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1 Introduction

Gravity has a smoothing effect on a mass or matter distribution, as is evident from all

the sufficiently massive spherical objects in the universe, including our planet which has

deviations from surface smoothness with its tallest mountain and deepest point in the

ocean amounting to less than 10−3 of its radius. For more massive compact objects, the

deviations from surface smoothness would be even less: for example on a neutron star with

1.4 times the mass of the Sun, the height of a mountain could be around 1 cm (not much

to hike!). Black holes are even smoother: they have “no hair”. Rotations about an axis

can introduce larger deviations from perfect spherical shape, but that is a totally different

story. For the earth, this deviation is about 4 × 10−3, that is the polar radius is around

25 km smaller than the equatorial one. While gravity’s smoothing effect on objects that

we can see is clear, what we also know is that space-time, even if devoid of any matter, as

a manifold itself, also gravitates due to the non-linearity of the field equations. This raises

many questions that fall in the intersection of physics and mathematics. For example, one

might wonder if one can study the topological classification of manifolds with the help

of gravitational equations of some sort. The answer is affirmative but not obvious and

actual execution of such a classification is certainly not straightforward. First, one needs
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to make sure that there is a connection between the Riemannian structure (the metric, the

curvature) and the topology. After all the metric and the curvature are local quantities but

global topology a priori should not be determined by the local structure. This cursory look

is actually not correct and there is a connection between the topology of a manifold and its

Riemannian structure as beautifully exemplified by the formula relating the Euler number

of a closed two surface in terms of its total Gaussian curvature: 2πχ(Σ) =
´

ΣK
√
g d2x.

This and analogous results in higher dimensions encourage one to study the global

topology of manifolds with the help of curvature and the metric. Considering the above

mentioned smoothing nature of gravity, and the fact that topological classification boils

down to identifying manifolds that can be smoothly deformed to each other, one might

perhaps try to let the metric on a manifold evolve in time with Einstein’s equation or

some modified form of it. While this seems like a feasible idea, it is also well-known that

singularities, such as black hole singularity, form in a sufficiently general non-linear theory

of gravity. Hence one must somehow deal with singularities or better yet turn them into

advantage as is done in Ricci flow with surgery.

The choice of gravity-like equations in order to study the topology of manifolds is

an important issue. For example, if one naively takes the Einstein’s equations (say in

vacuum), then depending on the number of dimensions, one has a very different nature of

solutions. Considering three manifolds per se, one can split the four dimensional Einstein’s

equations into 3 + 1 as space and time hence study the evolution of 3 spaces in time.

But it turns out that there are all sorts of solutions, including propagating local modes

(gravitons), gravitational waves etc. due to the hyperbolic nature of the equations. Sticking

to three dimensional manifolds, the goal is to have a finite dimensional solution space (up

to perhaps scaling of the metric and the diffeomorphisms). In the choice of the proper

equations, uniformization theorem of two dimensional closed, orientable surfaces, which

reduces to finding conformally equivalent metrics of constant Gaussian curvature (usually

normalized as 1, 0,−1 for the sphere, torus and higher genus tori respectively), gives us an

important hint: that is, one must find “constant curvature” metrics on a given manifold.

Here by “constant-curvature”, we mean either constant scalar curvature or constant Ricci

curvature or in the extreme case, constant Riemann curvature. Of course the last one

is too restrictive and its solutions are already known; they are the maximally-symmetric

spaces. On the other hand, finding constant Ricci curvature metrics boils down to solving

Einstein’s equations in vacuum (Rij =
R
n gij) for which a general strategy is not known even

though there are books compiling plethora of solutions. The question whether a manifold

of dimension larger than two admits a constant scalar curvature is called the Yamabe

problem [1], which in some sense generalizes the two dimensional uniformization problem

to higher dimensions.

All the above discussion suggests that given a differentiable manifold M and an initial

metric g0 on it, we should try to get a “nicer”, more symmetric metric by smoothly de-

forming the initial metric. The way to proceed is clear: as in the case of the usual diffusive

scalar heat equation, one must have an equation of the form

∂

∂t
gij(t, x) = Eij(t, x) , (1.1)
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where the deformation parameter t is “time” (or a parameter related to the energy scale)

and it is an external parameter not a dimension on the manifold, while x denotes the

local coordinates on the manifold which we shall take to have a positive signature metric.

Depending on the property of the manifold one is interested in, a specific Eij tensor can

be chosen. For example, to define the Ricci flow, which was introduced by Hamilton [2],

one takes the following “volume-normalized” equation

∂

∂t
gij = −2

(

Rij −
rgij

n

)

, (1.2)

where r is the average Ricci scalar

r = V−1

ˆ

dnx
√
g R , where V ≡

ˆ

dnx
√
g . (1.3)

Fixed points of the flow are Einstein metrics, therefore this is in some sense a parabolic

extension of Einstein’s equation, albeit its parabolic nature is not apparent at this non-

linear level. Namely with this flow, the metric is deformed in such a diffusive way that the

manifold eventually admits a constant Ricci curvature while preserving volume. Hamil-

ton [3] used this equation to give another proof of Poincare’s uniformization theorem for

two dimensional closed surfaces mentioned above. Over a decade ago, Perelman [4, 5], us-

ing a modified form of the Ricci flow equation, proved the three dimensional uniformization

theorem, then called the Thurston’s conjecture [6] with a heroic effort bringing Hamilton’s

expectation and programme to a successful end. Even though the uniformization theorem

itself and the equations employed to prove it are so closely related to physics, not much

work has been done on Ricci flow in physics (save a couple which we mention below).

Let us expound upon how the uniformization theorem and Ricci flow type equations

are related to physics. First of all, just about the same time (and actually, a little before)

Hamilton introduced the Ricci flow, the equation was found by Friedan [7] as the renor-

malization group (RG) equations of the couplings in a non-linear two dimensional sigma

model. In the non-linear sigma model, the metric is just like any other coupling and runs

with energy, hence there is a β function for it and the β function is given as the Ricci tensor

plus infinitely many two tensors built from the curvature tensor and its derivatives. Two-

dimensional sigma model fields are coordinates on the target space which is a Riemannian

manifold. RG flow in the sigma model corresponds to a modified Ricci flow in the target

space.

