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1 Introduction

It has been conjectured in [1], following earlier work in [2] and [3], that

• the number of Killing spinors N , N 6= 0, of Killing horizons in supergravity is given by

N = 2N− + Index(DE) , (1.1)

where N− ∈ N>0 and DE is a Dirac operator twisted by a vector bundle E, defined

on the spatial horizon section S, which depends on the gauge symmetries of the

supergravity theory in question, and

• that horizons with non-trivial fluxes and N− 6= 0 admit an sl(2,R) symmetry subal-

gebra.

This conjecture encompasses the essential features of (super)symmetry enhancement

near black hole Killing horizons, and some features of the same phenomenon near brane

horizons, previously obtained in the literature based on a case-by-case investigation [4–

6]. Symmetry enhancement near black hole and brane horizons has been instrumental in

the development of the AdS/CFT correspondence [7]. So far, this conjecture has been

established for minimal 5-dimensional gauged supergravity, D=11 M-theory, and D=10

IIB supergravity [1–3].

The main purpose of this paper is to prove the above conjecture for Killing horizons

in IIA supergravity. The proof is based on three assumptions. First, it is assumed that the

Killing horizons admit at least one supersymmetry, second that the near horizon geometries

are smooth and third that the spatial horizon sections are compact without boundary1. It

turns out that for IIA horizons, the contribution from the index of DE in the expression

for N in (1.1) vanishes and therefore one concludes that IIA horizons always preserve an

even number of supersymmetries, i.e.

N = 2N− . (1.2)

Furthermore from the second part of the conjecture, one concludes that all supersymmetric

IIA horizons with non-trivial fluxes admit an sl(2,R) symmetry subalgebra.

To prove the conjecture, we first adapt the description of black hole near horizon

geometries of [8, 9] to IIA supergravity. The metric and the remaining fields of IIA horizons

are given in (2.9). We then decompose the Killing spinor as ε = ε+ + ε− using the lightcone

projectors Γ±ε± = 0 and integrate the Killing spinor equations (KSEs) of IIA supergravity

along the two lightcone directions. These directions arise naturally in the description of

near horizon geometries. As a result, the Killing spinors of IIA horizons can be written as

ε = ε(u, r, η±), where the dependence on the coordinates u, r is explicit and η± are spinors

1This is not an essential assumption and it may be weakened. However to extend our proof to horizons

with non-compact S, one has to impose appropriate boundary conditions on the fields. Because of this,

and for simplicity, we shall not do this here and throughout this paper we shall assume that S is compact

without boundary.
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which depend only on the coordinates of the spatial horizon section S given by the equation

u = r = 0.

As a key next step in the proof, we demonstrate that the remaining independent

KSEs are those obtained from the KSEs of IIA supergravity after naively restricting them

to S. In particular, we find after an extensive use of the field equations and Bianchi

identities that all the integrability conditions that arise along the lightcone directions, and

the mixed directions between the lightcone and the S directions, are automatically satisfied.

The independent KSEs on S split into two sets {∇(±),A(±)} of two KSEs with each set

acting on the spinors η± distinguished by the choice of lightcone direction, where ∇(±)

are derived from the gravitino KSE of IIA supergravity and A(±) are associated to the

dilatino KSE of IIA supergravity. In addition we demonstrate that if η− is a Killing spinor

on S, then η+ = Γ+Θ−η− also solves the KSEs, where Θ− depends on the fluxes and the

spacetime metric.

To show that the number of Killing spinors of IIA horizons is even, it suffices to show

that there are as many η+ Killing spinors as η− Killing spinors. For this, we first identify

the Killing spinors η± with the zero modes of Dirac-like operators D (±) coupled to fluxes.

These are defined as D (±) = D(±) + qA(±), where D(±) is the Dirac operator constructed

from ∇(±). It is then shown that for a suitable choice of q all zero modes of these Dirac-like

operators are in 1-1 correspondence with the Killing spinors.

The proof of the above correspondence between zero modes and Killing spinors for the

D (+) operator utilizes the Hopf maximum principle and relies on the formula (3.6). Inci-

dentally, this also establishes that ‖ η+ ‖ is constant. The proof for the D (−) operator uses

the partial integration of the formula (3.9) and this is similar to the classical Lichnerowicz

theorem for the Dirac operator. In both cases, the proofs rely on the smoothness of data

and the assumption that S is compact without boundary.

Therefore, the number of Killing spinors of IIA horizons is N = N+ +N−, where N±
are the dimensions of the kernels of the D (±) operators. On the other hand, one can show

that the zero modes of D (−) are in 1-1 correspondence with the zero modes of the adjoint

(D (+))† of D (+). As a result N+ − N− is the index of D (+). This vanishes as it is equal

to the index of the Dirac operator acting on the spinor bundle constructed from the 16

dimensional Majorana representation of Spin(8). As a result N+ = N− and the number

of supersymmetries preserved by IIA horizons is even, which proves the first part of the

conjecture.

To prove that IIA horizons admit an sl(2,R) symmetry subalgebra, we use the fact

that if η− is a Killing spinor then η+ = Γ+Θ−η− is also a Killing spinor. To see this

we demonstrate that if the fluxes do not vanish, the kernel of Θ− is {0}, and so η+ 6= 0.

Using the Killing spinors now constructed from η− and η+ = Γ+Θ−η−, we prove that the

spacetime admits three Killing vectors, which leave all the fields invariant, satisfying an

sl(2,R) algebra. This completes the proof of the conjecture for IIA horizons.

The results presented above for horizons in IIA supergravity are not a straightforward

consequence of those we have obtained for M-horizons in [3]. Although IIA supergravity

is the dimensional reduction of 11-dimensional supergravity, it is well known that, after

the truncation of Kaluza-Klein modes, not all of the supersymmetry of 11-dimensional
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solutions survives the reduction to IIA; for a detailed analysis of these issues see [10, 11].

As a result, for example, it does not follow automatically that IIA horizons preserve an

even number of supersymmetries because M-horizons do, as shown in [3]. For this, one has

to demonstrate that the Killing spinors of 11-dimensional horizons are always annihilated

in pairs upon the action of the spinorial Lie derivative along any space-like vector field

X which leaves the fields invariant and has closed orbits. However since we have shown

that both IIA and M-theory horizons preserve an even number of supersymmetries, one

concludes that if the reduction process breaks some supersymmetry, then it always breaks

an even number of supersymmetries. Moreover, our IIA analysis presented here has several

advantages. In particular, it explains why the index contribution in (1.1) vanishes based

on the analysis of section 3 and also provides an explicit expression for the generators of

the sl(2,R) symmetry in section 5. Both these results are not directly accessible from an

11-dimensional analysis. Furthermore, the proof of the IIA Lichnerowicz type theorems is

more general than that presented for 11-dimensional horizons in [3] because of the presence

of additional parameters like q and κ, ie the IIA Lichnerowicz type theorems are valid for

a more general class of operators than those that one constructs from the dimensional

reduction of those of [3]. In addition, the identification of the independent KSEs for

IIA horizons in section 2.4 will be useful in a future investigation of the geometry of

IIA horizons.

This paper is organized as follows. In section 2, we identify the independent KSEs for

IIA horizons. In section 3, we establish the equivalence between zero modes of D (±) and

Killing spinors, and show that the number of supersymmetries preserved by IIA horizons

is even. In section 4, we show that η+ = Γ+Θ−η− 6= 0. In section 5, we prove that IIA

horizons with non-trivial fluxes admit an sl(2,R) symmetry subalgebra and in section 6 we

give our conclusions. In appendix A, we give a list of Bianchi identities and field equations

that are implied by the (independent) ones listed in section 2. In appendix B, we identify

the independent KSEs, and in appendix C we establish the formulae (3.6) and (3.9).

