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1 Introduction
It has been conjectured in [1], following earlier work in [2] and [3], that
e the number of Killing spinors N, N # 0, of Killing horizons in supergravity is given by
N =2N_ + Index(Dg) , (1.1)

where N_ € Ny and Dpg is a Dirac operator twisted by a vector bundle F, defined
on the spatial horizon section &, which depends on the gauge symmetries of the
supergravity theory in question, and

e that horizons with non-trivial fluxes and N_ # 0 admit an s[(2,R) symmetry subal-
gebra.

This conjecture encompasses the essential features of (super)symmetry enhancement
near black hole Killing horizons, and some features of the same phenomenon near brane
horizons, previously obtained in the literature based on a case-by-case investigation [4—
6]. Symmetry enhancement near black hole and brane horizons has been instrumental in
the development of the AdS/CFT correspondence [7]. So far, this conjecture has been
established for minimal 5-dimensional gauged supergravity, D=11 M-theory, and D=10
IIB supergravity [1-3].

The main purpose of this paper is to prove the above conjecture for Killing horizons
in ITA supergravity. The proof is based on three assumptions. First, it is assumed that the
Killing horizons admit at least one supersymmetry, second that the near horizon geometries
are smooth and third that the spatial horizon sections are compact without boundary'. It
turns out that for ITA horizons, the contribution from the index of Dp in the expression
for N in (1.1) vanishes and therefore one concludes that ITA horizons always preserve an
even number of supersymmetries, i.e.

N =2N_. (1.2)

Furthermore from the second part of the conjecture, one concludes that all supersymmetric
ITA horizons with non-trivial fluxes admit an s[(2, R) symmetry subalgebra.

To prove the conjecture, we first adapt the description of black hole near horizon
geometries of [8, 9] to IIA supergravity. The metric and the remaining fields of ITA horizons
are given in (2.9). We then decompose the Killing spinor as € = e, +¢e_ using the lightcone
projectors I'ye; = 0 and integrate the Killing spinor equations (KSEs) of ITA supergravity
along the two lightcone directions. These directions arise naturally in the description of
near horizon geometries. As a result, the Killing spinors of ITA horizons can be written as
€ = €(u,r,n+), where the dependence on the coordinates u,r is explicit and 74 are spinors

!This is not an essential assumption and it may be weakened. However to extend our proof to horizons
with non-compact S, one has to impose appropriate boundary conditions on the fields. Because of this,
and for simplicity, we shall not do this here and throughout this paper we shall assume that S is compact
without boundary.



which depend only on the coordinates of the spatial horizon section S given by the equation
u=r1r=0>0.

As a key next step in the proof, we demonstrate that the remaining independent
KSEs are those obtained from the KSEs of ITA supergravity after naively restricting them
to §. In particular, we find after an extensive use of the field equations and Bianchi
identities that all the integrability conditions that arise along the lightcone directions, and
the mixed directions between the lightcone and the S directions, are automatically satisfied.
The independent KSEs on S split into two sets {V*), A®)} of two KSEs with each set
acting on the spinors n4 distinguished by the choice of lightcone direction, where V(&)
are derived from the gravitino KSE of IIA supergravity and A are associated to the
dilatino KSE of ITA supergravity. In addition we demonstrate that if n_ is a Killing spinor
on S, then ny = 'L O_n_ also solves the KSEs, where ©_ depends on the fluxes and the
spacetime metric.

To show that the number of Killing spinors of ITA horizons is even, it suffices to show
that there are as many 7, Killing spinors as n_ Killing spinors. For this, we first identify
the Killing spinors 74 with the zero modes of Dirac-like operators 2 coupled to fluxes.
These are defined as 2&) = DE) 4 g A& where D) is the Dirac operator constructed
from V&) It is then shown that for a suitable choice of ¢ all zero modes of these Dirac-like
operators are in 1-1 correspondence with the Killing spinors.

The proof of the above correspondence between zero modes and Killing spinors for the
2 operator utilizes the Hopf maximum principle and relies on the formula (3.6). Inci-
dentally, this also establishes that || 7, || is constant. The proof for the 2(~) operator uses
the partial integration of the formula (3.9) and this is similar to the classical Lichnerowicz
theorem for the Dirac operator. In both cases, the proofs rely on the smoothness of data
and the assumption that S is compact without boundary.

Therefore, the number of Killing spinors of ITA horizons is N = Ny + N_, where N4
are the dimensions of the kernels of the 2 operators. On the other hand, one can show
that the zero modes of 2(~) are in 1-1 correspondence with the zero modes of the adjoint
(2Nt of 2(H). As a result Ny — N_ is the index of 2(*). This vanishes as it is equal
to the index of the Dirac operator acting on the spinor bundle constructed from the 16
dimensional Majorana representation of Spin(8). As a result Ny = N_ and the number
of supersymmetries preserved by ITA horizons is even, which proves the first part of the
conjecture.

To prove that ITA horizons admit an sl(2, R) symmetry subalgebra, we use the fact
that if n_ is a Killing spinor then ny = I'y©_n_ is also a Killing spinor. To see this
we demonstrate that if the fluxes do not vanish, the kernel of ©_ is {0}, and so 14 # 0.
Using the Killing spinors now constructed from n_ and ny = 'y ©_n_, we prove that the
spacetime admits three Killing vectors, which leave all the fields invariant, satisfying an
s[(2,R) algebra. This completes the proof of the conjecture for ITA horizons.

The results presented above for horizons in ITA supergravity are not a straightforward
consequence of those we have obtained for M-horizons in [3]. Although ITA supergravity
is the dimensional reduction of 11-dimensional supergravity, it is well known that, after
the truncation of Kaluza-Klein modes, not all of the supersymmetry of 11-dimensional



solutions survives the reduction to ITA; for a detailed analysis of these issues see [10, 11].
As a result, for example, it does not follow automatically that IIA horizons preserve an
even number of supersymmetries because M-horizons do, as shown in [3]. For this, one has
to demonstrate that the Killing spinors of 11-dimensional horizons are always annihilated
in pairs upon the action of the spinorial Lie derivative along any space-like vector field
X which leaves the fields invariant and has closed orbits. However since we have shown
that both ITA and M-theory horizons preserve an even number of supersymmetries, one
concludes that if the reduction process breaks some supersymmetry, then it always breaks
an even number of supersymmetries. Moreover, our ITA analysis presented here has several
advantages. In particular, it explains why the index contribution in (1.1) vanishes based
on the analysis of section 3 and also provides an explicit expression for the generators of
the sl(2,R) symmetry in section 5. Both these results are not directly accessible from an
11-dimensional analysis. Furthermore, the proof of the IIA Lichnerowicz type theorems is
more general than that presented for 11-dimensional horizons in [3] because of the presence
of additional parameters like ¢ and «, ie the IIA Lichnerowicz type theorems are valid for
a more general class of operators than those that one constructs from the dimensional
reduction of those of [3]. In addition, the identification of the independent KSEs for
ITA horizons in section 2.4 will be useful in a future investigation of the geometry of
ITA horizons.