One can also see the relevance of the three dimensional uniformization theorem in

general relativity (GR): in the 3+1 dimensional formulation of GR, three manifolds evolve

in time. Since closed 3 manifolds are classified by the uniformization theorem, in essence,

the theorem is at the heart of the question of what the shape of the apparent 3 dimen-

sional spatial universe is. Let us give another example of how these flows can be relevant

to physics. Consider a gravity theory (a Euclidean one) defined with certain boundary

conditions. There could be many solutions satisfying the boundary conditions. In that

case, the question is which solution is the global minimum of the Euclidean action. One

can use a Ricci flow type equation to study the stability of the solutions and determine
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Geometry Metric Curvature tensors Cotton tensors

R3 ds2= dx2 + dy2 + dz2 Rij = 0 Cij = 0

S3 ds2= dx2+sin2 xdy2+(dz+cosx dy)2 Rij = 1

2
gij Cij = 0

H3 ds2= 1

x2 (dx
2 + dy2 + dz2) Rij = −2gij Cij = 0

S2 ×R1 ds2= dx2 + sin2 x dy2 + dz2 R11 = 1, R22 = sin2 x Cij = 0

H2 ×R1 ds2= 1

x2 (dx
2 + dy2) + dz2 R11 = R22 = − 1

x2 Cij = 0

Sol ds2= e2zdx2 + e−2zdy2 + dz2 R33 = −2 C12 = 2

Nil ds2= dx2 + dy2 + (dz + x dy)2 R11 = − 1

2
, R22 = x2

−1

2
C11 = − 1

2
, C22 = x2− 1

2

R33 = 1

2
, R23 = t

2
C33 = 1, C23 = x

SL(2,R) ds2= 1

x2 (dx
2 + dy2) +

(

dz + 1

x
dy

)2
R2

ij = 19

4
, R = − 5

2
, R11 = − 3

2x2 , C11 = 1

x2 , C22 = − 1

x2

R22 = − 1

x2 , R23 = 1

2x
, R33 = 1

2
C23 = − 2

x
, C33 = −2

Table 1. Thurston geometries.

possible transitions between solutions. In fact, this was done in [8] for general relativity in

a box with a boundary of S2 × S1 with 3 critical points in four dimensions. Their exercise

is a demonstration of how Euclidean version of gravity (which could possibly correspond

to quantum processes such as black hole decay in the Lorentzian setting) can be studied

by geometric flows. Namely, the discrete solution space is extended by the Ricci flow hence

an off-shell theory can be constructed. See [9] for a similar analysis using the Ricci-Cotton

flow that studies the transition between the two vacua Anti de Sitter (AdS) and warped

AdS. See [10], for some other possible applications of Ricci flow and [11] for a modified

Ricci flow with additional fields and [12] for some higher derivative flows.

Inspired by the work on Ricci flow, in [13], Cotton tensor (Cij) was used to define a

geometric flow exclusive to three dimensions as

∂

∂t
gij(t, x) = κCij(t, x) , (1.4)

where fixed points are locally conformally flat metrics. Note that since the Weyl tensor

vanishes identically in three dimensions, a manifold is conformally flat if and only if Cij = 0.

Therefore, Cotton flow equation could be used to answer the question: whether a given

three manifold M admits a conformally flat metric or not. In this sense pure Cotton

flow is orthogonal to the Yamabe flow since Yamabe flow keeps the conformal class intact,

while the Cotton flow changes the conformal class. In [13], equation (1.4) was derived as a

gradient flow of an entropy functional and the equation was numerically and analytically

solved for homogeneous Thurston’s geometries. In particular, it was shown that a deformed

initial metric on S3 flows into the conformally flat round metric on S3. In table 1 we

compile these homogeneous geometries and compute their Cotton tensors just for the sake

of completeness. As it is clear from the table, the first five of the geometries are fixed points

of the Cotton flow. Moreover, homogeneously deformed initial metrics on R3, H3, S2×R1

and H2 × R1 are left intact under the Cotton flow. On the other hand, under the Ricci

flow S2 × R1 and H2 × R1 geometries are degenerated [14]. Analytic solutions show that

homogeneous metrics in the Nil class tend to a pancake degeneracy and the Solv metrics

develop cigar degeneracies. In this current work, we shall study several pertinent points in

Cotton flow, the most important being the linear (in)stability of flat space. We also show
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the instability of Einstein spaces and some conformally flat spaces. We shall also linearize

the Cotton flow equations about a generic background and apply DeTurck’s technique [15]

to get a slightly better equation, yet we shall not be able to prove short-time existence

for an arbitrary initial metric. Nevertheless, ensuing discussions along this line will need

our linearized equations. We also refine the earlier gradient flow formulation of the Cotton

flow and define new objects which we shall call extended Cotton solitons that are critical

points of the entropy functional. We study two examples of Cotton and Ricci solitons and

define Topologically Massive solitons. There have been several other interesting works in

the literature regarding the Cotton flow (or its more complicated cousin Ricci-Cotton flow).

For example, see [16–18] for Cotton-like flow in the Horava-Lifshitz gravity context. See

also [19–21] where Cotton solitons were found.

The lay-out of the paper is as follows: in section 2, we linearize the Cotton flow equation

about a generic background and identify the symmetries of the equation. In section 3, we

fix the diffeomorphisms and scalings of the metric via the DeTurck trick to simplify the

equation and compute the principal symbol of the relevant operator. In section 4, we study

the linearized stability of the flat space which is a critical point of the flow and find an

unstable mode. In section 5, we refine the gradient flow formulation of the Cotton flow,

and expand the entropy functional for a generic fixed point of the flow up to second order

in perturbation theory, and show that Einstein spaces as critical points are unstable. In

section 6, we give details of the properties of extended Cotton solitons and show that there

are no non-trivial compact solutions. We give examples of Cotton and Ricci solitons as well

as Topologically Massive solitons. In the appendices A, B, C, we expound upon some of

our calculations and in appendix D, we show how the Cotton tensor flow under arbitrary

flows and specifically the Ricci flow.

2 Linearization of the Cotton flow about an arbitrary curved background

Cotton flow on a 3 manifold is defined as1

∂tgij = Cij , (2.1)

where we have scaled t to set κ = 1 and from now on we suppress the arguments of the

tensors. The Cotton tensor is given as

Cij =
ǫikl√
g
∇k

(

Rj
l −

1

4
δ
j
lR

)

, (2.2)

with ǫikl being the anti-symmetric tensor density defined as ǫ123 = +1. (In appendix A, we

compute how some other tensors and scalars built out of tensors flow under Cotton flow.)

In what follows we will use the anti-symmetric tensor

ηijk ≡ ǫijk√
g
. (2.3)

1One is almost tempted to call this “100% Cotton flow”, as there will be non-pure, mixed flows that we

shall discuss.
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Cij is symmetric and covariantly conserved ∇iC
ij = 0, and traceless gijC

ij = 0. These

constraints tell us that out of 6 components of the (symmetric) metric gij , only 2 can be

determined by the Cotton flow equation (2.1), hence a gauge fixing must be done. To

understand the local nature of the Cotton flow about a flat background, equation (2.1) was

linearized for flat metrics ḡij = δij in [13]. In this section, we will generalize this result for

a generic background ḡij to understand the linearized version of the flow. The results are

relevant to the existence and uniqueness of the flow as well as the linear stability of the

critical points, namely whether the critical points are saddle points, minima or maxima

of the action from which Cotton flow is derived. For the existence and uniqueness of the

flow, unfortunately we have nothing to say since the equation is a third order PDE and

necessary mathematical technology does not seem to exist yet, but stability issue will be

studied in the next section.