2 Horizon fields and KSEs

2.1 IIA fields and field equations

The bosonic field content of IIA supergravity [12–15] are the spacetime metric g, the

dilaton Φ, the 2-form NS-NS gauge potential B, and the 1-form and the 3-form RR gauge

potentials A and C, respectively. In addition, the theory has non-chiral fermionic fields

consisting of a Majorana gravitino and a Majorana dilatino but these are set to zero in

all the computations that follow. The bosonic field strengths of IIA supergravity in the

conventions of [16] are

F = dA , H = dB , G = dC −H ∧A . (2.1)

These lead to the Bianchi identities

dF = 0 , dH = 0 , dG = F ∧H . (2.2)
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The bosonic part of the IIA action in the string frame is

S =

∫ √
−g
(
e−2Φ

(
R+ 4∇µΦ∇µΦ− 1

12
Hλ1λ2λ3H

λ1λ2λ3

)
−1

4
FµνF

µν − 1

48
Gµ1µ2µ3µ4G

µ1µ2µ3µ4

)
+

1

2
dC ∧ dC ∧B . (2.3)

This leads to the Einstein equation

Rµν = −2∇µ∇νΦ +
1

4
Hµλ1λ2Hν

λ1λ2 +
1

2
e2ΦFµλFν

λ +
1

12
e2ΦGµλ1λ2λ3Gν

λ1λ2λ3

+gµν

(
− 1

8
e2ΦFλ1λ2F

λ1λ2 − 1

96
e2ΦGλ1λ2λ3λ4G

λ1λ2λ3λ4

)
, (2.4)

the dilaton field equation

∇µ∇µΦ = 2∇λΦ∇λΦ− 1

12
Hλ1λ2λ3H

λ1λ2λ3 +
3

8
e2ΦFλ1λ2F

λ1λ2

+
1

96
e2ΦGλ1λ2λ3λ4G

λ1λ2λ3λ4 , (2.5)

the 2-form field equation

∇µFµν +
1

6
Hλ1λ2λ3Gλ1λ2λ3ν = 0 , (2.6)

the 3-form field equation

∇λ
(
e−2ΦHλµν

)
− 1

2
Gµνλ1λ2Fλ1λ2 +

1

1152
εµνλ1λ2λ3λ4λ5λ6λ7λ8Gλ1λ2λ3λ4Gλ5λ6λ7λ8 = 0 ,

(2.7)

and the 4-form field equation

∇µGµν1ν2ν3 +
1

144
εν1ν2ν3λ1λ2λ3λ4λ5λ6λ7Gλ1λ2λ3λ4Hλ5λ6λ7 = 0 . (2.8)

This completes the description of the dynamics of the bosonic part of IIA supergravity.

2.2 Horizon fields, Bianchi identities and field equations

The description of the metric near extreme Killing horizons as expressed in Gaussian null

coordinates [8, 9] can be adapted to include all IIA fields. In particular, one writes

ds2 = 2e+e− + δije
iej , G = e+ ∧ e− ∧X + re+ ∧ Y + G̃ ,

H = e+ ∧ e− ∧ L+ re+ ∧M + H̃ , F = e+ ∧ e−S + re+ ∧ T + F̃ , (2.9)

where we have introduced the frame

e+ = du, e− = dr + rh− 1

2
r2∆du, ei = eiIdy

I , (2.10)

and the dependence on the coordinates u and r is explicitly given. Moreover Φ and ∆

are 0-forms, h, L and T are 1-forms, X, M and F̃ are 2-forms, Y, H̃ are 3-forms and G̃ is
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a 4-form on the spatial horizon section S, which is the co-dimension 2 submanifold given

by the equation r = u = 0, i.e. all these components of the fields depend only on the

coordinates of S. It should be noted that one of our assumptions is that all these forms on

S are sufficiently differentiable, i.e. we require at least C2 differentiability so that all the

field equations and Bianchi identities are valid.

Substituting the fields (2.9) into the Bianchi identities of IIA supergravity, one finds that

M = dhL , T = dhS , Y = dhX − L ∧ F̃ − SH̃ ,

dG̃ = H̃ ∧ F̃ , dH̃ = dF̃ = 0 , (2.11)

where dhθ ≡ dθ− h∧ θ for any form θ. These are the only independent Bianchi identities,

see appendix A.

Similarly, substituting the horizon fields into the field equations of IIA supergravity,

we find that the 2-form field equation (2.6) gives

∇̃iF̃ik − hiF̃ik + Tk − LiXik +
1

6
H̃`1`2`3G̃`1`2`3k = 0 , (2.12)

the 3-form field equation (2.7) gives

∇̃i
(
e−2ΦLi

)
− 1

2
F̃ ijXij +

1

1152
ε`1`2`3`4`5`6`7`8G̃`1`2`3`4G̃`5`6`7`8 = 0 (2.13)

and

∇̃i
(
e−2ΦH̃imn

)
− e−2ΦhiH̃imn + e−2ΦMmn + SXmn −

1

2
F̃ ijG̃ijmn

− 1

48
εmn

`1`2`3`4`5`6X`1`2G̃`3`4`5`6 = 0 , (2.14)

and the 4-form field equation (2.8) gives

∇̃iXik +
1

144
εk
`1`2`3`4`5`6`7G̃`1`2`3`4H̃`5`6`7 = 0 (2.15)

and

∇̃iG̃ijkq + Yjkq − hiG̃ijkq −
1

12
εjkq

`1`2`3`4`5X`1`2H̃`3`4`5 −
1

24
εjkq

`1`2`3`4`5G̃`1`2`3`4L`5 = 0 ,

(2.16)

where ∇̃ is the Levi-Civita connection of the metric on S. In addition, the dilaton field

equation (2.5) becomes

∇̃i∇̃iΦ− hi∇̃iΦ = 2∇̃iΦ∇̃iΦ +
1

2
LiL

i − 1

12
H̃`1`2`3H̃

`1`2`3 − 3

4
e2ΦS2

+
3

8
e2ΦF̃ijF̃

ij − 1

8
e2ΦXijX

ij +
1

96
e2ΦG̃`1`2`3`4G̃

`1`2`3`4 . (2.17)

It remains to evaluate the Einstein field equation. This gives

1

2
∇̃ihi −∆− 1

2
h2 = hi∇̃iΦ−

1

2
LiL

i − 1

4
e2ΦS2 − 1

8
e2ΦXijX

ij

−1

8
e2ΦF̃ijF̃

ij − 1

96
e2ΦG̃`1`2`3`4G̃

`1`2`3`4 , (2.18)
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and

R̃ij = −∇̃(ihj) +
1

2
hihj − 2∇̃i∇̃jΦ−

1

2
LiLj +

1

4
H̃i`1`2H̃j

`1`2

+
1

2
e2ΦF̃i`F̃j

` − 1

2
e2ΦXi`Xj

` +
1

12
e2ΦG̃i`1`2`3G̃j

`1`2`3

+δij

(
1

4
e2ΦS2 − 1

8
e2ΦF̃`1`2F̃

`1`2 +
1

8
e2ΦX`1`2X

`1`2 − 1

96
e2ΦG̃`1`2`3`4G̃

`1`2`3`4

)
.

(2.19)

Above we have only stated the independent field equations. In fact, after substituting the

near horizon geometries into the IIA field equations, there are additional equations that

arise. However, these are all implied from the above field equations and Bianchi identities.

For completeness, these additional equations are given in appendix A.

To summarize, the independent Bianchi identities and field equations are given in (2.11)–

(2.19).

2.3 Integration of KSEs along the lightcone

The KSEs of IIA supergravity are the vanishing conditions of the gravitino and dilatino

supersymmetry variations evaluated at the locus where all fermions vanish. These can be

expressed as

Dµε ≡ ∇µε+
1

8
Hµν1ν2Γν1ν2Γ11ε+

1

16
eΦFν1ν2Γν1ν2ΓµΓ11ε

+
1

8 · 4!
eΦGν1ν2ν3ν4Γν1ν2ν3ν4Γµε = 0 , (2.20)

Aε ≡ ∂µΦ Γµε+
1

12
Hµ1µ2µ3Γµ1µ2µ3Γ11ε+

3

8
eΦFµ1µ2Γµ1µ2Γ11ε

+
1

4 · 4!
eΦGµ1µ2µ3µ4Γµ1µ2µ3µ4ε = 0 , (2.21)

where ε is the supersymmetry parameter which from now on is taken to be a Majorana,

but not Weyl, commuting spinor of Spin(9, 1). In what follows, we shall refer to the D
operator as the supercovariant connection.