This paper is organized as follows. In section 2, we identify the independent KSEs for
IIA horizons. In section 3, we establish the equivalence between zero modes of 2(+) and
Killing spinors, and show that the number of supersymmetries preserved by ITA horizons
is even. In section 4, we show that ny = I';©_n_ # 0. In section 5, we prove that ITA
horizons with non-trivial fluxes admit an s[(2, R) symmetry subalgebra and in section 6 we
give our conclusions. In appendix A, we give a list of Bianchi identities and field equations
that are implied by the (independent) ones listed in section 2. In appendix B, we identify
the independent KSEs, and in appendix C we establish the formulae (3.6) and (3.9).

2 Horizon fields and KSEs

2.1 IIA fields and field equations

The bosonic field content of ITA supergravity [12-15] are the spacetime metric g, the
dilaton ®, the 2-form NS-NS gauge potential B, and the 1-form and the 3-form RR gauge
potentials A and C, respectively. In addition, the theory has non-chiral fermionic fields
consisting of a Majorana gravitino and a Majorana dilatino but these are set to zero in
all the computations that follow. The bosonic field strengths of ITA supergravity in the
conventions of [16] are

F=dA, H=dB, G=dC-HAMAA. (2.1)
These lead to the Bianchi identities

dF =0, dH=0, dG=FAH. (2.2)



The bosonic part of the ITA action in the string frame is

1
S = /,Eg <e—2¢ <R + AV, OVHP — HHAIAQASHMA?“)
1 v 1 1234 1
— P = 2= Crpapsns G +5dC NdCAB. (2.3)

This leads to the Einstein equation

1 1 1
R/u/ - —QVMVVQ) + ZHM>\1/\2HV>\1>\2 + §€2¢F/L>\FI/)\ + 562¢GHA1A2A3GV)\1)\2)\3

1
62¢.G)\1)\2)\3)\4G/\1)\2)\3)\4> , (24)

1
+guy< _ *QQQ)F)\I)QF)\I)\Q _ 96
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the dilaton field equation

1
VAV, ® = 2V OV D — — Hy 3,0, HV12Y 4 gequF)\l/\QF)\l)\Q

12
1 .
+%€2¢G,\1,\2)\3)\4G>\1>\2>\3’\4 , (2.5)
the 2-form field equation
1
VHFMV + éHAlAQ)\Blekgz\gu = O, (26)

the 3-form field equation

_ 1
V)\ (6 2<I>H)\,uz/> - iGuV)\l)\QF)\l)\Z + 5 6#1/)\1)\2)\3)\4)\5)\6)\7)\8GA1A2A3A4G>\5/\6)\7)\8 — 07
(2.7)
and the 4-form field equation
1
VMG/U/IVQVS + 7EylVQVS)\I/\2)\3)\4)\5>\6>\7G/\1>\2>\3)\4H>\5>\6>\7 -0. (2.8)

144
This completes the description of the dynamics of the bosonic part of ITA supergravity.

2.2 Horizon fields, Bianchi identities and field equations

The description of the metric near extreme Killing horizons as expressed in Gaussian null
coordinates [8, 9] can be adapted to include all ITA fields. In particular, one writes

ds2:2e+e_+(5ijeiej, G=ethe AX+ret ANY +@G,
H=e"Ne AL+re" ANM+H, F=etNe S4+re" AT+ F, (2.9)

where we have introduced the frame
1 . .
et =du, e =dr+rh— §T2Adu, el = eldy! (2.10)

and the dependence on the coordinates u and r is explicitly given. Moreover ® and A
are O-forms, h, L and T are 1-forms, X, M and F are 2-forms, Y, H are 3-forms and G is



a 4-form on the spatial horizon section S, which is the co-dimension 2 submanifold given
by the equation r = u = 0, i.e. all these components of the fields depend only on the
coordinates of §. It should be noted that one of our assumptions is that all these forms on
S are sufficiently differentiable, i.e. we require at least C? differentiability so that all the
field equations and Bianchi identities are valid.

Substituting the fields (2.9) into the Bianchi identities of ITA supergravity, one finds that

M =d,L, T =d,S, Y=d,X—-LANF—SH,
dG=HANF, dH = dF =0, (2.11)

where dp0 = df — h A 6 for any form 6. These are the only independent Bianchi identities,
see appendix A.

Similarly, substituting the horizon fields into the field equations of IIA supergravity,
we find that the 2-form field equation (2.6) gives

. . . 1 - -
V' Ey = W B+ T = L' X+ cHO 250Gy g0 = 0, (2.12)
the 3-form field equation (2.7) gives
- 1 ~.. 1 g - -
\V& (e 2<I>Li) o §FUXz‘j 4 @6&6283&1&@66%8G£1£2£3Z4GZ5€6£7£8 =0 (2'13)

and

- . . 1~
A (672¢Himn> - 672¢thimn + 672(1)an +SXmn — iFlJGijmn

1 -
_demn61£2£3£4£5£6X€1€2Gf3£4£556 = 07 (214)
and the 4-form field equation (2.8) gives
y 1 - .
V' Xk + mekelbeﬂdszejﬁG€1€2€3€4H€5€6€7 =0 (2.15)

and

IR NNN - NN
€ikg 0 O XKooy Hugeats — 7€k T Goytatse Los =0,

ViGijhg + Yjkg = W' Gijng — 15 o
(2.16)

where V is the Levi-Civita connection of the metric on S. In addition, the dilaton field
equation (2.5) becomes

L . - 1 1 - .
VIVi® — Vi@ = 2V, V' + D LiL' EHMZZSHEIWS - ZeQ‘I’S?
3 g~ o~ 1 1 . -
+§€2¢F'Z'jFU - g@Qq)XinU + %62¢G51g2g3g4G£1£2£3£4 . (2.17)

It remains to evaluate the Einstein field equation. This gives

1~ 1 ~ 1 1 1 .
gVihi— A §h2 = W'Vi® = SLiL — 162@52 - geﬂ’xijxw
1 oog = =i 1 o~ .
—gem)FijF” — %em)Ggng@S&Gélb&& , (2.18)



. - 1 - 1 1~ -
Rij = =V (ihj) + Shihj = 2ViV;® — S LiL; + Zﬁrz-elbhrj’hf2
1 ops =0 1 1 g~ -
+5 € Fu Byt — S X X'+ e Giny gy, G0
1 1 op = = 1 1 o ~ o
+5ij (462(1)52 - §e2¢F€1f2FK1€2 + §€2¢.X€1€2X£1é2 - 9662¢G€132€3Z4G€1£2£3£4> .

(2.19)

Above we have only stated the independent field equations. In fact, after substituting the
near horizon geometries into the ITA field equations, there are additional equations that
arise. However, these are all implied from the above field equations and Bianchi identities.
For completeness, these additional equations are given in appendix A.

