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We turn on a charged scalar field in order to explore the condensation of a charged scalar
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construct are thermodynamically relevant, we find that the finite DC electrical conductivity

of the normal phase is replaced by a superfluid pole in the broken phase. Moreover, when

the normal phase possesses a Drude behaviour at low frequencies, the optical conductivity

of the broken phase at low frequencies can be described by a two-fluid model that is a sum

of a Drude peak and a superfluid pole, as was found recently for inhomogeneous holographic

superconductors. We also study cases in which this low-frequency behavior does not hold.
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1 Introduction

Consider a system at finite charge density and temperature. If momentum is conserved

then a non-zero overlap between the electric current and the momentum operator leads

to an infinite DC electrical conductivity. This feature is indeed observed in the simplest

holographic model of such a system: the Reissner-Nordstrøm-AdS (RN) black brane. A

natural way to build more realistic holographic models that allow momentum to dissipate

is to modify the RN geometry such that translational invariance is broken explicitly along

the boundary directions.

This can be achieved by introducing spatially-dependent sources for (neutral) matter

fields in the bulk. The backreaction of such sources typically leads to an inhomogeneous

solution. Examples include a spatially-periodic massive neutral scalar [1] or chemical po-

tential [2–4]. In these studies the DC conductivity is indeed finite, in good agreement with

the field theory calculation of [5], and the delta function is resolved into a Drude peak of

the form1

σ(ω) =
Kτ

1− iωτ
(1.1)

However, the study of such setups is technically involved because one must solve non-

linear PDEs. It is thus desirable to have a simpler holographic model that incorporates

dissipation.2 In this way one may hope to uncover, in a computationally simple way,

universal properties of field theories with holographic duals in which momentum can relax.

1In [6], the spatially-modulated chemical potential had zero average and a Drude peak in the optical

conductivity was not seen.
2It was realized early on that the DC conductivity is finite in the probe limit [7–9]; in such a case there

exists a large reservoir of neutral matter into which momentum can be transferred. However, considering

backreaction reintroduces the delta function.

– 1 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
0

One can obtain such a model with a homogeneous bulk geometry by exploiting the

presence of a symmetry in the matter sector.3 For example, a set of massless scalar fields

that are linear in the boundary coordinates were added to the usual Einstein-Maxwell sys-

tem in [12]. The shift symmetry of the scalars leads to a homogeneous bulk stress tensor.

We shall refer to such scalars as axions. Moreover, by choosing the axion configuration in

a particular way it is also possible to render the geometry isotropic, allowing for the exis-

tence of an analytical black brane solution.4 The finite DC conductivity can be expressed

analytically and, in four bulk dimensions, turns out to be independent of temperature.

At finite chemical potential, a transition from a coherent (i.e. Drude-like) metallic

behaviour to an incoherent one as the parameter that controls the amount of momentum

relaxation is increased was identified in this model by [14].5 A similar transition was

observed in the thermal conductivity of this system at zero chemical potential in [16],

wherein this feature was nicely explained in terms of the structure of the quasi-normal

modes (QNM) of the black brane. There it was observed that the black brane conducts

coherently when there is a purely-dissipative mode parametrically separated from the rest

of the QNM.

This model can be generalized in a number of ways. One is to introduce a further

neutral scalar field, this time with a potential and couplings to the axions and Maxwell

field. We shall refer to such a scalar as a dilaton.6 Momentum-dissipating black brane

solutions to such theories were constructed in [17, 18] and referred to as ‘Q-lattices’. The

DC conductivity of these solutions is again finite and determined in terms of the horizon

properties of the background [18, 19].7 Moreover, [17] identified metallic and insulating

phases, the latter of which being characterized by a vanishing DC conductivity at zero

temperature. In the metallic phase, Drude behaviour is observed for a large range of

temperatures, while in the insulating phase the low frequency region is not described by

Drude physics. Metal-insulator transitions were observed in similar models in [18].8 See [22]

for further studies of such models and also [23, 24] for alternative generalizations.

A conceptually distinct approach was considered in [25], wherein the theory of massive

gravity [26] was employed to remove translational invariance on the boundary as a result

of breaking (a subset of) diffeomorphisms in the bulk.9 The resulting solutions possess a

finite DC conductivity for which an analytical expression was provided in [28] adapting a

calculation in [29]. In [30], it was argued that there is a qualitative connection between

massive gravity and a perturbative inhomogeneous lattice generated by a neutral scalar

3One can also exploit a symmetry of the spacetime in order to break boundary translational invariance

while retaining homogeneity [10, 11].
4This solution had already been reported in the literature [13], although no holographic applications had

been discussed.
5Coherent-incoherent transitions were first observed in holography in [11]. See [15] for a nice introduction

to this terminology.
6For special choices of the coupling functions, such models can be re-written in terms of neutral complex

scalar fields that each have a phase linear in the boundary coordinates.
7All DC thermoelectric transport coefficients were computed for these models in [20].
8Metal-insulator transitions were observed recently in an even simpler model by [21].
9The viability of massive gravity was called into question by [27], wherein it was argued that the theory

suffers from several pathologies including acausality, superluminality and loss of unique evolution.
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with spatially modulated boundary conditions. More precisely, the authors found that, at

leading order in the lattice strength, the equations of motion that govern the conductivity

are those of massive gravity if the radially-dependent graviton mass is proportional to

the square of the neutral scalar. See [31–35] for further studies of massive gravity in

this context.

