly independent spinors ǫAz . Via the rank-nullity theorem the rank of the

8n × 8 matrix P Ir
z ΓI

AȦ
(acting on the left of ǫAz̄ ) is at most (8 − ñ). All (9 − ñ) × (9 − ñ)

submatrices of P Ir
z ΓI

AȦ
should thus have vanishing determinant. The elements we are

considering are evidently roots of a finite number of homogeneous polynomial equations.

The condition in (C.1) that Pz admits at least ñ supersymmetries is seen to be equivalent

to the condition that Pz ∈ Cñ, where Cñ is the solution space of certain homogeneous

polynomial equations of degree 9 − ñ in the components P Ir
z . In particular, if the root

space of the determinant of a certain (9 − ñ) × (9 − ñ) submatrix is Di then Cñ = ∩iDi

with the index i running over all such submatrices. Let us add a comment here. If the

element Pz preserves precisely ñ supersymmetries, then Pz ∈ Cñ as well as Pz ∈ Cñ′ for all

ñ′ ≤ ñ but Pz /∈ Cñ′ for ñ′ > ñ. Indeed, if all (9− ñ)× (9− ñ) submatrix determinants of

P Ir
z ΓI

AȦ
are zero, the determinants of bigger size submatrices will also be zero. We have

the partial ordering

Cm̃ ⊆ Cñ if and only if m̃ ≥ ñ .

Additionally, Pz preserves at least ñ supersymmetries if and only if Pz ∈ Cñ. In our

argument we assume that Pz preserves at least ñ supersymmetries but can be made stricter

by assuming precisely ñ supersymmetries. We do not gain any advantage with the stricter

assumption. Since the Cñ are defined in terms of homogeneous polynomials, we may assert

that the Cñ are closed in the Zariski topology on gC.
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Let us take the orbit O under conjugacy by KC of an element Pz ∈ Cñ. Since the

action of KC preserves supersymmetry, we may assert that O ⊆ Cñ. The closure Ō of

the orbit O should be a subset of Cñ as well. Indeed Ō ⊆ Cñ follows due to closure:

any sequence in O, which is contained in Cñ, is also a sequence in the already closed set

Cñ. Now take any other orbit O′ ⊆ Ō of some element P ′
z. It should evidently satisfy

O′ ⊆ Ō ⊆ Cñ. Therefore the orbit O′ and P ′
z ∈ O′ admit at least ñ supersymmetries.

We have proven the original statement of result 2(a) on page 21 of [7]: “if an orbit O of

an element Pz admits (at least) ñ supersymmetries, then elements in the closure Ō in the

Zariski topology preserve at least ñ supersymmetries”.

Let us comment that different elements of Ō might preserve in principal different

amounts of supersymmetry, so we refrain from saying “Ō preserves at least the same amount

of supersymmetry as O”. Let us also remark the power of turning towards the Zariski

topology. It allows us to use the theorem by Kostant and Rallis, lemma 11 in [12], that the

closure of an orbit of a non-nilpotent element in the Zariski topology necessarily contains

a semi-simple element. But as in [7], we show in the main text that semi-simple elements

preserve no supersymmetry and hence all supersymmetric elements Pz are nilpotent.

D Constructing normal forms

D.1 Kostant-Segikuchi correspondence

Let us define θC the Cartan involution of a real Lie algebra g. That is, the algebra decom-

poses as

g = k⊕ p

θC = +1
∣
∣
k
⊕−1

∣
∣
p
,

where k is the maximally compact subalgebra. We will eventually take g = so(8, n) and

k = so(8)⊕ so(n).

A standard triple {E,F,H} is an ordered set of elements in g or gC (depending on the

context) that generate sl2 and with canonical relations

[H,E] = 2E , [H,F ] = −2F and [E,F ] = H . (D.1)

We define a Kostant-Segikuchi triple {E,F,H} in g to be a standard triple such that

F = −θCE . (D.2)

From this it also follows that θCH = −H. We also define a Kostant-Segikuchi triple

{e, f, h} in gC to be a standard triple such that

f = e∗

θCe = −e .
(D.3)

From this it also follows that θCh = h.