To summarize, the independent Bianchi identities and field equations are given in (2.11)—
(2.19).

2.3 Integration of KSEs along the lightcone

The KSEs of ITA supergravity are the vanishing conditions of the gravitino and dilatino
supersymmetry variations evaluated at the locus where all fermions vanish. These can be

expressed as

1 1
D,e =V e+ gHuyly2FV1V2F116 + EQ‘DFZ,IUQI‘WWFMFUG

+ﬂe®GV1V2,,3V4FV1”2”3”4FM6 =0, (2.20)
L1 3
A€ = 0u®TVe + 2 Hypy g 25T + éeq)FHlMF“l“QFHe
1
+4 4!6(I> Gurpopspa e = 0, (2.21)

where € is the supersymmetry parameter which from now on is taken to be a Majorana,
but not Weyl, commuting spinor of Spin(9,1). In what follows, we shall refer to the D
operator as the supercovariant connection.

Supersymmetric ITA horizons are those for which there exists an € # 0 that is a solution
of the KSEs. To find the conditions on the fields required for such a solution to exist, we
first integrate along the two lightcone directions, i.e. we integrate the KSEs along the u
and r coordinates. To do this, we decompose € as

eerte, (2.22)
where I'tex = 0, and find that
&+ =o4(u,y), e =¢-+1T_0194, (2.23)
and
b-=1n-, ¢y =n4+ul1O_n_, (2.24)



where

1 1 1 -
61 = Jhl" F JTuLl — "Iy (i2S + Fz-jrlﬂ) -2

1 i ~ ..
4 1 €<I> <i12Xl]l“1] + Gijklrzjkl) ’

(2.25)

and 14+ depend only on the coordinates of the spatial horizon section S. As spinors on S,
N+ are sections of the Spin(8) bundle on S associated with the Majorana representation.
Equivalently, the Spin(9,1) bundle S on the spacetime when restricted to S decomposes
as S = S_ @ S, according to the lightcone projections I'y.. Although S are distinguished
by the lightcone chirality, they are isomorphic as Spin(8) bundles over S. We shall use this
in the counting of supersymmetries of ITA horizons.

2.4 Independent KSEs

The substitution of the spinor (2.22) into the KSEs produces a large number of additional
conditions. These can be seen either as integrability conditions along the lightcone direc-
tions, as well as integrability conditions along the mixed lightcone and S directions, or
as KSEs along S. A detailed analysis, presented in appendix B, of the formulae obtained
reveals that the independent KSEs are those that are obtained from the naive restriction
of the ITA KSEs to S. In particular, the independent KSEs are

V=0, A®n=o0, (2.26)
where
v =i+ vl (2.27)
with
\Ij(i) — ¥ lh ¥ ie(i)Xl I FlllQF' + Lei’él Lolal Fl1l213l4r,
' 4" 16 T fogalT T '
1 1~ 1 1 4=
AT | F o Li + < Hiy,T2 + —e® STy — —e® By, TR ) (2.28)
4 8 8 16
and

. 1 1 ~
.A(:t) = 0;®I" + <:F geq)XlllQFlllQ + M€¢G11121354rl1l213l4>

1. . 1.~ .. 3 3 .
+I'11 < + §L1'FZ D) ijkl“”k F 16(1)5 + 86‘1’Fij1“”> . (2.29)

Evidently, V® arise from the supercovariant connection while A& arise from the dilatino
KSE of ITA supergravity as restricted to S .
Furthermore, the analysis in appendix B reveals that if n_ solves (2.26) then

ny =T'10n_, (2.30)

also solves (2.26). This is the first indication that ITA horizons admit an even number of
supersymmetries. As we shall prove, the existence of the 74 solution is also responsible for
the s[(2,R) symmetry of ITA horizons.



3 Supersymmetry enhancement

To prove that IIA horizons always admit an even number of supersymmetries, it suffices
to prove that there are as many 74 Killing spinors as there are n_ Killing spinors, i.e. that
the 4 and n_ Killing spinors come in pairs. For this, we shall identify the Killing spinors
with the zero modes of Dirac-like operators which depend on the fluxes and then use the
index theorem to count their modes.

3.1 Horizon Dirac equations

We define horizon Dirac operators associated with the supercovariant derivatives following
from the gravitino KSE as

PH =1iv® iy, 4 v@®) | (3.1)
where
=T = F il F et X
1 R g 1 4~ .

4T3 ( + Ll - 3 ik DF Fe®S + 46‘1’FijF”> . (3.2)
However, it turns out that it is not possible to straightforwardly formulate Lichnerowicz

theorems to identify zero modes of these horizon Dirac operators with Killing spinors.
To proceed, we shall modify both the KSEs and the horizon Dirac operators. For this

first observe that an equivalent set of KSEs can be chosen by redefining the supercovariant
derivatives from the gravitino KSE as

VE =v® ok A®) (3.3)
for some k € R, because
@Ei)ni =0, ADp=0—= Vgi)ni =0, A®nL=0. (3.4)
Similarly, one can modify the horizon Dirac operators as
2F) =D& 4 g A& (3.5)

for some ¢ € R. Clearly, if ¢ = 8k, then 2(&) = I’iﬁgi). However, we shall not assume this
in general. As we shall see, there is an appropriate choice of ¢ and appropriate choices of
k such that the Killing spinors can be identified with the zero modes of 2(+),

3.2 A Lichnerowicz type theorem for D()

First let us establish that the ny Killing spinors can be identified with the zero modes of a
2) . Tt is straightforward to see that if 14 is a Killing spinor, then 74 is a zero mode of
2. So it remains to demonstrate the converse. For this assume that 7, is a zero mode



of 2V, ie. 2y, = 0. Then after some lengthy computation which utilizes the field
equations and Bianchi identities, described in appendix C, one can establish the equality

ViVl |1? - <2W‘I’ + hi) Vill g P=2 VP [P + (=45 = 1657) || Ay |12,
(3.6)
provided that ¢ = —1. It is clear that if the last term on the right-hand-side of the above

identity is positive semi-definite, then one can apply the maximum principle on || 7, || as
the fields are assumed to be smooth, and & compact. In particular, if

1
——<Kk<O0, (3.7)
4
then the maximum principle implies that 7, are Killing spinors and || 74 ||= const. Observe

that if one takes 2(*) with ¢ = —1, then 2(H) = Fiﬁz(-ﬂ provided that k = —1/8 which
lies in the range (3.7).

To summarize we have established that for ¢ = —1 and —i <k <0,
Vi =0, AMp =0 = 2Mn, =0. (3.8)
Moreover || 74 ||? is constant on S.