To linearize the Cotton tensor about an arbitrary background ḡij , it is useful to recast

it in an explicitly symmetric form as [22]

2Cij = ηikl∇kG
j
l + ηjkl∇kG

i
l , (2.4)

where Gj
l = Rj

l− 1
2δ

j
lR is the Einstein’s tensor. Assuming gij = ḡij +hij , and hij is small

compared to the background metric ḡij which at this stage arbitrary (namely not a critical

point of the flow), then one obtains the linearized Cotton tensor as

2(Cij)L = −3h

2
C̄ij− 1

2
ηikl �̄∇̄kh

j
l+

1

2
ηikl ∇̄j∇̄n∇̄khl

n+
3

2
ηikl ∇̄k(S̄njhnl)+

1

6
ηikl R̄∇̄kh

j
l

− 1

2
ηikl S̄j

l∇̄kh− 1

2
ηikl hnl∇̄nS̄j

k + ηikl S̄nk∇jhnl + ηikl S̄l
n∇nh

j
k + i ↔ j ,

(2.5)

where S̄ij = R̄ij− 1
3 ḡijR̄ is the traceless Ricci tensor and �̄ = ḡij∇̄i∇̄j and h ≡ ḡijhij . Note

that “L” refers to the linearization and all the barred quantities are taken with respect to

the background metric, which also raises and lowers the indices of linearized quantities.

One must be careful with the linearization of the up and down indices, for example

(Cij)L = (Ckl)L ḡikḡjl + C̄k
jhik + C̄k

ihjk . (2.6)

Derivation of (2.5) is somewhat tedious, hence we relegate the details into appendix B.

This is the main equation that should be used in the study of the stability of various critical

points of the flow. Let us note several properties of (2.5). First of all one obtains the

contraction ḡij(C
ij)L = −hijC̄

ij , as expected from the linearized tracelessness condition

(gijC
ij)L = 0. Secondly, the linearized version of the divergence-free condition of the

Cotton tensor reads at this order as

∇̄i(C
ij)L + (Γi

ik)LC̄
kj + (Γj

ik)LC̄
ik = 0 , (2.7)

which is satisfied by (2.5) which can be shown after a rather long computation.

Let us also understand the symmetries of the linearized Cotton tensor (2.5). Under

infinitesimal diffeomorphisms and scalings of the metric as

δζ,λhij = ∇̄iζj + ∇̄jζi + λ(x)ḡij , (2.8)

– 6 –
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with λ(x) a scalar function and ζi a vector field, (2.5) transforms as

δζ,λ(C
ij)L = ζk∇̄kC̄ij − C̄kj∇̄kζ

i − C̄ki∇̄kζ
j − 5

2
λ(x)C̄ij , (2.9)

where the first three terms come from the Lie derivative Lζ(C
ij)L as expected. The im-

portant point is that (2.9) vanishes at the fixed points (C̄ij = 0) of the flow, hence dif-

feomorphism and scalings apparently make the critical point a saddle point. But this is

actually a red-herring coming from the symmetry of the theory and so must be moded out

or gauged out to study genuine flows. This property of the linearized flow equation can

also be reached in the non-linear flow equation. Diffeomorphisms are easy to understand

(they are similar to the Ricci flow case), therefore let us concentrate on the scalings of the

metric.

Consider changing the t-parameter to s → s(t), and define a new metric on the mani-

fold as

g̃ij(s) ≡ ϕ(s) gij
(
t(s)

)
, (2.10)

such that gij(t) satisfies the Cotton flow equation

∂tgij(t) = Cij(t) . (2.11)

Then, lets check the flow satisfied by g̃ij(s):

d

ds
g̃ij(s) = g̃ij

1

ϕ(s)

dϕ(s)

ds
+ ϕ(s)

dt

ds
Cij(t) . (2.12)

Since the Cotton tensor transforms under conformal scalings as C̃ij(g̃) = ϕ− 1

2Cij(g),

(namely
√
g Ci

j is conformally invariant) one has the following flow equation

d

ds
g̃ij(s) =

d
(
logϕ(s)

)

ds
g̃ij + ϕ

3

2 (s)
dt

ds
C̃ij(g̃) . (2.13)

Hence, choosing ϕ3/2 dt
ds = 1 yields

d

ds
g̃ij(s) =

d
(
logϕ(s)

)

ds
g̃ij + C̃ij(g̃) . (2.14)

Therefore by parameterizing the time variable one can produce the scaling term.

Next having observed the symmetry of the flow, we can introduce the DeTurck trick [15]

which was used to show that the Ricci flow is parabolic and hence diffusive. Without

this trick, parabolic nature of the Ricci flow for an arbitrary initial metric is a highly

cumbersome task to show [2]. Since the Cotton tensor is of third order, one should not

expect to apply the theory of elliptic differential operators. But, as we shall see, a modified

version of DeTurck trick removes the zero modes of the relevant operator at the critical point

and hence modes out the symmetries of the flow, yielding a somewhat simpler equation.

Before closing this section let us briefly note how the Cotton flow equation should be

linearized in the first order formalism where instead of the metric one uses the dreibein

– 7 –
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and the spin connection. For this purpose, let ea and wa
b denote the dreibein and spin-

connection 1-form respectively. Then the curvature 2-form reads

Rab = dwa
b + wa

c ∧ wcb, (2.15)

from which the Ricci 1-form and the scalar curvature can be computed via the inner

product.

(Ric)a = ιbR
ba, R = ιaιbR

ba. (2.16)

Then the Cotton 2-form reads

Ca = DY a ≡ dY a + wa
b ∧ Y b, (2.17)

with the Schouten 1-form given as Y a = (Ric)a − 1
4Re

a. With these definitions, the

first order form of the Cotton flow (which was employed in [13]) to discuss the flow of

homogeneous quantities reads

∂te
a = ∗Ca, (2.18)

where ∗ denotes the Hodge dual. Assuming ēa satisfies

∂tē
a = ∗C̄a = 0 , (2.19)

following the notation of [23], let us expand around the critical point of the flow as

ea ≡ ēa + ϕa
bē

b. (2.20)

Here ῑbē
a = δab . The linearized flow equation reads

ēb(∂tϕ
a
b) = ∗̄(Ca)L . (2.21)

To compute the linearized Cotton 2-form, let us first find the linearized spin connection

wa
b = w̄a

b + ēc(D̄bϕ
a
c − D̄aϕbc) , (2.22)

where D̄a ≡ ῑaD̄ and the background spin connection satisfying D̄ēa = dēa + w̄a
b ∧ ēb = 0.

One obtains the curvature 2-form as

Rab = R̄ab − ēc ∧ D̄(D̄bϕac − D̄aϕbc) , (2.23)

and the Ricci 1-form as

(Ric)a = (R̄ic)a + ēc(D̄2ϕa
c − D̄bD̄

aϕb
c) + D̄(D̄aϕ− D̄bϕba)− ϕb

cῑcR̄
ba, (2.24)

where D̄2 = D̄aD̄
a, from which the linearized Schouten and Cotton forms can be computed.