– 36 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
7

The Kostant-Segikuchi correspondence establishes the correspondence between

Kostant-Segikuchi triples in g up to the action of G and Kostant-Segikuchi triples in pC

up to the action of KC. By an adaptation of the Jacobson-Morozov theorem, this is a cor-

respondence between nilpotent elements in g up to the action of G and nilpotent elements

in pC up to the action of KC:

Nil[g]/G = Nil[pC]/KC. (D.4)

Explicitly, the correspondence is given by

e =
1

2
(E + F + iH) (D.5)

f =
1

2
(E + F − iH) (D.6)

h = i(E − F ) . (D.7)

D.2 Normal forms in g

Indecomposable types can be classified as follows: let

A = S +N (D.8)

be the Jordan-Chevalley decomposition corresponding to an indecomposable element A ∈
L(V, τ, σ) and (A, V ) ∈ ∆. The definition of ∆ was given in section 3.2. Let the order

of the nilpotent part N be p, that is Np+1 = 0 in the fundamental representation.10 By

proposition 3 in [13], it is true that KerNm = NV . We define the non-degenerate form τ̄

on V̄ = V/NV as

τ̄(u, v) = τ(u,Npv) , (D.9)

which has symmetry |τ |(−1)p where |τ | is the symmetry of τ . By proposition 3 again, the

restriction Ā of S acting on V̄ is well-defined, semisimple and (Ā, V̄ ) ∈ ∆̄ is an indecom-

posable type of L(V̄ , τ̄ , σ̄). Proposition 2 in [13] asserts that

Theorem 4. An indecomposable type ∆ is completely determined by p and ∆̄.

According to theorem 4, in order to classify indecomposable types ∆, what remains

is to classify the indecomposable semisimple types ∆̄ of certain linear algebras L(V̄ , τ̄ , σ̄).

The semisimple types are labeled by their eigenvalues (ζ, · · · ) on V̄ . We refer to [13] for

further details and for a proof of the multiplicity of the eigenvalues. For the problem at

hand, we have listed the indecomposable types of O(m,n) in table 1. In particular, we are

interested in the nilpotent elements given in the last two rows of the table.

Although [13] does not list explicit normal forms, these can be easily constructed based

on the proof of proposition 2 in [13] that extends lemma 2 in [13]:

Theorem 5. Suppose A ∈ L(V, τ, σ) is such that its nilpotent part N has order p and

NV = kerNp. Then there exists an S-invariant and σ-invariant subspace W such that

V = W ⊕NW ⊕ · · · ⊕NpW (D.10)

is a sum of mutually disjoint subspaces with the following properties

10This is not necessarily the same as the order in the adjoint.
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• W = V̄ as a complement of NV in V ,

• dimN iH = dimH for 0 ≤ i ≤ p,

• τ(u,N iv) = 0 for u, v ∈ W and 0 ≤ i < p.

The conditions of theorem 5 are met for elements of an indecomposable type. It follows

from theorem 5 that for two elements u =
∑

iN
iui ∈ V and v =

∑

iN
ivi ∈ V , their inner

product is determined by that on W

τ(u, v) =
∑

i+j=p

(−1)iτ̄(ui, vj) . (D.11)

We remind the reader that the symmetry of τ̄ now also depends on p mod 2. Assume then

that we have identified the space W ⊂ V and that we specify the irreducible type ∆̄ of Ā

that is S acting on W = V̄ as an operator in L(W, τ̄ , σ). The normal form of A = S +N

acting on V can be constructed as follows:

1. The operator N is the ladder operation on V = ⊕iN
iW . It is left undetermined up

to scalings of each ladder-step operation.

2. The normal form of S is given by extending11 the action of Ā from W to V .

This is essentially the method we will use to write normal forms. That is, we identify W

in an explicit basis V and construct S and N accordingly.

We define appropriately a basis of V with the requisite signature of table 1 and in-

spect the left-hand side of (D.11). This allows us to identify the subspace W such that

τ
(
φ(·), φ(·)

)
is non-zero only for

τ(N iu,Np−iv) with u, v ∈ W . (D.12)

It is trivial to write the nilpotent part as the ladder operators N iW → N i+1W and the

semisimple part as the operator with the requisite eigenvalues on V . We are interested in

nilpotent elements so S = 0 and the dimension of W is given by the multiplicity of zeros in

the notation of table 1: one and two for ∆±
p (0) and ∆p(0, 0), respectively. In the following

two subsections, we give normal forms for these elements only. Nevertheless, one can easily

use this method to find a normal form for any type in the table.