3.3 A Lichnerowicz type theorem for D(-)

Next we shall establish that the n_ Killing spinors can also be identified with the zero
modes of a modified horizon Dirac operator 2(7). It is clear that all Killing spinors n_
are zero modes of 2(7). To prove the converse, suppose that 7_ satisfies 2(-)n_ = 0.
The proof proceeds by calculating the Laplacian of || n_ || as described in appendix C,
which requires the use of the field equations and Bianchi identies. One can then establish

the formula
Vi (e22V;) = —2e72% || VO |12 4672 (4r + 1687) || AT |2, (3.9)
provided that ¢ = —1, where
V=—dln [~ 0" (3.10)

The last term on the r.h.s. of (3.9) is negative semi-definite if — < x < 0. Provided
that this holds, on integrating (3.9) over S and assuming that S is compact and without
boundary, one finds that V(~)y_ =0 and A)y_ = 0.

Therefore, we have shown that for ¢ = —1 and —% < Kk <0,

v(*)n_ =0, Ay =0 < 9)y_=0 . (3.11)

7

This concludes the relationship between Killing spinors and zero modes of modified horizon
Dirac operators.

~10 -



3.4 Supersymmetry enhancement

The analysis developed so far suffices to prove that ITA horizons preserve an even number
of supersymmetries. Indeed, if Ny is the number of 7+ Killing spinors, then the number of
supersymmetries of ITA horizon is N = N, 4+ N_. Utilizing the relation between the Killing
spinors 77+ and the zero modes of the modified horizon Dirac operators 23 established
in the previous two sections, we have that

Ny = dimKer 2% (3.12)

Next let us focus on the index of the 2(t) operator. As we have mentioned, the
spin bundle of the spacetime S decomposes on S as § = Sy @& S_. Moreover, S; and
S_ are isomorphic as Spin(8) bundles and are associated with the Majorana non-Weyl 16
representation. Furthermore 2(t) : I'(S}) — T'(S4), where T'(Sy) are the sections of S,
and this action does not preserve the Spin(8) chirality. Since the principal symbol of 2(*)
is the same as the principal symbol of the standard Dirac operator acting on Majorana but
not-Weyl spinors, the index vanishes? [17]. As a result, we conclude that

}
dim Ker 2 = dim Ker<@<+>) : (3.13)

where (2(H)1 is the adjoint of 2(*). Furthermore observe that

f
(1) (99) = 9O (r),  (for g = -1), (3.14)
and so :
N_ = dim Ker (.@(_)) = dim Ker (9(+)> . (3.15)
Therefore, we conclude that Ny = N_ and so the number of supersymmetries of ITA

horizons N = Ny + N_ = 2N_ is even. This proves the first part of the conjecture (1.1)
for ITA horizons.

4 Construction of 1 from 7_ Killing spinors

In the investigation of the integrability conditions of the KSEs, we have demonstrated that
if n_ is a Killing spinor, then ny = I';1©_n_ is also a Killing spinor, see (2.30). Since we
know that the 1y and 7_ Killing spinors appear in pairs, the formula (2.30) provides a way
to construct the ny Killing spinors from the n_ ones. However, this is the case provided
that np =T 0_n_ # 0. Here, we shall prove that for horizons with non-trivial fluxes

Ker©_ = {0}, (4.1)

and so the operator I'; ©_ pairs the n_ with the n Killing spinors.

2This should be contrasted to IIB horizons where the horizon Dirac operators act on the Weyl spinors
and map them to anti-Weyl ones. As a result, the horizon Dirac operators have the same principal symbol
as the standard Dirac operator acting on the Weyl spinors and so there is a non-trivial contribution from
the index.

- 11 -



We shall prove Ker©_ = {0} using contradiction. For this assume that ©_ has a
non-trivial kernel, i.e. there is n_ # 0 such that

O_n_=0. (4.2)

If this is the case, then the last integrability condition in (B.1) gives that
LA = Langri 4 Lag, iy, - Leenpr L ey, pisk = 4
(-, T8 T g% +§ ij 11—16 i 11—ﬂ€ ijk n-)=0. (43)

This in turn implies that
Aln-,n-) =0, (4.4)
and hence

A=0, (4.5)

as 7_ is no-where vanishing.
Next the gravitino KSE V(~)5_ = 0 implies that

1 1 1 .-
Vi{n—n-) = =5hiln-,n-) + (-, (46‘I’le“ — %eq’GelmmFi%M“)n>

1 1 ~
+(n—, 'y ( - §Li + 86¢F£11€2Fi2162>77—> ; (4.6)

which can be simplified further using

1 1 1 ~
(n—,Ti0_n_) = —hi(n—,n-) + (n-, <€<I)Xz‘er£ - 6¢G£1£2£3£4Fi€1£263€4>77_)

4 8 192
1 I o2 0
+<77—7F11 - ZL'L + T6€ Fh@zri 172 77—> = 07 (47)
to yield
Villn- IIP==hi | n- |I* . (4.8)

As 7n_ is no-where zero, this implies that
dh=0. (4.9)
Substituting, A = 0 and dh = 0 into (A.5), we find that
M=d,L=0, T=d,S=0, Y=dyX—-LANF—-SH=0, (4.10)

as well. Returning to (4.8), on taking the divergence, and using (2.18) to eliminate the
Vih; term, one obtains

- - 1 1 1 - 1 ~
vzvi ” N ||2: 2vzq>vl || n_ ||2 +<L2+262<I>5«2_|_462<1>X2_|_462<1>F2_|_4882<I>G2> || n_ ||2 ]
(4.11)

Applying the maximum principle on || n we conclude that all the fluxes apart from the
dilaton ® and H vanish and || 77— || is constant. The latter together with (4.8) imply that
h = 0.

-2
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Next applying the maximum principle to the dilaton field equation (2.17), we conclude
that the dilaton is constant and H = 0. Combining all the results so far, we conclude that
all the fluxes vanish which is a contradiction to the assumption that not all of the fluxes
vanish. This establishes (4.1).

Furthermore, the horizons for which © _7_ = 0 (n_ # 0) are all local products R x S,
where S up to a discrete identification is a product of Ricci flat Berger manifolds. Thus S
has holonomy, Spin(7) or SU(4) or Sp(2) as an irreducible manifold, and Gy or SU(3) or
Sp(1) x Sp(1) or Sp(1) or {1} as a reducible one.

5 The sl(2,R) symmetry of ITA horizons

It remains to prove the second part of the conjecture that all IIA horizons with non-
trivial fluxes admit an s[(2,R) symmetry subalgebra. As we shall demonstrate, this in
fact is a consequence of our previous result that all IIA horizons admit an even number
of supersymmetries. The proof is very similar to that already given in the context of
M-horizons in [3], so we shall be brief.

5.1 Killing vectors

To begin, first note that the Killing spinor ¢ on the spacetime can be expressed in terms
of Ny as
e=ny+ulyO_n_+n_+rI'_ Oy +rul’ 60410 _n_, (5.1)

which is derived after collecting the results of section 2.3.