The simplicity of these models makes them amenable to generalization, allowing us

to conveniently study different field theory phenomena in setups in which translational

invariance is broken. The goal of this paper is to study superconductivity in the presence

of momentum relaxation, focusing on the axion model and a particular axion-dilaton model.

To do so, we shall generalize the by now canonical model of holographic superconductivity

of [36–38], consisting of an Einstein-Maxwell-charged scalar theory, by coupling it to the

neutral scalar sectors of [12] and [17]. The condensation of the charged order parameter

is dual to the appearance of charged scalar hair on the black brane (for scale invariant

boundary conditions that set the source of the dual operator to zero) as we lower the

temperature below a critical value Tc.

Superconducting inhomogeneous lattices were constructed in [39] in an Einstein-

Maxwell-charged scalar system with spatially-modulated chemical potential. Below the

critical temperature, the optical conductivity behaves at low frequencies as a two-fluid

model consisting of a pole in the imaginary part plus a normal Drude component:

σ(ω) =
Knτ

1− iωτ
+ i

Ks

ω
(1.2)

Note that the appearance of a pole in the imaginary part demands there must be a delta

function in the real part with strength set by Ks in order to satisfy the Kramers-Kronig

relations. As the temperature is decreased below Tc, it was observed that the parameters

Ks and τ grow rapidly while Kn quickly decreases.

In addition, other simplified models of momentum relaxation have been utilized in the

study of holographic superconductors. The condensation of a charged scalar was studied

in a massive gravity theory in [40].10 Their results qualitatively agree with those in [39];

namely, they find a two-fluid model with a Drude normal component. In [41], a charged

scalar was coupled to the model of [42, 43], which only has one neutral massless scalar.

There it was observed that the critical temperature decreases as the scale of momentum

dissipation increases and that a pseudo gap appears in the optical conductivity in the

direction in which the breaking of translational invariance is introduced. See [44] for work

on the dynamical formation of a condensate in the same model. More recently, [45] studied

a holographic superconductor in an axion-dilaton model as we also do below, although

with a different mass for the dilaton. There it was observed that the critical temperature

is reduced by the presence of momentum relaxation and that breaking the U(1) from the

metallic phase results in a two-fluid model behaviour with Drude normal component. This

is not so in the insulating phase, for which the normal component is not well described by

a Drude peak. See also [46] for an alternative approach.

10Note that the version of massive gravity considered in [40] only has the mass term ∼
√
gαβfαβ where

fαβ is the reference metric. This is different to the massive gravity theory whose optical conductivity

coincides with that of [12].
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In this paper we construct superconducting solutions and observe the transition from

all the unbroken phases we have considered; namely, the exact solution of [12, 13] in the

axion model and one choice of metallic and insulating solutions in the axion-dilaton model

of [17]. Crucially, we first demonstrate that the broken phases are indeed thermodynami-

cally preferred, confirming their physical relevance.

Our main result is the observation of a zero-frequency pole in the imaginary part of the

electrical conductivity, confirming that our solutions are indeed superconducting. More-

over, in cases in which the normal phase possesses a Drude behaviour at low frequencies

(namely, in the axion model with small momentum dissipation parameter and the metallic

solution in the axion-dilaton model), the broken phase can be described as a two-fluid model

whose low-frequency conductivity is given by (1.2). We find that this can be explained by

the structure of the lowest QNMs: Drude peaks arise when there is a purely-dissipative

mode that is well-separated from the rest of the excitations, resembling the picture of [16].

When this ceases to be true, we observe departures from the Drude behaviour in the real

part of the conductivity and thus the first term in (1.2) must be modified. We study the

temperature dependence of the parameters in (1.2) for the broken phase of the metal of the

axion-dilaton model. As we lower the temperature from Tc, we find that τ first decreases

slowly and then increases quickly, Kn is monotonically decreasing reaching a small value,

and Ks monotonically increases approaching a constant. We find that Ks exhibits the same

behaviour in the broken phase of the insulator and also in the broken phase studied in the

axion model.

We also check the Ferrell-Glover-Tinkham (FGT) sum rule [47, 48], which relates

‘missing’ spectral weight to the strength of the zero-frequency pole. We verify that the

sum rule holds for the broken metallic phase and the broken phase in the axion model, as

was also demonstrated for the inhomogeneous lattice of [39].