Supersymmetric IIA horizons are those for which there exists an ε 6= 0 that is a solution

of the KSEs. To find the conditions on the fields required for such a solution to exist, we

first integrate along the two lightcone directions, i.e. we integrate the KSEs along the u

and r coordinates. To do this, we decompose ε as

ε = ε+ + ε− , (2.22)

where Γ±ε± = 0, and find that

ε+ = φ+(u, y) , ε− = φ− + rΓ−Θ+φ+ , (2.23)

and

φ− = η− , φ+ = η+ + uΓ+Θ−η− , (2.24)

– 7 –
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where

Θ± =
1

4
hiΓ

i ∓ 1

4
Γ11LiΓ

i − 1

16
eΦΓ11

(
±2S + F̃ijΓ

ij
)
− 1

8 · 4!
eΦ
(
±12XijΓ

ij + G̃ijklΓ
ijkl
)
,

(2.25)

and η± depend only on the coordinates of the spatial horizon section S. As spinors on S,

η± are sections of the Spin(8) bundle on S associated with the Majorana representation.

Equivalently, the Spin(9, 1) bundle S on the spacetime when restricted to S decomposes

as S = S−⊕S+ according to the lightcone projections Γ±. Although S± are distinguished

by the lightcone chirality, they are isomorphic as Spin(8) bundles over S. We shall use this

in the counting of supersymmetries of IIA horizons.

2.4 Independent KSEs

The substitution of the spinor (2.22) into the KSEs produces a large number of additional

conditions. These can be seen either as integrability conditions along the lightcone direc-

tions, as well as integrability conditions along the mixed lightcone and S directions, or

as KSEs along S. A detailed analysis, presented in appendix B, of the formulae obtained

reveals that the independent KSEs are those that are obtained from the naive restriction

of the IIA KSEs to S. In particular, the independent KSEs are

∇(±)
i η± = 0 , A(±)η± = 0 , (2.26)

where

∇(±)
i = ∇̃i + Ψ

(±)
i , (2.27)

with

Ψ
(±)
i =

(
∓ 1

4
hi ∓

1

16
eΦXl1l2Γl1l2Γi +

1

8.4!
eΦG̃l1l2l3l4Γl1l2l3l4Γi

)
+Γ11

(
∓ 1

4
Li +

1

8
H̃il1l2Γl1l2 ± 1

8
eΦSΓi −

1

16
eΦF̃l1l2Γl1l2Γi

)
, (2.28)

and

A(±) = ∂iΦΓi +

(
∓ 1

8
eΦXl1l2Γl1l2 +

1

4.4!
eΦG̃l1l2l3l4Γl1l2l3l4

)
+Γ11

(
± 1

2
LiΓ

i − 1

12
H̃ijkΓ

ijk ∓ 3

4
eΦS +

3

8
eΦF̃ijΓ

ij

)
. (2.29)

Evidently, ∇(±) arise from the supercovariant connection while A(±) arise from the dilatino

KSE of IIA supergravity as restricted to S .

Furthermore, the analysis in appendix B reveals that if η− solves (2.26) then

η+ = Γ+Θ−η− , (2.30)

also solves (2.26). This is the first indication that IIA horizons admit an even number of

supersymmetries. As we shall prove, the existence of the η+ solution is also responsible for

the sl(2,R) symmetry of IIA horizons.

– 8 –
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3 Supersymmetry enhancement

To prove that IIA horizons always admit an even number of supersymmetries, it suffices

to prove that there are as many η+ Killing spinors as there are η− Killing spinors, i.e. that

the η+ and η− Killing spinors come in pairs. For this, we shall identify the Killing spinors

with the zero modes of Dirac-like operators which depend on the fluxes and then use the

index theorem to count their modes.

3.1 Horizon Dirac equations

We define horizon Dirac operators associated with the supercovariant derivatives following

from the gravitino KSE as

D(±) ≡ Γi∇(±)
i = Γi∇̃i + Ψ(±) , (3.1)

where

Ψ(±) ≡ ΓiΨ
(±)
i = ∓1

4
hiΓ

i ∓ 1

4
eΦXijΓ

ij

+Γ11

(
± 1

4
LiΓ

i − 1

8
H̃ijkΓ

ijk ∓ eΦS +
1

4
eΦF̃ijΓ

ij

)
. (3.2)

However, it turns out that it is not possible to straightforwardly formulate Lichnerowicz

theorems to identify zero modes of these horizon Dirac operators with Killing spinors.

To proceed, we shall modify both the KSEs and the horizon Dirac operators. For this

first observe that an equivalent set of KSEs can be chosen by redefining the supercovariant

derivatives from the gravitino KSE as

∇̂(±)
i = ∇(±)

i + κΓiA(±) , (3.3)

for some κ ∈ R, because

∇̂(±)
i η± = 0 , A(±)η± = 0⇐⇒ ∇(±)

i η± = 0 , A(±)η± = 0 . (3.4)

Similarly, one can modify the horizon Dirac operators as

D (±) = D(±) + qA(±) , (3.5)

for some q ∈ R. Clearly, if q = 8κ, then D (±) = Γi∇̂(±)
i . However, we shall not assume this

in general. As we shall see, there is an appropriate choice of q and appropriate choices of

κ such that the Killing spinors can be identified with the zero modes of D (±).

3.2 A Lichnerowicz type theorem for D(+)

First let us establish that the η+ Killing spinors can be identified with the zero modes of a

D (+). It is straightforward to see that if η+ is a Killing spinor, then η+ is a zero mode of

D (+). So it remains to demonstrate the converse. For this assume that η+ is a zero mode
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of D (+), i.e. D (+)η+ = 0. Then after some lengthy computation which utilizes the field

equations and Bianchi identities, described in appendix C, one can establish the equality

∇̃i∇̃i ‖ η+ ‖2 −
(

2∇̃iΦ + hi
)
∇̃i ‖ η+ ‖2= 2 ‖ ∇̂(+)η+ ‖2 +

(
−4κ− 16κ2

)
‖ A(+)η+ ‖2 ,

(3.6)

provided that q = −1. It is clear that if the last term on the right-hand-side of the above

identity is positive semi-definite, then one can apply the maximum principle on ‖ η+ ‖2 as

the fields are assumed to be smooth, and S compact. In particular, if

− 1

4
< κ < 0 , (3.7)

then the maximum principle implies that η+ are Killing spinors and ‖ η+ ‖= const. Observe

that if one takes D (+) with q = −1, then D (+) = Γi∇̂(+)
i provided that κ = −1/8 which

lies in the range (3.7).

To summarize we have established that for q = −1 and −1
4 < κ < 0,

∇(+)
i η+ = 0 , A(+)η+ = 0 ⇐⇒ D (+)η+ = 0 . (3.8)

Moreover ‖ η+ ‖2 is constant on S.

3.3 A Lichnerowicz type theorem for D(−)

Next we shall establish that the η− Killing spinors can also be identified with the zero

modes of a modified horizon Dirac operator D (−). It is clear that all Killing spinors η−
are zero modes of D (−). To prove the converse, suppose that η− satisfies D (−)η− = 0.

The proof proceeds by calculating the Laplacian of ‖ η− ‖2 as described in appendix C,

which requires the use of the field equations and Bianchi identies. One can then establish

the formula

∇̃i
(
e−2ΦVi

)
= −2e−2Φ ‖ ∇̂(−)η− ‖2 +e−2Φ

(
4κ+ 16κ2

)
‖ A(−)η− ‖2 , (3.9)

provided that q = −1, where

V = −d ‖ η− ‖2 − ‖ η− ‖2 h . (3.10)

The last term on the r.h.s. of (3.9) is negative semi-definite if −1
4 < κ < 0. Provided

that this holds, on integrating (3.9) over S and assuming that S is compact and without

boundary, one finds that ∇̂(−)η− = 0 and A(−)η− = 0.