Since the n— and n4 Killing spinors appear in pairs for supersymmetric ITA horizons,
let us choose a n_ Killing spinor. Then from the results of the previous section, horizons
with non-trivial fluxes also admit ny = I';©_n_ as a Killing spinors. Using n_ and n; =
', ©_n_, one can construct two linearly independent Killing spinors on the spacetime as

€L =1n-tuny +rul’-Oiny, e =ny +rl'-O4ny . (5.2)

To continue, it is known from the general theory of supersymmetric ITA backgrounds
that for any Killing spinors {; and (» the dual vector field of the 1-form bilinear

K(C1,6) = ((T+ —T-)¢1, Tal2) e, (5.3)

is a Killing vector and leaves invariant all the other fields of the theory. Evaluating, the
1-form bilinears of the Killing spinor €; and e, we find that

Ki(er,e2) = (2r(Tyn—, O4ny) + u’rA || ny |*) e —2u | ny ||? e + Vie',
Ka(ez,e2) = Al my |* e =2 ny [P e,
Ks(er,er) = (2 || = 1> +4ru@on_, ©4ny) + r*u?A |y %) e™

—2u? || ny |> e +2uVie, (5.4)

where we have set

Vi=({Twn-,Ting) . (5.5)
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Moreover, we have used the identities

—A e P +4] ©4ng |P=0, (ne.TiO4ny) =0, (5.6)

which follow from the first integrability condition in (B.1), || 74 ||= const and the KSEs
of N+

5.2 The geometry of S

First suppose that V' # 0. Then the conditions Lx,g =0 and Li,F =0, a = 1,2, 3, where
F' denotes collectively all the fluxes of ITA supergravity, imply that

ViV =0, Lyh=LyA=0, Ly®=0,
LvX =LyG=LyL=LyH=LyS=LyF=0, (5.7)

i.e. V is an isometry of § and leaves all the fluxes on § invariant. In addition, one also
finds the useful identities

=2 ||y |7 =hV' +2(Tyn_,O4ny) =0, iv(dh) + 2d(I'yn-,©4n4) =0,
2(T4n-,04n4) = Al - |>=0, Vtln-Ph+dln-|>=0, (58)

which imply that Ly || n— ||?>= 0. There are further restrictions on the geometry of S
which will be explored elsewhere.

A special case arises for V = 0 where the group action generated by Ki, Ko and K3
has only 2-dimensional orbits. A direct substitution of this condition in (5.8) reveals that

Alfln-|P=2n ?, h=AT1dA. (5.9)

Since dh = 0 and h is exact such horizons are static and a coordinate transformation » — Ar
reveals that the horizon geometry is a warped product of AdSy with S, AdSs X, S.

5.3 sl[(2,R) symmetry of ITA-horizons

To uncover the sl[(2,R) symmetry of ITA horizons it remains to compute the Lie bracket
algebra of the vector fields associated to the 1-forms K, Ko and Kj3. For this note that
these vector fields can be expressed as

Ky = —2u | ny 20+ 20 | my |2 0, + V75,
Ky = —2 s P 0. -
Ky = —20 |y P 0+ (2 [ 0 |2 +4ru | ny )0, +20V75,,  (5.10)

where we have used the same symbol for the 1-forms and the associated vector fields. These
expressions are similar to those we have obtained for M-horizons in [3] apart form the range
of the index ¢ which is different. Using the various identities we have obtained, a direct
computation reveals that the Lie bracket algebra is

(K1, K] =2 || 0y |* Ko, [Ko, Ka) = =4 || 0y | Ki,  [Ks, Ki] =20y ||” K3,
(5.11)
which is isomorphic to s[(2, R). This proves the second part of the conjecture and completes
the analysis.
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6 Conclusions

We have demonstrated that smooth ITA horizons with compact spatial sections, without
boundary, always admit an even number of supersymmetries. In addition, those with
non-trivial fluxes admit an s[(2, R) symmetry subalgebra.

The above result together with those obtained in [2, 3] and [1] provide further evidence
to support the conjecture of [1] regarding the (super)symmetries of supergravity horizons.
It also emphases that the (super)symmetry enhancement that is observed near the horizons
of supersymmetric black holes is a consequence of the smoothness of the fields.

Apart from exhibiting an s[(2,R) symmetry, ITA horizons are further geometrically
restricted. This is because we have not explored all the restrictions imposed by the KSEs
and the field equations of the theory — in this paper we only explored enough to establish
the sl(2,R) symmetry. However, the understanding of the horizons admitting two super-
symmetries is within the capability of the technology developed so far for the classification
of supersymmetric ITA backgrounds [19] and it will be explored elsewhere. The under-
standing of all ITA horizons is a more involved problem. As such spaces preserve an even
number of supersymmetries and there are no IIA horizons with non-trivial fluxes preserv-
ing 32 supersymmetries, which follows from the classification of maximally supersymmetric
backgrounds in [18], there are potentially 15 different cases to examine. Of course, all ITA
horizons preserving more than 16 supersymmetries are homogenous spaces as a consequence
of the results of [20]. It is also very likely that there are no ITA horizons preserving 28 and
30 supersymmetries in analogy with a similar result in IIB [21-23]. However to prove this,
it is required to extend the IIB classification results to IIA supergravity, see also [24].

We expect that our results on IIA horizons can be extended to massive ITA supergrav-
ity [15]. This will be reported elsewhere.
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A Horizon Bianchi identities and field equations
We remark that there are a number of additional Bianchi identities, which are

dT + Sdh +dS A h =0,
dM +LAdh—hAdL =0,
dY+dhAX—hAdX+hA(SFI+F/\L)+T/\FI+F/\M:0. (A.1)

However, these Bianchi identities are implied by those in (2.11).
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There is also a number of additional field equations given by

- . 1.1 1
VT BT = Sdh Y Fy = 5 X MY~ 8 HM =0, (A2)

Ny ) 1 . ) 1 ~..
—Vi(e P My) + e *Ph My, — §e*2‘bdhwﬂijk =T Xk = 5 F7 Yo

1 ~
_76k£1£2£3£4€566£7n152f3G€455f6£7 = 07 (AS)
144
Ny ) 1 ..~ 1 . X -
_VZY;Jmn + hZYimn - §dhlj Gijmn + %Emnél&gd&dszb Yv&@gég H€4€5€6
1 ~
+@emn€1£2e3z4é5‘%G£1e223z4M£5£6 =0, (A4

corresponding to equations obtained from the + component of (2.6), the & component
of (2.7) and the mn component of (2.8) respectively. However, (A.2), (A.3) and (A.4) are
implied by (2.12)—(2.16) together with the Bianchi identities (2.11).

Note also that the ++ and +¢ components of the Einstein equation, which are

1~ - 3 .. 1 - 1 g y . 1 g
SVIVil = SHVIA = SAV'h; + AR? + <dhydhT = (V'A = ARV + £ M MY
1 ) 1 .
—|—§€2¢T¢TZ + E€2¢Y;'jkywk (A5)
and
lo; i e = [ 1 a1 o2s
5Vidhi; = dhigh! = Vi + Ahy = dh?V ;@ = SMILj + - Moy, B = 562 ST,
1 s 1 1 -
+562<I>T]F:ij _ ZEQ{DYViflngZlZZ + EGQ‘P}/'ElEQZBGiZlfQ&),
(A.6)

are implied by (2.17), (2.18), (2.19), together with (2.12)—(2.16), and the Bianchi identi-
ties (2.11).