This paper is organized as follows. In section 2 we study the axion model coupled to

a charged scalar. We describe a general class of solutions which implement momentum

relaxation and discuss the calculation of the optical conductivity for such configurations.

After a review of the normal phase and its conductivity, we move on to explore the broken

phase. In section 3 we also follow this structure for a particular axion-dilaton model and

study both metallic and insulating states. We conclude with a discussion of our results

and comments on extensions and more general models in section 4.

2 Superconductivity in an axion model

Both models we will study have the form

I = IN + IC ≡
∫
d4x
√
−gL (2.1)

In this section we focus on an axion model that has neutral sector [12]

IN =

∫
d4x
√
−g

[
R+ 6− 1

4
F 2 − 1

2

2∑
i=1

(∂χi)
2

]
where F = dA (2.2)
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The field equations admit AdS4 with unit radius as a vacuum solution. We add to this

action a charged sector given by

IC =

∫
d4x
√
−g
[
−|Dψ|2 −m2

ψ|ψ|2
]

where Daψ = ∂aψ − iqAaψ (2.3)

We will always choose this simple potential with m2
ψ = −2. The charged scalar ψ is dual to

a scalar operator O of dimension ∆ = 2 charged under a global U(1). This model contains

the minimal ingredients needed to construct a holographic superconductor in the presence

of dissipation. Our main goal here is to study the optical conductivity in the broken phase

of this model.

Both the normal phase and broken phase are described by black brane solutions. We

make the following isotropic ansatz for the bulk fields:

ds2 = −U(r)dt2 +
dr2

U(r)
+ e2V (r)(dx2 + dy2) (2.4)

A = At(r)dt, χ1 = αx, χ2 = αy, ψ = ψ(r) (2.5)

Note that the metric is isotropic and homogeneous but the full solution is not due to the

presence of the spatial dependence in the axion fields χi. The parameter α is the strength

of the translational symmetry breaking in the dual theory, and setting α = 0 restores

translational invariance.

In order to work at non-zero temperature in the field theory we demand a regular non-

degenerate horizon at r = r+. This implies U(r+) = At(r+) = 0 and that the temperature

is given by

T =
U ′(r+)

4π
=

1

16πV ′(r+)

(
12−A′t(r+)2 − 2α2e−2V (r+) + 4ψ(r+)2

)
(2.6)

We find the following asymptotic expansion near the AdS4 boundary at r →∞:

At = µ− ρ

r
+ . . . (2.7)

ψ =
ψ1

r
+
ψ2

r2
+ . . . (2.8)

U = r2 − α2

2
− m

r
+ . . . (2.9)

V = log r + . . . (2.10)

We consider the standard quantization of the charged scalar, in which ψ1 is interpreted

as the source and ψ2 as the expectation value of O. Thus, a bulk solution with ψ2 6= 0

and ψ1 = 0 corresponds to the broken phase in the dual theory. Such solutions have been

thoroughly investigated in the literature in the special case of α = 0, but in section 2.2 we

turn on α 6= 0, allowing us to study the spontaneous breaking of the U(1) symmetry in

the presence of dissipation. The remaining parameters in this expansion have the following

interpretation in the dual theory: µ is the chemical potential, ρ is the total charge density

and m is proportional to the total energy density. The phase space of the dual theory is

parametrized by the dimensionless quantities T/µ and α/µ.
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In order to compute the optical conductivity, we consider fluctuations of the gauge

field of the form δAx = e−iωtax(r). This couples to fluctuations of the metric and the

axion fields, which we write as

δgtx = e−iωthtx(r), δχ1 = e−iωts(r) (2.11)

The equations that govern these fluctuations are

s′′ +

(
2V ′ +

U ′

U

)
s′ +

ω2

U2
s− iωαe

−2V htx
U2

= 0 (2.12)

a′′x +
U ′

U
a′x +

(
ω2

U2
− 2q2ψ2

U

)
ax +

A′t
U
h′tx −

2A′tV
′

U
htx = 0 (2.13)

αs− iω

U
(A′tax + h′tx − 2V ′htx) = 0 (2.14)

Note that the only difference when a charged scalar ψ is turned on is an additional mass

term for ax. Near the conformal boundary, the linearized fields behave as

s = s(0) +
ω

2r2
(ωs(0) − iαh(0)

tx ) +
s(3)

r3
+ . . . (2.15)

ax = a(0)
x +

a
(1)
x

r
+ . . . (2.16)

htx = r2h
(0)
tx + . . . (2.17)

The optical conductivity is defined via

σ(ω) =
GRJxJx

iω
=

a
(1)
x

iωa
(0)
x

(2.18)

where GRJxJx is the retarded Green’s function for the current operator Jx in the dual theory.