D.2.1 Type ∆±
p (0)

We consider ∆±
p (0) with p ∈ 2N on a vector space V of signature ±(−1)

p
2

(
p
2 + 1, p2

)
. It is

generated by v, σv = ±v, τ̄(v, v) = 1. Depending on the sign of the real structure, we take

ṽ = v or ṽ = iv such that it is real and τ(ṽ, ṽ) = ±1.

All elements of V are of the form N iṽ, i = 0, 1, · · · , p. The inner product is

τ(Nkṽ, Np−kṽ) = ±(−1)k k = 0, 1, · · · , p
2
− 1

τ(N
p
2 ṽ, N

p
2 ṽ) = ±(−1)

p
2 .

11Recall that S and N commute by the Jordan-Chevalley theorem.

– 38 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
7

We choose the null basis

{ηk, η̃k, θ} (D.13)

with ηk = Nkṽ, η̃k = ±(−1)kNp−kṽ, θ = N
p
2 ṽ. The inner product is thus non-zero on

τ(ηi, η̃j) = δij (D.14)

τ(θ, θ) = ±(−1)
p
2 . (D.15)

One can construct N using the fact that is a ladder operator

N =

p
2
−2

∑

k=0

akη
k+1 ∧ η̃k + b θ ∧ η̃

p
2
−1. (D.16)

The coefficient can be scaled freely. We will later choose appropriately so that N belongs

to a KS triple.

D.2.2 Type ∆p(0, 0)

The case is identical to case ∆p(ζ,−ζ) with S = 0. We consider ∆p(0, 0) with p ∈ 2N+ 1

on a vector space V of signature (p+1, p+1). It is generated by the highest-weight vectors

v and w, σv = i w, σw = i v and τ̄(v, w) = 1. We take the real ṽ = (v + σv)/
√
2 and

w̃ = i(v − σv)/
√
2 with τ̄(ṽ, w̃) = 1.

All elements of V are of the form N iṽ and N iw̃, i = 0, 1, · · · , p. The inner product is

τ(Nkṽ, Np−kw̃) = (−1)k

τ(Nkw̃,Np−kṽ) = (−1)k+1

}

k = 0, 1, · · · , p− 1

2
.

We choose the null basis

{ηk, η̃k, θk, θ̃k} .

With ηk = Nkṽ, η̃k = (−1)kNp−kw̃, θk = Nkw̃, θ̃k = (−1)k+1Np−kṽ. The non-zero inner

product is

τ(ηi, η̃j) = δij , (D.17)

τ(θi, θ̃j) = δij . (D.18)

N is the ladder operator

N =

p−1
2

−1
∑

k=0

(
ak η

k+1 ∧ η̃k + bk θ
k+1 ∧ θ̃k

)
+ c η̃

p−1
2 ∧ θ̃

p−1
2 ,

where the ak, bk and c are constants that can be scaled freely.
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D.3 Kostant-Segikuchi triples in g

In order to construct normal forms for elements in pC up to the action of kC, we will use

the Kostant-Segikuchi correspondence. We are thus interested in Kostant-Segikuchi triples

in so(8, n). That is, we need to construct triples of the form {E,F,H} that satisfy the

condition F = −θCE.

The construction in appendix D.2 used the simplest coefficients for a nilpotent part of

an element N . By using boosts, we amend the normal form of a nilpotent element E such

that E, F = −θCE and

H = [E,F ] = −[N, θCN ] (D.19)

indeed satisfy the standard sl2 relations. This can always be done and it fixes the scalings

of the ladder operators completely.

We give the normal form of Kostant-Segikuchi triples here and using the Kostant-

Segikuchi correspondence we give the corresponding nilpotent element in pC in the sub-

section D.4. There are two nilpotent complex types in pC: one inherited from the in-

decomposable type ∆±
p (0) of signature ±(−1)

p
2

(
p
2 + 1, p2

)
with p even, and one from the

indecomposable ∆p(0, 0) of signature (p+ 1, p+ 1) with p odd.

D.3.1 Type ∆±
p (0)

Recall that type ∆±
p (0) with p ∈ 2N is of signature ±(−1)

p
2

(
p
2 + 1, p2

)
in table 1. We use

the basis {ηk, η̃k, θ} as before and the nilpotent normal form N is

E =

p
2
−2

∑

i=0

aiη
i+1 ∧ η̃i + b θ ∧ η̃

p
2
−1,

where the ai and b are to be determined. By using

θC(η
i ∧ η̃j) = η̃i ∧ ηj (D.20)

and

θC(θ ∧ η̃i) = ±(−1)
p
2 θ ∧ ηi, (D.21)

we compute

F = −θCN =

p
2
−2

∑

i=0

aiη
i ∧ η̃i+1 +±(−1)

p
2 b η

p
2
−1 ∧ θ . (D.22)

We need to impose that E and F form part of a Kostant-Segikuchi triple.

