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with the complex modulus
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theory. In this way the SL(2,Z) symmetry of the 6d tensor partition function is identified
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1 Introduction

Four-dimensional N = 4 Yang-Mills theory is conjectured to possess S-duality, which im-

plies the theory with gauge coupling g, gauge group G, and theta parameter θ is equivalent

to one with τ ≡ θ
2π + 4πi

g2
transformed by modular transformations SL(2,Z), and the group

to G∨ [1–3], with the weight lattice of G∨ dual to that of G . The conjecture has been

tested by the Vafa-Witten partition function on various four-manifolds [4]. More recently,

a computation of the N = 4 Yang-Mills partition function on the four-sphere using the

localization method for quantization, enables checking S-duality directly [5].

This duality is believed to have its origin in a certain superconformal field theory in

six dimensions, the M5 brane (2, 0) theory. When the 6d, N = (2, 0) theory is compactified

on T 2, one obtains the 4d, N = 4 Yang-Mills theory, and the SL(2,Z) group of the torus

should imply the S-duality of the four-dimensional gauge theory [6–9].

In this paper, we compare the partition function of the 6d chiral tensor boson of one

fivebrane compactified on T 2 × T 4, with that of U(1) gauge theory with a θ parameter,

compactified on T 4. We use these to show explicitly how the 6d theory is the origin of

S-duality in the gauge theory. Since the 6d chiral boson has a self-dual three-form field

strength and thus lacks a Lagrangian [10], we will use the Hamiltonian formulation to

compute the partition functions for both theories.
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As motivated by [11], the four-dimensional U(1) gauge partition function on T 4 is

Z4d,Maxwell ≡ tre−2πH4d+i2πγαP 4d
α = Z4d

zero modes · Z4d
osc, (1.1)

where the Hamiltonian and momentum are

H4d =

∫ 2π

0
d3θ

(
e2

4

R2
6√
g
gαβΠ

αΠβ +
e2

32π2

√
g

[
θ2

4π2
+

16π2

e4

]
gαβgγδFαγFβδ

+
θe2

16π2

R2
6√
g
gαβǫ

αγδFγδΠ
β

)
,

P 4d
α =

∫ 2π

0
d3θ ΠβFαβ (1.2)

in terms of the gauge field strength tensor Fij(θ
3, θ4, θ5, θ6), the conjugate momentum Πα,

and the constant parameters gαβ , R6 and γα in the metric Gij of T 4. They will be derived

from the abelian gauge theory Lagrangian, given here for Euclidean signature

I =
1

8π

∫

T 4

dθ3dθ4dθ5dθ6

(
4π

e2
√
gF ijFij −

iθ

4π
ǫijklFijFkl

)
, (1.3)

with ǫ3456 = 1, ǫijkl = gǫijkl, and g = det(Gij).

In contrast, the partition function of the abelian chiral two-form on T 2×T 4 is [12, 13]

Z6d,chiral = tr e−2πR6H+i2πγαPα = Z6d
zero modes · Z6d

osc,

H =
1

12

∫ 2π

0
dθ1 . . . dθ5

√
G5G5

mm′
G5

nn′
G5

pp′Hmnp(~θ, θ
6)Hm′n′p′(~θ, θ

6),

Pα = − 1

24

∫

0

2π

dθ1 . . . dθ5ǫmnprsHmnp(~θ, θ
6)Hαrs(~θ, θ

6) (1.4)

where θ1 and θ2 are the coordinates of the two one-cycles of T 2. The time direction θ6

is common to both theories, the angle between θ1 and θ2 is β2, and G5
mn is the inverse

metric of G5mn, where 1 ≤ m,n ≤ 5. The eight angles between the two-torus and the

four-torus are set to zero.1

Section 2 is a list of our results; their derivations are presented in the succeeding

sections. In section 3, the contribution of the zero modes to the partition function for the

chiral theory on the manifoldM = T 2×T 4 is computed as a sum over ten integer eigenvalues

using the Hamiltonian formulation. The zero mode sum for the gauge theory on the same

T 4 ⊂ M is calculated with six integer eigenvalues. We find that once we identify the

modulus of the T 2 contained inM , τ = β2+iR1
R2

, with the gauge couplings τ = θ
2π+i4π

e2
, then

the two theories are related by Z6d
zeromodes = ǫZ4d

zeromodes, where ǫ is due to the zero modes

of the scalar field that arises in addition to Fij from the compactification of the 6d self-

dual three-form. In section 4, the abelian gauge theory is quantized on a four-torus using

Dirac constraints, and the Hamiltonian and momentum are computed in terms of oscillator

modes. For small T 2, the Kaluza-Klein modes are removed from the partition function of

1A different consideration of the fivebrane on T 2 × T 4 in [14] includes the time direction in T 2.
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the chiral two-form, and in this limit it agrees with the gauge theory result, up to the scalar

field contribution. In appendix A, we show the path integral quantization gives the same

result for the 4d gauge theory partition function as canonical quantization. However, the

zero and oscillator mode contributions differ in the two quantizations. In appendix B, we

show how the zero and oscillator mode contributions transform under SL(2,Z) for the 6d

theory, as well as for both quantizations of the 4d theory. We prove the partition functions

in 4d and 6d are both SL(2,Z) invariant. In appendix C, the vacuum energy is regularized.

In appendix D, we introduce a complete set of SL(4,Z) generators, and then prove the 4d

and 6d partition functions are invariant under SL(4,Z) transformations.

2 Statement of the main result

We compute partition functions for a chiral boson on T 2×T 4 and for a U(1) gauge boson on

the same T 4. The geometry of the manifold T 2 × T 4 will be described by the line element,

ds2 = R2
2(dθ

2 − β2dθ1)2 +R2
1(dθ

1)2

+
∑

α,β

gαβ(dθ
α − γαdθ6)(dθβ − γβdθ6) +R2

6(dθ
6)2, (2.1)

with 0 ≤ θI ≤ 2π, 1 ≤ I ≤ 6, and 3 ≤ α ≤ 5. R1, R2 are the radii for directions I = 1, 2

on T 2, and β2 is the angle between them. gαβ fixes the metric for a T 3 submanifold of T 4,

R6 is the remaining radius, and γα is the angle between those. So, from (2.1) the metric is

T 2 : G11 = R1
2 +R2

2β
2β2, G12 = −R2

2β
2, G22 = R2

2;

T 4 : Gαβ = gαβ , Gα6 = −gαβγ
β, G66 = R6

2 + gαβγ
αγβ;

Gα1 = Gα2 = 0, G16 = G26 = 0; (2.2)

and the inverse metric is

T 2 : G11 =
1

R1
2 , G12 =

β2

R1
2 , G22 =

1

R2
2

+
β2β2

R1
2 ≡ g22 +

β2β2

R1
2 ;

T 4 : Gαβ = gαβ +
γαγβ

R6
2 , Gα6 =

γα

R6
2 , G66 =

1

R6
2

G1α = G2α = 0, G16 = G26 = 0. (2.3)

θ6 is chosen to be the time direction for both theories. In the 4d expression (1.3) the

indices of the field strength tensor have 3 ≤ i, j, k, l ≤ 6, whereas in (1.4), the Hamilto-

nian and momentum are written in terms of fields with indices 1 ≤ m,n, p, r, s ≤ 5. The

5-dimensional inverse in directions 1, 2, 3, 4, 5 is G5
mn,

G11
5 =

1

R1
2 , G12

5 =
β2

R1
2 , G22

5 = g22 +
β2β2

R1
2

G
αβ
5 = gαβ , G1α

5 = 0, G2α
5 = 0. (2.4)

gαβ is the 3d inverse of gαβ . The determinants are related by
√
G =

√
detGIJ = R1R2

√
g = R1R2R6

√
g̃ = R6

√
G5, (2.5)
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where G is the determinant for 6d metric GIJ . G5, g and g̃ are the determinants for the

5d metric Gmn, 4d metric Gij , and 3d metric gαβ respectively.

The zero mode partition function of the 6d chiral boson on T 2×T 4 with the metric (2.3)

is

Z6d
zeromodes =

∑

n8,n9,n10

exp

{
− πR6

R1R2

√
g̃gαα

′
H12αH12α′

}

·
∑

n7

exp

{
− π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ

′
HαβδHα′β′δ′ − iπγαǫγβδH12γHαβδ

}

·
∑

n4,n5,n6

exp

{
− π

2
R6R1R2

√
g̃

(
1

R2
2

+
β22

R1
2

)
gαα

′
gββ

′
H2αβH2α′β′

}

·
∑

n1,n2,n3

exp

{
− π

R6R2

R1

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′ + iπγαǫγβδH1γβH2αδ

− π

4

R6R2

R1

√
g̃(gαα

′
gββ

′ − gαβ
′
gβα

′
)H1αβH1α′β′

}
(2.6)

where the zero mode eigenvalues of the field strength tensor are integers, and (2.6) factors

into a sum on Hαβγ as H345 = n7, H12α as H123 = n8, H124 = n9, H125 = n10; and a sum

over H1αβ defined as H134 = n1, H145 = n2, H135 = n3 and H2αβ as H234 = n4, H245 = n5,

H235 = n6, as we will show in section 3.