Therefore, we have shown that for q = −1 and −1
4 < κ < 0,

∇(−)
i η− = 0 , A(−)η− = 0 ⇐⇒ D (−)η− = 0 . (3.11)

This concludes the relationship between Killing spinors and zero modes of modified horizon

Dirac operators.
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3.4 Supersymmetry enhancement

The analysis developed so far suffices to prove that IIA horizons preserve an even number

of supersymmetries. Indeed, if N± is the number of η± Killing spinors, then the number of

supersymmetries of IIA horizon is N = N+ +N−. Utilizing the relation between the Killing

spinors η± and the zero modes of the modified horizon Dirac operators D (±) established

in the previous two sections, we have that

N± = dim KerD (±) . (3.12)

Next let us focus on the index of the D (+) operator. As we have mentioned, the

spin bundle of the spacetime S decomposes on S as S = S+ ⊕ S−. Moreover, S+ and

S− are isomorphic as Spin(8) bundles and are associated with the Majorana non-Weyl 16

representation. Furthermore D (+) : Γ(S+) → Γ(S+), where Γ(S+) are the sections of S+

and this action does not preserve the Spin(8) chirality. Since the principal symbol of D (+)

is the same as the principal symbol of the standard Dirac operator acting on Majorana but

not-Weyl spinors, the index vanishes2 [17]. As a result, we conclude that

dim KerD (+) = dim Ker
(
D (+)

)†
, (3.13)

where (D (+))† is the adjoint of D (+). Furthermore observe that

(
e2ΦΓ−

)(
D (+)

)†
= D (−)

(
e2ΦΓ−

)
, (for q = −1) , (3.14)

and so

N− = dim Ker
(
D (−)

)
= dim Ker

(
D (+)

)†
. (3.15)

Therefore, we conclude that N+ = N− and so the number of supersymmetries of IIA

horizons N = N+ + N− = 2N− is even. This proves the first part of the conjecture (1.1)

for IIA horizons.

4 Construction of η+ from η− Killing spinors

In the investigation of the integrability conditions of the KSEs, we have demonstrated that

if η− is a Killing spinor, then η+ = Γ+Θ−η− is also a Killing spinor, see (2.30). Since we

know that the η+ and η− Killing spinors appear in pairs, the formula (2.30) provides a way

to construct the η+ Killing spinors from the η− ones. However, this is the case provided

that η+ = Γ+Θ−η− 6= 0. Here, we shall prove that for horizons with non-trivial fluxes

Ker Θ− = {0} , (4.1)

and so the operator Γ+Θ− pairs the η− with the η+ Killing spinors.

2This should be contrasted to IIB horizons where the horizon Dirac operators act on the Weyl spinors

and map them to anti-Weyl ones. As a result, the horizon Dirac operators have the same principal symbol

as the standard Dirac operator acting on the Weyl spinors and so there is a non-trivial contribution from

the index.
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We shall prove Ker Θ− = {0} using contradiction. For this assume that Θ− has a

non-trivial kernel, i.e. there is η− 6= 0 such that

Θ−η− = 0 . (4.2)

If this is the case, then the last integrability condition in (B.1) gives that

〈η−,
(
− 1

2
∆− 1

8
dhijΓ

ij +
1

8
MijΓ

ijΓ11 −
1

4
eΦTiΓ

iΓ11 −
1

24
eΦYijkΓ

ijk

)
η−〉 = 0 . (4.3)

This in turn implies that

∆〈η−, η−〉 = 0 , (4.4)

and hence

∆ = 0 , (4.5)

as η− is no-where vanishing.

Next the gravitino KSE ∇(−)η− = 0 implies that

∇̃i〈η−, η−〉 = −1

2
hi〈η−, η−〉+ 〈η−,

(
1

4
eΦXi`Γ

` − 1

96
eΦG̃`1`2`3`4Γi

`1`2`3`4

)
η−〉

+〈η−,Γ11

(
− 1

2
Li +

1

8
eΦF̃`1`2Γi

`1`2

)
η−〉 , (4.6)

which can be simplified further using

〈η−,ΓiΘ−η−〉 =
1

4
hi〈η−, η−〉+ 〈η−,

(
1

8
eΦXi`Γ

` − 1

192
eΦG̃`1`2`3`4Γi

`1`2`3`4

)
η−〉

+〈η−,Γ11

(
− 1

4
Li +

1

16
eΦF̃`1`2Γi

`1`2

)
η−〉 = 0 , (4.7)

to yield

∇̃i ‖ η− ‖2= −hi ‖ η− ‖2 . (4.8)

As η− is no-where zero, this implies that

dh = 0 . (4.9)

Substituting, ∆ = 0 and dh = 0 into (A.5), we find that

M = dhL = 0 , T = dhS = 0 , Y = dhX − L ∧ F̃ − SH̃ = 0 , (4.10)

as well. Returning to (4.8), on taking the divergence, and using (2.18) to eliminate the

∇̃ihi term, one obtains

∇̃i∇̃i ‖ η− ‖2= 2∇̃iΦ∇̃i ‖ η− ‖2 +

(
L2 +

1

2
e2ΦS2 +

1

4
e2ΦX2 +

1

4
e2ΦF̃ 2 +

1

48
e2ΦG̃2

)
‖ η− ‖2 .

(4.11)

Applying the maximum principle on ‖ η− ‖2 we conclude that all the fluxes apart from the

dilaton Φ and H̃ vanish and ‖ η− ‖ is constant. The latter together with (4.8) imply that

h = 0.
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Next applying the maximum principle to the dilaton field equation (2.17), we conclude

that the dilaton is constant and H̃ = 0. Combining all the results so far, we conclude that

all the fluxes vanish which is a contradiction to the assumption that not all of the fluxes

vanish. This establishes (4.1).

Furthermore, the horizons for which Θ−η− = 0 (η− 6= 0) are all local products R1,1×S,

where S up to a discrete identification is a product of Ricci flat Berger manifolds. Thus S
has holonomy, Spin(7) or SU(4) or Sp(2) as an irreducible manifold, and G2 or SU(3) or

Sp(1)× Sp(1) or Sp(1) or {1} as a reducible one.

5 The sl(2,R) symmetry of IIA horizons

It remains to prove the second part of the conjecture that all IIA horizons with non-

trivial fluxes admit an sl(2,R) symmetry subalgebra. As we shall demonstrate, this in

fact is a consequence of our previous result that all IIA horizons admit an even number

of supersymmetries. The proof is very similar to that already given in the context of

M-horizons in [3], so we shall be brief.

5.1 Killing vectors

To begin, first note that the Killing spinor ε on the spacetime can be expressed in terms

of η± as

ε = η+ + uΓ+Θ−η− + η− + rΓ−Θ+η+ + ruΓ−Θ+Γ+Θ−η− , (5.1)

which is derived after collecting the results of section 2.3.

Since the η− and η+ Killing spinors appear in pairs for supersymmetric IIA horizons,

let us choose a η− Killing spinor. Then from the results of the previous section, horizons

with non-trivial fluxes also admit η+ = Γ+Θ−η− as a Killing spinors. Using η− and η+ =

Γ+Θ−η−, one can construct two linearly independent Killing spinors on the spacetime as

ε1 = η− + uη+ + ruΓ−Θ+η+ , ε2 = η+ + rΓ−Θ+η+ . (5.2)

To continue, it is known from the general theory of supersymmetric IIA backgrounds

that for any Killing spinors ζ1 and ζ2 the dual vector field of the 1-form bilinear

K(ζ1, ζ2) = 〈(Γ+ − Γ−)ζ1,Γaζ2〉 ea , (5.3)

is a Killing vector and leaves invariant all the other fields of the theory. Evaluating, the

1-form bilinears of the Killing spinor ε1 and ε2, we find that

K1(ε1, ε2) =
(
2r〈Γ+η−,Θ+η+〉+ u2r∆ ‖ η+ ‖2

)
e+ − 2u ‖ η+ ‖2 e− + Vie

i ,

K2(ε2, ε2) = r2∆ ‖ η+ ‖2 e+ − 2 ‖ η+ ‖2 e− ,

K3(ε1, ε1) =
(
2 ‖ η− ‖2 +4ru〈Γ+η−,Θ+η+〉+ r2u2∆ ‖ η+ ‖2

)
e+

−2u2 ‖ η+ ‖2 e− + 2uVie
i , (5.4)

where we have set

Vi = 〈Γ+η−,Γiη+〉 . (5.5)
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Moreover, we have used the identities

−∆ ‖ η+ ‖2 +4 ‖ Θ+η+ ‖2= 0 , 〈η+,ΓiΘ+η+〉 = 0 , (5.6)

which follow from the first integrability condition in (B.1), ‖ η+ ‖= const and the KSEs

of η+.