Consider the action of E and F on the basis of R
p
2
+1, p

2 if ±(−1)
p
2 = 1 and R

p
2
, p
2
+1 if

±(−1)
p
2 = −1:

E : ηi 7→ ai η
i+1 F : ηi+1 7→ ai η

i

E : η
p
2
−1 7→ b θ F : θ 7→ b η

p
2
−1

E : θ 7→ − ± (−1)
p
2 b η̃

p
2
−1 F : η̃

p
2
−1 7→ −b ± (−1)

p
2 θ

E : η̃i+1 7→ −ai η̃
i F : η̃i 7→ −ai η̃

i+1

(D.23)
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where i = 0, · · · , p2 − 2, and we define for consistency a−1 = 0. The sl2 algebra requires

Hηi = (2i− p)ηi, i = 0, · · · , p
2
− 1 (D.24)

Hη̃i = (p− 2i)η̃i , i = 0, · · · , p
2
− 1 (D.25)

Hθ = 0 . (D.26)

A straightforward calculation gives us the conditions

a2i − a2i−1 = p− 2i , i = 0, · · · , p
2
− 2 (D.27)

a

(
p

2
− 2

)2

= b2 − 2 . (D.28)

The constraint determines all constants uniquely

a2i = (p− i)(i+ 1) , i = 0, · · · , p
2
− 2

b2 =
p

2

(
p

2
+ 1

)

and the (hyperbolic) element H is

H =

p
2
−1

∑

i=0

(p− 2i)η̃i ∧ ηi. (D.29)

Equation (D.43) is given by using the Kostant-Segikuchi correspondence and switching to

an orthonormal frame

ei =

√
2

2
(ηi + η̃i) , (D.30)

êi =

√
2

2
(ηi − η̃i) . (D.31)

D.3.2 Type ∆p(0, 0)

Recall that type ∆p(0, 0) with p ∈ 2N + 1 is of signature (p + 1, p + 1) and we use the

basis {ηk, η̃k, θk, θ̃k} of Rp+1,p+1, k = 0, 1, · · · p−1
2 . Previously, we had used the nilpotent

normal form

N =

p−1
2

−1
∑

i=0

(
ηi+1 ∧ η̃i + θi+1 ∧ θ̃i

)
+ η̃

p−1
2 ∧ θ̃

p−1
2 . (D.32)

We boost N and use the nilpotent element

N =

p−1
2

−1
∑

i=0

(
aiη

i+1 ∧ η̃i + biθ
i+1 ∧ θ̃i

)
+ c η̃

p−1
2 ∧ θ̃

p−1
2 , (D.33)

where the ai, bi and c are constants to be determined. Note that there is still a manifest

SO(1, 1) freedom. We calculate

F = −θCN =

p−1
2

−1
∑

i=0

(
ai η

i ∧ η̃i+1 + bi θ
i ∧ η̃i+1

)
− c η

p−1
2 ∧ θ

p−1
2 . (D.34)

As before, we will impose that these two form the parabolic parts of a standard triple.
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Let us write the action of E and F on the basis. It is

E : ηi 7→ ai η
i+1 F : ηi+1 7→ ai η

i

E : η
p−1
2 7→ −c θ̃

p−1
2 F : θ̃

p−1
2 7→ −c η

p−1
2

E : θ̃i+1 7→ −bi θ̃
i F : θ̃i 7→ −bi θ̃

i+1

E : θi 7→ bi θ
i+1 F : θi+1 7→ bi θ

i

E : θ
p−1
2 7→ c η̃

p−1
2 F : η̃

p−1
2 7→ c θ

p−1
2

E : η̃i+1 7→ −ai η̃
i F : η̃i 7→ −ai η̃

i+1

, (D.35)

where i = 0, · · · , p−1
2 − 1. We may also put a−1 = b−1 = 0 for consistency.