– 8 –
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3 DeTurck trick in the Cotton flow

By moving the �̄ operator to the left in the second term and playing with the relevant

indices, we have deliberately arranged (2.5) in such a way that we can gauge away some

terms by extending the Cotton flow as

∂tgij = Cij +∇iVj +∇jVi . (3.1)

As in the Ricci flow case we can take the symmetry breaking vector as

Vi = gik g
mn(Γk

mn − Γ̃k
mn) , (3.2)

but to simplify our equation further by removing the third term and its partner in (2.5)

we will take it as

Vi ≡ −1

4
ηi

k
l ∇m(Γl

km − Γ̃l
km) + gik g

mn(Γk
mn − Γ̃k

mn) , (3.3)

where Γ̃α
lλ is a fixed connection on the manifold which we shall take it to be coming from

the initial metric ḡij . There is a subtle issue here which can be seen for the flat (R̄ij)

critical points: one might mistakingly think that the first piece in (3.3) would be sufficient

to remove all the zero modes but it turns out that it only removes the diffeomorphisms,

but not the scalings δλhij = λ(x)δij . Linearization of (3.3) yields

(V i)L = −1

4
ηikl ∇̄m∇̄khm

l + ∇̄mhim − 1

2
∇̄ih . (3.4)

Since one has ∂tg
ij = −(Cij + ∇iV j + ∇jV i), the third term in (2.5) and its symmetric

partner are canceled with this gauge-fixing, DeTurck-Cotton flow becomes

∂th
ij = −1

4
ηikl �̄∇̄kh

j
l + i ↔ j + reaction terms , (3.5)

where the reaction terms do not contribute to the principal symbol of the operator on

the left-hand side. Of course, even after this simplification one cannot say much about

the diffusive nature of the equation, since the principal symbol of the relevant operator

vanishes as we show here.

Let us calculate the principal symbol of the Cotton tensor as an operator on the metric

using the above linearized form. We have

σ[C](ϕ)(h)ij = −1

4
ηi

klϕ2ϕkhjl −
1

4
ηj

klϕ2ϕkhil , (3.6)

with ϕ2 = gijϕiϕj and ϕi is a non-vanishing vector field. Then the inner product vanishes

〈
σ[C](ϕ)(h)ij , hij

〉
= 0 . (3.7)

This class of the operators are known as sub-elliptic operators when the operator is of

second order. The classification for third order operators has not been done to the best of

our knowledge, so we have not much to conclude from (3.7).
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As we noted, the critical points of the flow satisfy C̄ij = 0, that is, they are the locally

conformally flat metrics. Among these critical points, one clearly has Einstein spaces

S̄ij = 0 as a subclass, including the flat space. In 3 dimensions, since the Riemann tensor

can be written in terms of the Ricci tensor and scalar curvature, Ricci flat metrics are

Riemann flat. In the next section we study the stability of flat metrics as a subclass of

critical points of the flow.

4 Stability analysis of the flat space

Let us now study the stability of the flat space in Cotton flow. This problem is interesting

on its own since flat space is a fixed point of the flow, but it is also relevant to understand

the stability of any manifold under small wave-length (or high momentum) perturbations.

Here what we mean by small wave-length perturbation is that λ
|Rij |

≪ 1, with |Rij | a typical

curvature of the manifold in some coordinates. Namely for these sufficiently high energy

modes, any space is locally flat. One expects that these modes die out, or diffuse as time

passes if the critical point is a stable point under linear perturbations. But it will turn out

that there is a potentially unstable mode in flat space at the linearized level.

For the flat background, the linear Cotton flow equation with the DeTurck terms

becomes2

∂thij = −1

4
ηi

kl ∂2∂khj l + ∂i∂
khkj −

1

2
∂i∂jh+ i ↔ j , (4.1)

where ∂2 is the usual Laplacian in flat space. In a broad sense, this equation is a tensor

version of the linearized Korteweg-de Vries (KdV) equation albeit an anisotropic one, in

the sense that the flow of hij with given i and j is determined by hmn with m and n not

necessarily equal to i and j. This anisotropy is extremely crucial for the diffusive or non-

diffusive nature of the equation since the sign of hij is not necessarily positive. Therefore,

in the stability analysis, the sign of the amplitude of the perturbation is also relevant. So

to see the nature of this equation, we must first diagonalize it.

Given the initial perturbation at t = 0 as hij(0,x) with the asymptotic fall off as

lim|x|→∞ hij(0,x) → 0, we can construct “plane-wave” type solutions or Fourier modes

from which we can construct the general solution that satisfies the asymptotic boundary

condition.

Let us insert the plane-wave ansatz into (4.1)

hij(t,x) = ξij(p)e
i(p.x−w(p)t), (4.2)

where ξij(p) are (complex) polarizations which only depend on the mode (or momentum

p) and w = w(p) is the dispersion relation to be determined below. This insertion leads

to a consistency condition on the polarizations

ξij = − p2

4w
pkηi

kl ξjl −
i

w
pip

kξkj +
i

2w
pipjξ + i ↔ j , (4.3)

where p = |p| and the trace of the polarization tensor is ξ = δijξ
ij . We will now play with

this equation to find w = w(p) and the constraints on the polarization tensor. (Note that

2See appendix C for another computation of the linearized instability.
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these constraints come from the linearized Bianchi identity and the tracelessness of the

Cotton tensor.) Taking the trace of (4.3), one obtains

(

1− i

w
p2
)

ξ = −2i

w
pipjξij , (4.4)

and contracting (4.3) with pipj yields

(

1 +
2i

w
p2
)

pipjξij =
i

w
p4ξ . (4.5)

To get the possible dispersion relations, let us assume that ξ 6= 0 and w = ip2 then

from (4.4) pipjξij = 0 is obtained. But (4.5) gives ξ = 0 so this is a contradiction which

can be resolved by assuming w = ip2 and ξ = 0 and pipjξij = 0. This necessarily says that

ξij = ξTT
ij , that is ξij is a transverse traceless tensor. Going back to (4.3), one has

ξTT
ij = − p2

4w
pk(ηi

kl δmj + ηj
kl δmi)ξ

TT
ml . (4.6)

This equation can be diagonalized once the left-hand side is plugged to the ξTT
ml in the

right-hand side and contraction of η’s are carried out, to get3

(

w2 +
p6

4

)

ξTT
ij = 0 . (4.8)

Since we cannot take ξTT
ij to be zero (otherwise hij ≡ 0), we have

w = ± i

2
p2|p| , (4.9)

which contradicts with our earlier assumption w = ip2. Hence we conclude that the

assumed dispersion relation is not correct: w 6= ip2.

Clearly the same reasoning works for the other possible dispersion relations w = −2ip2

coming from (4.5). Namely, two apparently possible dispersion relation in (4.4) and (4.5)

do not yield possible solutions of (4.3). Hence we must assume w 6= ip2 and w 6= −2ip2.

Then, assuming ξ 6= 0 and pipjξij 6= 0 equations (4.4) and (4.5) yield

(

1 +
ip2

w

)

ξ = 0 , (4.10)

which leads to another possible dispersion relation

w = −ip2, (4.11)

3Alternatively, for TT -modes, by taking one more derivative of (4.1), one obtains

∂
2

t hij = −
1

4
(∂2)3hij , (4.7)

whose Fourier transform yields (4.9).
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and the identity ξ = pipjξij . Now, let us evaluate whether this mode is viable or not. For

this purpose decompose ξij as follows

ξij = ξTT
ij +

(

pipj −
1

3
δijp

2

)

A(p) +
1

3
δijξ , (4.12)

where A(p) is arbitrary at this stage. Using ξ = pipjξij in (4.12) gives ξ = A(p)p2, and so

one arrives at

ξij = ξTT
ij +

pipj

p2
ξ . (4.13)

Substituting (4.13) into (4.3) yields

ξTT
ij +

pipj

p2
ξ = − p2

4w
pkηi

kl ξTT
jl − p2

4w
pkηj

kl ξTT
il − i

w
pipjξ . (4.14)

Inserting w = −ip2 leads to the conclusion that for these modes, the TT polarizations

vanish: ξTT
ij = 0. Therefore this is a valid dispersion relation for the following modes

ξij =
pipj

p2
ξ . (4.15)

For these modes hij(t,x) = ξij e
ip.x−p2t, hence as time passes, these modes decay namely

they are diffusive modes.

