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ABSTRACT: We compute the partition function of four-dimensional abelian gauge theory
on a general four-torus 7% with flat metric using Dirac quantization. In addition to an
SL(4, Z) symmetry, it possesses SL(2, Z) symmetry that is electromagnetic S-duality. We
show explicitly how this SL(2, Z) S-duality of the 4d abelian gauge theory has its origin in
symmetries of the 6d (2,0) tensor theory, by computing the partition function of a single
fivebrane compactified on 7?2 times 7%, which has SL(2, Z) x SL(4, Z) symmetry. If we
identify the couplings of the abelian gauge theory 7 = % + ii—g with the complex modulus
of the T? torus 7 = 2 + i%, then in the small 72 limit, the partition function of the
fivebrane tensor field can be factorized, and contains the partition function of the 4d gauge
theory. In this way the SL(2, Z) symmetry of the 6d tensor partition function is identified
with the S-duality symmetry of the 4d gauge partition function. Each partition function
is the product of zero mode and oscillator contributions, where the SL(2, Z) acts suitably.
For the 4d gauge theory, which has a Lagrangian, this product redistributes when using
path integral quantization.
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1 Introduction

Four-dimensional N = 4 Yang-Mills theory is conjectured to possess S-duality, which im-
plies the theory with gauge coupling g, gauge group G, and theta parameter 6 is equivalent
to one with 7 = % + % transformed by modular transformations SL(2, Z), and the group
to GV [1-3], with the weight lattice of GV dual to that of G . The conjecture has been
tested by the Vafa-Witten partition function on various four-manifolds [4]. More recently,
a computation of the N = 4 Yang-Mills partition function on the four-sphere using the
localization method for quantization, enables checking S-duality directly [5].

This duality is believed to have its origin in a certain superconformal field theory in
six dimensions, the M5 brane (2,0) theory. When the 6d, N = (2,0) theory is compactified
on T2, one obtains the 4d, N = 4 Yang-Mills theory, and the SL(2, Z) group of the torus
should imply the S-duality of the four-dimensional gauge theory [6-9].

In this paper, we compare the partition function of the 6d chiral tensor boson of one
fivebrane compactified on T2 x T*, with that of U(1) gauge theory with a @ parameter,
compactified on T%. We use these to show explicitly how the 6d theory is the origin of
S-duality in the gauge theory. Since the 6d chiral boson has a self-dual three-form field
strength and thus lacks a Lagrangian [10], we will use the Hamiltonian formulation to
compute the partition functions for both theories.



As motivated by [11], the four-dimensional U(1) gauge partition function on 7% is

4d,Maxwell _ —2rH4d oy pid 4d
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where the Hamiltonian and momentum are
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in terms of the gauge field strength tensor F;(63,60%,65,60%), the conjugate momentum 11,
and the constant parameters g.g, g and v* in the metric G;; of T’ 4. They will be derived
from the abelian gauge theory Lagrangian, given here for Euclidean signature
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with 3496 =1, €ijkl = g€k and g = det(Gij).
In contrast, the partition function of the abelian chiral two-form on T2 x T% is [12, 13]
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where 6! and 62 are the coordinates of the two one-cycles of T2. The time direction 6°
is common to both theories, the angle between ! and 6% is 42, and G5™" is the inverse
metric of Gs,,,, where 1 < m,n < 5. The eight angles between the two-torus and the
four-torus are set to zero.!

Section 2 is a list of our results; their derivations are presented in the succeeding
sections. In section 3, the contribution of the zero modes to the partition function for the
chiral theory on the manifold M = T?xT* is computed as a sum over ten integer eigenvalues
using the Hamiltonian formulation. The zero mode sum for the gauge theory on the same
T* C M is calculated with six integer eigenvalues. We find that once we identify the
modulus of the T? contained in M, 7 = BQ—H'R with the gauge couplings 7 = o o 147 %, then
the two theories are related by ZZeromodes = eZ oro modes?
of the scalar field that arises in addition to Fj; from the compactification of the 6d self-

where ¢ is due to the zero modes

dual three-form. In section 4, the abelian gauge theory is quantized on a four-torus using
Dirac constraints, and the Hamiltonian and momentum are computed in terms of oscillator
modes. For small 72, the Kaluza-Klein modes are removed from the partition function of

'A different consideration of the fivebrane on 7% x T in [14] includes the time direction in 772



the chiral two-form, and in this limit it agrees with the gauge theory result, up to the scalar
field contribution. In appendix A, we show the path integral quantization gives the same
result for the 4d gauge theory partition function as canonical quantization. However, the
zero and oscillator mode contributions differ in the two quantizations. In appendix B, we
show how the zero and oscillator mode contributions transform under SL(2, Z) for the 6d
theory, as well as for both quantizations of the 4d theory. We prove the partition functions
in 4d and 6d are both SL(2, Z) invariant. In appendix C, the vacuum energy is regularized.
In appendix D, we introduce a complete set of SL(4, Z) generators, and then prove the 4d
and 6d partition functions are invariant under SL(4, Z) transformations.

2 Statement of the main result

We compute partition functions for a chiral boson on 72 x T* and for a U(1) gauge boson on
the same T%. The geometry of the manifold 72 x T* will be described by the line element,

ds® = R3(d0* — p%de")? + R2(de")?
+ ) gap(do® — *d6%)(d0” — 17 do®) + RE(d6°)?, (2.1)
a?ﬁ

with 0 < 0! <27r, 1< I<6,and 3 <a <5. R, Ry are the radii for directions I = 1,2
on T2, and $? is the angle between them. Jap fixes the metric for a T3 submanifold of T?,
Ry is the remaining radius, and y® is the angle between those. So, from (2.1) the metric is

T? Gi1 = Ri* + R33°5%, Gia = —R33%, Gas = R3;
T . Gap = gop Gas = —0up?’s  Gos = R6> + gasy™ 7
Go1 = G2 =0, G16 = Gas = 0; (2.2)

and the inverse metric is
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Rg%’ Rg
Gl =G* =, G' =G% =0. (2.3)

6% is chosen to be the time direction for both theories. In the 4d expression (1.3) the
indices of the field strength tensor have 3 < 4,75, k,l < 6, whereas in (1.4), the Hamilto-
nian and momentum are written in terms of fields with indices 1 < m,n,p,r, s < 5. The
5-dimensional inverse in directions 1, 2, 3, 4, 5 is G5™",

1 52 5252
Gll =, G12 == G22 — 22 +
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GeP = g°?, Gl =, G2 =0. (2.4)

g*? is the 3d inverse of Jap- The determinants are related by

\/é = \/detGry; = RlRQ\/§ = RlRQRG\/j = Rg\/ G5, (2.5)



where G is the determinant for 6d metric Gyy. G5, g and g are the determinants for the
5d metric Gy, 4d metric G5, and 3d metric g,g respectively.
The zero mode partition function of the 6d chiral boson on 7% x T* with the metric (2.3)

is

mRg
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where the zero mode eigenvalues of the field strength tensor are integers, and (2.6) factors
into a sum on H,g, as H3y5 = ny7, Hioo as Hio3 = ng, Hi24 = ng, Hizs = nip; and a sum
over Hlaﬂ defined as H134 =N, H145 = N9, H135 = N3 and Hgag as H234 = N4, H245 = N5,
Hss5 = ng, as we will show in section 3.

The zero mode partition function of the 4d gauge boson on T* with the metric (2.2) is
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where II¢ take integer values II? = ny, II* = ng, II° = ng, and Fyy = nq, Fys = no, Fus =

0, 16 - o
<4 il >gaﬁgw‘sFawF/35—|—27szaH6Faﬁ}, (2.7)

ng, from section 3. We identify the integers

= 1
Hsop = Fup and Hinp = Eeaﬁvﬂya (2.8)

where § = g Rg? from (2.5), and the modulus

R1 0 Ar

2 — E—
T=F8+ Rg 27T+Z€2’

so that as shown in section 3, we have the factorization

76d —ezM

zero modes zero modes?

(2.9)



where € comes from the remaining four zero modes H,g, and Hjz, due to the additional
scalar that occurs in the compactification of the 6d self-dual three-form field strength,

ﬂ'R — ’
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From section 4, there is a similar relation between the oscillator partition functions
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where p? = % + (% D5 + QRi;pqu, and ¢ is the oscillator contribution from the

1 1 1
additional scalar,
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Therefore, in the limit of small 72, we have
limR Roms0 ZGd,Chiral = ¢ 6/ Z4d,MaxweH (2 15)
1,412 . .

We use this relation between the 6d and 4d partition functions to extract the S-duality of
the latter from a geometric symmetry of the former. For 7 = 82 + i% = % + i‘é—’;, under
the SL(2, Z) transformations

1
T—=——; T—=T7—1, (2.16)
T
Zfsro modes and 784 are separately invariant, as are Zgﬁo modes and 7344 which we will prove

in appendix B. In particular, Z24 is independent of e? and #. A path integral computation

0OSscC

agrees with our U(1) partition function, as we review in appendix A [15]. Nevertheless, in

the path integral quantization the zero and non-zero mode contributions are rearranged,

and although each is invariant under 7 — 7 — 1, they transform differently under 7 —
SR PI 3Pl PI —37PI

T with Zzeromodes - |T| Zzeromodes and Znonfzeromodes - |T| Znonfzeromodes' For a

general spin manifold, the U(1) partition function transforms as a modular form under
S-duality [16], but in the case of T* which we consider in this paper the weight is zero.