As before, we impose the conditions for a highest-weight representation

Hθ̃i = −(2i− p)θ̃i, Hη̃i = −(2i− p)η̃i, (D.36)

Hηi = −(p− 2i)ηi, Hθi = −(p− 2i)θi. (D.37)

The solution is unique up to signs and we find

a2i = b2i = (p− i)(i+ 1) , i = 0, · · · , p− 1

2
− 1

c2 =

(
p+ 1

2

)2

.

The (hyperbolic) element H is

H =

p−1
2∑

i=0

(p− 2i)(θ̃i ∧ θi + η̃i ∧ ηi) . (D.38)

Using this, one can construct the Kostant-Segikuchi triple in pC. Equation (D.44) is given

by switching to an orthonormal frame

e
(1)
i =

√
2

2
(ηi + η̃i) (D.39)

ê
(1)
i =

√
2

2
(ηi − η̃i) (D.40)

e
(2)
i =

√
2

2
(θi + θ̃i) (D.41)

ê
(2)
i =

√
2

2
(θi − θ̃i) . (D.42)

D.4 Normal forms in pC

D.4.1 Type ∆±
p (0)

Let us first write the indecomposable nilpotent element in pC corresponding to type ∆±
p (0),

where p is even. We use the orthonormal basis {ei, êi, ẽ}, i = 0, . . . , p2−1, of R
p
2
+1, p

2 (respec-

tively of R
p
2
, p
2
+1) where ẽ is spacelike (respectively timelike) if ±(−1)

p
2 is +1 (respectively
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−1). Then, the following is a normal form for the class

e =
1

2

( p
2
−2

∑

i=0

ai(êi ∧ ei+1 + êi+1 ∧ ei)

+
√
2 b ẽ ∧

{

−ê p
2
−1 , if ± (−1)

p
2 = 1

e p
2
−1 , if ± (−1)

p
2 = −1

}

+ i

p
2
−1

∑

i=0

(p− 2i)ei ∧ êi

)

,

(D.43)

where

a2i = (p− i)(i+ 1) , i = 0, · · · , p
2
− 2

b2 =
p

2

(
p

2
+ 1

)

.

D.4.2 Type ∆p(0, 0)

We now write the element corresponding to the type ∆p(0, 0), where p is odd. We use

the orthonormal basis {e(1)i , e
(2)
i , ê

(1)
i , ê

(2)
i }, i = 0, . . . , p−1

2 , of Rp+1,p+1, where the e
(j)
i are

spacelike and the ê
(j)
i are timelike. The nilpotent element is

e =
1

2

( p−1
2

−1
∑

i=0

ai

(

ê
(1)
i+1 ∧ e

(1)
i + ê

(1)
i ∧ e

(1)
i+1 + ê

(2)
i+1 ∧ e

(2)
i + ê

(2)
i ∧ e

(2)
i+1

)

+ c
(

e
(2)
p−1
2

∧ ê
(1)
p−1
2

+ ê
(2)
p−1
2

∧ e
(1)
p−1
2

)

+ i

p−1
2∑

i=0

(p− 2i)
(

e
(1)
i ∧ ê

(1)
i + e

(2)
i ∧ ê

(2)
i

)
)

,

(D.44)

where

a2i = (p− i)(i+ 1) , i = 0, · · · , p− 1

2
− 1

c2 =

(
p+ 1

2

)2

.

D.5 Proof of theorem 2

In this section we prove theorem 2 on page 11. In order to facilitate our calculations, let

us use the notation of Clifford multiplication vǫ of a vector v in Cl(8, 0) acting on a spinor

ǫ of the Clifford module, and similarly for a higher-degree form.

Proof of (a) and (b). Assume ∆p(0, 0) appears in the decomposition of Pz with p ≥ 3. Let

us use the orthonormal basis {e(1)i , e
(2)
i , ê

(1)
i , ê

(2)
i }, i = 0, · · · , p−1

2 , of Rp+1,p+1, where p > 3 is

odd and R
p+1,p+1 is an orthogonal subspace of R8,n. That is, the basis {e(1)i , e

(2)
i , ê

(1)
i , ê

(2)
i },
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i = 0, · · · , p−1
2 , is a subbasis of some orthonormal basis {eI , êr}, I = 1, . . . , 8 and r =