The zero mode partition function of the 4d gauge boson on T 4 with the metric (2.2) is

Z4d
zeromodes =

∑

n4,n5,n6

exp

{
− e2

4

R2
6√
g
gαβΠ̃

αΠ̃β

}
·

∑

n1,n2,n3

exp

{
− θe2

8π

R2
6√
g
gαβǫ

αγδF̃γδΠ̃
β

}

·exp
{
− e2

√
g

8

(
θ2

4π2
+

16π2

e4

)
gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ

}
, (2.7)

where Π̃α take integer values Π̃3 = n4, Π̃
4 = n5, Π̃

5 = n6, and F̃34 = n1, F̃35 = n2, F̃45 =

n3, from section 3. We identify the integers

H2αβ = F̃αβ and H1αβ =
1

g̃
ǫαβγΠ̃

γ , (2.8)

where g̃ = g R−2
6 from (2.5), and the modulus

τ = β2 + i
R1

R2
=

θ

2π
+ i

4π

e2
,

so that as shown in section 3, we have the factorization

Z6d
zeromodes = ǫ Z4d

zeromodes, (2.9)
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where ǫ comes from the remaining four zero modes Hαβγ and H12α due to the additional

scalar that occurs in the compactification of the 6d self-dual three-form field strength,

ǫ =
∑

n8,n9,n10

exp

{
− πR6

R1R2

√
g̃gαα

′
H12αH12α′

}

·
∑

n7

exp

{
− π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ

′
HαβδHα′β′δ′ − iπγαǫγβδH12γHαβδ

}
. (2.10)

From section 4, there is a similar relation between the oscillator partition functions

limR1,R2→0Z
6d
osc = ǫ′Z4d

osc, (2.11)

where

Z6d
osc =

(
e
R6π

−3
∑

~n 6=~0

√
G5

(Gmpnmnp) 3
∏

~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

, (2.12)

Z4d
osc =

(
e

1
2
R6π

−2
∑

~n 6=0

√
g̃

(gαβnαnβ)2 ·
∏

~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

, (2.13)

where p̃2 ≡ p21
R2

1
+ ( 1

R2
1
+ β2β2

R2
2
)p22 +

2β2

R2
1
p1p2, and ǫ′ is the oscillator contribution from the

additional scalar,

ǫ′ = e
1
2
R6π

−2
∑

~n 6=0

√
g̃

(gαβnαnβ)2 ·
∏

~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

. (2.14)

Therefore, in the limit of small T 2, we have

limR1,R2→0 Z
6d, chiral = ǫ ǫ′ Z4d,Maxwell. (2.15)

We use this relation between the 6d and 4d partition functions to extract the S-duality of

the latter from a geometric symmetry of the former. For τ = β2 + iR1
R2

= θ
2π + i4π

e2
, under

the SL(2,Z) transformations

τ → −1

τ
; τ → τ − 1, (2.16)

Z6d
zeromodes and Z6d

osc are separately invariant, as are Z4d
zeromodes and Z4d

osc, which we will prove

in appendix B. In particular, Z4d
osc is independent of e

2 and θ. A path integral computation

agrees with our U(1) partition function, as we review in appendix A [15]. Nevertheless, in

the path integral quantization the zero and non-zero mode contributions are rearranged,

and although each is invariant under τ → τ − 1, they transform differently under τ →
− 1

τ
, with ZPI

zeromodes → |τ |3ZPI
zeromodes and ZPI

non−zeromodes → |τ |−3ZPI
non−zeromodes. For a

general spin manifold, the U(1) partition function transforms as a modular form under

S-duality [16], but in the case of T 4 which we consider in this paper the weight is zero.

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
1
3
4

3 Zero modes

In this section, we show details for the computation of the zero mode partition functions.

The N = (2, 0), 6d world volume theory of the fivebrane contains a chiral two-form BMN ,

which has a self-dual three-form field strength HLMN = ∂LBMN + ∂MBNL+ ∂NBLM with

1 ≤ L,M,N ≤ 6,

HLMN (~θ, θ6) =
1

6
√
−G

GLL′GMM ′GNN ′ǫL
′M ′N ′RSTHRST (~θ, θ

6). (3.1)

Since there is no covariant Lagrangian description for the chiral two-form, we compute its

partition function from (1.4). As in [12, 13, 17] the zero mode partition function of the 6d

chiral theory is calculated in the Hamiltonian formulation similarly to string theory,

Z6d
zero modes = tr

(
e−tH+iylPl

)
(3.2)

where t = 2πR6 and yl = 2π Gl6

G66 , with l = 1, . . . 5. However, y1 and y2 are zero due to the

metric (2.3). Neglecting the integrations and using the metric (2.4) in (1.4), we find

−tH = −π

6
R6R1R2

√
g̃gαα

′
gββ

′
gλλ

′
HαβλHα′β′λ′ − π

2
R6

R1

R2

√
g̃gαα

′
gββ

′
H2αβH2α′β′

− π

2

R6

R1
R2β

22gαα
′
gββ

′√
g̃H2αβH2α′β′ − π

R6

R1
R2β

2
√
g̃gαα

′
gββ

′
H1αβH2α′β′

− πR6

R1R2

√
g̃gαα

′
H12αH12α′ − π

4
R2

R6

R1

√
g̃(gαα

′
gββ

′ − gαβ
′
gα

′β)H1αβH1α′β′ , (3.3)

and the momentum components 3 ≤ α ≤ 5 are

Pα = −1

2
ǫγβδH12γHαβδ +

1

2
ǫγβδH1γβH2αδ, (3.4)

where the zero modes of the ten fields Hlmp are labeled by integers n1, . . . n10 [12, 13].

Then (3.2) is given by (2.6).

Similarly, we compute the zero mode partition function for the 4d U(1) theory

from (1.1). We consider the charge quantization condition

nI =
1

2π

∫

ΣI
2

F ≡ 1

2π

∫

ΣI
2

1

2
Fαβ dθ

α ∧ dθβ, nI ∈ Z, for each 1 ≤ I ≤ 3. (3.5)

as well as the commutation relation obtained from (4.17)

[∫

Σγ
1

Aα(~θ, θ
6)dθα,

∫
d3θ′

2π
Πβ(~θ′, θ6)

]
=

i

2π

∫

Σγ
1

dθβ = i δβγ , (3.6)

and use the standard argument [17, 18] to show that the field strength Fαβ and momentum

Πα zero modes have eigenvalues

Fαβ =
nα,β

2π
, nα,β ∈ Z for α < β, and Πα(~θ′, θ6) =

n(α)

(2π)2
, n(α) ∈ Z3. (3.7)
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Thus we define integer valued modes F̃αβ ≡ 2πFαβ and Π̃α ≡ (2π)2Πα. Taking into account

the spatial integrations dθα, (1.2) gives

− 2πH4d + i2πγαP 4d
α

= −e2

4

R2
6√
g
gαβΠ̃

αΠ̃β − e2
√
g

8

[
θ2

4π2
+

16π2

e4

]
gαβgγδF̃αγF̃βδ −

θe2

8π

R2
6√
g
gαβǫ

αγδF̃γδΠ̃
β

+ 2πiγαΠ̃βF̃αβ , (3.8)

where (1.2) itself is derived in section 4. So from (3.8) and (1.1),

Z4d
zeromodes =

∑

n4,n5,n6

exp

{
− e2

4

R2
6√
g
gαβΠ̃

αΠ̃β

}
·

∑

n1,n2,n3

exp

{
− θe2

8π

R2
6√
g
gαβǫ

αγδF̃γδΠ̃
β

}

· exp
{
− e2

√
g

8

(
θ2

4π2
+

16π2

e4

)
gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ

}
, (3.9)

where nI are integers, with F̃34 = n1, F̃35 = n2, F̃45 = n3, and Π̃3 = n4, Π̃
4 = n5, Π̃

6 =

n6. (3.9) is the zero mode contribution to the 4d U(1) partition function (1.1), and is (2.7).