3 Zero modes

In this section, we show details for the computation of the zero mode partition functions.
The N = (2,0), 6d world volume theory of the fivebrane contains a chiral two-form Bjy,
which has a self-dual three-form field strength Hya/ny = O Byn + Ov By + On By with
1< L, M,N <6,

1
6v—G

Since there is no covariant Lagrangian description for the chiral two-form, we compute its

Hian(6,0%) = Grr G Gy e ™M N BT Hp (6, 6°). (3.1)

partition function from (1.4). As in [12, 13, 17] the zero mode partition function of the 6d
chiral theory is calculated in the Hamiltonian formulation similarly to string theory,

754

zero modes

= tr(e*mHylPl) (3.2)

where t = 27 Rg and ¢! = 27TG667 with [ = 1,...5. However, y' and y? are zero due to the
metric (2.3). Neglecting the integrations and using the metric (2.4) in (1.4), we find

4”“*&Rﬁm/f”5@7fmeww——Ra /@mf@mew@
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and the momentum components 3 < o < 5 are
1 5 1 5
Pao = —5€ HyoyHops + € HygHous, (3.4)

where the zero modes of the ten fields Hy,,, are labeled by integers n,...nio [12, 13].
Then (3.2) is given by (2.6).

Similarly, we compute the zero mode partition function for the 4d U(1) theory
from (1.1). We consider the charge quantization condition

1 1 1
F_

— =_— | ZF,5d0"Adb° Z, f h1<1<3. :
o Jy o oy 2 0 dO* N db”, ny€ Z, foreach1 <1 <3 (3.5)

ny =

as well as the commutation relation obtained from (4.17)

/ An(6,6%)d6% /d39/H5<9' 0°) —i/ do? =i (3.6)
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and use the standard argument [17, 18] to show that the field strength F,3 and momentum
I1* zero modes have eigenvalues

- ()
Fop = L) na,p € Z for a < f, and (¢, 6%) = (7;7)2,
T

(@) ¢ 23
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Thus we define integer valued modes F, s = 2nF,5 and e = (27)%I1®. Taking into account
the spatial integrations df%, (1.2) gives

4d . 4d
—2nH* + 271y P,
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where (1.2) itself is derived in section 4. So from (3.8) and (1.1),

e’ R 0e* RZ
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where n; are integers, with FV34 = ny, ﬁ35 = ng, ﬁ45 = ng, and 13 = Ny, I = ns, I =
ne. (3.9) is the zero mode contribution to the 4d U(1) partition function (1.1), and is (2.7).
If we identify the gauge couplings 7 = % + ii—g with the modulus of T2, 7 = 5% + i%

then
= =2 — = B2 (3.10)

and (3.9) becomes
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Then the last four terms in the chiral boson zero mode sum (2.6) are equal to (2.7) since

T RoRg R 2 ’ ’ T R2R6
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when we identify the integers
~ 1 ~
Hsop = Fup and Hinp = gfaﬁvnva (3.13)

with § = g Rg? from (2.5). Thus the 6d and 4d zero mode sums from (2.6) and (2.7) are
related by
784

zero modes

= ez

zero modes>

(3.14)



where

7TR - ’
= X en{ - e Vg s |

ng,ng9,n10

T = ’ / ’ .
. Zexp{ - ERﬁRlRQ\/g;gaa gﬁﬁ géé HaﬁéHa’B/é/ — ZWVQGWBéngvHaﬁg}. (3.15)
nr

4 Oscillator modes

To compute the oscillator contribution to the partition function (1.1), we quantize the U(1)
gauge theory with a theta term on the 7 manifold using Dirac brackets. From (1.3), the
equations of motion are 6iFij = 0, since the theta term is a total divergence and does not
contribute to them. So in Lorenz gauge, the gauge potential A; with field strength tensor
F;; = 0;A; — 0;A; is obtained by solving the equation

9'9;A; =0, with  8'4; = 0. (4.1)
The potential has a plane wave solution
A;(f,6%) = zero modes + E:(]‘}(k:)ei'“9 + (f;(k)e* )% (4.2)
k+#£0
with momenta satisfying the on shell condition and gauge condition
Gikik; =0,  k'fi=0. (4.3)

As in [11, 17] the Hamiltonian H*¢ and momentum P2 are quantized with a Lorentzian
signature metric that has zero angles with the time direction, v* = 0. So we modify the
metric on the four-torus (2.2), (2.3) to be

éLaﬁ = 9a8 > GLes = —Re?, GrLas =0
_ _ 1 _ _ _
GP =g, GE = —J G7° =0, Gp=detGrij = —g. (4.4)
6

Solving for ke from (4.3) we find

k 4 || (4.5)
6 = — 3 .
G4

where 3 < a, 8 < 5, and |k| = \/g*Pkqks. Employ the remaining gauge invariance f; —
Jl = fi + ki) to fix f§ =0, which is the gauge choice

Ag = 0.
This reduces the number of components of A; from 4 to 3. To satisfy (4.3), we can use the
0'Fig = —050%A, = 0 component of the equation of motion to eliminate f5 in terms of
f3a f47

f5 = —pl5(p3f3 +p'fa),



leaving just two independent polarization vectors corresponding to the physical degrees of
freedom of a four-dimensional gauge theory.
From the Lorentzian Lagrangian and energy-momentum tensor given by
! ﬁéi’“éﬂF- B
—-—=\ —GLGp Gy kl+32

0
3 M E i Py,
i _ 5

i 50.AL

;A — 0L, (4.6)
we obtain the Hamiltonian and momentum operators
ch/d39T66:/d39( faﬁﬁ * FoaFos + 5 f 9% 9P FopForgr — 0,11% Aﬁ), (4.7)
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where we have integrated by parts; and the conjugate momentum is
oL

2 ~66 0 6
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Then we have

e R 0 a~d 0 -
He—i"Py = /d93< 46 \/»ga,B(H + 87.[.26 B F’Y5> <Hﬁ + 87T26ﬁp Fpa)
W 0
+ gcgaag’BBFagF&B — i (Hﬂ + WGM‘%) Fa5>, (4.10)

up to terms proportional to Ag and 9,11% which vanish in Lorenz gauge. Note the term
proportional to 6575F75Fa5 vanishes identically. (4.10) is equal to H*d — iy*PAd given
n (1.2), and is used to compute the zero mode partition function in (2.7) via (3.8).

To compute the oscillator modes, the appearance of 0 solely in the combination I1¢ +
%e‘”‘sﬂﬂg in (4.10) suggests we make a canonical transformation on the oscillator fields
11%(6, 96),A5(§, %) [19]. Consider the equal time quantum bracket, suppressing the 6%
dependence,

—

[ / 420 P Fop As, HV(*)] = 2i7*PF,5(0), (4.11)

and the canonical transformation

Ug) = eXp{i3207r2 /d39'e°‘57Fa5A,y}, (4.12)

~ —

under which Ha(g, %), Ag(ﬁj 6%) transform to ﬁa(é_?: 05), Ap(,60°),

NUO) = T°(0) + e Fys(6)

—

Ut U
As(B)=U(0) As(0) U (6) = As(8). (4.13)



Therefore the exponent (4.10) contains no theta dependence when written in terms of ﬁo‘,

which now reads
R2 2 . N
(He —iv*Py) = /d93<— f\e/gga el 5+ \f 599" FapF ;5 —manﬁFaﬂ) (4.14)

Thus, for the computation of the oscillator partition function we will quantize with 6 = 0.
Note that had we done this for the zero modes, it would not be possible to pick the zero
mode integer charges consistently. Since the zero and oscillator modes commute, we are
free to canonically transform the latter and not the former.

In the discussion that follows we assume @ = 0 and drop the hats. We directly quantize
the Maxwell theory on the four-torus with the metric (4.4) in Lorenz gauge using Dirac
constraints [20, 21]. The theory has a primary constraint H6(5, %) ~ 0. We can express
the Hamiltonian (4.7) in terms of the conjugate momentum as

R ~
H.= / dp®=—5 ga e’ +3 f 99" FapF 5. (4.15)
The primary Hamiltonian is defined by
62 V9
H, = / d03< s IOT1P 52 gmgﬂﬂFaﬁF&B — DI1%Ag + >\1H6>, (4.16)

with A\ as a Lagrange multiplier. As in [17], we use the Dirac method of quantizing with
constraints for the radiation gauge conditions Ag =~ 0, 0%A, ~ 0, and find the equal time
commutation relations:

= - / 1
11°(0,6°%), An(0,6%)] = —i( 68 — ¢ | On—2—>—05 ) | 30 — 0
0009 40(0.0%) = =i 82 = (O ) ) 800,
[Aa(0,6%), Ag(0,6%)] =0,  [I1%(6,6°),11°(F,6°)] = 0. (4.17)
In Ag = 0 gauge, the vector potential on the torus is expanded as

Ao(0,6%) = zeromodes + > (fhal L0 4 fia '{T e,
k£0,keZ3

where 1 < k < 2,3 < a <5 and k¢ defined in (4.5). The sum is on the dual lattice
k= ko € Z5 # 0. Here we only consider the oscillator modes expansion of the potential
and the conjugate momentum in (4.9) with vanishing 6 angle

o 06y _ ik-0 T —ik-0
An(0,60°) = Z(a,;ae +a; e ),

k0
o 2\/§ ~ , . .
B 6y - 66 B8 L Lik0 T —ik0
I1°(6,0°) = —i = Glg Zkg (ag e ag g€ ). (4.18)
k
and the polarizations absorbed in
ap, = faag (4.19)