In order to compute it, we need to turn on the source a
(0)
x with all other sources set to

zero. This can be achieved in a gauge-invariant way by requiring (see e.g. [17])

ωs(0) − iαh(0)
tx = 0 (2.19)

In addition, to obtain the retarded correlator the linearized fields must satisfy ingoing

boundary conditions at the horizon, which amounts to

s = (r − r+)−iω/(4πT )(s(+) + . . .) (2.20)

ax = (r − r+)−iω/(4πT )(a(+)
x + . . .) (2.21)

htx = (r − r+)−iω/(4πT )(h
(+)
tx (r − r+) + . . .) (2.22)

where the ellipses denote regular power series in (r − r+). The leading order coefficients

satisfy the relation (
iω

4πT
− 1

)
h

(+)
tx = A′t(r+)a(+)

x + αs(+) (2.23)

Imposing these conditions, we use a shooting method to read off the optical conductivity.
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As mentioned in the introduction, it will often be useful to study the quasi-normal

frequencies of the black brane associated with such fluctuations. These are given by the

poles in GRJxJx [49, 50], which from (2.18) are located at frequencies for which a
(0)
x = 0.

Before moving forward to discuss our results for the broken phase, first we review

known results for both the DC and AC conductivity in the normal phase.

2.1 Normal phase

We choose the following black brane solution as the normal phase [12, 13]:

U(r) = r2 − α2

2
− m

r
+
µ2

4

r2
+

r2
, V (r) = log r

At(r) = µ
(

1− r+

r

)
, ψ(r) = 0

(2.24)

The parameter m is determined by solving U(r+) = 0. The temperature of the black brane

is simply

T =
U ′(r+)

4π
=

1

16πr+

(
12r2

+ − µ2 − 2α2
)

(2.25)

It is clear that we recover the RN solution by setting α = 0.

The DC conductivity in this phase was shown in [12] to take the temperature-

independent value

σDC = 1 +
µ2

α2
(2.26)

The AC conductivity was studied in detail in [14]. Its real part interpolates between the

DC value at zero frequency and unity at high frequency with a minimum at intermediate

frequencies whose depth and location depends on T/µ and α/µ. The imaginary part has

a peak at low frequencies then goes to zero as the frequency goes to zero. It was argued

in [14] that this behaviour is well-described by a slight modification of the Drude form (1.1)

when α/µ is small but not when α/µ is large. Indeed, we checked that when α is much

larger than both T and µ, the conductivity is close to unity for all frequencies and there is

clearly no coherent Drude peak.

2.2 Broken phase

Next we study solutions with the charged scalar turned on. We construct these numerically

using a shooting method. At all α/µ studied we find a black brane solution with charged

scalar hair that exists below some critical Tc/µ. In figure 1 we show this critical temperature

as a function of α/µ for different values of the scalar charge q. Note that the curves

become non-monotonic as q is increased, in contrast to several studies mentioned in the

introduction. From now on we fix q = 2. In figure 2 we show a family of condensate curves

for different α/µ.

In order to determine whether these solutions are thermodynamically relevant, we must

compute their free energies. First we Wick rotate to Euclidean signature via

t = −iτ and IE = −iI (2.27)

– 7 –
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Figure 1. Critical temperature as a function of α/µ for q = 0.5, 1, 2, 3 (labelled from bottom

to top).
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ψ2

µ2
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µ

Figure 2. Condensate as a function of temperature for α/µ = 0.3, 0.6, 1 (labelled from right to left).

The free energy density w is given by the renormalised on-shell Euclidean action via

Iren
E = βV2w (2.28)

where τ ∼ τ + β and β = 1/T . Using Einstein’s equations we can write the on-shell

Lagrangian as a total derivative:

IE = −
∫
d4x
√
gL =

∫
d4x

[
2
√
g U V ′ + α2r

]′
= βV2

[
lim
r→∞

(2
√
g U V ′ + α2r)− α2r+

]
(2.29)

where in the last line we have used U(r+) = 0. We must supplement the action with

boundary terms in order to have a well-defined variational principle and also to obtain a

finite w [51, 52]. We find that11

Iren
E = IE +

∫
r→∞

d3x
√
h

[
−2K + 4− 1

2

2∑
i=1

(∂χi)
2 + |ψ|2

]
(2.30)

11Our conventions are as follows: hab = gab + nanb is the induced metric on the timeline boundary at

large r with outward-pointing unit normal na and Kab = hc(ah
d
b)∇cnd is the extrinsic curvature with trace

K = habKab.
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Figure 3. Free energy density as a function of temperature for the broken phase (solid lines) and

the normal phase (dashed lines) at α/µ = 0.3, 0.6, 1 (labelled from top to bottom).
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Figure 4. Conductivity in the broken phase at α/µ = 0.3 as a function of frequency for various

temperatures. Temperature decreases from T/µ . Tc/µ = 0.088 down to 0.0073, from top to

bottom in the left plot and from bottom to top in the right.

yields the result

w = −(m+ r+α
2) (2.31)

Note that this formula is valid for both the normal and broken phases, but m is found

numerically for the latter. In figure 3 we demonstrate that the broken phase has lower

free energy density than the normal phase at the same α/µ and thus is thermodynamically

preferred.