B Integrability conditions and KSEs

Substituting the solution of the KSEs along the lightcone directions (2.23) back into the
gravitino KSE (2.20) and appropriately expanding in the r, u coordinates, we find that for
the 4 = + components, one obtains the additional conditions

1 1 1 .
<2A — g(dh)zjl“” + gMijFHF”

1,1 1 o o
+2 (4h,~FZ—LiF11FZ—e‘I’F11 (~25+FyrY) - e (12,17 —Gijklrw’f’» @+> by =0

4 16
(B.1)
1 i 1 i 1 iy 1 ij L e L ijk
zAhiF —ZBZAF + —g(dh)ijl“ _gMijF FH_Ze .r Fu—i—ﬂe Yiij @+ o+ =0
(B.2)
1 1 o1 y 1 , 1 g
(- 58 = g(dh)ig TV + oMy — Ze‘I’TiI"FH - ﬂe‘I’YUkrU’f

1
4

1. 1 - 1 L g
+2 (—4hi]_“— FllLin+Ee¢F11 (QS—FFZ'sz]) — 3 ed’ (12XijFZ]+Gijlel]kl)> @> ¢o_ = 0.

(B.3)

41
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Similarly the y =i component of the gravitino KSEs gives

~ 1 1 1 - .
Vip+ F Zhiqbi F ZFMLNH + grllﬂijkrjk¢i
1 ~ - L
~15¢ T (F28 + Ful ™ )Tigs + o=e® (F12Xul™ + Gy g, D) D = 0
(B.4)
and
= 3 I & lils L o5 Iyl
Vity + | — Zhl — Ee Xlllgr I, — 3. 4'6 Gll...l4F T
1 1~ gk 1 (0] 1 D T l1l2
et s 3 ikl + 3¢ ST + T Fi, 205 ) ) 7y
1 .1 . 1 . 1 )
+< = 3 (dh)y 17 — 2 My T + g'e(ijF]FiFll + 486(1937112131111[2“111) ¢+ =0
(B.5)
where we have set
T+ =040 . (B.6)

All the additional conditions above can be viewed as integrability conditions along the
lightcone and mixed lightcone and S directions. We shall demonstrate that upon using the
field equations and the Bianchi identities, the only independent conditions are (2.26).

B.1 Dilatino KSE

Substituting the solution of the KSEs (2.23) into the dilatino KSE (2.21) and expanding
appropriately in the r,u coordinates, one obtains the following additional conditions

. 1 . ~ . 3 ~ .
8i(I)PZ¢:|: — EPH(:FGLZ‘FZ + Hijkrzjk)(ﬁj: + geq)rn(:FZS + Fijl“”)¢i

_l’_

14l €q)(:|:12XijFij + éj1j2j3j4rjlj2j3j4)¢:l: =0 ’ <B7)

1 L 3 _
— <87;(I>FZ + EF11(6LiF’ + Hiij”’“) + §6¢F11(2S + Fijl“”)

1 4!6(D(12Xijrij + é’ijklrijkl)>7'+

1 g 3 . 1 g
—|—<4Mz‘jflJF11 + ZG(PTZ‘FTH + %etp%jkrmk>¢+ =0. (B3)

We shall show that the only independent ones are those in (2.26).

B.2 Independent KSEs

It is well known that the KSEs imply some of the Bianchi identities and field equations of a
theory. Because of this, to find solutions it is customary to solve the KSEs and then impose
the remaining field equations and Bianchi identities. However, we shall not do this here
because of the complexity of solving the KSEs (B.1), (B.2), (B.5), and (B.8) which contain
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the 74 spinor as expressed in (B.6). Instead, we shall first show that all the KSEs which
contain 74 are actually implied from those containing ¢, i.e. (B.4) and (B.7), and some
of the field equations and Bianchi identities. Then we also show that (B.3) and the terms
linear in u from the + components of (B.4) and (B.7) are implied by the field equations,
Bianchi identities and the — components of (B.4) and (B.7).

B.2.1 The (B.5) condition

The (B.5) component of the KSEs is implied by (B.4), (B.6) and (B.7) together with
a number of field equations and Bianchi identities. First evaluate the Lh.s. of (B.5) by
substituting in (B.6) to eliminate 7, and use (B.4) to evaluate the supercovariant derivative
of ¢4. Also, using (B.4) one can compute

- - - - 1- 1 ~ 1 = =
(Vjvi - vivj) ¢+ = 3 Vilhi)os + T1uV;(Li)¢+ — TuV; (Hii, )T 204

4
1 - - /-
1€ T (=2V,(8) + ¥, (Fia ) ") Digys
1 ~ -/~ o
~3. 4!e¢’ (—12Vj(Xkl)Fkl +V; <Gj1j2j3j4>1“]1]2]3J4) Tips
1 -~ -
+35Vi®e T (—25 + Fklrkl)rim
71 Y @ ki g J172J374
8. 4!vj¢)e <_12Xklr + Gjrjajsjal )Fi¢+
1 1 1 7 gk L s okl
+ ihl + ZrllLi - §F11H,~jk1“ + Ee ' (—25 + Fy T’ )Fi
T34l e? (_12Xklrkl + éj1j2j3j4rj1j2j3j4)ri> Vigy — (i 4 j).

(B.9)
Then consider the following, where the first terms cancels from the definition of curvature,
1~ - 1 /= = .~ 1~ 1
<4RUF3 - 51_‘3 (V]Vl - V1V3)> ¢+ + §V1(A1) + 5\1’1./41 == 0, (BlO)
where

. 1 o 3 L
Ar = 90T, — =T (—GLZ-I” v Hijkrlﬂ’f) b1+ 2T (—25 + Fijrw) by

+4 } 4[6(1> <_12Xijrij + éj1j2j3j4rjlj2j3j4) o+ (B.11)
and
R PR N - A (B.12)
T 4 ) 11 4 [ S ijk . .

The expression in (B.11) vanishes on making use of (B.7), as A; = 0 is equivalent to the
+ component of (B.7). However a non-trivial identity is obtained by using (B.9) in (B.10),
and expanding out the A; terms. Then, on adding (B.10) to the Lh.s. of (B.5), with 74
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eliminated in favour of 7, as described above, one obtains the following

1/ ~ ~ 1 ~ o~ 1 1~ ~
Z <Rij + V(ihj) — ihihj + QViVj(I) + iLiLj — ZHilllgHjllb

1 o m ~7 1 op=~ = 1 1
7562¢Elel + §e2<I>Fvlll2Fl1l25ij + §€2<I>Xille _ §62<I>Xlll2Xlll25ij

- ~ 1 ~ = 1 ;
(I)GiflégstjZleQZS 4 762¢G81£2£3£4GZIEQZS&(S@']’ _ €2<I>S25ij>]_"] =0. (Blg)

-2
12¢ 96 1

This vanishes identically on making use of the Einstein equation (2.19). Therefore it
follows that (B.5) is implied by the + component of (B.4), (B.6) and (B.7), the Bianchi
identities (2.11) and the gauge field equations (2.12)—(2.16).