If we identify the gauge couplings τ = θ
2π + i4π

e2
with the modulus of T 2, τ = β2 + iR1

R2
,

then
e2

4π
=

R2

R1
,

θ

2π
= β2, (3.10)

and (3.9) becomes

Z4d
zeromodes =

∑

n4,n5,n6

exp

{
− π

R2R
2
6

R1
√
g
gαβΠ̃

αΠ̃β

}

·
∑

n1,n2,n3

exp

{
− πβ2 R2R

2
6

R1
√
g
gαβǫ

αγδF̃γδΠ̃
β

}

· exp
{
− π

2

R2

R1

√
g

(
β22 +

R2
1

R2
2

)
gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ

}
. (3.11)

Then the last four terms in the chiral boson zero mode sum (2.6) are equal to (2.7) since

−π

2

R2R6
√
g̃

R1

(
R2

1

R2
2

+ β22
)
gαα

′
gββ

′
H2αβH2α′β′ = −π

2

R2R6

R1

√
g̃

(
R2

1

R2
2

+ β22
)
gαβgγδF̃αγF̃βδ,

−π
R6R2

R1

√
g̃ β2gαα

′
gββ

′
H1αβH2α′β′ = −πβ2 R6R2

R1
√
g̃
gαβǫ

αγδF̃γδΠ̃
β ,

iπγαǫγβδH1γβH2αδ = 2πiγα Π̃βF̃αβ ,

−π

2

R6R2

R1

√
g̃gαα

′
gββ

′
H1αβH1α′β′ = −π

R6R2

R1
√
g̃
gαβΠ̃

αΠ̃β , (3.12)

when we identify the integers

H2αβ = F̃αβ and H1αβ =
1

g̃
ǫαβγΠ̃

γ , (3.13)

with g̃ = g R−2
6 from (2.5). Thus the 6d and 4d zero mode sums from (2.6) and (2.7) are

related by

Z6d
zeromodes = ǫ Z4d

zeromodes, (3.14)
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where

ǫ =
∑

n8,n9,n10

exp

{
− πR6

R1R2

√
g̃gαα

′
H12αH12α′

}

·
∑

n7

exp

{
− π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ

′
HαβδHα′β′δ′ − iπγαǫγβδH12γHαβδ

}
. (3.15)

4 Oscillator modes

To compute the oscillator contribution to the partition function (1.1), we quantize the U(1)

gauge theory with a theta term on the T 4 manifold using Dirac brackets. From (1.3), the

equations of motion are ∂iFij = 0, since the theta term is a total divergence and does not

contribute to them. So in Lorenz gauge, the gauge potential Ai with field strength tensor

Fij = ∂iAj − ∂jAi is obtained by solving the equation

∂i∂iAj = 0, with ∂iAi = 0. (4.1)

The potential has a plane wave solution

Ai(~θ, θ
6) = zero modes +

∑

~k 6=0

(fi(k)e
ik·θ + (fi(k)e

ik·θ)∗) (4.2)

with momenta satisfying the on shell condition and gauge condition

G̃
ij
Lkikj = 0, kifi = 0. (4.3)

As in [11, 17] the Hamiltonian H4d and momentum P 4d
α are quantized with a Lorentzian

signature metric that has zero angles with the time direction, γα = 0. So we modify the

metric on the four-torus (2.2), (2.3) to be

G̃Lαβ = gαβ , G̃L 66 = −R6
2, G̃Lα6 = 0

G̃
αβ
L = gαβ , G̃66

L = − 1

R2
6

, G̃α6
L = 0, G̃L = det G̃L ij = −g. (4.4)

Solving for k6 from (4.3) we find

k6 =

√
−G̃66

L

G̃66
L

|k|, (4.5)

where 3 ≤ α, β ≤ 5, and |k| ≡
√
gαβkαkβ . Employ the remaining gauge invariance fi →

f ′
i = fi + kiλ to fix f ′

6 = 0, which is the gauge choice

A6 = 0.

This reduces the number of components of Ai from 4 to 3. To satisfy (4.3), we can use the

∂iFi6 = −∂6∂
αAα = 0 component of the equation of motion to eliminate f5 in terms of

f3, f4,

f5 = − 1

p5
(p3f3 + p4f4),
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leaving just two independent polarization vectors corresponding to the physical degrees of

freedom of a four-dimensional gauge theory.

From the Lorentzian Lagrangian and energy-momentum tensor given by

L = − 1

2e2

√
−G̃LG̃

ik
L G̃

jl
LFijFkl +

θ

32π2
ǫijklFijFkl,

T i
j =

δL
δ∂iAk

∂jAk − δijL, (4.6)

we obtain the Hamiltonian and momentum operators

Hc≡
∫
d3θ T 6

6=

∫
d3θ

(
−

√
g

e2
G̃66

L gαβ F6αF6β +

√
g

2e2
gαα

′
gββ

′
FαβFα′β′ − ∂αΠ

αA6

)
, (4.7)

Pα≡
∫
d3θ T 6

α=

∫
d3θ

(
− 2

e2
√
g G̃66

L gβγF6γFαβ − ∂βΠ
β Aα +Π6∂αA6

)
, (4.8)

where we have integrated by parts; and the conjugate momentum is

Πα =
δL

δ∂6Aα
= − 2

e2
√
g G̃66

L gαβF6β − θ

8π2
ǫαβγFβγ , Π6 =

δL
δ∂6A6

= 0. (4.9)

Then we have

Hc − iγαPα =

∫
dθ3

(
R2

6

4

e2√
g
gαβ

(
Πα +

θ

8π2
ǫαγδFγδ

)(
Πβ +

θ

8π2
ǫβρσFρσ

)

+

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − iγα

(
Πβ +

θ

8π2
ǫβγδFγδ

)
Fαβ

)
, (4.10)

up to terms proportional to A6 and ∂αΠ
α which vanish in Lorenz gauge. Note the term

proportional to ǫβγδFγδFαβ vanishes identically. (4.10) is equal to H4d − iγαP 4d
α given

in (1.2), and is used to compute the zero mode partition function in (2.7) via (3.8).

To compute the oscillator modes, the appearance of θ solely in the combination Πα +
θ

8π2 ǫ
αγδFγδ in (4.10) suggests we make a canonical transformation on the oscillator fields

Πα(~θ, θ6), Aβ(~θ, θ
6) [19]. Consider the equal time quantum bracket, suppressing the θ6

dependence, [ ∫
d3θ′ǫαβδFαβAδ, Πγ(~θ)

]
= 2iǫγαβFαβ(~θ), (4.11)

and the canonical transformation

U(θ) = exp

{
i

θ

32π2

∫
d3θ′ǫαβγFαβAγ

}
, (4.12)

under which Πα(~θ, θ6), Aβ(~θ, θ
6) transform to Π̂α(~θ, θ6), Âβ(~θ, θ

6),

Π̂α(~θ) = U−1(θ) Πα(~θ)U(θ) = Πα(~θ) +
θ

8π2
ǫαγδFγδ(~θ)

Âβ(~θ) = U−1(θ)Aβ(~θ)U(θ) = Aβ(~θ). (4.13)
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Therefore the exponent (4.10) contains no theta dependence when written in terms of Π̂α,

which now reads

(
Hc − iγαPα

)
=

∫
dθ3

(
− R2

6

4

e2√
g
gαβΠ̂

αΠ̂β +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − iγαΠ̂βFαβ

)
. (4.14)

Thus, for the computation of the oscillator partition function we will quantize with θ = 0.

Note that had we done this for the zero modes, it would not be possible to pick the zero

mode integer charges consistently. Since the zero and oscillator modes commute, we are

free to canonically transform the latter and not the former.

In the discussion that follows we assume θ = 0 and drop the hats. We directly quantize

the Maxwell theory on the four-torus with the metric (4.4) in Lorenz gauge using Dirac

constraints [20, 21]. The theory has a primary constraint Π6(~θ, θ6) ≈ 0. We can express

the Hamiltonian (4.7) in terms of the conjugate momentum as

Hc =

∫
dθ3

R2
6

4

e2√
g
gαβΠ

αΠβ +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ . (4.15)

The primary Hamiltonian is defined by

Hc =

∫
dθ3

(
R2

6

4

e2√
g
gαβΠ

αΠβ +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − ∂αΠ

αA6 + λ1Π
6

)
, (4.16)

with λ1 as a Lagrange multiplier. As in [17], we use the Dirac method of quantizing with

constraints for the radiation gauge conditions A6 ≈ 0, ∂αAα ≈ 0, and find the equal time

commutation relations:

[Πβ(~θ, θ6), Aα(~θ
′, θ6)] = −i

(
δβα − gββ

′
(
∂α

1

gγγ
′
∂γ∂γ′

∂β′

))
δ3(θ − θ′),

[Aα(~θ, θ
6), Aβ(~θ

′, θ6)] = 0, [Πα(~θ, θ6),Πβ(~θ′, θ6)] = 0. (4.17)

In A6 = 0 gauge, the vector potential on the torus is expanded as

Aα(~θ, θ
6) = zeromodes +

∑

~k 6=0,~k∈Z3

(fκ
αa

κ
~k
eik·θ + fκ∗

α a
κ†
~k
e−ik·θ),

where 1 ≤ κ ≤ 2, 3 ≤ α ≤ 5 and k6 defined in (4.5). The sum is on the dual lattice
~k = kα ∈ Z3 6= ~0. Here we only consider the oscillator modes expansion of the potential

and the conjugate momentum in (4.9) with vanishing θ angle

Aα(~θ, θ
6) =

∑

~k 6=0

(a~k α
eik·θ + a

†
~k α

e−ik·θ),

Πβ(~θ, θ6) = −i
2
√
g

e2
G̃66

L gββ
′ ∑

~k

k6 (a~k β′e
ik·θ − a

†
~k β′e

−ik·θ). (4.18)

and the polarizations absorbed in

a~k α
= fκ

αa
κ
~k
. (4.19)
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From (4.17), the commutator in terms of the oscillators is