,10,



From (4.17), the commutator in terms of the oscillators is

/d?zejje’ —iha0% =01 4,(6,0), Ag(F,0)] = [(a kaﬂﬁ: ), (a k,ﬁJraT o) = 0. (4.20)

We consider the Fourier transform (4.20) of all the commutators (4.17), so the commutator
of the oscillators is found to be:

[ T ] 62 1 k kﬂ 5
ap ,a. | = — B — ——— |0z s
For Bl T G 22m) \ 7 T gk k) R

=0, [al ,al ]=0. (4.21)

9% 0 5 4] ko’ kB

In Ag = 0 gauge, we use (4.18) and (4.21) to evaluate the Hamiltonian and momentum
n (4.7) and (4.8)

1 ~66 aa’ 1 oo g
He = / 0 =5 (—G%Gg o Aado Ao + 197 g™ FaﬁFa/B/),
2m
P, = ] / d63d0*d6° /g ¢°% Fep Fop. (4.22)
6

With (4.18), (4.22) can be expressed in terms of the oscillator modes where time-dependent
terms cancel,

2 g ’
Hc:(27r)3;—[ > gk (o a;a +a}% az )

kez3+40

2 g ~ ’
Pa:——;[G(zfsgﬁﬁ @) N keka (agpal +al ap,). (4.23)
kezZ3+0

and we have used the on-shell condition 5%61{36]{36 + |k|? = 0, and the transverse condition
k*ag = k:o‘a;%a = 0. Then,

, .12y : /
— He+ i7" Fo = _17;7[ @) Y [KI(~ iBslk| +7ka) g™ (ag saf ,, + al ag ).
kez3£0
(4.24)
Inserting the polarizations as ag , = fya? and a%a = foé’\*agr from (4.19) in the commuta-

e
tor (4.21) gives

B 1 e2 Rg 1 _kakﬁ .
%8k ) = 1= T <ga5 !k\2> cp = Fapyla ], (4.25)

where we choose the normalization

[af, axl] = 6"*57. (4.26)

with 1 < k, A < 2. Then the polarization vectors satisfy

2 2
koA grA _ _© Rg 1 < ko kﬁ) 86 g phegr _ © Rg 1
s — MR e g B 1,
1ol = 3 5 e @ \ 9~ Thp I = LG TR @)
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2
Bﬂ/ % )\*_ >\ (& R6 1
PRl 70 ) A L S
e 4/g |k| (2m)?

So the exponent in (1.1) is given by

. . 2\/g9 3 . T
—H, + i7" Po = —iRs =5~ (2m) ) > #\k|( — iRg|k| + 7ka) g” (2%5 i tloggar,))
keZ3+£0

=—i Y (ka —iRslk|) atlaf —% S° (—iRelkl) o™, (4.27)
kez340 kez340

The U(1) partition function is

Z4d,Maxwell =tr exp{QW(—Hc + V)/Zpl)} Zzeromodes Zégc? (428)

so from (4.27),
Z4d _ 27”21@623;&0 ('y ka—iRg|k| ) a aE —mRg ZE€Z3¢6 || 6% (4 29)
osc ’ ’

From the usual Fock space argument

tr wor papap _ HZ k|wpap"p|k H wp’

p k=0

we perform the trace on the oscillators,

2
o 1
Zélsdc <e_7TR6 Yrcz3 V9¥Pnang H . \/W)) , (4.30)

—z27r(y0‘na —iRg
nezs 750

1 _e—QWRﬁw /g“ﬁnan/g—%riv"‘nu
(4.31)

2
74d Maxwell _ 4d ) <e—7rRe Siez3 V9Pnang H ! )
zero modes )

REZ340

where Z2d . is given in (2.7). (4.31) and (4.37) are each manifestly SL(3, Z) invariant
due to the underlying SO(3) invariance we have labeled as a = 3,4, 5. We use the SL(3, Z)

invariant regularization of the vacuum energy reviewed in appendix C to obtain

2
1p 2 _ Vi
Z4d Maxwell _ 74d . €2R"” Lo (9annP)? H 1
zero modes 237&617 —27rR6\/m—27ri7ana ’
ne
(4.32)

which leads to (2.13).
On the other hand, one can evaluate the oscillator trace for the 6d chiral boson
from (1.4) as in [12, 13, 17]. The exponent in the trace is

- 2T . 2T
—2nReH + i2n7'P; = % / PO Hp s €5 Hegpm = % dPON/—GH™ Hen
0 0
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2
= —im / d°O(TI™" Hpp, + Heppn IT™™)
0

= —2in Y peCy By —im Y psd”™, (4.33)
PFO PFO
where 11" = ——VZGH&””, and 1" is the momentum conjugate to Bysy. In the gauge

Bg,, = 0, the normal mode expansion for the free quantum fields B,,,,, and II""" on a torus is
given in terms of oscillators B and C;;T defined in [12, 13|, with the commutation relations

1B, C31 = 6" 65 (4.34)

where 1 < g, A < 3 labels the three physical degrees of freedom of the chiral two-form, and

P = (p1,p2,Pa) lies on the integer lattice Z5. From the on-shell condition GLMprM =0,
o ) 2 522 ) 62
P6 = =Y " Pa — 1R aﬁpapﬁ + R2 (R2 + R2 >p2 + 2ﬁ%p1p2. (4.35)

Thus the oscillator partition function of the chiral two-form on 72 x T% is obtained by
tracing over the oscillators

76d _ tr e 2z7rzp#0p6(f Bq—mzp#opgzs’m
osc

3
_ ( —mR6 > 5/ 9P paps+p> | | >
2Trzp5
— €
“760

3
_ . . = af3 52 1
— [ o™ B6 Xpezs VI Papsth ” _ : . (4.36)
_ e 2mRe\/g*Ppaps+p?+2miv*pa

PEZ5AD 1
where p? = ;12 + ( —|— %2 )p3+ 255 i RZP1P2- Regularizing the vacuum energy in the oscillator
sum [12, 13] ylelds

Zﬁd chiral Z

G5 \
zeromodes eRmT Zn¢0 (GmpnmnP)3 H 1 s
_ ¢—27R67\/9°Ppapp+p2+2miv*pa

peZ540 1
(4.37)
where 7 € Z° is on the dual lattice, Gy, is defined in (2.2), and 254 . is given in (2.6).
Comparing the 4d and 6d oscillator traces (4.31) and (4.36), the 6d chiral boson sum

has a cube rather than a square, corresponding to one additional polarization, and it

contains Kaluza-Klein modes. In appendix D, we prove that the product of the zero mode
and the oscillator mode partition function for the 4d theory in (4.32) is SL(4, Z) invariant.
In (D.48) we give an equivalent expression,

2
R
4d,Maxwell _ 4d | 5rE 1
zero modes e Rg .

—27 =8 |ng|+2miy3n
n37é01—e R3|3‘ s

1 2
. 727|'R6<H>pj_ 4.38
< | | € H 1— G,QWRG gaﬁnan3+27ri’y"‘na> ’ ( )

(na)€Z2#(0,0) n3ez

where 4 < a <5, with (H), defined in (C.3).
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In appendix D, we also prove the SL(4, Z) invariance of the 6d chiral partition func-
tion (4.37), using the equivalent form (D.65),

3
R,
ZGd,Chiral _ Z6d . ng 1
— “zeromodes = o B6 Qi3
nze2#0 1 — e WR73|n3‘+ miyPns)

3
. —27 R (H)S4 1 A
( H ¢ . H —27Re/9*Pnang+n? +i2ry%ng ’ ( 39)

ny €244£(0,0,0,0) nsez 1 —e

with (H)8 in (D.64), and 72 = % + (g + W}QQ)ng +24mony. In the limit when Ry
and Ry are small with respect to the metric parameters g.z, g of the four-torus, the
contribution from each polarization in (4.38) and (4.39) is equivalent. To see this limit, we
can separate the product on n; = (ny,n2,n,) # 0, in (4.39), into (n1 = 0,ne = 0,14 #
(0,0)), (n1 # 0,n9 # 0, all ng), (ng = 0,n9 # 0, all ng), (n1 # 0,n2 = 0, all ny)) to find,
at fixed ng,
1
11 .

22 2
n €24#(0,0,0,0) —27 Rg \/gaﬁnan3+m1%+ (Ri%+%>n§+2z—%ngnl+2ﬂ'i7ana
— €

1
a H 1 — 6727TR6\/9‘X5nan@+27ri'y°‘na

na€22#(0,0)
11 1
2 afB (n1)2 1 (ﬁ2)2 2 /82 ey
n17#0,n27#0,(ne €22?) ) —27 R4 [ g nan3+?%+ R—%Jr R% n2+R—%n2n1+27rz'y Ne
— €
11 1

2)2
n1=0,n2#0,(na€Z2?) QWRg\/gaﬁnanng(RBJr(ﬂ) )n§+27ri*yana
1—e 2 M

1
: 11 — (4.40)
n2=0,n170,(n, €Z2) 1_ 67271'11?!61 /gaﬁnan,BJr R}% +2miy ¥ N,

Thus for T2 smaller than T, the last three products reduce to unity, so

H 1 R1,R2—0 H 1
1 — e 2mRe /9*Pnang+n+2mivng —27Re1/ 9% nang+2miv*na '

ny €Z4£0 na622¢(010>1_6
(4.41)
The regularized vacuum energies in (C.3) and (D.64),
o0
_ Ki(2mnRs|p e~
(HYp, 20 =—m""|pL| Y cos(par®2mn) 1 3 LD, for |pi| =V g%®neny, (4.42)
n
n=1