Let us now consider the final possibility, that is ξTT
ij 6= 0, then ξ = 0, pipjξij = 0, hence

we have the complex cubic dispersion relation

w = ± i

2
p2|p| . (4.16)

With this dispersion relation, we still need to make sure that there is a non-trivial solution

of equation (4.6). We can recast that equation for both signs of the dispersion relation as

a matrix equation

ξ = Bξ + ξB , (4.17)

with ξ = (ξTT
ij ) as a 3×3 symmetric matrix and B as a 3×3 anti-symmetric matrix whose

elements are given as

Bij ≡
p2

4w
pkηij

k. (4.18)

Equation (4.17) is known as Sylvester’s equation which can be solved [24] but we do not

need the general solution, all we need is a non-trivial solution which we can find as follows.

Suppose p = (0, 0, p), then, ξ and the B matrix read as

ξ =






ξ11 ξ12 0

ξ12 −ξ11 0

0 0 0




 , B =






0 p 0

−p 0 0

0 0 0




 .

Equation (4.17) yields

ξ12 = ∓iξ11 . (4.19)
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Normalizing ξ11 = 1, ξ12 = ∓i depending on the sign of the dispersion w = ± i
2p

2|p|.
Therefore we have non-trivial solutions for both signs of the dispersion relation.

Since the equation (4.1) is linear, then the most general solution reads as

hij(t,x) =

ˆ

d3p ξij(p) e
ip.x± 1

2
p2|p| t. (4.20)

We can recast this in terms of the initial perturbation as

hij(t,x) =

ˆ

d3x
′

G(x,x
′

, t)hij(0,x
′

) , (4.21)

where

G(x,x
′

, t) =
1

(2π)3

ˆ

d3p eip.(x−x
′

)± 1

2
p2|p| t. (4.22)

This integral can be evaluated for the minus sign, in terms of hyper-geometric and Bessel-

kind functions. On the other hand, the positive sign mode is problematic. It is clear that

the negative sign modes decay in time and hence these perturbations are diffused. As for

the positive sign modes, there is a linear instability. But bear in mind that this analysis has

been at the perturbative level and the perturbation theory breaks down for these growing

modes hence a strict conclusion cannot be made with regard to the non-linear instability

of flat space in Cotton flow.

In fact, even though we have not been able to prove stability at a non-linear level, we

conjecture that these growing modes could be tamed at the non-linear level. If this turns

out not to be the case, then, since the above analysis is also valid for any manifold for

high momentum fluctuations that see the manifold locally flat, any critical point of the

flow would be unstable, leading to the conclusion that the theory has no minima but just

saddle points. This would be highly unexpected.

5 Cotton flow as a gradient flow and the entropy functional

In [13] a gradient flow formulation of Cotton flow was given which we refine it here to

better understand the role of symmetries and the Cotton solitons and also study the issue

of stability using the entropy functional. The Chern-Simons action [25, 26] on a manifold

without a boundary

F = −1

2

ˆ

M
d3x

√
g ηijkΓl

im

(

∂jΓ
m
kl +

2

3
Γm
jnΓ

n
kl

)

, (5.1)

has the first variation under an arbitrary change of the metric as

δF =

ˆ

M
d3x

√
g Cij δgij . (5.2)

Observe that for δgij = ∇iVj+∇jVi+λ(x)gij , the first variation vanishes, δF = 0, owing to

the fact that Cotton tensor is traceless and covariantly conserved. Hence such a variation

gives us the symmetries of the theory: which are diffeomorphisms and arbitrary scalings

of the metric. To get a steepest descend, we can choose the following flow

δgij ≡ ∂tgij = Cij +∇iVj +∇jVi + λ(x)gij , (5.3)
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which leads to

δF ≡ dF
dt

=

ˆ

M
d3x

√
g CijC

ij . (5.4)

To get a gradient flow we must require dF
dt ≥ 0 where the bound is saturated for the critical

points that satisfy the following equation

Cij +∇iVj +∇jVi + λ(x)gij = 0 , (5.5)

which we shall call it as the extended Cotton solitons. (In [13], the case of constant λ

metrics were called Cotton solitons.) It is clear that (5.4) vanishes at the critical points,

since by definition δgij = 0 there. Requiring the volume density to be a conserved quantity

of the flow ∂t
√
g = 0, yields, from (5.3), the constraint

2∇iV
i + 3λ(x) = 0 , (5.6)

for all metrics gij that are solutions of the flow.

To understand the stability of the fixed points, let us expand the Entropy functional

of the Cotton flow up to the second order in δgij for a fixed time t. Then from (5.2), one

obtains

δ2F =

ˆ

M
d3x

√
ḡ

(
1

2
ḡijδgijC̄

klδgkl + (Cij)Lδgij

)

, (5.7)

where ḡij refers to the critical points that satisfy (5.5). Making use of (2.5) one arrives at

δ2F =

ˆ

M
d3x

√
ḡ

(

− h

2
hijC̄

ij − 1

2
hijh

j
nC̄

in +
1

2
ηikl hij∇̄k△(2)

L hj l +
1

2
ηikl hij∇̄j∇̄k∇̄nhl

n

− 1

2
ηikl hS̄l

j∇̄khij −
1

2
ηikl hjnS̄kn∇̄lhij + ηikl hijS̄k

j∇̄nhnl

+
1

2
ηikl hijS̄nl∇̄nhjk +

1

2
ηikl hij S̄kn∇̄jhnl +

1

3
ηikl hijR̄∇̄lh

j
k

)

,

(5.8)

where we have dropped some boundary terms and made use of the Lichnerowicz operator

action on a symmetric two tensor as

△(2)
L hij = −�̄hij − 2R̄ikjlh

kl + 2R̄k
(ihj)k , (5.9)

which yields in three dimensions

△(2)
L hij = −�̄hij − 2ḡijR̄klh

kl − 2hR̄ij + ḡijhR̄− R̄hij + 3R̄ikhj
k + 3R̄jkhi

k. (5.10)

To ensure the stability of the critical points one must have

δ2F
∣
∣
ḡij

> 0 . (5.11)

For a generic conformally flat fixed point, or for Cotton soliton backgrounds, even though it

is possible that δ2F is positive, we have not been able to show this. Instability of Einstein

spaces S̄ij = 0, can be seen quite easily if one decomposes the perturbation as

hij = hTT
ij + ∇̄iϕj + ∇̄jϕi + f(x)ḡij , (5.12)
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which after integration by parts reduces the action (5.8) to

δ2F =
1

2

ˆ

M
d3x

√
ḡ ηikl ∇̄kh

TT
ij

(

�̄− R̄

3

)

hTTj
l , (5.13)

where R̄ is constant. The first derivative on the perturbation leads to a linear instability.