∫
d3θd3θ′

(2π)6
e−ikαθ

α

e−ik′αθ′
α

[Aα(~θ, 0), Aβ(~θ
′, 0)] = [(a~k α

+a
†
−~k α

), (a~k′ β+a
†
−~k′ β

)] = 0. (4.20)

We consider the Fourier transform (4.20) of all the commutators (4.17), so the commutator

of the oscillators is found to be:

[a~k α
, a

†
~k′ β

] =
e2

2
√
gG̃66

L k6

1

2(2π)3

(
gαβ − kαkβ

gγγ
′
kγkγ′

)
δ~k,~k′ ,

[a~k α
, a~k′ β ] = 0, [a†~k α

, a
†
~k′ β

] = 0. (4.21)

In A6 = 0 gauge, we use (4.18) and (4.21) to evaluate the Hamiltonian and momentum

in (4.7) and (4.8)

Hc =

∫
d3θ

2
√
g

e2

(
− 1

2
G̃66

L gαα
′
∂6Aα∂6Aα′ +

1

4
gαα

′
gββ

′
FαβFα′β′

)
,

Pα =
2

R2
6e

2

∫ 2π

0
dθ3dθ4dθ5

√
g gββ

′
F6β′Fαβ . (4.22)

With (4.18), (4.22) can be expressed in terms of the oscillator modes where time-dependent

terms cancel,

Hc = (2π)3
2
√
g

e2

∑

~k∈Z3 6=~0

gαα
′ |k|2 (a~k α

a
†
~k α′ + a

†
~k α

a~k α′),

Pα = −2
√
g

e2
G̃66

L gββ
′
(2π)3

∑

~k∈Z3 6=~0

k6kα
(
a~k β′a

†
~k β

+ a
†
~k β′a~k β

)
. (4.23)

and we have used the on-shell condition G̃66
L k6k6 + |k|2 = 0, and the transverse condition

kαa~k α
= kαa

†
~k α

= 0. Then,

−Hc + iγαPα = −i
1

R6

2
√
g

e2
(2π)3

∑

~k∈Z3 6=~0

|k|
(
− iR6|k|+ γαkα

)
gββ

′(
a~k β

a
†
~k β′ + a

†
~k β

a~k β′
)
.

(4.24)

Inserting the polarizations as a~k α
= fκ

αa
κ
~k
and a

†
~k α

= fλ∗
α a

λ†
~k

from (4.19) in the commuta-

tor (4.21) gives

[a~k α
, a

†
~k′ β

] =
e2

4
√
g

R6

|k|
1

(2π)3

(
gαβ − kαkβ

|k|2
)
δ~k,~k′ = fκ

αf
λ∗
β [aκ~k , a

λ†
~k
], (4.25)

where we choose the normalization

[aκ~k , a
λ†
~k′
] = δκλδ~k,~k′ , (4.26)

with 1 ≤ κ, λ ≤ 2. Then the polarization vectors satisfy

fκ
αf

λ∗
β δκλ =

e2

4
√
g

R6

|k|
1

(2π)3

(
gαβ − kαkβ

|k|2
)
, gββ

′
fκ
β f

λ∗
β′ δκλ =

e2

4
√
g

R6

|k|
1

(2π)3
· 2,
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gββ
′
fκ
β f

λ∗
β′ = δκλ

e2

4
√
g

R6

|k|
1

(2π)3
.

So the exponent in (1.1) is given by

−Hc + iγαPα = −iR6
2
√
g

e2
(2π)3

∑

~k∈Z3 6=~0

|k|
(
− iR6|k|+ γαkα

)
gββ

′(
2a†~k β

a~k β′ + [a~k β
, a

†
~k β′ ]

)

= −i
∑

~k∈Z3 6=~0

(
γαkα − iR6|k|

)
a
κ†
~k
aκ~k − i

2

∑

~k∈Z3 6=~0

(
− iR6|k|

)
δκκ. (4.27)

The U(1) partition function is

Z4d,Maxwell ≡ tr exp{2π(−Hc + iγiPi)} = Z4d
zeromodes Z

4d
osc, (4.28)

so from (4.27),

Z4d
osc = tr e

−2πi
∑

~k∈Z3 6=~0

(
γαkα−iR6|k|

)
a
κ†
~k

aκ
~k

−πR6
∑

~k∈Z3 6=~0
|k| δκκ

. (4.29)

From the usual Fock space argument

tr ω
∑

p pa
†
pap =

∏

p

∞∑

k=0

〈k|ωpa
†
pap |k〉 =

∏

p

1

1− ωp
,

we perform the trace on the oscillators,

Z4d
osc=

(
e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏

~n∈Z3 6=~0

1

1− e−i2π(γαnα−iR6

√
gαβnαnβ)

)2

, (4.30)

Z4d,Maxwell=Z4d
zero modes ·

(
e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏

~n∈Z3 6=~0

1

1−e−2πR6

√
gαβnαnβ−2πiγαnα

)2

,

(4.31)

where Z4d
zero modes is given in (2.7). (4.31) and (4.37) are each manifestly SL(3,Z) invariant

due to the underlying SO(3) invariance we have labeled as α = 3, 4, 5. We use the SL(3,Z)

invariant regularization of the vacuum energy reviewed in appendix C to obtain

Z4d,Maxwell=Z4d
zero modes ·

(
e

1
2
R6π

−2
∑

~n 6=0

√
g̃

(gαβnαnβ)2
∏

~n∈Z3 6=~0

1

1−e−2πR6

√
gαβnαnβ−2πiγαnα

)2

,

(4.32)

which leads to (2.13).

On the other hand, one can evaluate the oscillator trace for the 6d chiral boson

from (1.4) as in [12, 13, 17]. The exponent in the trace is

−2πR6H+ i2πγiPi =
iπ

12

∫ 2π

0
d5θHlrsǫ

lrsmnH6mn =
iπ

2

∫ 2π

0
d5θ

√
−GH6mnH6mn
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= −iπ

∫ 2π

0
d5θ(ΠmnH6mn +H6mnΠ

mn)

= −2iπ
∑

~p 6=0

p6Cκ†
~p Bκ

~p − iπ
∑

~p 6=0

p6δ
κκ, (4.33)

where Πmn = −
√
−G
4 Π6mn, and Π6mn is the momentum conjugate to BMN . In the gauge

B6n = 0, the normal mode expansion for the free quantum fields Bmn and Πmn on a torus is

given in terms of oscillators Bκ
~p and Cκ†

~p defined in [12, 13], with the commutation relations

[Bκ
~p , C

λ†
~p′ ] = δκλ δ~p,~p′ (4.34)

where 1 ≤ κ, λ ≤ 3 labels the three physical degrees of freedom of the chiral two-form, and

~p = (p1, p2, pα) lies on the integer lattice Z5. From the on-shell condition GLMpLpM = 0,

p6 = −γαpα − iR6

√

gαβpαpβ +
p21
R2

1

+

(
1

R2
2

+
β22

R2
1

)
p22 + 2

β2

R2
1

p1p2. (4.35)

Thus the oscillator partition function of the chiral two-form on T 2 × T 4 is obtained by

tracing over the oscillators

Z6d
osc = tr e

−2iπ
∑

~p 6=0 p6C
κ†
~p

Bκ
~p
−iπ

∑
~p 6=0 p6δ

κκ

=

(
e−πR6

∑
~p

√
gαβpαpβ+p̃2

∏

~p 6=0

1

1− e−2πip6

)3

=

(
e
−πR6

∑
~p∈Z5

√
gαβpαpβ+p̃2

∏

~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

, (4.36)

where p̃2 ≡ p21
R2

1
+( 1

R2
2
+ β22

R2
1
)p22+2 β2

R2
1
p1p2. Regularizing the vacuum energy in the oscillator

sum [12, 13] yields

Z6d,chiral = Z6d
zeromodes ·

(
e
R6π

−3
∑

~n 6=~0

√
G5

(Gmpnmnp) 3
∏

~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

,

(4.37)

where ~n ∈ Z5 is on the dual lattice, Gmp is defined in (2.2), and Z6d
zeromodes is given in (2.6).

Comparing the 4d and 6d oscillator traces (4.31) and (4.36), the 6d chiral boson sum

has a cube rather than a square, corresponding to one additional polarization, and it

contains Kaluza-Klein modes. In appendix D, we prove that the product of the zero mode

and the oscillator mode partition function for the 4d theory in (4.32) is SL(4,Z) invariant.