& K1(2mnRslp. )
(H)plso = =" il ) cos(par2mn) : LU for Jpol = VA2 + g%nans,

n

n=1
have the same form of spherical Bessel function, but the argument differs by modes (p1, p2).
Again separating the product on n; = (n1,ng,n,) in (4.39), into (n; = 0,n2 = 0,n, #
(0,0)), (n1 # 0,n2 # 0all ng), (n1 =0,n2 # 0, all ny), (n1 # 0,n2 =0, all n,)) we have

H 8—27TR6<H>167(1 _ ( H 6—27TR6<H>%‘1) . ( H e—27rRe(H>g(i)

n €24+4(0,0,0,0) nqe€2Z2%2+£(0,0) n17#0,m2#£0,n,E€Z2
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( H e-27rR6<H>2j) ( H 6—2W36<H>2‘i) (4.43)

n17#0,m2=0,n,E€ 22 n1=0,n2#£0,n,EZ2

In the limit Ry, Ry — 0, the last three products are unity. For example, the second is unity
because for ni,ny # 0,

lim 12+ §*Pnang ~ Vi?,

R1,R2—0
li K1(27nR — lim VA2K (2 Rs (VA2 ) -0 4.44
Rl,}gl_)()ﬂml 1(2mnR3|pL]) ol Vit Ko (27 3(Vn?) , (4.44)

since lim, 00 # K1 (2) ~ /x e* — 0 [22]. So (4.43) leads to

lim [[ ¥ J[ e et (4.45)

Rl,RQHO
ny €Z4£(0,0,0,0) na€Z2#£(0,0)

Thus in the limit when 72 is small with respect to 7%,

. 2w Rg(H)%d 1
o, I TR 2
R1,R2—0 n 22 2 ,
n1 €24£(0,0,0,0) n3€Z . 727rR5\/<ga5nang+?%+(ﬁg+%)n§+2§7nzm +i2my g,
—e
_ 1
_ H o= 27Re(H)p, H s ) (4.46)
—2mRgA/g¥Pnagng+2miven
na €Z27(0,0) nsez l—e ane °

So we have shown the partition functions of the chiral theory on T2 x T4 and of gauge theory
on T%, agree in the small 72 limit upon neglecting the less interesting contribution €,

ol 2= 2 e

which is (2.11). Again, € is equivalently the oscillator contribution from one polarization,
that is

1 -2 Vv
1R P v/ R
e — 68 6T En;éo (9apnonP)2 H 1 (4 48)
—27R6/g*Bnang—2miv*ny ’
rezssg L —¢€

The relation between the 4d gauge and 6d tensor partition function is shown in the
small T2 limit,

. 6d,chiral _ s ry4dMaxwell
o lim 7ol = o gadMael, (4.49)

which is (2.15). e€’ is the partition function of a real scalar field in 4d, and is independent
of the gauge coupling 7.

5 S-duality of Z4d:Maxwell fqp, Z6dchiral

In appendices B and D we show explicitly how the SL(2, Z) x SL(4, Z) symmetry of the par-
tition function of the 6d tensor field of the M-fivebrane of N = (2,0) theory compactified on
T2 x T* implies the SL(2, Z) S-duality of the 4d U(1) gauge field partition function. These
computations use the Hamiltonian formulation. In appendix A we review the path integral
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formalism for the 4d zero and non-zero mode partition functions, and give their relations to
the quantities computed in the Hamiltonian formulation. The results are summarized here.

1
39% pr
Zzero modes — (Im T) 2 ? Zzero modes* (51)
6
4d _ -3 1o pr
Zosc - (Im 7_) 29 4RGZOSC' (5'2)
3
Zzero modes 7 Z zero modes>? Zzero modes 7 |T’ Zzero modes under S
Zzero modes Zzero modes? Zzero modes 7 Zzero modes under T’ (53)
and
4d 4d -3
Zosc Zosc’ Znon zero modes 7 |T| Znon zero modes under S
4d 4d
Zosc Zoscv Znon zero modes — 7 Z non—zero modes under 7' (5'4)

S and T are the generators of the duality symmetry SL(2,2), S:7— —=, T :7 — 17— 1,
where 7 = % + ii—’{ is also given by the modulus of the two-torus, 7 = 52 + zR

6 Conclusions and discussion

We computed the partition function of the abelian gauge theory on a general four-
dimensional torus 7% and the partition function of a chiral boson compactified on T2 x T4,
The coupling for the 4d gauge theory, T = % + i%, is identified with the complex modulus
T =82+ i% of the two-torus T2 in directions 1 and 2. Assuming the metric of T2 is
much smaller than T, the 6d partition function factorizes to a partition function for gauge
theory on T* and a contribution from the extra scalar arising from compactification.? The
6d partition function has a manifest SL(2, Z) x SL(4, Z) symmetry. Therefore the SL(2, Z)
symmetry with the group action on the coupling, 7 = % + ii—g, known as S-duality be-
comes manifest in the 4d Maxwell theory. Presumably this happens for an arbitrary four
manifold, but we chose 7% in order to generate explicit formulas, i.e. explicit functions of
7 and the 4d metric.

The 6d chiral two-form has no Lagrangian, so we use the Hamiltonian approach to
compute both the 4d and 6d partition functions. For 4d gauge theory, the integration of
the electric and magnetic fields as observables around one- and two-cycles respectively take
integer values due to charge quantization. We sum over all possible integers to get the zero
mode partition function. For the oscillator modes, we quantize the gauge theory using the
Dirac method with constraints. In 6d, the partition function follows from [12, 13, 17].

We have also given the path integral result for the 4d partition function. It agrees
with the partition function obtained in the Hamiltonian formulation. However, the path
integral factors into zero modes and oscillator modes differently, which leads to different

2The Lagrangian for this single 4d scalar with a Lorentzian signature metric is £ =
H1L (52 060066 — 59°°0a$050).
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SL(2, Z) transformation properties for the components. The 6d and 4d partition functions
share the same SL(2, Z) x SL(4, Z) symmetry.

If we consider supersymmetry, compactification of the 6d theory on 72 leads to N = 4
gauge theory in the limit of small 72. On the other hand, an N = 2 theory of class
S [23, 24] arises when the 6d, (2,0) theory is compactified on a punctured Riemann surface
with genus g. Here the mapping class group of the Riemann surfaces acts as a generalized
S-duality on 4d super-Yang-Mills theory [25-27].

In another direction, we can study the 2d field theory present when 6d theory is com-
pactified on a four-dimensional manifold. A 2d-4d correspondence, relating a generalized
gauge theory partition function and a 2d correlation function, acting between N = 4 gauge
theory on S* and a 2d Toda-Liouville conformal theory on 72, holds for the radius of S4
fixed to 1 [5, 25, 28-30]. It is difficult to see how the 2d-4d correspondence works for the
gauge field on 7% because the 4d oscillator partition function is most naturally viewed as
that of a 2d theory on a T2 in directions 3 and 6, whereas the 4d zero mode sum is equiv-
alent to a 2d zero mode partition function on a 7 in directions 1 and 2. For an arbitrary
4d metric, the theory may be too rich for a 2d-4d pairing. A 2d-4d relation can also be
analyzed from a topological point of view [4, 31, 32]. Finding explicit results, such as we
have derived for T2 x T%, for these more general investigations would be advantageous.

A Comparison of the 4d U(1) partition function in the Hamiltonian and
path integral formulations

For convenience in comparing the 4d gauge theory with the 6d chiral theory in sections
2 and 3, we quantized both using canonical quantization. Since a Lagrangian exists for
the 4d gauge theory, it is useful to verify that its path integral quantization agrees with
canonical quantization. We find the two quantizations distribute zero and oscillator mode
contributions differently, and thus these factors transform differently under the action
of SL(2, Z). We summarize the path integral quantization results from [9, 15, 16, 33].
Following [9, 16], the two-form zero mode part, % is the harmonic representative and can

be expanded in terms of the basis a; = ﬁd@l AdB?, etc., I =1,2,...,6 namely

F
%Em:zl:mlal, (A1)

where m are integers. Define (m,n) to be the intersection form such that (m,n) = [ mAn,
and thus

(m.m) = 12 / d* 0" Fyi Fyy

(m, #m) = 87;2 / d*0\/gFIF;;. (A.2)

So the action (1.3) is given as

472 if 1 i
= —5 (m,sm) = o (m,m) = 262/d40\/§F "Fij = 35 /d4963leiijl. (A.3)
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The zero mode partition function from the path integral formalism can be expressed as a

lattice sum over the integral basis of my [9, 16],

4 2
Zzero modes — Z eXp |: - eig(ma *’I’)’L) =+ 5(771, m):|
mreZ6

= Z exp [?T((m,m) + (m, *m)) — %7’( - (m, m) + (m, *m))], (A.4)

mjeZ6

where 7 = % + ii—g, and we have chosen the § dependence of the action as in [9]. Alterna-
tively the zero mode sum be can written in terms of the metric using (A.3)

" T
Zzero modes — Z eXp{ |: - §R6 fgaﬁ 'Y(;Foc'yFﬁé Rﬁ 965 F§675F5’ﬂ’7ﬁ
ﬁijEZG

0e? 47
_WR\[ aﬁFﬁan,B _|_27T\Rf a6F6aF6/3”y —18—6 ﬁVFGQF/g,Y] } (A.5)
6 6 e2

where Ej = 27F;; = my are integers due to the charge quantization (A.1), and where
we have taken into account the integrations [ d*0 = (27)* in (A.5). To compare the zero
mode partition functions from the Hamiltonian and path integral formalisms, we rewrite
the Hamiltonian formulation result (2.7) as