5.2 The geometry of S

First suppose that V 6= 0. Then the conditions LKag = 0 and LKaF = 0, a = 1, 2, 3, where

F denotes collectively all the fluxes of IIA supergravity, imply that

∇̃(iVj) = 0 , L̃V h = L̃V ∆ = 0 , L̃V Φ = 0 ,

L̃VX = L̃V G̃ = L̃V L = L̃V H̃ = L̃V S = L̃V F̃ = 0 , (5.7)

i.e. V is an isometry of S and leaves all the fluxes on S invariant. In addition, one also

finds the useful identities

−2 ‖ η+ ‖2 −hiV i + 2〈Γ+η−,Θ+η+〉 = 0 , iV (dh) + 2d〈Γ+η−,Θ+η+〉 = 0 ,

2〈Γ+η−,Θ+η+〉 −∆ ‖ η− ‖2 = 0 , V+ ‖ η− ‖2 h+ d ‖ η− ‖2 = 0 , (5.8)

which imply that LV ‖ η− ‖2= 0. There are further restrictions on the geometry of S
which will be explored elsewhere.

A special case arises for V = 0 where the group action generated by K1,K2 and K3

has only 2-dimensional orbits. A direct substitution of this condition in (5.8) reveals that

∆ ‖ η− ‖2= 2 ‖ η+ ‖2 , h = ∆−1d∆ . (5.9)

Since dh = 0 and h is exact such horizons are static and a coordinate transformation r → ∆r

reveals that the horizon geometry is a warped product of AdS2 with S, AdS2 ×w S.

5.3 sl(2,R) symmetry of IIA-horizons

To uncover the sl(2,R) symmetry of IIA horizons it remains to compute the Lie bracket

algebra of the vector fields associated to the 1-forms K1,K2 and K3. For this note that

these vector fields can be expressed as

K1 = −2u ‖ η+ ‖2 ∂u + 2r ‖ η+ ‖2 ∂r + V i∂̃i ,

K2 = −2 ‖ η+ ‖2 ∂u ,
K3 = −2u2 ‖ η+ ‖2 ∂u +

(
2 ‖ η− ‖2 +4ru ‖ η+ ‖2

)
∂r + 2uV i∂̃i , (5.10)

where we have used the same symbol for the 1-forms and the associated vector fields. These

expressions are similar to those we have obtained for M-horizons in [3] apart form the range

of the index i which is different. Using the various identities we have obtained, a direct

computation reveals that the Lie bracket algebra is

[K1,K2] = 2 ‖ η+ ‖2 K2 , [K2,K3] = −4 ‖ η+ ‖2 K1 , [K3,K1] = 2 ‖ η+ ‖2 K3 ,

(5.11)

which is isomorphic to sl(2,R). This proves the second part of the conjecture and completes

the analysis.
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6 Conclusions

We have demonstrated that smooth IIA horizons with compact spatial sections, without

boundary, always admit an even number of supersymmetries. In addition, those with

non-trivial fluxes admit an sl(2,R) symmetry subalgebra.

The above result together with those obtained in [2, 3] and [1] provide further evidence

to support the conjecture of [1] regarding the (super)symmetries of supergravity horizons.

It also emphases that the (super)symmetry enhancement that is observed near the horizons

of supersymmetric black holes is a consequence of the smoothness of the fields.

Apart from exhibiting an sl(2,R) symmetry, IIA horizons are further geometrically

restricted. This is because we have not explored all the restrictions imposed by the KSEs

and the field equations of the theory — in this paper we only explored enough to establish

the sl(2,R) symmetry. However, the understanding of the horizons admitting two super-

symmetries is within the capability of the technology developed so far for the classification

of supersymmetric IIA backgrounds [19] and it will be explored elsewhere. The under-

standing of all IIA horizons is a more involved problem. As such spaces preserve an even

number of supersymmetries and there are no IIA horizons with non-trivial fluxes preserv-

ing 32 supersymmetries, which follows from the classification of maximally supersymmetric

backgrounds in [18], there are potentially 15 different cases to examine. Of course, all IIA

horizons preserving more than 16 supersymmetries are homogenous spaces as a consequence

of the results of [20]. It is also very likely that there are no IIA horizons preserving 28 and

30 supersymmetries in analogy with a similar result in IIB [21–23]. However to prove this,

it is required to extend the IIB classification results to IIA supergravity, see also [24].

We expect that our results on IIA horizons can be extended to massive IIA supergrav-

ity [15]. This will be reported elsewhere.
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A Horizon Bianchi identities and field equations

We remark that there are a number of additional Bianchi identities, which are

dT + Sdh+ dS ∧ h = 0 ,

dM + L ∧ dh− h ∧ dL = 0 ,

dY + dh ∧X − h ∧ dX + h ∧
(
SH̃ + F̃ ∧ L

)
+ T ∧ H̃ + F̃ ∧M = 0 . (A.1)

However, these Bianchi identities are implied by those in (2.11).
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There is also a number of additional field equations given by

−∇̃iTi + hiTi −
1

2
dhijF̃ij −

1

2
XijM

ij − 1

6
YijkH̃

ijk = 0 , (A.2)

−∇̃i
(
e−2ΦMik

)
+ e−2ΦhiMik −

1

2
e−2ΦdhijH̃ijk − T iXik −

1

2
F̃ ijYijk

− 1

144
εk
`1`2`3`4`5`6`7Y`1`2`3G̃`4`5`6`7 = 0 , (A.3)

−∇̃iYimn + hiYimn −
1

2
dhijG̃ijmn +

1

36
εmn

`1`2`3`4`5`6Y`1`2`3H̃`4`5`6

+
1

48
εmn

`1`2`3`4`5`6G̃`1`2`3`4M`5`6 = 0 , (A.4)

corresponding to equations obtained from the + component of (2.6), the k component

of (2.7) and the mn component of (2.8) respectively. However, (A.2), (A.3) and (A.4) are

implied by (2.12)–(2.16) together with the Bianchi identities (2.11).

Note also that the ++ and +i components of the Einstein equation, which are

1

2
∇̃i∇̃i∆−

3

2
hi∇̃i∆−

1

2
∆∇̃ihi + ∆h2 +

1

4
dhijdh

ij = (∇̃i∆−∆hi)∇̃iΦ +
1

4
MijM

ij

+
1

2
e2ΦTiT

i +
1

12
e2ΦYijkY

ijk (A.5)

and
1

2
∇̃jdhij − dhijhj − ∇̃i∆ + ∆hi = dhi

j∇̃jΦ−
1

2
Mi

jLj +
1

4
M`1`2H̃i

`1`2 − 1

2
e2ΦSTi

+
1

2
e2ΦT jF̃ij −

1

4
e2ΦYi

`1`2X`1`2 +
1

12
e2ΦY`1`2`3G̃i

`1`2`3

(A.6)

are implied by (2.17), (2.18), (2.19), together with (2.12)–(2.16), and the Bianchi identi-

ties (2.11).

B Integrability conditions and KSEs

Substituting the solution of the KSEs along the lightcone directions (2.23) back into the

gravitino KSE (2.20) and appropriately expanding in the r, u coordinates, we find that for

the µ = ± components, one obtains the additional conditions(
1

2
∆− 1

8
(dh)ijΓ

ij +
1

8
MijΓ11Γij

+2

(
1

4
hiΓ

i− 1

4
LiΓ11Γi− 1

16
eΦΓ11

(
−2S+F̃ijΓ

ij
)
− 1

8 · 4!
eΦ
(
12XijΓ

ij−G̃ijklΓijkl
))

Θ+

)
φ+ = 0

(B.1)(
1

4
∆hiΓ

i− 1

4
∂i∆Γi+

(
−1

8
(dh)ijΓ

ij− 1

8
MijΓ

ijΓ11−
1

4
eΦTiΓ

iΓ11+
1

24
eΦYijkΓ

ijk

)
Θ+

)
φ+ = 0

(B.2)(
− 1

2
∆− 1

8
(dh)ijΓ

ij +
1

8
MijΓ

ijΓ11 −
1

4
eΦTiΓ

iΓ11 −
1

24
eΦYijkΓ

ijk

+2

(
−1

4
hiΓ

i− 1

4
Γ11LiΓ

i+
1

16
eφΓ11

(
2S+F̃ijΓ

ij
)
− 1

8 · 4!
eφ
(
12XijΓ

ij+G̃ijklΓ
ijkl
))

Θ−

)
φ− = 0.