In (D.48) we give an equivalent expression,

Z4d,Maxwell = Z4d
zero modes ·

(
e

πR6
6R3

∏

n3 6=0

1

1− e
−2π

R6
R3

|n3|+2πiγ3n3

)2

·
( ∏

(na)∈Z2 6=(0,0)

e−2πR6〈H〉p⊥
∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

)2

, (4.38)

where 4 ≤ a ≤ 5, with 〈H〉p⊥ defined in (C.3).
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In appendix D, we also prove the SL(4,Z) invariance of the 6d chiral partition func-

tion (4.37), using the equivalent form (D.65),

Z6d,chiral = Z6d
zeromodes ·

(
e

πR6
6R3

∏

n3∈Z6=0

1

1− e
−2π

R6
R3

|n3|+2πi γ3 n3 )

)3

·
( ∏

n⊥∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥

∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ+ñ2 +i2πγαnα

)3

, (4.39)

with 〈H〉6dp⊥ in (D.64), and ñ2 = (n1)2

R2
1

+ ( 1
R2

2
+ (β2)2

R2
1
)n2

2 + 2 β2

R2
1
n2n1. In the limit when R1

and R2 are small with respect to the metric parameters gαβ , R6 of the four-torus, the

contribution from each polarization in (4.38) and (4.39) is equivalent. To see this limit, we

can separate the product on n⊥ = (n1, n2, na) 6= 0⊥ in (4.39), into (n1 = 0, n2 = 0, na 6=
(0, 0)), (n1 6= 0, n2 6= 0, all na), (n1 = 0, n2 6= 0, all na), (n1 6= 0, n2 = 0, all na)) to find,

at fixed n3,
∏

n⊥∈Z4 6=(0,0,0,0)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)
2

R2
1

+

(
1

R2
2
+

(β2)2

R2
1

)
n2
2+2 β2

R2
1
n2n1+2πiγαnα

=
∏

na∈Z2 6=(0,0)

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

·
∏

n1 6=0,n2 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)
2

R2
1

+

(
1

R2
2
+

(β2)2

R2
1

)
n2
2+

β2

R2
1
n2n1+2πiγαnα

·
∏

n1=0,n2 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+

(
1

R2
2
+

(β2)2

R2
1

)
n2
2+2πiγαnα

·
∏

n2=0,n1 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)
2

R2
1

+2πiγαnα

(4.40)

Thus for T 2 smaller than T 4, the last three products reduce to unity, so
∏

n⊥∈Z4 6=~0

1

1−e−2πR6

√
gαβnαnβ+ñ2+2πiγαnβ

R1,R2→0−−−−−−→
∏

na∈Z2 6=(0,0)

1

1−e−2πR6

√
gαβnαnβ+2πiγαnα

.

(4.41)

The regularized vacuum energies in (C.3) and (D.64),

〈H〉p⊥ 6=0 = −π−1 |p⊥|
∞∑

n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, for |p⊥| ≡
√
g̃abnanb, (4.42)

〈H〉6dp⊥ 6=0 = −π−1 |p⊥|
∞∑

n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, for |p⊥| ≡
√
ñ2 + g̃abnanb,

have the same form of spherical Bessel function, but the argument differs by modes (p1, p2).

Again separating the product on n⊥ = (n1, n2, na) in (4.39), into (n1 = 0, n2 = 0, na 6=
(0, 0)), (n1 6= 0, n2 6= 0 all na), (n1 = 0, n2 6= 0, all na), (n1 6= 0, n2 = 0, all na)) we have

∏

n⊥∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥ =

( ∏

na∈Z2 6=(0,0)

e
−2πR6〈H〉4dp⊥

)
·
( ∏

n1 6=0,n2 6=0,na∈Z2

e
−2πR6〈H〉6dp⊥

)
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·
( ∏

n1 6=0,n2=0,na∈Z2

e
−2πR6〈H〉6dp⊥

)
·
( ∏

n1=0,n2 6=0,na∈Z2

e
−2πR6〈H〉6dp⊥

)
(4.43)

In the limit R1, R2 → 0, the last three products are unity. For example, the second is unity

because for n1, n2 6= 0,

lim
R1,R2→0

√
ñ2 + g̃αβnαnβ ∼

√
ñ2,

lim
R1,R2→0

(|p⊥| K1(2πnR3|p⊥|) = lim
R1,R2→0

√
ñ2 K1

(
2πnR3

(√
ñ2

))
= 0, (4.44)

since limx→∞ xK1(x) ∼
√
x e−x → 0 [22]. So (4.43) leads to

lim
R1,R2→0

∏

n⊥∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥ =

∏

na∈Z2 6=(0,0)

e−2πR6〈H〉p⊥ . (4.45)

Thus in the limit when T 2 is small with respect to T 4,

lim
R1,R2→0

∏

n⊥∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥

∏

n3∈Z

1

1− e
−2πR6

√
(gαβnαnβ+

n2
1

R2
1

+( 1
R2

2

+
(β2)2

R2
1

)n2
2+2 β2

R2
1

n2n1 +i2πγαnα

=
∏

na∈Z2 6=(0,0)

e
−2πR6〈H〉p⊥

∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

. (4.46)

So we have shown the partition functions of the chiral theory on T 2×T 4 and of gauge theory

on T 4, agree in the small T 2 limit upon neglecting the less interesting contribution ǫ′,

lim
R1,R2→0

Z6d
osc = ǫ′ · Z4d

osc, (4.47)

which is (2.11). Again, ǫ′ is equivalently the oscillator contribution from one polarization,

that is

ǫ′ =

(
e

1
8
R6π

−2
∑

~n 6=0

√
g̃

(gαβnαnβ)2 ·
∏

~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)
(4.48)

The relation between the 4d gauge and 6d tensor partition function is shown in the

small T 2 limit,

lim
R1,R2→0

Z6d,chiral = ǫǫ′ · Z4d,Maxwell, (4.49)

which is (2.15). ǫǫ′ is the partition function of a real scalar field in 4d, and is independent

of the gauge coupling τ.

5 S-duality of Z4d,Maxwell from Z6d,chiral

In appendices B and D we show explicitly how the SL(2,Z)×SL(4,Z) symmetry of the par-

tition function of the 6d tensor field of the M-fivebrane of N = (2, 0) theory compactified on

T 2×T 4 implies the SL(2,Z) S-duality of the 4d U(1) gauge field partition function. These

computations use the Hamiltonian formulation. In appendix A we review the path integral
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formalism for the 4d zero and non-zero mode partition functions, and give their relations to

the quantities computed in the Hamiltonian formulation. The results are summarized here.

Z4d
zero modes = (Im τ)

3
2
g

1
4

R2
6

ZPI
zeromodes. (5.1)

Z4d
osc = (Im τ)−

3
2 g−

1
4R2

6Z
PI
osc. (5.2)

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ |τ |3ZPI

zero modes under S

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ ZPI

zero modes under T (5.3)

and

Z4d
osc −→ Z4d

osc, ZPI
non−zero modes −→ |τ |−3ZPI

non−zero modes under S

Z4d
osc −→ Z4d

osc, ZPI
non−zero modes −→ ZPI

non−zero modes under T . (5.4)

S and T are the generators of the duality symmetry SL(2,Z), S : τ → − 1
τ
, T : τ → τ − 1,

where τ = θ
2π + i4π

e2
is also given by the modulus of the two-torus, τ = β2 + iR1

R2
.

6 Conclusions and discussion

We computed the partition function of the abelian gauge theory on a general four-

dimensional torus T 4 and the partition function of a chiral boson compactified on T 2×T 4.

The coupling for the 4d gauge theory, τ = θ
2π + i4π

e2
, is identified with the complex modulus

τ = β2 + iR1
R2

of the two-torus T 2 in directions 1 and 2. Assuming the metric of T 2 is

much smaller than T 4, the 6d partition function factorizes to a partition function for gauge

theory on T 4 and a contribution from the extra scalar arising from compactification.2 The

6d partition function has a manifest SL(2,Z)×SL(4,Z) symmetry. Therefore the SL(2,Z)

symmetry with the group action on the coupling, τ = θ
2π + i4π

e2
, known as S-duality be-

comes manifest in the 4d Maxwell theory. Presumably this happens for an arbitrary four

manifold, but we chose T 4 in order to generate explicit formulas, i.e. explicit functions of

τ and the 4d metric.

The 6d chiral two-form has no Lagrangian, so we use the Hamiltonian approach to

compute both the 4d and 6d partition functions. For 4d gauge theory, the integration of

the electric and magnetic fields as observables around one- and two-cycles respectively take

integer values due to charge quantization. We sum over all possible integers to get the zero

mode partition function. For the oscillator modes, we quantize the gauge theory using the

Dirac method with constraints. In 6d, the partition function follows from [12, 13, 17].

We have also given the path integral result for the 4d partition function. It agrees

with the partition function obtained in the Hamiltonian formulation. However, the path

integral factors into zero modes and oscillator modes differently, which leads to different

2The Lagrangian for this single 4d scalar with a Lorentzian signature metric is L =
R6

√
g̃

R1R2
( 1
2R2

6
∂6φ∂6φ− 1

2
gαβ∂αφ∂βφ).
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SL(2,Z) transformation properties for the components. The 6d and 4d partition functions

share the same SL(2,Z)× SL(4,Z) symmetry.

If we consider supersymmetry, compactification of the 6d theory on T 2 leads to N = 4

gauge theory in the limit of small T 2. On the other hand, an N = 2 theory of class

S [23, 24] arises when the 6d, (2, 0) theory is compactified on a punctured Riemann surface

with genus g. Here the mapping class group of the Riemann surfaces acts as a generalized

S-duality on 4d super-Yang-Mills theory [25–27].