This is consistent with our earlier flat space analysis. Hence Einstein spaces, including the

flat space, critical points of the flow are linearly unstable. This is almost evident but let

us see it more explicitly for the S3 metric in the following coordinates

ds2 = cos2 ρ dτ2 + sin2 ρ dφ2 + dρ2, (5.14)

with R̄ = 6. Assuming

hTT
ij =






h11 h12 0

h12 −h11 0

0 0 0




 ,

second variation of the entropy about S3 for this perturbation yields

δ2F = −2

ˆ

M
d3xh11(�̄− 3) ∂3h12 , (5.15)

which is not positive in general. Thus, S3 is a saddle point not a minimum of the flow.

In [13], it was shown that as a critical point S3 is stable under homogeneous deformations.

6 Extended Cotton solitons

In the previous section, we have shown that generic fixed points of Cotton flow are extended

Cotton solitons that satisfy

Cij +∇iVj +∇jVi + λ(x)gij = 0 , (6.1)

where λ(x) is not necessarily constant as was assumed in [13]. As was shown in [19], if λ(x)

is constant and the manifold is compact without a boundary, then there are no non-trivial

Cotton soliton solutions, namely λ = 0, Cij = 0, and Vi is a Killing vector

LV g = 0 . (6.2)

For extended Cotton solitons, let us prove a similar theorem.

Theorem. On a compact Riemannian manifold without boundary, all solutions of (6.1)

have LV g = −λg, namely, V is a conformal Killing vector and Cij = 0: there are no

non-trivial extended Cotton solitons.
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Proof. The square of the Lie derivative of the metric reads

|LV g|2 = �(ViV
i)− 2Vi�V i + 2∇i(V

j∇jV
i)− 2Vi∇i∇jV

j − 2V iV jRij . (6.3)

Trace and divergence of (6.1) can be computed as

2∇iV
i + 3λ(x) = 0 , (6.4)

�Vi +Rj
iVj −

1

2
∇iλ(x) = 0 . (6.5)

Making use of these in (6.3), one arrives at

|LV g|2 = �(ViV
i) + 2∇i(V

iλ) + 2∇i(V
j∇jV

i) + 3λ2(x) . (6.6)

Integrating this over the manifold, once the boundary terms are dropped, yields
ˆ

d3x
√
g |LV g|2 = 3

ˆ

d3x
√
g λ2(x) , (6.7)

which can be written as ˆ

d3x
√
g |LV g + λ(x)g|2 = 0 , (6.8)

where we made use of (6.4). Since we are in a Riemannian manifold with a positive metric,

from (6.8) it follows that Vi is a conformal Killing vector with the conformal factor λ(x).

Then from (6.1) it follows that Cij = 0. So on a compact Riemannian manifold without a

boundary, there are no non-trivial Cotton solitons besides the conformally flat ones. This

proves the theorem. Of course for the Lorentzian signature and the non-compact manifolds,

the theorem does not follow.

Let us study some properties of extended Cotton solitons. Taking the divergence

of (6.5) and making use of (6.4) one arrives at

∇i

(
Ri

jV
j −∇iλ(x)

)
= 0 , (6.9)

which can be recast as

∂i

(√
g
(
Ri

jV
j − ∂iλ(x)

))

= 0 , (6.10)

hence J i ≡ √
g (Ri

jV
j − ∂iλ) is a “conserved current”. For some manifolds one can define

the following conserved total charge. Suppose two space Σ foliate the three manifold M
and let n̂i be the normal to the surface Σ. And let γij denotes the induced metric on the

Σ. Then

Q ≡
ˆ

Σ
d2x

√
γ n̂i

(
Ri

jV
j − ∂iλ(x)

)
, (6.11)

is a conserved total charge of the manifold, if the following condition is satisfied. Say we

separate one of the coordinates as “r” and Σ as the constant r surface. Then for large r,

one has

J i = Ri
jV

j − ∂iλ(x) −−−−−→
large r

1

r1+ǫ
, ǫ > 0 , (6.12)

for i 6= r. This leads to
dQ

dr
= 0 . (6.13)
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While, at the moment, we do know explicit examples of extended Cotton solitons, (one

could perhaps find these using the method of [27] since these are less restrictive solutions

compared to the Cotton solitons with constant λ). In fact let us give an example in the

Riemannian setting with a constant λ [19]. For constant λ, there are many in the Lorentzian

setting [19–21].

Consider the following metric

ds2 = dx2 + dy2 +

(
1

ℓ
(ydx− xdy) + dz

)2

, (6.14)

with ℓ > 0. This metric has the following properties

i) g = det[gij ] = 1 , ii) R = − 2

ℓ2
,

iii) RijR
ij =

12

ℓ4
, iv) CijC

ij =
96

ℓ6
.

(6.15)

Also, the components of the Cotton tensor can be computed as

C11 =
4

ℓ3
− 8

ℓ5
y2, C12 =

8

ℓ5
xy , C13 = − 8

ℓ4
y ,

C22 =
4

ℓ3
− 8

ℓ5
x2, C23 =

8

ℓ4
x , C33 = − 8

ℓ3
.

(6.16)

This metric is a Cotton soliton for the scale factor λ = −16
ℓ3

with the components of

the vector field given as

(V i) =

(
6

ℓ3
x− c1y + c3l,

6

ℓ3
y + c1x+ c2,

12

ℓ3
z − c2

ℓ
x+ c3y + c4

)

, (6.17)

where ci’s are constants. For this metric, one can check that

∂i(R
i
jV

j) = 0 , (6.18)

which is the λ = constant version of (6.10).

It is quite interesting that (6.14) is also a Ricci soliton (Rij +∇iXj +∇jXi+Λgij = 0)

with the scale factor Λ = 6
ℓ2

and the components of the vector field

(Xi) =

(

− 2

ℓ2
x− c1y + c3l, −

2

ℓ2
y + c1x+ c2, −

4

ℓ2
z − c2

ℓ
x+ c3y + c4

)

. (6.19)

Using this fact we can define a new object that we shall call Topologically Massive solitons

that solve

Rij +
1

µ
Cij +∇iWj +∇jWi + Pgij = 0 , (6.20)

which is satisfied by (6.14) with the following choices

P = Λ+
1

µ
λ , Wi = Xi +

1

µ
Vi . (6.21)

Here µ is the topological mass parameter.
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PP -wave solution of Cotton flow. In the Lorentzian setting, we can show that the

pp-wave metric, (see [28] for its properties),

ds2 = 2dudv + dz2 + 2U(u, z)du2, (6.22)

where u and v are null coordinates. The components of the metric can be written as

gµν = ηµν + 2Uλµλν with the λµ vector satisfying the following properties:

λµλµ = 0 , ∇µλν = 0 , λµ∂µV = 0 , λµ∇ν∂µU = 0 . (6.23)

With these definitions, the Ricci tensor and the Cotton tensor can be computed as

Rµν = −λµλν∂
2U , Cµν = ǫαβ(µλν)λα∇β∂

2U . (6.24)

The pp-wave metric (6.22) satisfies the Cotton soliton equation with

λ = 0 , (V i) = (0, c1u+ c3z + c2, −c3u− c4) ,

U(u, z) =
c1z

c3u+ c4
+

ez
√

2(c3u+c4)

√

2(c3u+ c4)
f1(u) +

e−z
√

2(c3u+c4)

√

2(c3u+ c4)
f2(u) + f3(u) ,

(6.25)

where ci’s are arbitrary constants and fi(u)’s are arbitrary functions. Interestingly, this

Cotton soliton is also a gradient Cotton soliton [19] namely Cij +∇i∇jψ = 0

ψ = φ(u) + b2z , U(u, z) =
ezb

b
g1(u)−

e−zb

b
g2(u) + g3(u) . (6.26)

One can also show that the pp-wave metric is also a Ricci soliton with the following vector

field Xi and the metric function U given as

(Xi) = (0, c1u+ c3z+ c2, −c3u− c4) , U(u, z) =
c1z

c3u+c4
+

e−2z(c3u+c4)

2(c3u+c4)
h1(u) + h2(u) .