1, . . . , n, of R8,n. According to (D.44), the nilpotent element is of the form

P IreI ⊗ êr = e+ · · · (D.45)

with

e =
1

2

(
− a0 e

(1)
1 ⊗ ê

(1)
0 + i p e

(1)
0 ⊗ ê

(1)
0

)
+ · · · (D.46)

where in “· · · ” of both equations, the vector ê0 does not appear again. The algebraic su-

persymmetry equation (2.30) for the index r corresponding to the direction of ê
(1)
0 becomes

(
− a0e

(1)
1 + i p e

(1)
0

)
ǫ = 0 . (D.47)

In this equation, we are assuming the Clifford multiplication of the vectors e
(1)
0 and e

(1)
1 in

R
p+1 ⊂ R

8 in the Clifford module of Cl(8, 0). Multiplying with e
(1)
0 and using |e(1)0 | = 1 in

R
8,0, (D.47) becomes

− a0e
(1)
0 ∧ e

(1)
1 ǫ = i p ǫ , (D.48)

where again e
(1)
0 ∧ e

(1)
1 ǫ is the Clifford action of the two-form on the complex spinor. Since

e
(1)
0 ∧ e

(1)
1 squares to −1 in the Clifford algebra Cl(8, 0), whereas

a20 = p 6= p2, (D.49)

the only solution is ǫ = 0 and there is thus no supersymmetry. On the other hand, the

indecomposable complex element of type ∆1(0, 0) is

e =
1

2

(

±
(
− e

(2)
0 ⊗ ê

(1)
0 + e

(1)
0 ⊗ ê

(2)
0

)
+ i

(
e
(1)
0 ⊗ ê

(1)
0 + e

(2)
0 ⊗ ê

(2)
0

))

, (D.50)

where the ±1 sign is the sign of a0. The algebraic supersymmetry equation (2.30) becomes

(
± e

(2)
0 + i e

(1)
0

)
ǫ = 0 . (D.51)

Indeed, this equation is obtained for r corresponding to either the direction of ê
(1)
0 or ê

(2)
0 .

This is a BPS-type projection that halves supersymmetry.

Proof of (c). Assume ∆±
p (0) appears in the decomposition with p ≥ 4. For simplicity, let

us take ±(−1)
p
2 = +1, while the proof is completely analogous for the opposite sign. We

use the orthonormal basis {ei, êi, ẽ}, i = 0, · · · , p2 − 1, of R
p
2
+1, p

2 , where p is even and

R
p
2
+1, p

2 is an orthogonal subspace of R8,n. That is, the basis {ei, êi, ẽ}, i = 0, · · · , p2 − 1,

is a subbasis of some orthonormal basis {eI , êr}, I = 1, . . . , 8 and r = 1, . . . , n, of R8,n.

According to (D.44), the nilpotent element is of the form

P Ir
z eI ⊗ êr = e+ · · · (D.52)

with

e =
1

2
(−a0 e1 ⊗ ê0 + i p eiê0 ⊗ ê0) + · · · (D.53)
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where in “· · · ” of both equations, the vector ê0 does not appear again. The proof here

then proceeds similarly to the proof of (a). The algebraic supersymmetry equation (2.30)

for the index r corresponding to the direction of ê0 becomes

(−a0e1 + i p e0)ǫ = 0 , (D.54)

where again e1 and e0 square to −1, while a20 = p 6= p2. There is thus no supersymmetry

allowed.

Proof of (d). Type ∆0(0)
± corresponding to a spacelike or timelike R ⊂ R

8,n is such that

e = 0. It imposes no supersymmetry restriction itself from the algebraic supersymmetry

equation (2.30).

Proof of (e). Take now p = 2 and consider ∆+
2 (0). We assume as before a basis {e0, ê0, ẽ}

of R1,2. The nilpotent element Pz is again of the form

P Ir
z eI ⊗ êr = e+ · · · (D.55)

with

e = (±e0 ⊗ ẽ+ ie0 ⊗ ê0) . (D.56)

The sign here is that of b. If we choose the direction of r corresponding to the timelike ẽ,

we arrive at the equation

e0ǫ = 0 , (D.57)

with solution ǫ = 0. If we consider ∆−
2 (0) instead and use the orthonormal basis {e0, ẽ, ê0}

of R2,1, (D.56) is replaced by

e = (∓ẽ⊗ ê0 + ie0 ⊗ ê0) . (D.58)

The sign in this equation is again that of b. This is a single projection equation of the form

i e0 ∧ ẽǫ = ±ǫ . (D.59)

Each appearance of ∆−
2 (0) implies a single projection equation that halves supersymmetry.
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