In another direction, we can study the 2d field theory present when 6d theory is com-

pactified on a four-dimensional manifold. A 2d-4d correspondence, relating a generalized

gauge theory partition function and a 2d correlation function, acting between N = 4 gauge

theory on S4 and a 2d Toda-Liouville conformal theory on T 2, holds for the radius of S4

fixed to 1 [5, 25, 28–30]. It is difficult to see how the 2d-4d correspondence works for the

gauge field on T 4 because the 4d oscillator partition function is most naturally viewed as

that of a 2d theory on a T 2 in directions 3 and 6, whereas the 4d zero mode sum is equiv-

alent to a 2d zero mode partition function on a T 2 in directions 1 and 2. For an arbitrary

4d metric, the theory may be too rich for a 2d-4d pairing. A 2d-4d relation can also be

analyzed from a topological point of view [4, 31, 32]. Finding explicit results, such as we

have derived for T 2 × T 4, for these more general investigations would be advantageous.

A Comparison of the 4d U(1) partition function in the Hamiltonian and

path integral formulations

For convenience in comparing the 4d gauge theory with the 6d chiral theory in sections

2 and 3, we quantized both using canonical quantization. Since a Lagrangian exists for

the 4d gauge theory, it is useful to verify that its path integral quantization agrees with

canonical quantization. We find the two quantizations distribute zero and oscillator mode

contributions differently, and thus these factors transform differently under the action

of SL(2,Z). We summarize the path integral quantization results from [9, 15, 16, 33].

Following [9, 16], the two-form zero mode part, F
2π is the harmonic representative and can

be expanded in terms of the basis αI = 1
(2π)2

dθ1 ∧ dθ2, etc., I = 1, 2, . . . , 6 namely

F

2π
≡ m =

∑

I

mIαI , (A.1)

where mI are integers. Define (m,n) to be the intersection form such that (m,n) =
∫
m∧n,

and thus

(m,m) =
1

16π2

∫
d4θǫijklFijFkl

(m, ∗m) =
1

8π2

∫
d4θ

√
gF ijFij . (A.2)

So the action (1.3) is given as

I =
4π2

e2
(m, ∗m)− iθ

2
(m,m) =

1

2e2

∫
d4θ

√
gF ijFij −

iθ

32π2

∫
d4θǫijklFijFkl. (A.3)
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The zero mode partition function from the path integral formalism can be expressed as a

lattice sum over the integral basis of mI [9, 16],

ZPI
zero modes =

∑

mI∈Z6

exp

[
− 4π2

e2

(
m, ∗m

)
+

iθ

2

(
m,m

)]

=
∑

mI∈Z6

exp

[
iπ

2
τ
((

m,m
)
+
(
m, ∗m

))
− iπ

2
τ̄
(
−
(
m,m

)
+
(
m, ∗m

))]
, (A.4)

where τ = θ
2π + i4π

e2
, and we have chosen the θ dependence of the action as in [9]. Alterna-

tively the zero mode sum be can written in terms of the metric using (A.3)

ZPI
zero modes =

∑

F̃ij∈Z6

exp

{[
− π

2
R6

√
g̃gαβgγδF̃αγF̃βδ − π

√
g̃

R6
gδδ

′
F̃δβγ

βF̃δ′β′γβ
′

−π

√
g̃

R6
gαβF̃6αF̃6β + 2π

√
g̃

R6
gαδF̃6αF̃δβγ

β − i
θe2

8π
ǫαβγF̃6αF̃βγ

]
4π

e2

}
(A.5)

where F̃ij = 2πFij = mI are integers due to the charge quantization (A.1), and where

we have taken into account the integrations
∫
d4θ = (2π)4 in (A.5). To compare the zero

mode partition functions from the Hamiltonian and path integral formalisms, we rewrite

the Hamiltonian formulation result (2.7) as

Z4d
zero modes =

∑

Π̃α,F̃αβ

exp

[
− e2R6

4
√
g̃
gαβ

(
Π̃α + i

4π
√
g̃

e2R6
gαδF̃δλγ

λ +
θǫαγδ

4π
F̃γδ

)

·
(
Π̃β + i

4π
√
g̃

e2R6
gβδ

′
F̃δ′λ′γλ

′
+

θǫβγ
′δ′

4π
F̃γ′δ′

)

− 4π2

e2

√
g̃

R6
gδδ

′
F̃δβγ

βF̃δ′β′γβ
′ − 2π2

e2
√
ggαβgγδF̃αγF̃βδ

]
. (A.6)

After Poisson resummation,

∑

n∈Z3

exp[−π(n+ x) · A · (n+ x)] = (detA)−
1
2

∑

n∈Z3

e−πn·A−1·ne2πin·x, (A.7)

where Aαβ ≡ e2R6

4π
√
g̃
gαβ and xα ≡ i4π

√
g̃

e2R6
gαδF̃δλγ

λ + θ
4π ǫ

αγδF̃γδ, we get the Hamiltonian

expression as

Z
4d
zero modes =

(
e2

4π

)− 3
2 g̃

1
4

R6
3
2

∑

Π̂α,F̃αβ

exp

{
− 4π2√g̃

e2R6
g
αβΠ̂αΠ̂β − i

θ

2
Π̂αǫ

αγδ
F̃γδ +

8π2√g̃

e2R6
g
αβΠ̂αF̃βδγ

δ

−4π2

e2

√
g̃

R6
g
δδ′

F̃δβγ
β
F̃δ′β′γ

β′

− 2π2R6

e2

√
g̃g

αβ
g
γδ
F̃αγ F̃βδ

}

= (Im τ)
3
2

g̃
1
4

R6
3
2

Z
PI
zeromodes, (A.8)

where Π̂α is the integer value of Π̃α, and we identify Π̂α with F̃6α in (A.5). Then

ZPI
zero modes = (Im τ)−

3
2
R2

6

g
1
4

Z4d
zero modes, (A.9)

which is (5.1).
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We review from [15] how the non-zero mode partition function is defined by a path

integral,

ZPI
non−zeromodes =

∫

A

DAµe−I . (A.10)

Performing the functional integration with the Fadeev-Popov approach, [15] regularizes the

path integral by

Z
PI
non−zeromodes =

1

(2π)
b1−1

2

( g

volT 4

) 1
2

[
det(∆0)

det(2πImτ∆0)

det(2πImτ∆1)

] 1
2

=

(
g

(2π)4
√
g

) 1
2

(2πImτ)
b1−1

2
det∆0

det∆
1
2
1

,

(A.11)

where b1 = 4 is the dimension of the groupH1(T 4). ∆p = (d†d+dd†)p is the Laplacian oper-

ator acting on the p-form. g = detGij . So ∆0 = −Gij∂i∂j , and det(∆1) = det(∆0)
4. Thus

ZPI
non−zeromodes =

g
1
4

√
2π

(Imτ)
3
2 det∆−1

0 . (A.12)

The determinant can be computed

det∆
− 1

2
0 = exp

{
− 1

2
trlnA

}
, (A.13)

exp

{
− 1

2
trln∆0

}
= exp

(
− 1

2
trln

(
−G66∂2

6 − 2G6α∂6∂α −Gαβ∂α∂β
))

= exp

(
− 1

2

∑

nα 6=0̃

∑

n6

ln

(
1

R2
6

n26 + 2
γα

R2
6

nαn6 +Gαβnαnβ

))

= exp

(
− 1

2

∑

nα 6=0̃

∑

n6

ln

(
1

R2
6

(n6 + γαnα)
2 + gαβnαnβ

))
. (A.14)

Let µ(E) ≡ ∑
n6

ln
(

1
R2

6
(n6 + γαnα)

2 + E2
)
, where E2 ≡ gαβnαnβ , ρ = 2πR6,

∂µ(E)

∂E
=

∑

n6

2E
1
R2

6
(n6 + γαnα)2 + E2

=
ρ sinh(ρE)

cosh(ρE)− cos(2πγαnα)

= ∂E ln
[
cosh(ρE)− cos(2πγαnα)

]
. (A.15)

After integration, we have

µ(E) = ln
[
cosh(ρE)− cos(2πγαnα)

]
+ ln

(
R2

6

√
2

π

)
. (A.16)

where the constant ln
(
R2

6

√
2
π

)
maintains SL(4,Z) invariance of the partition function. So,

det∆0
− 1

2 = exp

(
− 1

2
trln∆0

)
= e

− 1
2

∑
nα 6=~0 µ(E)

=
(2π)

1
4

R6

∏

nα∈Z3 6=~0

1√
2
√
cosh(ρE)− cos(2πγαnα)
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=
(2π)

1
4

R6

∏

nα∈Z3 6=~0

e−
ρE
2

1− e−ρE+2πiγαnα
. (A.17)

Therefore, using (A.12), we have

ZPI
non−zeromodes = (Im τ)

3
2
g

1
4

R2
6

Z4d
osc, (A.18)

which is (5.2).