2 = ayd
e“Rg ~ ATNG 5= PerS
Zzero modes — Z exp |: - 4\/5 Jap (Ha t €2R6 ga(sFé)\’Y)\ + Ar F76
ﬁa»ﬁaﬁ
"’ﬁ 471'\/‘5 /36/ ~ N 6657/6/ ~
- IT —I—ZT‘Q F(g/)\/"y =+ F,y/(g/

e 4T

477' f 1~ 277'2

=R 9% FspyP Fypy® — e—Q\fgaﬁ 75FMF55] (A.6)

After Poisson resummation,
3 explm(n+a) - A (n+a)] = (detd)"7 Y e AT nEmIn (A7)
TLGZS n€Z3

gggga‘sﬁg,\’y)‘ + %ea'y‘;ﬁws, we get the Hamiltonian

2
_ e“Rg fo
where A,3 = yry AL and z
expression as

2\ —5 ~1 2 /=
e 2 4 4 aBar B 0 cx 8m aBH -
Ziumoaes = (5) L5 5 o] - Tty - i e B+ S STNG L B

g
4 3 2R 2
T R62 ﬂavﬁ‘aﬁ ¢ ¢
471' g 55 = r 21 Re  ~ o o~
- \ng&s FsonForgy” = =5/39""g" Fan Fs
1
4
- (ImT)% J 3 Zzzfomodesa (AS)

where TI,, is the integer value of ﬁa, and we identify 11, with F’(;a in (A.5). Then

2
(ImT)_gR— z4d

g4

zP!

zero modes zero modes’

which is (5.1).
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We review from [15] how the non-zero mode partition function is defined by a path
integral,

Znon zeromodes /A DAHB_I- (AlO)

Performing the functional integration with the Fadeev-Popov approach, [15] regularizes the
path integral by

1 1
det(2nIm7Ao) | ° g ’ bt detAo
det(Ao) ———rt| = | mo7—= | (27l :
e ( 0>det(27l’1IIlTA1):| (27‘()4\/§ ( ™ mT) detA%7
1

(A.11)
where by = 4 is the dimension of the group H(T%). A, = (d'd+dd"), is the Laplacian oper-
ator acting on the p-form. g = detG;;. So Ag = —Gijaiaj, and det(A;) = det(Ag)*. Thus

PI _ 1 ( 9 ) H
non—zero modes (271_) b12 1 \volT*

AR =
non—zero modes
\/T T

The determinant can be computed

(ImT) detAy*t. (A.12)

_1 1
detA,? = exp{ - 2trlnA}, (A.13)
exp{ — ;trlnAo} = exp< — %trln( - G66(9§ — 2G6a0600 — Ga53a35)>

:exp<—z Zln< n6—|—2z{6nanﬁ+(} nn5)>

ne#0 16

= exp< ! Z Zln<é2(n6 +9%1,)% + g%n, n5>>. (A.14)

na£0 16

Let p(E) =3, In(2 (ne + 7%na)? + E?), where E? = ¢*Pnong, p = 21Rg,

Z B psinh(pE)
L (ng +von ) + B2 cosh(pE) — cos(2m7%n,)

ne R2

= dpln[cosh(pE) — cos(2my*na)]. (A.15)

After integration, we have
a 2 2
w(E) =In [cosh(pE) — cos(2my na)] +1In | R\/— |- (A.16)
T
where the constant In (R% \/g) maintains SL(4, Z) invariance of the partition function. So,

detAg ™t = eXp( - ;trlnA()) e D)

=

_ (2m) 1
R H _\/24/cosh(pE) — cos(2my%n,)

na€Z3#40
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—
[N}
3

N—
=

_pE
e 2
RG H 1 — e~ PE+2miv*ng : (A17)
Nna€Z34£0
Therefore, using (A.12), we have
i
29
chfn—zeromodes = (Im T)2 2 Zélg:, (Alg)
6
which is (5.2).

Together with (A.9), the partition functions from the two quantizations agree but they
factor differently into zero and oscillator modes,

4d,Maxwell __ rr4d ad __ - PI PI
Z - Zzero modesZ =Z

osc zero modes Zn

on—zero modes* (Alg)
B SL(2, Z) invariance of the Z6dchiral apq Z4d:Maxwell phartition functions

The S-duality group SL(2, Z) group has two generators S and 7" which act on the parameter
T to give

1
St — ——, T:7—71—-1 (B.1)
Since 7 = 32 + z% = % + ii—’{, the transformation S corresponds to
Ri = Rilr|™', Ry = Rylr|, 8% — —|7[7?8% (B2)
and T corresponds to
8% = 5% —1. (B.3)
Or equivalently
4 4
S : N 0 — —0)r| >
e e
T: 0 — 6 — 2, (B.4)

which for # = 0 is the familiar electromagnetic duality transformation % — ‘é—g
6d partition function.

The 6d chiral boson zero mode partition function (2.6),

6d TR
Zzero modes — Z eXp{ -

6 = /
V9% Hizo Hyow
Ri1Ry
ng,ng9,ni1o

Y = 1 22 ’ ’
. E expy — *RﬁRlRQ\/& -3 T+ & 5 9% g'BB HongHoopr
n4,Mn5,M6

5 exp{_wR

6o = " 3@ _
B V8% 9" HiapHawg +imy* ™ Hins Haas
ni,n2,n3

i = / ’ / .
> exp{ — 5 BB R/ 59" "7 9 Haps Horgr — m%WHmHaﬁa}
nr
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7TR R / / ’
6 2\/’ aa! ﬁﬁ 045 9504 )HlaﬁHla’ﬁ/} (B.5)

where Hy34 = n1,Hiss = n2, Hi3s = n3, Hozq = ny4, Hogs = ns, Hazs = ng, Hass = n7,
Hy93 = ng, Hia4 = ng, H125 = n1g, is invariant under both S and T'. To show the invariance
using (B.2), (B.3) we group the exponents in (B.5) into two sets,

TR = oo m
B R1Rﬁg \/ggaa HiooHioo — €R6R1R2 \/Qaa pE 9 Ha55H e — AT e Hi2yHops,
(B.6)

and

s = 1 22 / R = / /
—R6R1R2\/§<R é >gaa 9°% HonpgHoorg — T =2 Ror/36%9°% 9% HyopHoorpr

Ry
7T RgR. = ’ /
5 ; 2 V3 9% ¢°% HisHiwp. (B.7)

+imry agyBo HiygHos —

(B.6) has no % dependence and therefore is invariant under 7'. (B.7) transforms under T
to become

22
—%RGRIR2\/(R2 8 )g"“" b8 HMHQQW—W S Rov/38%9% %% HyopHour 0

Ry

+ imy* P Hy g Hons — Vag o g7 HiapHyorp (B.8)

™
2R Rz
R — aal — aa’ ’ R =~ aal ’

+ TFR% VaR2B%9° ¢°% Haap Hoursr — gR*?\/;Rzg 9% HyapHoorpr + Wﬁ?m V39§77 HiapHoorgr,
which is equivalent to (B.7) in the sum where we shift the integer zero mode field strength
Hlaﬁ to Hla,B - HQ@ﬁ-

Under S, we see (B.6) as a function of R; Ry is invariant, and find (B.7) transforms to
T RgRo
2 R

— / ’ RG — / /
V39" PP HoppHowr pr + WPT1R2 V3B8%9° 6% HyopHowr
22

. B
+ iy Hy g Hons — leRﬁRg\/ <g + 2

So by shifting the integer field strength tensors Hi,3 — Hanp and Hong — —Hiqp, the

)gaa/gBﬁIHlOéﬁHlalﬁ/' (Bg)

sum on (B.7) is left invariant by S. Thus we have proved SL(2, Z) invariance of the

6d zero mode partition function (2.6), and that its factors e and Z2d n (2.9) are

zeromodes
separately SL(2, Z) invariant.
For the oscillator modes (4.36), the only term that transforms in the sum and product is
9 2

2 22
) 4! B B
e U R : B.10
P= <g o )pg R PP (B.10)

which is invariant under T by shifting the momentum p; — p; 4+ ps. With the S

transformation, p* becomes

232

B\ 1
) + 7 2p2 R12p1p2, (B.11)

R;?

and by also exchanging the momentum p; — po and ps — —p1, the term remains the

P (9 +

same. So the 6d oscillator partition function (4.36) is SL(2Z2) invariant, which holds also
for regularized vacuum energy as given in (4.37).
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4d U(1) partition function. In the Hamiltonian formulation, SL(2, Z) leaves invariant
the U(1) oscillator partition function (4.30), since it is independent of €2 and §. We have
also checked above, starting from 6d, that the zero mode 4d partition function (2.7) is
invariant. Thus the U(1) partition function from the Hamiltonian formalism is S-duality
invariant.

The S-duality transformations on the corresponding quantities in the path integral
quantization can be derived from (A.9) and (A.18). Since Im7 — #ImT under S, and is
invariant under T, we have

3
Z zero modes 7 Z zero modes? Z zero modes 7 |T| ero modes under S
Zzero modes Zzero modes?’ Zzero modes Zzero modes under T’ (B12)
and
4d 4d PI —37PI
Zosc 7 Zosc? Zosc 7 |7—’ Zosc under S
4d 4d PI PI
Zose — Zotes Zowe — Zie under T, (B.13)
which is (5.3) and (5.4).
A 2d-4d correspondence for Z;ﬁo modess We remark here that the zero mode con-

tribution to the partition function for the 4d Maxwell field is equivalent to the zero mode
contribution to the partition function for a 2d worldsheet action [9],

S = / 2o [Vhh" G5, X0, X" + €' Bopd, X0, X", (B.14)

where 1 < pu,v <2 and 3 <, <5.