Now we present our results for the optical conductivity in this phase. In figure 4 we

show our results for α/µ = 0.3 for a range of temperatures below Tc/µ and in figure 5

we plot the same data on a log-log scale. Two main features are apparent. Firstly, the

imaginary part of the conductivity diverges at the origin. By fitting the imaginary part at

small frequencies we confirm the existence of a 1/ω pole, which leads to a delta function

at the origin in the real part via the Kramers-Kronig relations.

In fact, at temperatures close to Tc/µ we find that the low frequency region of the

conductivity can be well-approximated by a two-fluid model with Drude normal component

given by (1.2). Specifically, we fit the real part of our data to the real part of this formula,

then do the same for the imaginary counterparts over the same frequency range. For a

temperature T/µ . Tc/µ = 0.088 with ω/µ < 0.05 we find that the squared sum of the
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Figure 5. The same data as in figure 4 plotted on a log-log scale.
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Figure 6. Confirmation of the FGT sum rule (2.32) at α/µ = 0.3 where we choose a broken phase

at T/µ = 0.62Tc/µ. The dashed line is the value of Ks/µ = 0.50 extracted from a fit of Im σs.

residuals for these fits is 7.8× 10−3 or 2.2× 10−4, respectively. We also find that the value

of 1/(τµ) extracted from the real fit differs by that from the imaginary fit by 1.9% and

from the frequency of the lowest purely-dissipative QNM by 1.4%.

Secondly, in the real part of the conductivity at low frequencies we see a departure from

the normal phase value (2.26) as the temperature is lowered. This is a result of spectral

weight being transferred into the superfluid component of the fluid. The coefficient of the

zero-frequency pole measures the superfluid density and is governed by the Ferrell-Glover-

Tinkham sum rule:

Ks

µ
=

2

π
lim

ω/µ→∞
F (ω/µ) with F (p) ≡

∫ p

0+
dp′ Re

[
σn(p′)− σs(p′)

]
(2.32)

where σn is the conductivity of the normal phase at Tc/µ and σs is the conductivity of the

broken phase at some T/µ < Tc/µ. In figure 6 we demonstrate that, going to high enough

frequencies, F (ω/µ) does indeed tend to the coefficient of the 1
ω/µ pole extracted from a

fit of Imσs(ω/µ) at low frequency. Such agreement was also found for the inhomogeneous

model studied in [39], where it is connected to the missing spectral weight observed in some

cuprates. We discuss the interpretation of Ks in section 4.

As the temperature is lowered, the peak at low frequencies in the imaginary part of

the conductivity is overwhelmed by the superfluid pole. This is not in conflict with (1.2);

rather, it is simply a result of the interplay between the 1/ω and ω components. However,

– 10 –
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Figure 7. Poles in GR
JxJx closest to the real axis as a function of temperature at α/µ = 0.3. The

black curve corresponds to the purely imaginary Drude pole in the normal phase. For the broken

phase we plot the purely imaginary pole in blue (appearing in both plots) and the (imaginary part

of the) propagating pole in yellow.
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Figure 8. Conductivity in the broken phase at α/µ = 5 as a function of frequency for temperatures

T/µ = 0.074 . Tc/µ, 0.057, 0.029, labelled from top to bottom in the left plot and from bottom to

top in the right.

one can see from figure 5 that for very low temperatures the local maximum in the real

part at low frequencies also disappears. One might have expected to see the maximum

reappear at lower frequencies but we think it is unlikely we have missed such a feature

since our temperature steps are quite small.

Instead, an explanation for this feature is provided by studying the poles of the retarded

Green’s function GRJxJx directly. In figure 7 we plot the imaginary part of the two poles

closest to the axis for the broken phase as well as the Drude pole for the normal phase.

From the left-hand plot, we observe that the longest-lived purely imaginary pole in the

broken phase is continuously connected to the Drude pole of the normal phase, as one

would expect. It is curious that the minimum of the normal phase curve occurs precisely

at the critical temperature. For temperatures close to Tc/µ we see from the right-hand

plot that the purely imaginary mode in the broken phase is isolated, which is why the fit

to a Drude form still works. However, as the temperature is lowered, a pair of propagating

poles comes up from lower down in the complex plane and the Drude pole is no longer

isolated. Thus the formula (1.2) for the low frequency conductivity should be modified at

low temperatures. Note that this pair is not connected to the lowest propagating pair in

the normal phase.

In figure 8 we present the optical conductivity in the broken phase at the much larger

value of α/µ = 5. It is clear that there is no coherent Drude-like peak, for any temperature

lower than Tc/µ.
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3 Superconductivity in an axion-dilaton model

In this section we study a model that has neutral sector [17]

IN =

∫
d4x
√
−g
[
R+ 6− 1

4
F 2 − |∂Φ|2 −m2

Φ|Φ|2
]

(3.1)

By parametrizing the complex scalar as Φ = φ eiχ we can re-write this theory as an axion-

dilaton model. In comparison to the previous model we now only have a single axion, so

we must build anisotropic normal phase solutions, which we have only been able to find

numerically. We also have a neutral dilaton field that extends the phase space of solutions.