Together with (A.9), the partition functions from the two quantizations agree but they

factor differently into zero and oscillator modes,

Z4d,Maxwell = Z4d
zeromodesZ

4d
osc = ZPI

zeromodesZ
PI
non−zeromodes. (A.19)

B SL(2,Z) invariance of the Z6d,chiral and Z4d,Maxwell partition functions

The S-duality group SL(2,Z) group has two generators S and T which act on the parameter

τ to give

S : τ → −1

τ
, T : τ → τ − 1. (B.1)

Since τ = β2 + iR1
R2

= θ
2π + i4π

e2
, the transformation S corresponds to

R1 → R1|τ |−1, R2 → R2|τ |, β2 → −|τ |−2β2, (B.2)

and T corresponds to

β2 → β2 − 1. (B.3)

Or equivalently

S :
4π

e2
→ 4π

e2
|τ |−2, θ → −θ|τ |−2

T : θ → θ − 2π, (B.4)

which for θ = 0 is the familiar electromagnetic duality transformation e2

4π → 4π
e2
.

6d partition function. The 6d chiral boson zero mode partition function (2.6),

Z6d
zeromodes =

∑

n8,n9,n10

exp

{
− πR6

R1R2

√
g̃gαα

′
H12αH12α′

}

·
∑

n7

exp

{
− π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ

′
HαβδHα′β′δ′ − iπγαǫγβδH12γHαβδ

}

·
∑

n4,n5,n6

exp

{
− π

2
R6R1R2

√
g̃

(
1

R2
2

+
β22

R1
2

)
gαα

′
gββ

′
H2αβH2α′β′

}

·
∑

n1,n2,n3

exp

{
− π

R6R2

R1

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′ + iπγαǫγβδH1γβH2αδ
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− π

4

R6R2

R1

√
g̃(gαα

′
gββ

′ − gαβ
′
gβα

′
)H1αβH1α′β′

}
(B.5)

where H134 = n1,H145 = n2, H135 = n3, H234 = n4, H245 = n5, H235 = n6, H345 = n7,

H123 = n8, H124 = n9, H125 = n10, is invariant under both S and T . To show the invariance

using (B.2), (B.3) we group the exponents in (B.5) into two sets,

− πR6

R1R2

√
g̃gαα

′
H12αH12α′ − π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ

′
HαβδHα′β′δ′ − iπγαǫγβδH12γHαβδ,

(B.6)

and

−π

2
R6R1R2

√
g̃

(
1

R2
2

+
β22

R1
2

)
gαα

′
gββ

′
H2αβH2α′β′ − π

R6

R1
R2

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′

+iπγαǫγβδH1γβH2αδ −
π

2

R6R2

R1

√
g̃ gαα

′
gββ

′
H1αβH1α′β′ . (B.7)

(B.6) has no β2 dependence and therefore is invariant under T . (B.7) transforms under T

to become

− π

2
R6R1R2

√
g̃

(
1

R2
2

+
β22

R1
2

)
g
αα′

g
ββ′

H2αβH2α′β′ − π
R6

R1
R2

√
g̃β

2
g
αα′

g
ββ′

H1αβH2α′β′

+ iπγ
α
ǫ
γβδ

H1γβH2αδ −
π

2

R6

R1R2

√
g̃ g

αα′

g
ββ′

H1αβH1α′β′ (B.8)

+ π
R6

R1

√
g̃R2β

2
g
αα′

g
ββ′

H2αβH2α′β′ − π

2

R6

R1

√
g̃R2g

αα′

g
ββ′

H2αβH2α′β′ + π
R6

R1
R2

√
g̃g

αα′

g
ββ′

H1αβH2α′β′ ,

which is equivalent to (B.7) in the sum where we shift the integer zero mode field strength

H1αβ to H1αβ −H2αβ .

Under S, we see (B.6) as a function of R1R2 is invariant, and find (B.7) transforms to

− π

2

R6R2

R1

√
g̃gαα

′
gββ

′
H2αβH2α′β′ + π

R6

R1
R2

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′

+ iπγαǫγβδH1γβH2αδ −
π

2
R1R6R2

√
g̃

(
g22 +

β22

R2
1

)
gαα

′
gββ

′
H1αβH1α′β′ . (B.9)

So by shifting the integer field strength tensors H1αβ → H2αβ and H2αβ → −H1αβ , the

sum on (B.7) is left invariant by S. Thus we have proved SL(2,Z) invariance of the

6d zero mode partition function (2.6), and that its factors ǫ and Z4d
zeromodes in (2.9) are

separately SL(2,Z) invariant.

For the oscillator modes (4.36), the only term that transforms in the sum and product is

p̃2 ≡ p1
2

R1
2 +

(
g22 +

β22

R1
2

)
p22 +

2β2

R1
2 p1p2, (B.10)

which is invariant under T by shifting the momentum p1 → p1 + p2. With the S

transformation, p̃2 becomes

p1
2

(
g22 +

β22

R1
2

)
+

1

R1
2 p

2
2 −

2β2

R1
2 p1p2, (B.11)

and by also exchanging the momentum p1 → p2 and p2 → −p1, the term remains the

same. So the 6d oscillator partition function (4.36) is SL(2Z) invariant, which holds also

for regularized vacuum energy as given in (4.37).
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4d U(1) partition function. In the Hamiltonian formulation, SL(2,Z) leaves invariant

the U(1) oscillator partition function (4.30), since it is independent of e2 and θ. We have

also checked above, starting from 6d, that the zero mode 4d partition function (2.7) is

invariant. Thus the U(1) partition function from the Hamiltonian formalism is S-duality

invariant.

The S-duality transformations on the corresponding quantities in the path integral

quantization can be derived from (A.9) and (A.18). Since Im τ → 1
|τ |2 Imτ under S, and is

invariant under T, we have

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ |τ |3ZPI

zero modes under S

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ ZPI

zero modes under T (B.12)

and

Z4d
osc −→ Z4d

osc, ZPI
osc −→ |τ |−3ZPI

osc under S

Z4d
osc −→ Z4d

osc, ZPI
osc −→ ZPI

osc under T , (B.13)

which is (5.3) and (5.4).

A 2d-4d correspondence for ZPI
zeromodes

. We remark here that the zero mode con-

tribution to the partition function for the 4d Maxwell field is equivalent to the zero mode

contribution to the partition function for a 2d worldsheet action [9],

S =

∫
d2σ[

√
hhµνGαβ∂µX

α∂νX
β + ǫµνBαβ∂µX

α∂νX
β ], (B.14)

where 1 ≤ µ, ν ≤ 2 and 3 ≤ α, β ≤ 5.

Z2d
zeromodes =

∑

(pl,pr)∈Γ3,3

eiπτ(pL)
2−iπτ̄(pR)2 =

∑

(pl,pr)∈Γ3,3

e
i θ
2
((pL)

2−(pr)2)− 4π2

e2
((pL)

2+(pr)2)

=
∑

nα∈Z3,mβ∈Z3

e
iθnαm

α− 4π2

e2
(mαmβGαβ+(nα−Bαρm

ρ)Gαβ(nβ−Bβσm
σ))

= ZPI
zeromodes

where ZPI
zeromodes is given in (A.5). The 2d metric is h11 = R2

1 + R2
2β

2β2, h12 = −R2
2β

2,

h22 = R2
2, and τ = β2+ iR1

R2
= θ

2π + i4π
e2
. The nine parameters of the moduli space O(3,3)

O(3)×O(3)

of the Lorentzian lattice Γ3,3 are given by the 4d gauge theory metric as

Gαβ =
R6√
g̃
gαβ , Bαβ =

ǫαβλγ
λ

g̃
.

The integers are identified with the Maxwell field components as

F̃6α = nα, F̃αβ =
ǫαβρm

ρ

g̃
.

The points (pLγ , pRδ) on the Lorentzian lattice Γd,d are [34]

pLγ = nαe
∗α
γ +mα(Bαβ +Gαβ)e

∗β
γ , pRγ = nαe

∗α
γ +mα(Bαβ −Gαβ)e

∗β
γ ,
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p2L =
d∑

γ=1

pLγpLγ , p2R =
d∑

γ=1

pRγpRγ ,

d∑

γ=1

e∗αγ e∗βγ =
1

2
Gαβ , p2L − p2R = 2nαm

α,

p2L + p2R = mαmβGαβ + (nα −Bαρm
ρ)Gαβ(nβ −Bβσm

σ),

for 1 ≤ α, β, γ, δ ≤ d.

However, the non-zero mode partition function of the 2d theory (B.14)

Z2d
non−zeromodes = (η(τ)η̄(τ̄))−3 (B.15)

is not the 4d non-zero mode partition function (A.18), although they both transform in

the same way under the SL(2,Z) duality transformation. Indeed (A.18) is more naturally

described by a 2d scalar theory with massless and massive modes on a two-torus in the

directions 3 and 6, as we show in appendix D.