(B.3)
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Similarly the µ = i component of the gravitino KSEs gives

∇̃iφ± ∓
1

4
hiφ± ∓

1

4
Γ11Liφ± +

1

8
Γ11H̃ijkΓ

jkφ±

− 1

16
eΦΓ11(∓2S + F̃klΓ

kl)Γiφ± +
1

8 · 4!
eΦ(∓12XklΓ

kl + G̃j1j2j3j4Γj1j2j3j4)Γiφ± = 0

(B.4)

and

∇̃iτ+ +

(
− 3

4
hi −

1

16
eΦXl1l2Γl1l2Γi −

1

8 · 4!
eΦG̃l1···l4Γl1···l4Γi

−Γ11

(
1

4
Li +

1

8
H̃ijkΓ

jk +
1

8
eΦSΓi +

1

16
eΦF̃l1l2Γl1l2Γi

))
τ+

+

(
− 1

4
(dh)ijΓ

j − 1

4
MijΓ

jΓ11 +
1

8
eΦTjΓ

jΓiΓ11 +
1

48
eΦYl1l2l3Γl1l2l3Γi

)
φ+ = 0

(B.5)

where we have set

τ+ = Θ+φ+ . (B.6)

All the additional conditions above can be viewed as integrability conditions along the

lightcone and mixed lightcone and S directions. We shall demonstrate that upon using the

field equations and the Bianchi identities, the only independent conditions are (2.26).

B.1 Dilatino KSE

Substituting the solution of the KSEs (2.23) into the dilatino KSE (2.21) and expanding

appropriately in the r, u coordinates, one obtains the following additional conditions

∂iΦΓiφ± −
1

12
Γ11(∓6LiΓ

i + H̃ijkΓ
ijk)φ± +

3

8
eΦΓ11(∓2S + F̃ijΓ

ij)φ±

+
1

4 · 4!
eΦ(∓12XijΓ

ij + G̃j1j2j3j4Γj1j2j3j4)φ± = 0 , (B.7)

−
(
∂iΦΓi +

1

12
Γ11(6LiΓ

i + H̃ijkΓ
ijk) +

3

8
eΦΓ11(2S + F̃ijΓ

ij)

− 1

4 · 4!
eΦ(12XijΓ

ij + G̃ijklΓ
ijkl)

)
τ+

+

(
1

4
MijΓ

ijΓ11 +
3

4
eΦTiΓ

iΓ11 +
1

24
eΦYijkΓ

ijk

)
φ+ = 0 . (B.8)

We shall show that the only independent ones are those in (2.26).

B.2 Independent KSEs

It is well known that the KSEs imply some of the Bianchi identities and field equations of a

theory. Because of this, to find solutions it is customary to solve the KSEs and then impose

the remaining field equations and Bianchi identities. However, we shall not do this here

because of the complexity of solving the KSEs (B.1), (B.2), (B.5), and (B.8) which contain
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the τ+ spinor as expressed in (B.6). Instead, we shall first show that all the KSEs which

contain τ+ are actually implied from those containing φ+, i.e. (B.4) and (B.7), and some

of the field equations and Bianchi identities. Then we also show that (B.3) and the terms

linear in u from the + components of (B.4) and (B.7) are implied by the field equations,

Bianchi identities and the − components of (B.4) and (B.7).

B.2.1 The (B.5) condition

The (B.5) component of the KSEs is implied by (B.4), (B.6) and (B.7) together with

a number of field equations and Bianchi identities. First evaluate the l.h.s. of (B.5) by

substituting in (B.6) to eliminate τ+, and use (B.4) to evaluate the supercovariant derivative

of φ+. Also, using (B.4) one can compute(
∇̃j∇̃i − ∇̃i∇̃j

)
φ+ =

1

4
∇̃j(hi)φ+ +

1

4
Γ11∇̃j(Li)φ+ −

1

8
Γ11∇̃j

(
H̃il1l2

)
Γl1l2φ+

+
1

16
eΦΓ11

(
−2∇̃j(S) + ∇̃j

(
F̃kl

)
Γkl
)

Γiφ+

− 1

8 · 4!
eΦ
(
−12∇̃j(Xkl)Γ

kl + ∇̃j
(
G̃j1j2j3j4

)
Γj1j2j3j4

)
Γiφ+

+
1

16
∇̃jΦeΦΓ11

(
−2S + F̃klΓ

kl
)

Γiφ+

− 1

8 · 4!
∇̃jΦeΦ

(
−12XklΓ

kl + G̃j1j2j3j4Γj1j2j3j4
)

Γiφ+

+

(
1

4
hi +

1

4
Γ11Li −

1

8
Γ11H̃ijkΓ

jk +
1

16
eΦΓ11

(
−2S + F̃klΓ

kl
)

Γi

− 1

8 · 4!
eΦ
(
−12XklΓ

kl + G̃j1j2j3j4Γj1j2j3j4
)

Γi

)
∇̃jφ+ − (i↔ j).

(B.9)

Then consider the following, where the first terms cancels from the definition of curvature,(
1

4
R̃ijΓ

j − 1

2
Γj
(
∇̃j∇̃i − ∇̃i∇̃j

))
φ+ +

1

2
∇̃i(A1) +

1

2
ΨiA1 = 0 , (B.10)

where

A1 = ∂iΦΓiφ+ −
1

12
Γ11

(
−6LiΓ

i + H̃ijkΓ
ijk
)
φ+ +

3

8
eΦΓ11

(
−2S + F̃ijΓ

ij
)
φ+

+
1

4 · 4!
eΦ
(
−12XijΓ

ij + G̃j1j2j3j4Γj1j2j3j4
)
φ+ (B.11)

and

Ψi = −1

4
hi + Γ11

(
1

4
Li −

1

8
H̃ijkΓ

jk

)
. (B.12)

The expression in (B.11) vanishes on making use of (B.7), as A1 = 0 is equivalent to the

+ component of (B.7). However a non-trivial identity is obtained by using (B.9) in (B.10),

and expanding out the A1 terms. Then, on adding (B.10) to the l.h.s. of (B.5), with τ+
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eliminated in favour of η+ as described above, one obtains the following

1

4

(
R̃ij + ∇̃(ihj) −

1

2
hihj + 2∇̃i∇̃jΦ +

1

2
LiLj −

1

4
H̃il1l2H̃j

l1l2

−1

2
e2ΦF̃ilF̃j

l +
1

8
e2ΦF̃l1l2F̃

l1l2δij +
1

2
e2ΦXilXj

l − 1

8
e2ΦXl1l2X

l1l2δij

− 1

12
e2ΦG̃i`1`2`3G̃j

`1`2`3 +
1

96
e2ΦG̃`1`2`3`4G̃

`1`2`3`4δij −
1

4
e2ΦS2δij

)
Γj = 0 . (B.13)

This vanishes identically on making use of the Einstein equation (2.19). Therefore it

follows that (B.5) is implied by the + component of (B.4), (B.6) and (B.7), the Bianchi

identities (2.11) and the gauge field equations (2.12)–(2.16).

B.2.2 The (B.8) condition

Let us define

A2 = −
(
∂iΦΓi +

1

12
Γ11

(
6LiΓ

i + H̃ijkΓ
ijk
)

+
3

8
eΦΓ11

(
2S + F̃ijΓ

ij
)

− 1

4 · 4!
eΦ
(

12XijΓ
ij + G̃ijklΓ

ijkl
))
τ+

+

(
1

4
MijΓ

ijΓ11 +
3

4
eΦTiΓ

iΓ11 +
1

24
eΦYijkΓ

ijk

)
φ+ , (B.14)

where A2 equals the expression in (B.8). One obtains the following identity

A2 = −1

2
Γi∇̃iA1 + Ψ1A1 , (B.15)

where

Ψ1 = ∇̃iΦΓi +
3

8
hiΓ

i +
1

16
eΦXl1l2Γl1l2 − 1

192
eΦG̃l1l2l3l4Γl1l2l3l4

+Γ11

(
1

48
H̃l1l2l3Γl1l2l3 − 1

8
LiΓ

i +
1

16
eΦF̃l1l2Γl1l2 − 1

8
eΦS

)
. (B.16)

We have made use of the + component of (B.4) in order to evaluate the covariant derivative

in the above expression. In addition we have made use of the Bianchi identities (2.11) and

the field equations (2.12)–(2.17).