We fix its mass to be m2
Φ = −2. Allowing for these differences, we proceed in a similar

manner as for the previous model and add to this action the same charged sector IC (2.3)

as before.

We consider the anisotropic ansatz

ds2 = −U(r)dt2 +
dr2

U(r)
+ e2Vx(r)dx2 + e2Vy(r)dy2 (3.2)

A = At(r)dt, Φ = eikxφ(r), ψ = ψ(r) (3.3)

and study black brane solutions with temperature

T =
U ′(r+)

4π
=

1

16πV ′y(r+)

(
12−A′t(r+)2 + 4φ(r+)2 + 4ψ(r+)2

)
(3.4)

The equations of motion admit the following asymptotic expansion near the AdS4

boundary:

At = µ− ρ

r
+ . . . (3.5)

φ =
φ1

r
+
φ2

r2
+ . . . (3.6)

ψ =
ψ1

r
+
ψ2

r2
+ . . . (3.7)

U = r2 − φ2
1 + ψ2

1

2
− m

r
+ . . . (3.8)

Vx = log r − φ2
1 + ψ2

1

4r2
+
VUV

r3
+ . . . (3.9)

Vy = log r − φ2
1 + ψ2

1

4r2
− VUV + 2(φ1φ2 + ψ1ψ2)/3

r3
+ . . . (3.10)

We allow a source φ1 6= 0 for the neutral scalar. This provides an extra direction to the

phase space of the dual theory (now parametrized by three dimensionless quantities T/µ,

k/µ and φ1/µ), allowing for a very rich structure. In particular, by tuning these parameters

one can exhibit transitions between metallic and insulating states, as was demonstrated in

a similar model in [18]. However, in this paper we restrict to two choices: (k/µ, φ1/µ) =

(1/2, 1/
√

2) describing a metal and (2, 2−3/2) describing an insulator. This characterization

will be examined in the following section. As before, we are interested in solutions with

ψ2 6= 0 and ψ1 = 0 that correspond to turning on a charged condensate in these states.
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Following [17], we compute the optical conductivity by considering coupled fluctuations

of the gauge field, metric and the dilaton field of the form

δgtx = htx(t, r), δAx = ax(t, r), δΦ = ieikxϕ(t, r) (3.11)

Upon substitution into the equations of motion we obtain PDEs involving real fields which

depend on t and r. We then let X(t, r) = e−iωtX(r) for each field X and obtain the

following ODEs:

a′′x +

(
U ′

U
− V ′x + V ′y

)
a′x +

(
ω2 − 2q2Uψ2

U2
− A′2t

U

)
ax −

2ikA′t
ω

(φϕ′ − φ′ϕ) = 0 (3.12)

ϕ′′ +

(
U ′

U
+ V ′x + V ′y

)
ϕ′ +

((
2− k2e−2Vx

)
U + ω2

)
U2

ϕ− ikωe−2Vxφ

U2
htx = 0 (3.13)

h′tx − 2V ′xhtx +A′tax +
2ikU

ω
(φϕ′ − φ′ϕ) = 0 (3.14)

As in section 2, the only difference when a condensate scalar ψ is turned on is an additional

mass term for ax.

Ingoing boundary conditions at the horizon are completely analogous to that of the

axion model — see (2.20)–(2.22). At the boundary we have

ϕ =
ϕ(1)

r
+
ϕ(2)

r2
+ . . . (3.15)

ax = a(0)
x +

a
(1)
x

r
+ . . . (3.16)

htx = r2h
(0)
tx + . . . (3.17)

In terms of these coefficients, the gauge-invariant boundary condition required to calculate

σ(ω) can be written as

ωϕ(1) − ikφ1h
(0)
tx = 0 (3.18)

We extract the conductivity (2.18) from fluctuations that satisfy ingoing boundary condi-

tions at the horizon and (3.18) in the UV.

3.1 Normal phase

Normal phase solutions ψ = 0 were studied in [17]. A formula for the DC conductivity in

terms of the solution data was derived for a general class of axion-dilaton models in [18, 19].

In this particular model it reduces to

σDC = e−Vx(r+)+Vy(r+) +
eVx(r+)+Vy(r+)A′t(r+)2

2k2φ(r+)2
(3.19)

An insulator has vanishing DC conductivity at zero temperature. In figure 9 we plot the

DC conductivity as a function of temperature for our two points in phase space, confirming

their metallic or insulating character.
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Figure 9. DC conductivity as a function of temperature for the metal (left) and the insulator

(right).