B.2.2 The (B.8) condition
Let us define

1 o 3 L
Ay = — <8i<1>1” + 0 (6L + Hypl'7*) + STy (25 + Fy17)

—4 - 4!€q> (12X¢j1—‘ij + Gijkll“ijkl» T+

1 y , 1 g
+ <4szr”r11 + zeq)TiFTn + Meq)Yiij”k> P+ (B.14)
where Ay equals the expression in (B.8). One obtains the following identity

1 .-
Ay = —§Flvi./41 + Ui A;, (B.15)
where

T T | 1 4~
Wy = Vi@l' + Shil" + Eeéxhbrlllz — @e%hmmrhw

1 -~ 1 ' 1 ~ 1
+I'11 (48Hl1l2l3rlll2l3 — gLiFZ + 1—664’}711121“[1’2 — 86(1’5’) . (B.16)

We have made use of the + component of (B.4) in order to evaluate the covariant derivative
in the above expression. In addition we have made use of the Bianchi identities (2.11) and
the field equations (2.12)—(2.17).

B.2.3 The (B.1) condition

In order to show that (B.1) is implied from the independent KSEs we can compute the
following,

( - iR - Fij@i@j>¢+ —T'Vi(A)

~ 1 . 1 1 ~
+<vi<1>r2 + ol + —eP X, T2 — PGy gy, T 20

16 192
1 l [ l1l2l3 1 P 1 P 77 lilo
+F11 _leF - ﬂHllblgF - ée S + T66 Bllzr Al = 07 (B17)
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where

3 - . 1 1 l~0 5
R = —2A —2h'V,;® — 2V?® — §h2 + §L2 + ZH2 + 5e”’S?

Loozo 3 ooy2, 1 2040
——e T+ e X+ — B.1
1€ +4e +486 G (B.18)

and where we use the + component of (B.4) to evaluate the covariant derivative terms. In
order to obtain (B.1) from these expressions we make use of the Bianchi identities (2.11),
the field equations (2.12)-(2.17), in particular in order to eliminate the (V®)? term. We
have also made use of the +— component of the Einstein equation (2.18) in order to rewrite
the scalar curvature R in terms of A. Therefore (B.1) follows from (B.4) and (B.7) together
with the field equations and Bianchi identities mentioned above.

B.2.4 The + (B.7) condition linear in u

Since ¢4 = n4 +ul'1©_n_, we must consider the part of the + component of (B.7) which
is linear in w. On defining

, 1 o 3 L
Bi = 0,80y — - Tuy (6L + Higel7* )y + STy (25 + FyT ) -

+

e <12Xi]-1““ + éj1j2j3j4rjlj213j4) n- (B.19)

one finds that the u-dependent part of (B.7) is proportional to

1 .-
- il‘zvi(Bl) + UoB5 (B.QO)
where

- ) 1 ) 1 1 ~
Uy = V,;0I" + ghil“’ — Tﬁe(lellQFlllQ — @e‘DGlllnghrhbbu

L = hisls L Ly i b oom wnn, Lo
+I'11 <48H1112l31_‘ 12 4 gLiI‘Z + 16¢ Fp, I 4 3¢ S. (B.21)
We have made use of the — component of (B.4) in order to evaluate the covariant derivative
in the above expression. In addition we have made use of the Bianchi identities (2.11) and
the field equations (2.12)—(2.17).

B.2.5 The (B.2) condition

In order to show that (B.2) is implied from the independent KSEs we will show that it
follows from (B.1). First act on (B.1) with the Dirac operator I'*V; and use the field
equations (2.12)—(2.17) and the Bianchi identities to eliminate the terms which contain
derivatives of the fluxes and then use (B.1) to rewrite the dh-terms in terms of A. Then
use the conditions (B.4) and (B.5) to eliminate the 9;¢-terms from the resulting expression,
some of the remaining terms will vanish as a consequence of (B.1). After performing these
calculations, the condition (B.2) is obtained, therefore it follows from section B.2.3 above
that (B.2) is implied by (B.4) and (B.7) together with the field equations and Bianchi
identities mentioned above.
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B.2.6 The (B.3) condition

In order to show that (B.3) is implied by the independent KSEs we can compute the
following,

1 .~ . -
A )

- 1 ) 1 1 -
+< = Vi®I" + b + —e® X, T2 4 e ® Gy, D200

16 192
1 l 1 - l11213 1 [} 1 D 7 l1l2
+I'11 _ZLZF + ﬁﬂlllﬂgf — ge S — Ee Flll21“ Bi =0, (B.22)

where we use the — component of (B.4) to evaluate the covariant derivative terms. The
expression above vanishes identically since the — component of (B.7) is equivalent to B; = 0.
In order to obtain (B.3) from these expressions we make use of the Bianchi identities (2.11)
and the field equations (2.12)—(2.17). Therefore (B.3) follows from (B.4) and (B.7) together
with the field equations and Bianchi identities mentioned above.

B.2.7 The + (B.4) condition linear in u

Next consider the part of the + component of (B.4) which is linear in u. First compute

. - 1~ . -
<FJ (Vivi-Viv;) - ZRijrﬂ)n_ — Vi(By) — W8y =0, (B.23)
where
1 1 1~ .
U, = ~h; — Ty | =L; + = H;;, 1% B.24
1 11 <4 + g ik ) (B.24)

and where we have made use of the — component of (B.4) to evaluate the covariant deriva-
tive terms. The resulting expression corresponds to the expression obtained by expanding
out the u-dependent part of the + component of (B.4) by using the — component of (B.4)
to evaluate the covariant derivative. We have made use of the Bianchi identities (2.11) and
the field equations (2.12)—(2.16).

C Calculation of Laplacian of || n. ||?

In this appendix, we calculate the Laplacian of || n+ ||, which will be particularly useful
in the analysis of the global properties of ITA horizons in section 3. We shall consider the
modified gravitino KSE (3.3) defined in section 3.1, and we shall assume throughout that
the modified Dirac equation 2F)ny = 0 holds, where 23 is defined in (3.5). Also, \Ilgi)
and A®) are defined by (2.28) and (2.29), and ¥*) is defined by (3.2).