B.2.3 The (B.1) condition

In order to show that (B.1) is implied from the independent KSEs we can compute the

following, (
− 1

4
R̃− Γij∇̃i∇̃j

)
φ+ − Γi∇̃i(A1)

+

(
∇̃iΦΓi +

1

4
hiΓ

i +
1

16
eΦXl1l2Γl1l2 − 1

192
eΦG̃l1l2l3l4Γl1l2l3l4

+Γ11

(
−1

4
LlΓ

l − 1

24
H̃l1l2l3Γl1l2l3 − 1

8
eΦS +

1

16
eΦF̃l1l2Γl1l2

))
A1 = 0 , (B.17)
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where

R̃ = −2∆− 2hi∇̃iΦ− 2∇̃2Φ− 1

2
h2 +

1

2
L2 +

1

4
H̃2 +

5

2
e2ΦS2

−1

4
e2ΦF̃ 2 +

3

4
e2ΦX2 +

1

48
e2ΦG̃2 (B.18)

and where we use the + component of (B.4) to evaluate the covariant derivative terms. In

order to obtain (B.1) from these expressions we make use of the Bianchi identities (2.11),

the field equations (2.12)–(2.17), in particular in order to eliminate the (∇̃Φ)2 term. We

have also made use of the +− component of the Einstein equation (2.18) in order to rewrite

the scalar curvature R̃ in terms of ∆. Therefore (B.1) follows from (B.4) and (B.7) together

with the field equations and Bianchi identities mentioned above.

B.2.4 The + (B.7) condition linear in u

Since φ+ = η+ + uΓ+Θ−η−, we must consider the part of the + component of (B.7) which

is linear in u. On defining

B1 = ∂iΦΓiη− −
1

12
Γ11

(
6LiΓ

i + H̃ijkΓ
ijk
)
η− +

3

8
eΦΓ11

(
2S + F̃ijΓ

ij
)
η−

+
1

4 · 4!
eΦ
(

12XijΓ
ij + G̃j1j2j3j4Γj1j2j3j4

)
η− (B.19)

one finds that the u-dependent part of (B.7) is proportional to

− 1

2
Γi∇̃i(B1) + Ψ2B1 , (B.20)

where

Ψ2 = ∇̃iΦΓi +
1

8
hiΓ

i − 1

16
eΦXl1l2Γl1l2 − 1

192
eΦG̃l1l2l3l4Γl1l2l3l4

+Γ11

(
1

48
H̃l1l2l3Γl1l2l3 +

1

8
LiΓ

i +
1

16
eΦF̃l1l2Γl1l2 +

1

8
eΦS

)
. (B.21)

We have made use of the − component of (B.4) in order to evaluate the covariant derivative

in the above expression. In addition we have made use of the Bianchi identities (2.11) and

the field equations (2.12)–(2.17).

B.2.5 The (B.2) condition

In order to show that (B.2) is implied from the independent KSEs we will show that it

follows from (B.1). First act on (B.1) with the Dirac operator Γi∇̃i and use the field

equations (2.12)–(2.17) and the Bianchi identities to eliminate the terms which contain

derivatives of the fluxes and then use (B.1) to rewrite the dh-terms in terms of ∆. Then

use the conditions (B.4) and (B.5) to eliminate the ∂iφ-terms from the resulting expression,

some of the remaining terms will vanish as a consequence of (B.1). After performing these

calculations, the condition (B.2) is obtained, therefore it follows from section B.2.3 above

that (B.2) is implied by (B.4) and (B.7) together with the field equations and Bianchi

identities mentioned above.
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B.2.6 The (B.3) condition

In order to show that (B.3) is implied by the independent KSEs we can compute the

following, (
1

4
R̃+ Γij∇̃i∇̃j

)
η− + Γi∇̃i(B1)

+

(
− ∇̃iΦΓi +

1

4
hiΓ

i +
1

16
eΦXl1l2Γl1l2 +

1

192
eΦG̃l1l2l3l4Γl1l2l3l4

+Γ11

(
−1

4
LlΓ

l +
1

24
H̃l1l2l3Γl1l2l3 − 1

8
eΦS − 1

16
eΦF̃l1l2Γl1l2

))
B1 = 0 , (B.22)

where we use the − component of (B.4) to evaluate the covariant derivative terms. The

expression above vanishes identically since the − component of (B.7) is equivalent to B1 = 0.

In order to obtain (B.3) from these expressions we make use of the Bianchi identities (2.11)

and the field equations (2.12)–(2.17). Therefore (B.3) follows from (B.4) and (B.7) together

with the field equations and Bianchi identities mentioned above.

B.2.7 The + (B.4) condition linear in u

Next consider the part of the + component of (B.4) which is linear in u. First compute(
Γj
(
∇̃j∇̃i − ∇̃i∇̃j

)
− 1

2
R̃ijΓ

j

)
η− − ∇̃i(B1)−ΨiB1 = 0 , (B.23)

where

Ψi =
1

4
hi − Γ11

(
1

4
Li +

1

8
H̃ijkΓ

jk

)
(B.24)

and where we have made use of the − component of (B.4) to evaluate the covariant deriva-

tive terms. The resulting expression corresponds to the expression obtained by expanding

out the u-dependent part of the + component of (B.4) by using the − component of (B.4)

to evaluate the covariant derivative. We have made use of the Bianchi identities (2.11) and

the field equations (2.12)–(2.16).

C Calculation of Laplacian of ‖ η± ‖2

In this appendix, we calculate the Laplacian of ‖ η± ‖2, which will be particularly useful

in the analysis of the global properties of IIA horizons in section 3. We shall consider the

modified gravitino KSE (3.3) defined in section 3.1, and we shall assume throughout that

the modified Dirac equation D (±)η± = 0 holds, where D (±) is defined in (3.5). Also, Ψ
(±)
i

and A(±) are defined by (2.28) and (2.29), and Ψ(±) is defined by (3.2).

To proceed, we compute the Laplacian

∇̃i∇̃i||η±||2 = 2〈η±, ∇̃i∇̃iη±〉+ 2〈∇̃iη±, ∇̃iη±〉 . (C.1)
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To evaluate this expression note that

∇̃i∇̃iη± = Γi∇̃i
(
Γj∇̃jη±

)
− Γij∇̃i∇̃jη±

= Γi∇̃i
(
Γj∇̃jη±

)
+

1

4
R̃η±

= Γi∇̃i
(
−Ψ(±)η± − qA(±)η±

)
+

1

4
R̃η± . (C.2)

It follows that

〈η±, ∇̃i∇̃iη±〉 =
1

4
R̃ ‖ η± ‖2 +〈η±,Γi∇̃i

(
−Ψ(±) − qA(±)

)
η±〉

+〈η±,Γi
(
−Ψ(±) − qA(±)

)
∇̃iη±〉 , (C.3)

and also

〈∇̃iη±, ∇̃iη±〉 = 〈∇̂(±)iη±, ∇̂(±)
i η±〉 − 2〈η±,

(
Ψ(±)i + κΓiA(±)

)†
∇̃iη±〉

−〈η±,
(

Ψ(±)i + κΓiA(±)
)†(

Ψ
(±)
i + κΓiA(±)

)
η±〉

= ‖ ∇̂(±)η± ‖2 −2〈η±,Ψ(±)i†∇̃iη±〉 − 2κ〈η±,A(±)†Γi∇̃iη±〉

−〈η±,
(

Ψ(±)i†Ψ
(±)
i + 2κA(±)†Ψ(±) + 8κ2A(±)†A(±)

)
η±〉

= ‖ ∇̂(±)η± ‖2 −2〈η±,Ψ(±)i†∇̃iη±〉 − 〈η±,Ψ(±)i†Ψ
(±)
i η±〉

+
(
2κq − 8κ2

)
‖ A(±)η± ‖2 . (C.4)