It is worth noting that the DC resistivity as a function of temperature in the metallic

state is not monotonic but possesses a peak at finite temperature. This feature is also

present in the model of [23] and it is observed in some experimental heavy fermion setups.12

For the metal, the low frequency behaviour of the conductivity is well-approximated by

a Drude peak even at very low temperatures [17]. In the insulating state, on the other hand,

Drude behaviour ceases to be a good approximation. In either case, equation (3.19) gives

the correct value of the DC conductivity. A full mapping of the phase diagram is lacking,

and for now we will content ourselves with exploring a representative of the metallic and a

representative of the insulating phases. We expect the Drude/non-Drude behaviour of the

optical conductivity to be related to the structure of the QNM in analogy with [16], but

we leave this interesting question for future work.

3.2 Broken phase

Next we study solutions with the charged scalar turned on. We construct these numerically

using a shooting method. For the same two choices of (k/µ, φ1/µ) we find black brane

solutions with charged scalar hair that exist below some critical Tc/µ, corresponding to the

broken phases of these two states. We will refer to the new phases as the broken metal and

the broken insulator. In figure 10 we show condensate curves for the two (k/µ, φ1/µ).

The method for computing the free energy density is similar to that for the axion

model. Evaluating the Euclidean on-shell action yields

IE = βV2 lim
r→∞

2
√
g U V ′y (3.20)

The renormalised action is given by

Iren
E = IE +

∫
d3x
√
h
(
−2K + 4 + |Φ|2 + |ψ|2

)
(3.21)

and we eventually find

w = −m+ 6VUV + 2φ1φ2 (3.22)

This formula is valid for both the normal and broken phases. In figure 11 we demonstrate

that the broken phase has lower free energy density than the normal phase at the same

(k/µ, φ1/µ) and thus is thermodynamically preferred.

12We thank Marika Taylor for sharing this unpublished result with us.
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Figure 10. Condensate as a function of temperature for the broken metal (blue) and the broken

insulator (yellow).
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Figure 11. Free energy density as a function of temperature for the broken phase (solid lines) and

the normal phase (dashed lines) for the metal (left) and the insulator (right).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

Reσ Imσ

ω
µ

Figure 12. Conductivity in the broken metal as a function of frequency for various temperatures.

For the plot of the real part (left), temperature decreases from Tc/µ = 0.085 to T/µ = 0.035, from

top to bottom in the left plot and from bottom to top in the right.

We present our results for the optical conductivity in the broken phase of the metal

in figure 12. In the range of temperatures we have considered, the low frequency region

of the conductivity can be well-approximated by the two-fluid model with Drude normal

component (1.2). More specifically, for temperatures in the range 0.78Tc/µ < T/µ < Tc/µ,

the value of τµ obtained from the fit to the real part of the conductivity differs by no more

than 5% from the value obtained fitting the imaginary part, and by no more than 2%

from the value obtained from the characteristic time given by the lowest (in this case,
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Figure 13. Parameters of the two-fluid model (1.2) as a function of temperature for the broken

metal. In the plot of τµ versus T/µ, the blue data is obtained from the fits and the yellow data

comes from the lowest purely-dissipative QNM. We find excellent agreement between these two

independent procedures.

purely dissipative) QNM. For lower temperatures, the pole in the imaginary part of the

conductivity overwhelms the normal component, which makes it numerically harder to

perform the fit to the imaginary part. However, the value of τµ given by the fit to the real

part still differs with the QNM value by only 2%. For all the fits in the broken metallic

case, the residuals do not exceed 10−3. We plot the parameters of the fit in figure 13.

The structure of the low frequency region can be qualitatively understood in terms of

the QNM spectrum — see figure 14. We find that the lowest QNM is purely dissipative and

well-separated from the other excitations, which, following the arguments of [16], accounts

for the Drude behaviour. Moreover, the fact that the characteristic time obtained from the

QNM calculation is in excellent agreement with the one obtained from the fits provides

quantitative evidence in favour of this connection, in addition to a non-trivial cross check

of our numerical procedure.

It is interesting to note that a pseudo gap forms as we lower the temperature, by

which we mean that Re σ is very small for a range of frequencies but then the Drude peak

reappears at lower frequencies. This feature was also observed in [41], but not in the axion

model as discussed in section 2.2. We have also checked numerically that the FGT sum rule

holds for the broken metal — see figure 15. Once again, we need to go to high frequencies

to obtain agreement.

We present our results for the optical conductivity in the broken phase of the insulator

in figure 16. Once again, we find a superconducting pole in the imaginary part of σ(ω).