. 2
ZM odes = Y @RI TR - N (i3 ((r)’ = () =45 () +(pr)?)
(P,pr)€l's 3 (p1,pr)€ls,3
_ § : ez@namo‘—%(m mPGop+(na—DBapm?)G*? (ng—Bg,m?))

na€Z3,mﬁ€Z3
= zPI

zero modes

where ZP1 . is given in (A 5). The 2d metric is hy; = R? + R23%B82, h1s = —R35%,
hoo = R%, and 7 = 2 —Hg = 27T +z . The nine parameters of the moduli space %

of the Lorentzian lattice I'3 3 are glven by the 4d gauge theory metric as

R A
6 Baﬁ _ CaB)Y )

7~g 9 - =
Noha g

The integers are identified with the Maxwell field components as

Gag =

Feo = nq, Faﬁ = %
7
The points (pry,prs) on the Lorentzian lattice I'y 4 are [34]

PLy = naeia + ma(Baﬁ + Ga,@)e:ﬁ7 PRy = naef;a + ma(BaB - Gaﬁ)esﬁa
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PL = ZPL’YPL’Y’ PR = ZpRvaw 6:%:5 = Ga'Ba PL — PR = 2nam,
~v=1 y=1 v=1

Pi + k= m®m’Gap + (na — Bapm?)G*? (ng — Bgom?),

for 1 <a,pB,v,0 <d.
However, the non-zero mode partition function of the 2d theory (B.14)

Znon zeromodes — (77(7_)77(7_—))_3 (B15)

is not the 4d non-zero mode partition function (A.18), although they both transform in
the same way under the SL(2, Z) duality transformation. Indeed (A.18) is more naturally
described by a 2d scalar theory with massless and massive modes on a two-torus in the
directions 3 and 6, as we show in appendix D.

C Regularization of the vacuum energy for 4d Maxwell theory

The sum in (4.30) is divergent. We regularize the vacuum energy following [12, 13, 17]. For
(H) = %Zpae 23V 9*Ppapp, the SL(3, Z) invariant regularized vacuum energy becomes

4%3\[ Z gagnanﬁ = —im/j Z |27m|4 (C.1)
neeZ3+£0 neEZ3+£0

For the proof of SL(4, Z) invariance in appendix D, it is also useful to write the
regularized sum (C.1), as

(H) = Z <H>Iu = <H>Iu:0 + Z <H>Zu’ (C.2)

pLEZ? PLEZZHD
where p| = p, € 2%, a = 4,5, and

1 — 1 1
/33 — (-] = -~ .
(H)p, =0 = E g°°p3p3 = 3n§1n R3<( ) 2R,

PJEZ

(H)p, 20 = pLI*R3 Y _ cos(par®2mn) [Ka(2mnRs|py|) — Ko(2mnRslpL[)].  (C.3)

n=1

L] = \/Pappg®, using the 2d inverse metric as defined in appendix D.

D SL(4, Z) invariance of Z4d:Maxwell 5q 7Z6dchiral

Rewriting the 4d metric (3,4,5,6). From (2.2) the metric on the four-torus, for a, f =
3,4,5, is
chﬂ = Gop; Gos = _gaﬁ'yﬂa Ges = Rg + gaBVQ’Yﬁ- (D'l)

We can rewrite this metric using a,b = 4,5,

933 = R% + 9apv®k’,  Ga3 = 9k’ Gab = gapy (VRO =74 =734 (D.2)
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G33 = Rg + gabﬁaﬁba G36 = _(73)R§ + gab’ib:yﬂa G3a = _gab’ib7

Gab = Gab, Ga6 = —Gab7'> Gos = Rg + (7°)*R3 + g 7*7". (D.3)
The 3d inverse of g,z is
kKD a3 K® 33 1

ga = gab + ) g = 535 g = 59 (D4)
R R R

where g% is the 2d inverse of ggp.
g =det Gy = R? det gop = RE g = RER3 detgu, = RERS g.
The line element can be written as

ds® = R§(d0°)” + > gap(do™ —*d6°)(do” — ~Pd6®)

a,8=3,4,5
= R2(d63 — (7*)d#%)? + RZ(d6°)>
+ ) gap(d0® —F°d6° — k°d0°) (A6 — 7P d6° — KPd6?). (D.5)
a,b=4,5
We define R
%zﬁHR—z. (D.6)
The 4d inverse is
~ 1 sa6_ 0 Fsa _ KO Y
G338 = 7? Gee‘ 2, G66 7 Gas =21 Gda + :
R2 R2 R2 R R2
~axb axb a 3..a ~a
Sab _ ~ + £9°) ~ 7R+
Gab: ab 2 7Y 7(7/‘3 G6a:7: ) D.7

Generators of GL(n, Z). The GL(n,Z) unimodular group can be generated by three
matrices [35]. For GL(4, Z) these can be taken to be Uy, Us and Us,

0100 1000 -1000
0010 1100 0100
U = ; Uy = ; Us = , (D.8)
0001 0010 0010
1000 0001 0001

so that every matrix M in GL(4, Z) can be written as a product Uy Uy?U3* U U3 U3 . . .,
for integers n;. Matrices Uy, Uz and Us act on the basis vectors of the four-torus @; where
071' . &j = afaéle = Gij,

ds = (1,0,0,0)
dg = (0,1,0,0)
dy = (0,0,1,0)
=(0,0,0,1). (D.9)
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For our metric (D.3), the Uy transformation

&, &s 1000

7! 7 11

YWl | %] = 00 (D.10)
ay Oly 0010

aL &s 0001

results in @ - a4 = o/50/}Gij = Gs3 = Ghs, ah - df = /503G = Gz + Ggg = Gy, ete.
So Us corresponds to

R3 — R37 Rﬁ — Rﬁ; 73 — 73 - 17 K — ﬁa7 %a — ?a + Ka) Gab =7 YJab (Dll)

or equivalently
Rs — Rg, 7> =7 =1, gag = Gap, 7" =%, (D.12)

which leaves invariant the line element (D.5) if d§® — d6* — d#°, d§® — dOS, d9* — do°.
U, is the generalization of the usual 7 — 7 — 1 modular transformation. The 3d inverse
metric ¢*? = {g?%, 23, ¢33} does not change under Us. It is easily checked that Us is an
invariance of the 4d Maxwell partition function (4.32) as well as the 6d chiral boson partition
function (4.37). It leaves the zero mode and oscillator contributions invariant separately.

The other generator, U is related to the SL(2, Z) transformation 7 — —(7)~! that we
discuss as follows:

Uy =U'M;s (D.13)
where M3 is a GL(3, Z) transformation given by

00-10
My— |01 00 (D.14)
00 0 1

1000
and U’ is the matrix corresponding to the transformation on the metric parameters (D.16),

0100
-1000
0 010
0 001

U= (D.15)

Under U’, the metric parameters transform as

Rs = Rsl|7l, Rs— Rel7|™", 7* = —"[717% &" =3 3" = —k",  gab = gav.

~ 1 .
T— —=. Or equivalently,
T

Gab = Gap, Gaz — Gas, Gas — —Gaz, Gzz3 — Ges, Ges — Gz, Gze — —G3s,

~ ~ ~ ~ ~ ~ ~ ~a- ~33 ~ ~n ~ ~
G =@y, G =G, G - -G, GP - —%‘2 G — [7PGS°, G — -G, (D.16)
where 4 < a,b <5, and
R R2
~ 3, .1 ~2 312 6
T=v"+1i—, 171" = (v")" + —=3. (D.17)
R3 R3
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The transformation (D.16) leaves invariant the line element (D.5) when d§® — d6%, d§% —
—df3, d#* — df*. The generators have the property detU; = —1,detUs = 1, detUs =
—1,detU’' =1, det M3 = —

Under Ms, the metric parameters transform as

R — R, Y= =t A =T Gab = Gat141, Gas = —Gatia, 933 — Gad,

gab — g“+1’b+1, g™ = —ga+1’4, ¢ = g44, detgag =9, g— 3. Or equivalently,

Gay — Ga+1,b+1, Gaz — *Ga+1,4, Gas — Gat1,6, Gz3 — Gaa, Ges — Ges, Gzs — —Gag,

G 5 GeHH, GRS L G, G L G, OB L M, G o -G, G 3,

det Gy = Rg §,  det G4 — det Ga, (D.18)

where 4 < a,b <5, and a+1 = 3 for a = 5. We see that M3 takes Z
conjugate as follows. Letting the M3 transformation (D.18) act on (2.7), we find that the

a0 modes 10 its complex

three subterms in the exponent

2 2
1
_%RG \/§< 0 672 )(gaa b Py oy + 4% ngFabF s +2gaa G5 FugFurg — 29°% g 3Fa3F /3)

A7 2
2R6 ﬁB
4f
96 R6 avé & T8
7_‘_2\/*90436 K thsH ) (Dlg)

are separately invariant under (D.18) if we replace the integers ﬁa/g € Z3.11* ¢ 23 by
Fab — Fa—i—l,b—f—la Fag — *Fa+174, ﬁ3 — 1:[4, ﬁa — *ﬁa—H. (DQO)

However, acted on by M3 with the field shift (D.20), the term

2miy TP Fop — —2min*TIP F g (D.21)
changes sign. Thus we have
d *
M3 : Zzero modes — Zﬁero modes (D‘22)
The action of U’ on Z3d Next we show that under U’, Z4d transforms

zero modes* zero modes

7|2 Z4d From (A.5) and (A.9), we have

to ‘T zero modes”

1
4\ 2 g4 272
Zzero modes — <62> 7% Z eXp{ - 7R6\/gl]gl] F FJJ/ - 706 B’YF(iaFﬁ’Y}

(D.23)
from which it will be easy to see how it transforms under the U’ transformation. Under U’
from (D.16), the coefficient transforms as

3 1 3 1
4\ "2 gi AT\ T2 gt
v (5) 5o () 29

The Euclidean action for the zero mode computation is invariant under U’, as we show
next by first summing i = {3,a,6}, with 4 < a <5.