Therefore,

1

2
∇̃i∇̃i||η±||2 = ‖ ∇̂(±)η± ‖2 +

(
2κq − 8κ2

)
‖ A(±)η± ‖2

+〈η±,
(

1

4
R̃+ Γi∇̃i

(
−Ψ(±) − qA(±)

)
−Ψ(±)i†Ψ

(±)
i

)
η±〉

+〈η±,
(

Γi
(
−Ψ(±) − qA(±)

)
− 2Ψ(±)i†

)
∇̃iη±〉 . (C.5)

In order to simplify the expression for the Laplacian, we shall attempt to rewrite the third

line in (C.5) as

〈η±,
(

Γi
(
−Ψ(±) − qA(±)

)
− 2Ψ(±)i†

)
∇̃iη±〉 = 〈η±,F (±)Γi∇̃iη±〉+W (±)i∇̃i ‖ η± ‖2 ,

(C.6)

where F (±) is linear in the fields and W (±)i is a vector. This expression is particularly

advantageous, because the first term on the r.h.s. can be rewritten using the horizon Dirac

equation, and the second term is consistent with the application of the maximum prin-

ciple/integration by parts arguments which are required for the generalized Lichnerowicz
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theorems. In order to rewrite (C.6) in this fashion, note that

Γi
(

Ψ(±) + qA(±)
)

+ 2Ψ(±)i† =

(
∓hi ∓ (q + 1)Γ11L

i +
1

2
(q + 1)Γ11H̃

i
`1`2Γ`1`2 + 2q∇̃iΦ

)
+

(
± 1

4
hjΓ

j ±
(
q

2
+

1

4

)
Γ11LjΓ

j

−
(
q

12
+

1

8

)
Γ11H̃`1`2`3Γ`1`2`3 − q∇̃jΦΓj

)
Γi

∓1

8
(q + 1)eΦX`1`2ΓiΓ`1`2 +

1

96
(q + 1)eΦG̃`1`2`3`4ΓiΓ`1`2`3`4

+(q + 1)Γ11

(
± 3

4
eΦSΓi − 3

8
eΦF̃`1`2ΓiΓ`1`2

)
. (C.7)

One finds that (C.6) is only possible for q = −1 and thus we have

W (±)i =
1

2

(
2∇̃iΦ± hi

)
(C.8)

F (±) = ∓1

4
hjΓ

j − ∇̃jΦΓj + Γ11

(
± 1

4
LjΓ

j +
1

24
H̃`1`2`3Γ`1`2`3

)
. (C.9)

We remark that † is the adjoint with respect to the Spin(8)-invariant inner product

〈 , 〉. In order to compute the adjoints above we note that the Spin(8)-invariant inner

product restricted to the Majorana representation is positive definite and real, and so

symmetric. With respect to this the gamma matrices are Hermitian and thus the skew

symmetric products Γ[k] of k Spin(8) gamma matrices are Hermitian for k = 0 (mod 4) and

k = 1 (mod 4) while they are anti-Hermitian for k = 2 (mod 4) and k = 3 (mod 4). The

Γ11 matrix is also Hermitian since it is a product of the first 10 gamma matrices and we

take Γ0 to be anti-Hermitian. It also follows that Γ11Γ[k] is Hermitian for k = 0 (mod 4)

and k = 3 (mod 4) and anti-Hermitian for k = 1 (mod 4) and k = 2 (mod 4). This also

implies the following identities

〈η+,Γ
[k]η+〉 = 0, k = 2 (mod 4) and k = 3 (mod 4) (C.10)

and

〈η+,Γ11Γ[k]η+〉 = 0, k = 1 (mod 4) and k = 2 (mod 4) . (C.11)

It follows that
1

2
∇̃i∇̃i||η±||2 = ‖ ∇̂(±)η± ‖2 +

(
− 2κ− 8κ2

)
‖ A(±)η± ‖2 +W (±)i∇̃i ‖ η± ‖2

+〈η±,
(

1

4
R̃+ Γi∇̃i

(
−Ψ(±) +A(±)

)
−Ψ(±)i†Ψ

(±)
i + F (±)

(
−Ψ(±) +A(±)

))
η±〉 .

(C.12)

It is also useful to evaluate R̃ using (2.19) and the dilaton field equation (2.17); we obtain

R̃ = −∇̃i(hi) +
1

2
h2 − 4

(
∇̃Φ
)2 − 2hi∇̃iΦ−

3

2
L2 +

5

12
H̃2

+
7

2
e2ΦS2 − 5

4
e2ΦF̃ 2 +

3

4
e2ΦX2 − 1

48
e2ΦG̃2 . (C.13)
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One obtains, upon using the field equations and Bianchi identities,(
1

4
R̃+Γi∇̃i

(
−Ψ(±) +A(±)

)
−Ψ(±)i†Ψ

(±)
i + F (±)

(
−Ψ(±) +A(±)

))
η±

=

[(
±1

4
∇̃`1(h`2)∓ 1

16
H̃ i

`1`2Li

)
Γ`1`2 +

(
±1

8
∇̃`1
(
eΦX`2`3

)
+

1

24
∇̃i
(
eΦG̃i`1`2`3

)
∓ 1

96
eΦhiG̃i`1`2`3 −

1

32
eΦX`1`2h`3 ∓

1

8
eΦ∇̃`1ΦX`2`3 −

1

24
eΦ∇̃iΦG̃i`1`2`3

∓ 1

32
eΦF̃`1`2L`3 ∓

1

96
eΦSH̃`1`2`3 −

1

32
eΦF̃ i`1H̃i`2`3

)
Γ`1`2`3

+Γ11

((
∓1

4
∇̃`
(
eΦS

)
− 1

4
∇̃i
(
eΦF̃i`

)
+

1

16
eΦSh` ±

1

16
eΦhiF̃i` ±

1

4
eΦ∇̃`ΦS

+
1

4
eΦ∇̃iΦF̃i` +

1

16
eΦLiXi` ∓

1

32
eΦH̃ ij

`Xij −
1

96
eΦG̃ijk`H̃ijk

)
Γ`

+

(
∓1

4
∇̃`1(L`2)− 1

8
∇̃i
(
H̃i`1`2

)
+

1

4
∇̃iΦH̃i`1`2 ±

1

16
hiH̃i`1`2

)
Γ`1`2

+

(
± 1

384
eΦG̃`1`2`3`4L`5 ±

1

192
eΦH̃`1`2`3X`4`5 +

1

192
eΦG̃i`1`2`3H̃i`4`5

)
Γ`1`2`3`4`5

)]
η±

+
1

2

(
1∓ 1

)(
hi∇̃iΦ−

1

2
∇̃ihi

)
η± . (C.14)

Note that with the exception of the final line of the r.h.s. of (C.14), all terms on the

r.h.s. of the above expression give no contribution to the second line of (C.12), using (C.10)

and (C.11), since all these terms in (C.14) are anti-Hermitian and thus the bilinears vanish.

Furthermore, the contribution to the Laplacian of ‖ η+ ‖2 from the final line of (C.14) also

vanishes; however the final line of (C.14) does give a contribution to the second line of (C.12)

in the case of the Laplacian of ‖ η− ‖2. We proceed to consider the Laplacians of ‖ η± ‖2

separately, as the analysis of the conditions imposed by the global properties of S differs

slightly in the two cases.

For the Laplacian of ‖ η+ ‖2, we obtain from (C.12):

∇̃i∇̃i ‖ η+ ‖2 −(2∇̃iΦ + hi)∇̃i ‖ η+ ‖2= 2 ‖ ∇̂(+)η+ ‖2 −(4κ+ 16κ2) ‖ A(+)η+ ‖2 .

(C.15)

This proves (3.6).

The Laplacian of ‖ η− ‖2 is calculated from (C.12), on taking account of the contribu-

tion to the second line of (C.12) from the final line of (C.14). One obtains

∇̃i
(
e−2ΦVi

)
= −2e−2Φ ‖ ∇̂(−)η− ‖2 +e−2Φ

(
4κ+ 16κ2

)
‖ A(−)η− ‖2 , (C.16)

where

V = −d ‖ η− ‖2 − ‖ η− ‖2 h . (C.17)

This proves (3.9) and completes the proof.
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