However, in contrast to the broken metal, the two-fluid model (1.2) does not give a good
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Figure 14. Poles in GR
JxJx closest to the real axis as a function of temperature for the broken

metal. Left: we plot the purely-imaginary pole in blue and the (imaginary part of the) propagating

pole in yellow. Right: the absolute value of the difference between these two poles.
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Figure 15. Numerical check of the FGT sum rule for the metal where we choose a broken phase

at T/µ = 0.79Tc/µ. The dashed line is the value of Ks/µ = 0.39 extracted from a fit of Im σs.
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Figure 16. Conductivity in the broken insulator as a function of frequency for various tempera-

tures. The temperature decreases from Tc/µ = 0.043 down to T/µ = 0.012, from top to bottom in

the left plot and from bottom to top in the right.

description for small ω. Close to Tc, the curves look qualitatively of the form (1.2) but we

find that the values obtained from fitting to the real and imaginary parts differ by more

than 10%. As we lower the temperature, the departure from (1.2) is even more explicit

since σ(ω) clearly has a qualitatively different structure. We argue that this is connected

to the fact that, among the lowest-lying QNM, there is a purely-dissipative mode which is

close in the complex plane to a propagating mode — see figure 17.
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Figure 17. Poles in GR
JxJx closest to the real axis as a function of temperature for the broken

insulator. Left: we plot the purely-imaginary pole in blue and the (imaginary part of the) propa-

gating pole in yellow. Right: the absolute value of the difference between these two poles, which is

an order of magnitude smaller than for the broken metal — see figure 14.

4 Discussion

In this paper we studied the condensation of a charged scalar operator in two holographic

models that allow momentum to relax. We constructed black branes with charged scalar

hair, corresponding to a broken phase, that are thermodynamically preferred over those

without. We demonstrated that the optical conductivity in a broken phase could often

be described by a two-fluid model with a normal Drude component and a zero-frequency

superfluid pole. In some cases, however, the normal component was non-Drude, which

was attributed to the lack of an isolated purely-dissipative QNM. It would be useful to

study more points in the phase diagram, particularly in the axion-dilaton model, in order

to obtain a complete picture.

There are many similarities between our results and those found in other models,

including the two-fluid model behavior at small frequencies, the rapid growth of the relax-

ation time as we lower the temperature, the pseudo gap in the broken metallic phase at low

temperatures and the missing spectral weight manifested in the FGT sum rule. However,

some differences are apparent. For example, whilst Tc/µ in the axion model decreases

initially, we found that it increases for large enough values of α/µ, thus extending the

results of [41]. In addition, we find that the relaxation time in the broken metallic phase

is not monotonic with the temperature, as opposed to the result presented in [39]. Also,

unlike the inhomogeneous cases of [2, 4] and [39], we did not observe any resonances in

the conductivity. As explained in [4], such resonances are due to coupling of the current

perturbations to the sound mode in the stress tensor correlators. In our homogeneous

setups, however, we consider spatially-independent perturbations that decouple from the

sound mode, accounting for the absence of resonances in this case. It would be interesting

to study the optical conductivity at finite momentum.

Next we discuss the interpretation of Kn and Ks appearing in (1.2). In [39], these

parameters were identified with the density of the normal and superfluid components of

the fluid, respectively. With this in mind, it is interesting to ask whether the system is

fully condensed at zero temperature. Proceeding naively and identifying Ks with ρs/µ,

where ρs is indeed a density, in the axion model we find that ρs/ρ tends to a constant that
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is less than unity at low temperatures.13 This suggests that a normal component remains

at zero temperature. Furthermore, we observe that a greater normal component remains

for larger α/µ.

However, whilst this identification is tempting to make, one must be careful that the

normalization of the superfluid density is correct. Furthermore, the connection with the

quantity that appeared as the superfluid density in the model of a holographic superfluid

with finite supercurrent density in [53] is not clear. We expect that one must compute

the optical conductivity in that model in order to resolve this issue. If the normalization

and interpretation can indeed be fixed, then the axion-dilaton models studied here may

provide a laboratory with sufficiently many parameters available in order to test ‘Homes’

law’ — a universal relation between the superfluid density at zero temperature and the DC

conductivity in the normal phase at the critical temperature [54, 55]. This relation was

first considered in a holographic context by [56]. We leave these interesting open questions

for further work.

We conclude with a discussion of the generalizations that could be considered in the fu-

ture. We have chosen two examples from a general family of bulk actions with neutral sector

IN =

∫
d4x
√
−g

[
R− (∂φ)2 − Vφ(φ)− Z(φ)

4
F 2 − Y (φ)

2∑
i=1

(∂χi)
2

]
+

∫
X(φ)F ∧ F (4.1)

and charged sector

IC =

∫
d4x
√
−g
[
−|Dψ|2 − Vψ(|ψ|)

]
(4.2)

There is great freedom in this class of models. It would be worthwhile to work with

a model that offers more control; for instance, with couplings that yield a simple IR

geometry at zero temperature. As a concrete example, it would be interesting to explore

the superconducting phase transition in the model studied in [18] in which the normal

phase at low temperatures is governed by a novel non-trivial fixed point in the IR. In that

model one could also study the effect on the broken phase when the normal phase is taken

through a metal-insulator transition. Moreover, alternative boundary conditions for the

charged scalar could lead to additional effects, such as those described in [57]. It would

also be interesting to work directly with a more general model in order to understand

which features are independent of the details of the model.
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