2m°Rev/G R i 4/ = =
T e RmY 'g"7 Fis Fy;

__ f6f(G““ G Fap Fyrty + 4GS G Froy Foyry + 4GS GO Froy Foyrg + 2G5% G52 By Fryrs
— 2GS G P FagFrarg + AGSY G Fus Fryrg — AGS°GY P Fug Frurg + 4GS G40 Flap g
+ 2G5 G Fus Forg — 2G5° G C Fag Furg + 4G5 G3° Fus Fys — 4G5°GS Fos Fae
+AGTP G Fag F3o — 4GS0 G5 Fag F36 — 2G5 G3° Fsg Fis + QGZBGEGFSGF%)- (D.25)
Letting the U’ transformation (D.16) act on (D.25), we see the first term in the exponent
of (D.23) changes to

21° R 3 2
_ 2w Rs/g (G“a G FapFury + 4G5 G5 FupFaz — 4G5 G5 FunFurg + 123 G5 G FasFurs

62 | ‘2
2GS G Frys Frg — 4GS G Fys Frg + 4GS GY S FasFyg — 40;}’"’@5 F, . Fae

+2|;|262a/é?16Fa6Fa’6 —2G9GY P FupFurg — AGISGEF, a3F36+| E GG FusFae

+ 4|?|2626626Faeﬁ'36 — 4623526Fa6ﬁ136 — 2626626F36F36 + 2623626F36F36> . (D26)

The second term in the exponential of (D.23) is a topologlcal term, and is left invariant
under the action of U’ by inspection. If we replace the integers F 3q — Fﬁa and Fa6 — Fag,
the two terms are left invariant, so the sum

o2 P _
Z e 230G g T By By i § e Fo P, (D.27)
FijGZG

is invariant. Thus we have shown that under the U’ transformation (D.16),

Zzeromodes(R?"ﬂ’ R6|?|717 Yab, _73’?‘727 ﬁav A ) |T’2 glgromodes(R?n R, gab, 737 Ha? f’?a)‘
(D.QS)
Also from (D.23), we can write (D.22) as
M3 : Zzero modes(e 0 GZ]) z4(§ro modes( 27 _0’ GU) (D29)
and thus under the GL(4, Z) generator Uy,
Zzeromodes — |T’2 ( ﬁgromodes)*' (DSO)

The residual factor |7|? is sometimes referred to as an SL(2, Z) anomaly of the zero mode
partition function, because U’ includes the 7 — —% transformation. Finally we will show
how this anomaly is canceled by the oscillator contribution.

Under Us, the metric parameters transform as

R¢ — Re, Y= = A =" Gab = Gabs  Ga3 — —Ga3, 933 — 933,

gab — gab, ga3 — — ga?’, g33 — 933, detgap =9, G— 7. Or equivalently,

Gap = Gap,  Gaz = —Ga3,  Gas = Gag,  G33 = Gz, Geg = Ges,  Gszg = —Gse,
G =GP, GP =GP, GI'—=Gi% GP =GP, G —-GY, GY = GY,
det Gy = Rg g,  det G4 — det Gy, (D.31)
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where 4 < a,b < 5 and G is the 3d inverse. We can check that Z4d becomes

zero modes
its complex conjugate under Us given in (D.31) as follows. Letting the Us transforma-

tion (D.31) act on (2.7), we find that three of the terms in the exponent

2 = 2 2
€ R 9 167T H,CL/ ! Ll(l/ au.l a. a,
e (—+ )(g 9" FusFoy + 49" 9" FavFurs + 29" g FusFur — 299" * FuaFurs ),

8 472 et
62R6 ~ B
————11%gapll”,
4\2/5
fe RG 8 &= 1B
— ap€ T F 117, D.32
871‘\/59 BE€ ¥4 ( )

are separately invariant under (D.18), if we replace the the integers ﬁag e Z3 1> e 23 by

Fy — Fup,  Fug — —Fus, 1I° — 112, o — —I1¢, (D.33)

However the subterm

2min® TP Fag — —2miy®T1° Fop (D.34)

acted by Us with the field shift in (D.33). Therefore the zero mode partition function goes
to its complex conjugate under Us.

Appropriate generators for SL(4, Z). We claim that U?, Uy and U;Us generate the
group SL(4, Z) since GL(n, Z) is generated by Uy, Us and Us or alternatively R; = Uy,
Ry = U3_1U2 and R3 = Us, i.e., any element in GL(n, Z) U can be written as

U=R"Ry"R3"™R{" Ry R3" . ... (D.35)

It is understood that SL(n, Z) is generated by even numbers of Ry, Rs and R3. Thus, the
possible set of group generators for SL(n, Z) is

R}, R3,R3, RiRy, RyRs, RsRi, RyRy, R3Ry, RiRs (D.36)
with the properties that R = 1 and R = 1. A smaller set of the SL(4, Z) generators is
R}, Ry R3, RoRs, (D.37)

since other generators in (D.36) can be expressed with the generators in (D.39) through
the following relations

RiRy = Ry R3(RaR3) !, RoRy = (R1Ry) 'R}
R3Ry = (RyR3) 1, R3R; = (R1R3) 'R3. (D.38)
Notice that
{R}, RiR3, RoR3} = {U},U1Us, Uy '} (D-39)
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These three matrices generate SL(4, Z). They can be shown to generate Trott’s
twelve generators B;; [36].

Since we have tested the invariance of the zero mode partition function under Us, we
only need to check invariance under U3Us and UZ. For U;Us, as previously we separate Uy
into U’ and M3,

U Uz = U'M3Us = U'(M3Us). (D.40)

Since both M3 and Us take Zd

o modes 1O its complex conjugate, M3U3 is an invariance of

the zero mode partition function. Thus from (D.28),

. 2
UUs : Zzero modes 7 ‘T’ ero modes* (D41)
4d :
U2 acts on Z o modess  Oince we have shown before
. ~12 r74d *
Uy : Zzero modes 7 |T‘ Zzero modes> (D'42)
then
2.
Uy”: Zzero modes Zzero modes* (D'43)
To summarize, we have
U2 : Zzero modes 7 Zzero modes?
. 2
UUs : Zzero modes 7 ‘T| ero modes»
2.
U1 . Zzero modes Zzero modes* (D44)
One can derive a similar transformation property for Z o modes USINg (2.9),
UQ : Zzero modes Zzero modes?
. 3
UUs : Zzero modes 7 |T| zero modes?
2.
U1 . Zzero modes 7 Z zero modes? (D45)

which follows from transformations on the factor €, given in (2.10). By inspection e is
invariant under Us and Mjs, and transforms as

U':e—|Tle. (D.46)

This can be seen by Poisson resummation since € can be written as

\/.5 ab 7TR6[
— oy — —-YVY . —n(N CA-(N ,
‘ Zexp{ RS e~ L TR e} 3 exp{a( ) 4+ (¥ +2)
U (D.47)
where
€aBé 4
HIQCX = Nq, Haﬂé = ——=—m, Mm,Nq € Z I
Re\/g ‘a3 a ¥33%naq
A [ Tk 7y det A — |~‘2 N - n3 [~k Ng + 72
- Z,YS RgR1Ro ’ e =17l - m y L= RG\f’Y Na :
R3v/g YRsRiRa72
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U’ acts on Z2d. To derive how U’ acts on Z34, we first separate the product on 7 =
(n,ng) # 0 into a product on (all n, but ne # (0,0)) and on (n # 0, ng = (0,0)).
Then using the regularized vacuum energy (C.1) expressed as sum over zero and non-zero

transverse momenta p; = n, in (C.2), we find that (4.32) becomes

2
R
4d,Maxwell _ 4d | 5RE 1
— “zero modes € o Be 2min3
S ﬂR—S\nF Tiy3n

1 2
. I | —2mRe(H)p | I
( € : —271'R6\/gaﬁnanﬂ—27ri’yo‘na> ’ (D48)

na €22(0,0) ez l—e

As in [12, 13] we observe the middle expression above can be written in terms of the
Dedekind eta function n(7) = e’z [Thezrz0(l— e?™T), with 7 = 4% + i%,

_onle
n0 1 —e "Ry

66R3H R6n|—27ri»y3n> = ((T)n(7))~" (D.49)

This transforms under U’ in (D.16) as

(n(=F1a(=7 )% =772 (HaF) 2, (D-50)

where n(—7"1) = (i?)%n(?). In this way the anomaly of the zero modes in (D.28) is canceled
by (D.50). Lastly we demonstrate the third expression in (D.48) is invariant under U’,

1 2
—2mRe(H) L =PI D.51
( H ¢ H —27R6/ 9P nang—2miv*na > ’ ( )

na€224(0,0) nzez 1 —e

where PI is the modular invariant 2d path integral of two massive scalar bosons of mass
V §%ngny, coupled to a worldsheet gauge field, on a two-torus in directions 3,6. Follow-
ing [12, 13], with more detail in (D.68), we extract from (4.30)