(6.27)

Finally, one can show that (6.22) is a gradient Ricci soliton with

ψ = ϕ(u) + bz , U(u, z) =
ebz

b
f(u) + g(u) . (6.28)

7 Conclusions

We have studied the linearized Cotton flow equation about a generic background with the

help of a modified form of the DeTurck trick that removes the zero modes of the relevant

operator in the flow equation. Then we specifically studied the perturbations about the

critical points of the flow. We found that flat space and Einstein spaces, as critical points of

the flow, have unstable modes at the perturbative level, making these spaces saddle points

rather than minima. We have also shown that (in appendix C) certain conformally flat fixed

points that are not Einstein metrics, also have unstable modes with a dispersion relation

cubic in the Fourier momentum. We have also supported our arguments by computing

the second variation of the entropy functional about the critical points and show that the
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second variation is negative for Einstein metrics making them saddle points. Finding the

true minima (if there is any) of the Cotton flow equations is an open problem.

We have refined the gradient flow formulation of Cotton flow and gave a definition

of extended Cotton solitons and worked out some properties of these critical points. We

have also given an example of Topologically Massive solitons that is constructed from

a solution to both Ricci and Cotton soliton equations. Our work could be relevant to

both mathematics, as discussed in the Introduction and physics. For example it would be

interesting to see the connection between the Cotton flow and various holographic theories

that have the pure Chern-Simons action in the bulk of a three manifold [29].

A Evolution of some tensor quantities under the Cotton flow

Under the Cotton flow, let us note how some tensors and scalars evolve,

1. The Cotton tensor itself evolves as

2∂tC
ij = ηmki

(
3

2
∇m(Rj

qCk
q) +

1

2
�∇kC

j
m − 3

2
Rkn∇jCn

m +
1

2
Cn

m∇nR
j
k

− 1

2
Cn

m∇jRnk +Rq
k∇qC

j
m − 1

2
Cj

k∇mR

)

+ i ↔ j .

(A.1)

2. Square of the Cotton tensor evolves as

∂t(CijC
ij) = ηmki(5CijCk

q∇jRmq + 6CijR
j
q∇mCk

q + Cij�∇kC
j
m

− 3CijRkn∇mCnj + 2CijR
q
k∇qC

j
m) + 5CijCimCm

j .
(A.2)

3. The Riemann tensor evolves as

∂tRijkl =
1

2
ǫjinǫ

nabǫm
klǫmστ∇σ∇aCbτ +

1

2
(Rkli

ρCjρ −Rklj
ρCiρ) . (A.3)

4. Square of the Riemann tensor evolves as

∂t(RijklR
ijkl) = −4Rij

�Cij − 10RRijC
ij + 16RjlR

jkC l
k . (A.4)

5. Time independence of Bianchi identity ∂t(∇iC
ij) = 0 leads to

∇iT
ij = 0 , T ij ≡ ∂tC

ij + CikCk
j − gij

4
CklC

kl. (A.5)

Note that at the critical points, the flow stops for all the above quantities.

B Linearization of the Cotton tensor around a generic background

Let us give some details of the calculations leading to equation (2.5). By perturbing the

metric about an arbitrary background as gij ≡ ḡij + hij , one obtains

2(Cij)L = −h

2
C̄ij + ηikl ∇̄k(G

j
l)L

︸ ︷︷ ︸

A

+ ηikl (Γj
kn)LḠ

n
l

︸ ︷︷ ︸

B

+ i ↔ j +O(h2) . (B.1)
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From now on we will drop the O(h2) terms. The background metric is compatible with

the background covariant derivative ∇̄kḡij = 0, hence the linearized Christoffel connection

reads

(Γj
kn)L =

1

2
ḡjm(∇̄khmn + ∇̄nhmk − ∇̄mhkn) . (B.2)

Our task is to rewrite (B.1) in such a way that one can see the terms that can be related

to diffeomorphisms of the background metric. For this purpose, let us first evaluate the A

term in (B.1). Note that the linearization of the Einstein tensor yields

(Gj
l)L = (gjmGml)L = −hjmḠml + ḡjm (Gml)L . (B.3)

Where (Gij)L = (Rij)L − 1
2 ḡijRL − 1

2hijR̄. By using the explicit forms of the Linearized

Ricci tensor and Ricci scalar

(Rij)L ≡ 1

2
(∇̄k∇̄ihjk + ∇̄k∇̄jhik − �̄hij − ∇̄i∇̄jh) ,

RL ≡ (gijRij)L = −hijR̄ij − �̄h+ ∇̄j∇̄ihij ,

(B.4)

one can write the A part as

ηikl ∇̄k(G
j
l)L =

ηikl
(

− ∇̄k(h
jmḠml) +

1

2

(

∇̄k∇̄n∇̄lh
nj

︸ ︷︷ ︸

C

+ ∇̄k∇̄n∇̄jhl
n

︸ ︷︷ ︸

D

− ∇̄k�̄hj l
︸ ︷︷ ︸

E

− ∇̄k∇̄l∇̄jh
)

− 1

2
∇̄k(h

j
lR̄)

)

.

(B.5)

Let us now calculate each term of (B.5) separately: the C term can be written as

ηikl ∇̄k∇̄n∇̄lh
nj = ηikl

(

R̄j
k∇̄nhl

n + 2∇̄k

(
R̄lnh

jn
)
+ ∇̄k

(

− hR̄l
j + R̄j

nh
n
l −

R̄

2
hj l

))

,

(B.6)

where we have used the three dimensional identity

R̄kpqi = ḡkqR̄ip − ḡkiR̄qp + ḡpiR̄qk − ḡpqR̄ik −
R̄

2
ḡkq ḡip +

R̄

2
ḡkiḡqp . (B.7)

Similarly the D and E terms can be written as

ηikl ∇̄k∇̄n∇̄jhl
n = ηikl

(

∇̄j∇̄n∇̄khl
n − ∇̄j

(
R̄n

khnl
)
− R̄j

l∇̄nhk
n

+ ∇̄k

(

2hnlR̄
nj − hR̄l

j + hjnR̄ln − R̄

2
hj l

))

,

(B.8)

ηikl ∇̄k�̄hj l = ηikl
(

�̄∇̄kh
j
l + 2

(
R̄j

k∇̄nh
n
l − R̄nk∇̄jhnl

)
+
(
hnl∇̄nR̄

j
k − hnl∇̄jR̄nk

)

− R̄l
n∇̄nh

j
k − 2R̄n

k∇̄lh
j
n +R∇̄lh

j
k − hjn∇̄lR̄

n
k

)

. (B.9)
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Using these results one arrives at

ηikl ∇̄k(G
j
l)L =

1

2
ηikl

(
− 2h∇̄kR̄l

j − R̄l
j∇̄kh− hj l∇̄kR̄+ 3R̄nj∇̄khnl + 3hnl∇̄kR̄

nj

+ R̄nk∇̄jhnl − hnl∇̄nR̄
j
k + R̄n

k∇̄lh
j
n − R̄kn∇̄nhj l

+ ∇̄j∇̄n∇̄khl
n − �̄∇̄kh

j
l

)
.