To proceed, we compute the Laplacian

ViVillnel? = 2(ne, VIVins) + 2(Vins, Vins) . (C.1)
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To evaluate this expression note that

Vzvmi @z (Fj@jnzg - Fij@i@jni

FT/
. . 1-
r i(F]ani) + ZRni

Il
<

A~ 1.
PV (~9® s - gA®nL) 4 R (C.2)
It follows that

- 1~ .
(e, ViVine) = 1R | s |2+ T'V; (— 95 = gA®) )

(e, T (—0®) = gA®)) Vi), (C:3)

and also

o o . . t
(Vine, Ving) = (V&ing, Vgi)nﬁ - 2<"7i,<‘11(i)’ + HT’A(i)) Vint)

. , 1
—(ns, (\If&” + nrwi)) (\Ifﬁ) + KT A(i)) )
= || @(i)ni H2 —2(ns, \I/(i)“@ij _ 2/f<77:|:7v4(i”ri6i77ﬂ:>
—(n+, (\If‘i)“\lfﬁi) ok ADTPE) | g2 A A<i>) i)

= | Ve |2 ~2ns, WBIV ) — (s, 0ETT )
+(2rq — 8r7) | Ay |7 (C.4)

Therefore,
1o )
SV Villnel = | VO |7 +(2mq — 847) || A |
1~ .- .
+(n4, <4R +1I'V; (—\I/(i) — qA(i)> — \Ij(i)ZT\I,l(i))ni>

+(ns, <F" (—xp(i) - q.A(i)> - qu(i)”) Vi) . (C.5)

In order to simplify the expression for the Laplacian, we shall attempt to rewrite the third
line in (C.5) as

(s (ri(wﬂ —gA®) - 2\1/<i>“>©ini> = (e, FOTVine) + WV, | g |7,
(C.6)
where F&) is linear in the fields and W& is a vector. This expression is particularly
advantageous, because the first term on the r.h.s. can be rewritten using the horizon Dirac
equation, and the second term is consistent with the application of the maximum prin-
ciple/integration by parts arguments which are required for the generalized Lichnerowicz
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theorems. In order to rewrite (C.6) in this fashion, note that

. . . 1 .. ..
I (\I/(i) + qA<i)) + 20 = <:th F g+ DLl + (g + DI H g, T + 2qV’<I>>

1 1 |
+<i Thl7 & <g + 4)F11Ljrﬂ

1 - . A
— <f2 + 8>F11H€1€2€3P£1€2€3 - qvj(I)F]>FZ
1 ; 1 ~ ~
Fg(a+ D" X, T 4 o (g 4 1)e™ Gy parye, ITHEES
3 N S ,
+(g+ 1)1 < + Ze‘bSF% - Se‘nglerr‘lb) : (C.7)
One finds that (C.6) is only possible for ¢ = —1 and thus we have
N A .
Wi~ (2v%<1> + hl) (C.8)
1
4

We remark that 1 is the adjoint with respect to the Spin(8)-invariant inner product

1

LTI
e 24

1 L . .
]:(:t) = :thjrj — Vj(I)FJ +I'; < + H€1€2€3FZ162Z3> : (Cg)

(, ). In order to compute the adjoints above we note that the Spin(8)-invariant inner
product restricted to the Majorana representation is positive definite and real, and so
symmetric. With respect to this the gamma matrices are Hermitian and thus the skew
symmetric products I'¥ of k& Spin(8) gamma matrices are Hermitian for k£ = 0 (mod 4) and
k = 1(mod 4) while they are anti-Hermitian for £ = 2 (mod 4) and k¥ = 3 (mod 4). The
I'11 matrix is also Hermitian since it is a product of the first 10 gamma matrices and we
take Ty to be anti-Hermitian. It also follows that T'11T*! is Hermitian for k& = 0 (mod 4)
and k = 3 (mod 4) and anti-Hermitian for £ = 1(mod 4) and k& = 2 (mod 4). This also
implies the following identities

(ny,Tklp Yy =0, k =2 (mod 4) and k = 3 (mod 4) (C.10)

and
(e, DTy =0, k=1 (mod 4) and k = 2 (mod 4) . (C.11)

It follows that
le,e 2 i
3V Villnzl? = | V&ne |2 +( = 26 — 862) | Ay |2 +WEHIV; || ny |2

1 - L
+(n, <4R v (—\I/(i) - A(i>)

W) 4 ) (g A(ﬂ:)))?m ‘

(C.12)
It is also useful to evaluate R using (2.19) and the dilaton field equation (2.17); we obtain
. y 1 - o .
R = —V'(h;) + 5h? —4(V®)? - 20V, ® — %LZ + %HZ
Tege Sgnga, daegs 1 e s

2 4 4 48
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One obtains, upon using the field equations and Bianchi identities,
(1R+F’ﬁi <—\If<i) + A(i)) —y@itg®) 4 &) (—\If(i) + A(i))) N
4 (3
le 1 rri 0142 le [ 1 =i DA
— :I:ZVgl (h(z) F TGH 010, L0 | T + :Engl (e X42(3)+ ﬂv (e Gi3142@3>

1 o 1 1 ~ 1 ~ . ~
:F—e‘bhlGiglg2@3 - 76@)@1@ hﬁa + geq)v& (I)sz@ - ﬂéva(I)G’[le?Z?'

96 32
1 P 77 1 P o173 1 P i1 {1020
:Fie FZMQLZ3 + %6 SHllfggg - 376 Flleifgf:;) s

1~ 1~. - 1
r ~V(e?S) — =V (e Fyp )+ —e®Shy + —e®h'F, i— VP
+111 <<¥ Vz(e S) 4V (6 Zg) 166 Shy 16 h'F; z@ e VS

1 1 1
+-e®VIdF, + 6 X T 3—2e CHYI, X — %e‘bG”’“eHUk> I

. 1 ..
(L) = 59 (e, ) + 4v1<I>Hw1e2imhlﬂiz@ﬂﬂz

1 ~ . N
¢ 010203040
Tao € H€1€2€3X€4E5+7€ Gl£1€253HM4€5 [f1tatstals N

384° "Cueststiles + 192

192

s
b

+50F )<h’V®—Vh> (C.14)

Note that with the exception of the final line of the r.h.s. of (C.14), all terms on the
r.h.s. of the above expression give no contribution to the second line of (C.12), using (C.10)
and (C.11), since all these terms in (C.14) are anti-Hermitian and thus the bilinears vanish.
Furthermore, the contribution to the Laplacian of || 74 ||? from the final line of (C.14) also
vanishes; however the final line of (C.14) does give a contribution to the second line of (C.12)
in the case of the Laplacian of || n_ ||2. We proceed to consider the Laplacians of || 7+ ||
separately, as the analysis of the conditions imposed by the global properties of S differs
slightly in the two cases.

For the Laplacian of || n ||?, we obtain from (C.12):
VUV e [P =@V + ROV e 2= 2 Vi |2 —(dr + 166%) || A |2
(C.15)
This proves (3.6).
The Laplacian of || n_ ||? is calculated from (C.12), on taking account of the contribu-
tion to the second line of (C.12) from the final line of (C.14). One obtains

Vi(e 2V;) = —2¢722 | VO |12 472 (4k + 1682) || AT |2, (C.16)

where

V=—d|n|>=ln-[*h. (C.17)
This proves (3.9) and completes the proof.
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