2
H 1
Z4d = 77TR6 Zﬁ z3 gaﬂnanﬁ D. 2
o (e ) L1 — e 2mR64/9Pnang—2mivna (D.52)

RnEZ3#0

the 2d path integral of free massive bosons coupling to the gauge field, where n, is fixed
and non-zero,

(PI)z = ¢ ™Mo Zmgez Vorinans TT —
1 — ¢ 27Rs 9*Pnang+2miyng

n3€eZ
_B'E
e 2 _ _ af /_

= H | o FETomiPsiying) where s =n3, E =/g*n.ng, B =2nRs

seZ
= H ! for ng — —n

iz V2 \/cosh B'E — cos 2m(v3s + v9na) ¢ ‘
_ ef%zsez (ln [coshﬁ’Efcos277(73s+'y“na)]+1n2) = 67%2362 z/(E)’ (D53)
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where

Z v(E) = Z (In [cosh B'E — cos 2m(3s + v"n,)] + In 2)
sEZ s€Z

—ZZln[ (r+~°s +9"n.)* + E?|. (D.54)

SEZrez

We can show directly that (D.54) is invariant under U’, since

1 -
E? = go‘ﬂnanﬁ = 93382 + 293a5na + gabnanb (s + K na) + g“bnanb,

R3
4 2 1 a 2
G+ ) = (4 T ) (D.55)
then
Amr? 2
5,2( + 725 +9"n.)* + E
1 ~2 3 a ~ab
R2 (s + &™) [7* + i (r +7%nq)% + R2 (r+79%nq)(s + kng) + g ngnp. (D.56)

So we see the transformation U’ given in (D.16) leaves (D.56) invariant if s — 7 and r — —s.
Therefore (D.54) is invariant under U’, so that (PI )% given in (D.53) is invariant under U’.

4d
M3 acts on Z7¢_.

the integer n, as

M3 leaves the Z2d invariant as can be seen from (D.48) by shifting

ng — —na, Ng — Ngt1- (D.57)

So, under Uy = U’ M3,
Z4d

2 r74d
osc ‘ Z

— |7 o (D.58)

Us is an invariance of the oscillator partition function by inspection.

4d
Us acts on Z_¢_.

integers n, as

Us leaves the Z24 invariant as can be seen from (D.48) by shifting the

ng — —ns, Ng — Ng. (D.59)

Thus, the oscillator partition function transforms under the SL(4,Z) generators
{U12,U1U3,U2} as

U2 : Zggc - Z(ilsClcv
U1Us : ZoS% = |72 258,
U2 z3d 74 (D.60)

So together with (D.44) we have established invariance under (D.39), and thus proved the
partition function for the 4d Maxwell theory on T, given alternatively by (4.32) or (D.48),
is invariant under SL(4, Z), the mapping class group of T*.
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- 2
appears in (4.36), the SL(3, Z) invariant regularized vacuum energy [12, 13| becomes,

U’ acts on Z%4. For the 6d chiral theory on 72 xT*, where (H)% = 1 Fezs \/ G pip,

1 1
H 6d _ / _ .
< > ol Gs 7§6 (Glmnlnm)?’ (D 61)

= —320%\/G5 ) _ !

3
75 (2m)0 (gagnanﬁ + (R% + R§ﬂ252)(n1)2 — QﬁQRgnan + R%(n2)2>

and can be decomposed similarly to (C.2),

(H) = "\ = @ o+ Y (H), (D.62)
pLez4 pLEZAFA0
where ) )
H)% = _3272,/G /d4 —PLYL S D.63
< >pL ™ 5(271')4 ype 3622;7&0 ‘27_(_”3 +yj_‘6’ ( )
n

with denominator [27n® + y1|? = Gs3(27n3)? + 2(2703)Garyh + Grwyhyh, with k =
17 27 47 57

1
Hﬁd_ - -
< >pJ_—0 12R3,
o0
(H)$ Lo = |p1I*R3 Y _ cos(par®2mn) [Ka(2mnRs|p, |) — Ko(2mnRslp. )]
n=1
= K1(2mnR3|p1])
:—wfl\pL\Rgzcos(pana%m) ! sIPL , (D.64)
n
n=1
with p1. = (p1,p2,pa) = ni = (ni,ng,ne) = (ni,n2,ma,m5) € Z% |pi| =

2 2 22 ~
\/(7;%) + 21% + (Rig + %)n% + §%ngny.
The U’ invariance of (4.37) follows when we separate the product on 7 € Z° # 0

into a product on (ng # 0, n; = (n1,n2,n4,n5) = (0,0,0,0)), and on (all n3, but n; =
(n1,n2,n4,n5) # (0,0,0,0)). Then

o LI 1 s
— 6R.
Zoe= e 1] 2mi (79 ng-+i % ng| ) (B-65)
ns€Z#40 1 —e R
3
(e )
_ =2 ;
ny €24#£(0,0,0,0) sz 1 — e 2o/ ity nang +i2nyna
N -3
= (w7 7))
3
[ o] )
— 291 R, afl o n2 i2 g
(n1,n2,n4,n5)€ Z4(0,0,0,0) nyez 1 — e oV g s T T
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where 7 = 7° + 432, and 1 _R%+2R%n1n2+(R%+ Rf)nQ. Under U’,

n(7) 1(7) = |71 0(7) 7(7). (D.66)

U’ leaves invariant the part of the 6d oscillator partition function (D.65) at fixed n; # 0,
since

—27 Re(H 1
e 2ot 20 T (D.67)
2
n3€z 27rR6\/ga5nan@+;§+2 sninz—+( 2+ )n% +i27Ty %N,
1—e 1

is the square root of the partition function on 72 (now in the directions 3,6) of a massive
complex scalar with m? = G1'n? + G*n3 + 2G1%n1ny +3%ngny, 4 < a,b < 5, that couples
to a constant gauge field A* = iGMn,; with u,v = 3,6;4,5 = 1,2,4,5. The metric on

this T2 is hag = B3, hes = RZ + (+°)2R3, has = —7°R3. Tts inverse is h% = b + 0,

ho = L and K36 = 7 . The manifestly SL(2, Z) invariant path integral is
RG

6
PL = / dpdp e~ 157 40° J3T d0° B (0 A,) (0 — Av) ot m?bo

/j¢d¢ —JgT 03 [§7do%B(—( 12+<” )OI~ F5) 02Ty 6366+2A383+2A685+G“n1n1+c nano2G % ny notGnany)é

= det — ! —+ ’Yg ’ 8§ - i 28§ - 2’}/3 i 28386 + Gnnlnl —+ G22n2n2
RB Rs Rs Rg
—1
+2G2n1ns + GPngny + 2iG% N, 05 + 21’G6ana86] )

—tr1n|: ( 12-\\—( ) )8«3_(R )2 86 2+ (R ) 8335<0—G11n1n1+G22n2n2+2G12n1n2+G“bn,,nb+21G3an,,33+21G5“n086]
=€

o _quzz7 gz|:1ﬂ(4/2 T2+( 1?24'(’Y ) )82+2’Y ( )2TS+G11nln1+G22n2n2+2G12n1n2+Gabn,,nb+2G3ana H2G0%an, r):|
= o Teezv(B), (D.68)
Where from (2.3), G'! = Rif’ G?*? = RL R2 , G2 = RQ, G = g 4 X e 3 L, G = g+
3
R2 , GO = £2,G63 = #, and 03¢ = —is¢, Jgp = —irg, s = n3, and ' = 2w Rg. The
sum on 7 is
Zln[ (r+73s +9"n,)? + E?|, (D.69)
rez

with E2 = Glmnmm = G5 ning —|— G22n2n2 + G21n2n1 + Gabnanb + 2Gg3nan3 + G33n3n3,

and G” _ R% G12 R2’ G22 R2 + 6}2{327 Gla _ G2a -0, G3a = g3a R% G33 = ¢33 =
A, G = gt = gab 4 ” 5" We evaluate the divergent sum v(E) on r by
R2
- -
r ?37;2 r+9%s +79nq)? + E?
=0pln [cosh B'E — cos 27 (’738 + fyana)} , (D.70)
using the sum > - G ff)z = Cosﬁigﬁgosz. Then integrating (D.70), we choose the

integration constant to maintain modular invariance of (D.68),

v(FE)=1In [cosh B'E — cos 27T(’738 + ’yana)] +1In2. (D.71)
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It follows for s = n3 that (D.68) gives

1

1
Pl)2 =
R § v e ey ey

_B8'B
2

(&
B H 1 — e~ B E+2mi(y3s+yna)
seZ

DN || L

ez l— 6—27TR5\/Gémnlnm+27ri'y3s+27ri'yana

1
_ —2wRe(H)n1
—_— | | D.72
1 — e—?ﬂ'Rm/Gémnlnm+27ri’y3n3+27ri'yana ’ ( )

n3€Z

which is (D.67). Its invariance under U’ follows from the U’ invariance of (D.54), which
differs from (D.69) only by an additional contribution of 7% to the mass m?.
Hence (D.72) and thus (D.67) are invariant under U’.

Furthermore Z54

ose 1s invariant under M3, U, Us by inspection.

Using the same approach for proving SL(4, Z) symmetry of the 4d partition function,
we have shown the 6d oscillator partition function for the chiral boson given by (4.36), or

equivalently (D.65), transforms as

Us : 784 5 764
UL Us : Z3% — |71 ZES,
RE 754 784 (D.73)

Together with (D.45), the 6d partition function Z6d<hiral = 76d 784 is SL(4, 2)

zero modes ““0sc
invariant.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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