(B.10)

The B term in (B.1) is easy to handle:

ηikl (Γj
kn)LḠ

n
l =

1

2
ηikl R̄n

l

(
∇̄khn

j + ∇̄nh
j
k − ∇̄jhkn

)
. (B.11)

Thus, collecting all these pieces, one arrives at the desired equation:

2(Cij)L = −3h

2
C̄ij− 1

2
ηikl �̄∇̄kh

j
l+

1

2
ηikl ∇̄j∇̄n∇̄khl

n+
3

2
ηikl ∇̄k(R̄

njhnl)−
1

2
ηikl R̄l

j∇kh

− 1

2
ηikl hnl∇̄nR̄

j
k −

1

2
ηikl hj l∇̄kR̄+ ηikl R̄nk∇jhnl + ηikl R̄l

n∇nh
j
k + i ↔ j .

(B.12)

C Linearized deformation of the conformally flat background

In this appendix, let us give a more explicit linearization of the Cotton flow equation about

its conformally flat fixed point. Any metric of the form

ds2 = Ω2(x, y, z)(dx2 + dy2 + dz2) , (C.1)

with a smooth Ω(x, y, z) > 0 is a critical point of the flow. Consider the most general

perturbation about a given fixed point as

ds2 = Ω2
(
(1 + a) dx2 + 2b dxdy + 2c dxdz + (1 + f) dy2 + 2gdy dz + (1 + h) dz2

)
, (C.2)

where all the functions depend on x and t with the assumption that, save Ω, all functions

vanish at large distances at t = 0. At first order in the perturbation theory, one computes

the components of the Cotton tensor as

C11 =
1

2Ω3
(∂3

zb− ∂y∂
2
zc+ ∂2

y∂zb− ∂3
yc− ∂x∂

2
zg − ∂x∂y∂zf + ∂x∂y∂zh+ ∂x∂

2
yg) ,

C12 =
1

4Ω3
(−∂3

za+ ∂3
zf − 2∂y∂

2
zg − ∂2

y∂za+ ∂2
y∂zh+ 2∂x∂

2
zc+ 2∂x∂

2
yc+ ∂2

x∂zf

− ∂2
x∂zh− 2∂2

x∂yg) ,

C13 =
1

4Ω3
(∂y∂

2
za− ∂y∂

2
zf + 2∂2

y∂zg + ∂3
ya− ∂3

yh− 2∂x∂
2
zb− 2∂x∂

2
yb+ 2∂2

x∂zg

+ ∂2
x∂yf − ∂2

x∂yh) ,

C22 =
1

2Ω3
(−∂3

zb+ ∂y∂
2
zc+ ∂x∂

2
zg + ∂x∂y∂za− ∂x∂y∂zh− ∂2

x∂zb− ∂2
x∂yc+ ∂3

xg) ,

C23 =
1

4Ω3
(2∂y∂

2
zb− 2∂2

y∂zc+ ∂x∂
2
za− ∂x∂

2
zf − ∂x∂

2
ya+ ∂x∂

2
yh− 2∂2

x∂zc+ 2∂2
x∂yb

− ∂3
xf + ∂3

xh) ,

C33 =
1

2Ω3
(−∂2

y∂zb+ ∂3
yc− ∂x∂y∂za+ ∂x∂y∂zf − ∂x∂

2
yg + ∂2

x∂zb+ ∂2
x∂yc− ∂3

zg) . (C.3)
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Even though one can use the symmetries of the equation to reduce the system, this is still an

unwieldy set. But our task is not to find the general solution rather to find the potentially

unstable modes, hence let us assume for the sake of simplicity that the perturbations

depend on z and t but not on x and y. Then one arrives at

∂t(Ω
2a) =

1

2Ω3
∂3
zb , ∂t(Ω

2f) = − 1

2Ω3
∂3
zb , ∂t(Ω

2b) =
1

4Ω3
∂3
z (f − a) ,

∂t(Ω
2c) = 0 , ∂t(Ω

2g) = 0 , ∂t(Ω
2h) = 0 .

(C.4)

Further assuming c(0, z) = h(0, z) = g(0, z) = 0, the second line of (C.4) yields the

vanishing of these functions for all t. From the first two equations of the first line, one

finds f(t, z) = −a(t, z). Therefore, we have

∂t(Ω
2a) =

1

2Ω3
∂3
zb , ∂t(Ω

2b) = − 1

2Ω3
∂3
za , (C.5)

which yield a linearized, complex KdV-type equation with a variable coefficient

∂t
(
Ω2(a± ib)

)
= ∓ i

2Ω3
∂3
z (a± ib) . (C.6)

For flat space Ω = 1 and the Fourier transform of this equation yields the modes found in

the text

w(p) = ± i

2
p2|p| , (C.7)

with the + mode giving the perturbative instability. We have not been able to solve (C.6)

for generic Ω(x, y, z, t), but assuming Ω = Ω(x, y) one finds the dispersion relation

w(p) = ± i

2Ω5(x, y)
p2|p| , (C.8)

hence the unstable mode survives for this type of conformally flat background backgrounds.

Therefore, it is clear that among the conformally flat fixed points of the flow, some metrics

are saddle points rather than being the minima. It is an outstanding problem to find the

minima of the Cotton flow.

D Cotton tensor under an arbitrary flow and under Ricci flow

Our computation in appendix B allows us to compute the flow of the Cotton tensor under

an arbitrary geometric flow defined as

∂tgij = Eij , (D.1)

where Eij is a symmetric tensor. With the help of equation (B.12), one gets

2∂tC
ij = −3E

2
C̄ij− 1

2
ηikl �̄∇̄kE

j
l+

1

2
ηikl ∇̄j∇̄λ∇̄kEl

λ+
3

2
ηikl ∇̄k(R̄

αjEαl)−
1

2
ηikl R̄l

j∇kE

− 1

2
ηikl En

l∇̄nR̄
j
k −

1

2
ηikl Ej

l∇̄kR̄+ ηikl R̄nk∇jEn
l + ηikl R̄l

α∇αE
j
k + i ↔ j .

(D.2)
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It is interesting to see how the Cotton tensor behaves under the normalized and un-

normalized Ricci flow which we give below. Cotton tensor under un-normalized Ricci

flow ∂tgij = −2Rij flows as

2∂tC
ij = �Cij + 4RCij − 6RkjCi

k + 2gijRnkC
nk + ηiklRl

j∇kR− 2ηiklRnl∇kR
nj + i ↔ j .

(D.3)

Cotton tensor under normalized Ricci flow ∂tgij = −2(Rij − 1
3gijR) flows as

2∂tC
ij = �Cij +

7

3
RCij − 6RkjCi

k +2gijRnkC
nk + ηiklRl

j∇kR− 2ηiklRnl∇kR
nj + i ↔ j .

(D.4)

It is nice to see that both equations yield a parabolic flow of the Cotton tensor and hence

amenable to maximum principle.
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