C Regularization of the vacuum energy for 4d Maxwell theory

The sum in (4.30) is divergent. We regularize the vacuum energy following [12, 13, 17]. For

〈H〉 = 1
2

∑
pα∈Z3

√
gαβpαpβ , the SL(3,Z) invariant regularized vacuum energy becomes

〈H〉 = − 1

4π3

√
g̃

∑

nα∈Z3 6=0

1

(gαβnαnβ)2
= −4π

√
g̃

∑

~n∈Z3 6=0

1

|2π~n|4 . (C.1)

For the proof of SL(4,Z) invariance in appendix D, it is also useful to write the

regularized sum (C.1), as

〈H〉 =
∑

p⊥∈Z2

〈H〉p⊥ = 〈H〉p⊥=0 +
∑

p⊥∈Z2 6=0

〈H〉p⊥ , (C.2)

where p⊥ = pa ∈ Z2, a = 4, 5, and

〈H〉p⊥=0 =
1

2

∑

p3∈Z

√
g33p3p3 =

1

R3

∞∑

n=1

n =
1

R3
ζ(−1) = − 1

12R3
;

〈H〉p⊥ 6=0 = |p⊥|2R3

∞∑

n=1

cos(paκ
a2πn)

[
K2(2πnR3|p⊥|)−K0(2πnR3|p⊥|)

]
. (C.3)

|p⊥| =
√

papbg̃ab, using the 2d inverse metric as defined in appendix D.

D SL(4,Z) invariance of Z4d,Maxwell and Z6d,chiral

Rewriting the 4d metric (3,4,5,6). From (2.2) the metric on the four-torus, for α, β =

3, 4, 5, is

Gαβ = gαβ , Gα6 = −gαβγ
β , G66 = R2

6 + gαβγ
αγβ . (D.1)

We can rewrite this metric using a, b = 4, 5,

g33 ≡ R2
3 + gabκ

aκb, ga3 ≡ −gabκ
b, gab ≡ gab, (γ3)κa − γa ≡ −γ̃a, (D.2)
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G33 = R2
3 + gabκ

aκb, G36 = −(γ3)R2
3 + gabκ

bγ̃a, G3a = −gabκ
b,

Gab = gab, Ga6 = −gabγ̃
b, G66 = R2

6 + (γ3)2R2
3 + gab γ̃

aγ̃b. (D.3)

The 3d inverse of gαβ is

gab = g̃ab +
κaκb

R2
3

, ga3 =
κa

R2
3

, g33 =
1

R2
3

, (D.4)

where g̃ab is the 2d inverse of gab.

g ≡ detGij = R2
6 det gαβ ≡ R2

6 g̃ = R2
6R

2
3 det gab ≡ R2

6R
2
3 ḡ.

The line element can be written as

ds2 = R2
6(dθ

6)2 +
∑

α,β=3,4,5

gαβ(dθ
α − γαdθ6)(dθβ − γβdθ6)

= R2
3(dθ

3 − (γ3)dθ6)2 +R2
6(dθ

6)2

+
∑

a,b=4,5

gab(dθ
a − γ̃adθ6 − κadθ3) (dθb − γ̃bdθ6 − κbdθ3). (D.5)

We define

τ̃ ≡ γ3 + i
R6

R3
. (D.6)

The 4d inverse is

G̃33
4 =

|τ̃ |2
R2

6

= G̃66
4 |τ̃ |2, G̃66

4 =
1

R2
6

, G̃36
4 =

γ3

R2
6

, G̃3a
4 =

κa|τ̃ |2
R2

6

+
γ3γ̃a

R2
6

,

G̃ab
4 = g̃ab +

κaκb

R2
6

|τ̃ |2 + γ̃aγ̃b

R2
6

+
γ3(γ̃aκb + κaγ̃b)

R2
6

, G̃6a
4 =

γa

R2
6

=
γ3κa + γ̃a

R2
6

. (D.7)

Generators of GL(n,Z). The GL(n,Z) unimodular group can be generated by three

matrices [35]. For GL(4,Z) these can be taken to be U1, U2 and U3,

U1 =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


 ; U2 =




1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


 ; U3 =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , (D.8)

so that every matrixM inGL(4,Z) can be written as a product Un1
1 Un2

2 Un3
3 Un4

1 Un5
2 Un6

3 . . . ,

for integers ni. Matrices U1, U2 and U3 act on the basis vectors of the four-torus ~αi where

~αi · ~αj ≡ αk
i α

l
jGkl = Gij ,

~α3 = (1, 0, 0, 0)

~α6 = (0, 1, 0, 0)

~α4 = (0, 0, 1, 0)

~α5 = (0, 0, 0, 1). (D.9)
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For our metric (D.3), the U2 transformation



~α′
3

~α′
6

~α′
4

~α′
5


 = U2




~α3

~α6

~α4

~α5


 =




1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


 (D.10)

results in ~α′
3 · ~α′

3 ≡ α′i
3α

′j
3Gij = G33 = G′

33, ~α′
3 · ~α′

6 ≡ α′i
3α

′j
6Gij = G33 + G36 = G′

36, etc.

So U2 corresponds to

R3 → R3, R6 → R6, γ
3 → γ3 − 1, κa → κa, γ̃a → γ̃a + κa, gab → gab, (D.11)

or equivalently

R6 → R6, γ
3 → γ3 − 1, gαβ → gαβ , γ

a → γa, (D.12)

which leaves invariant the line element (D.5) if dθ3 → dθ3 − dθ6, dθ6 → dθ6, dθa → dθa.

U2 is the generalization of the usual τ̃ → τ̃ − 1 modular transformation. The 3d inverse

metric gαβ ≡ {gab, ga3, g33} does not change under U2. It is easily checked that U2 is an

invariance of the 4d Maxwell partition function (4.32) as well as the 6d chiral boson partition

function (4.37). It leaves the zero mode and oscillator contributions invariant separately.

The other generator, U1 is related to the SL(2,Z) transformation τ̃ → −(τ̃)−1 that we

discuss as follows:

U1 = U ′M3 (D.13)

where M3 is a GL(3,Z) transformation given by

M3 =




0 0 −1 0

0 1 0 0

0 0 0 1

1 0 0 0


 (D.14)

and U ′ is the matrix corresponding to the transformation on the metric parameters (D.16),

U ′ =




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


 . (D.15)

Under U ′, the metric parameters transform as

R3 → R3|τ̃ |, R6 → R6|τ̃ |−1
, γ

3 → −γ
3|τ̃ |−2

, κ
a → γ̃

a
, γ̃

a → −κ
a
, gab → gab.

τ̃ → − 1

τ̃
. Or equivalently,

Gab → Gab, Ga3 → Ga6, Ga6 → −Ga3, G33 → G66, G66 → G33, G36 → −G36,

G̃
ab
4 → G̃

ab
4 , G̃

a3
4 → G̃

a6
4 , G̃

a6
4 → −G̃

a3
4 , G̃

33
4 → G̃33

4

|τ̃ |2 , G̃
66
4 → |τ̃ |2G̃66

4 , G̃
36
4 → −G̃

36
4 , (D.16)

where 4 ≤ a, b ≤ 5, and

τ̃ ≡ γ3 + i
R6

R3
, |τ̃ |2 = (γ3)2 +

R2
6

R2
3

. (D.17)
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The transformation (D.16) leaves invariant the line element (D.5) when dθ3 → dθ6, dθ6 →
−dθ3, dθa → dθa. The generators have the property detU1 = −1, detU2 = 1, detU3 =

−1, detU ′ = 1, detM3 = −1.

Under M3, the metric parameters transform as

R6 → R6, γ
3 → −γ

4
, γ

a → γ
a+1

, gab → ga+1,b+1, ga3 → −ga+1,4, g33 → g44,

g
ab → g

a+1,b+1
, g

a3 → −g
a+1,4

, g
33 → g

44
, det gαβ = g̃, g̃ → g̃. Or equivalently,

Gab → Ga+1,b+1, Ga3 → −Ga+1,4, Ga6 → Ga+1,6, G33 → G44, G66 → G66, G36 → −G46,

G̃
ab
4 → G̃

a+1,b+1
5 , G̃

a3
4 → −G̃

a+1,4
5 , G̃

a6
4 → G̃

a+1,6
4 , G̃

33
4 → G̃

44
4 , G̃

36
4 → −G̃

46
4 , G̃

66
4 → G̃

66
4 ,

det G̃4 = R6 g̃, det G̃4 → det G̃4, (D.18)

where 4 ≤ a, b ≤ 5, and a+1 ≡ 3 for a = 5. We see that M3 takes Z4d
zeromodes to its complex

conjugate as follows. Letting the M3 transformation (D.18) act on (2.7), we find that the

three subterms in the exponent

−e2

8
R6

√
g̃

(
θ2

4π2
+

16π2

e4

)(
g
aa′

g
bb′

F̃abF̃a′b′ + 4gaa
′

g
b3
F̃abF̃a′3 + 2gaa

′

g
33
F̃a3F̃a′3 − 2ga3ga

′3
F̃a3F̃a′3

)
,

−e2R6

4
√
g̃
Π̃α

gαβΠ̃
β
,

− θe2R6

8π2
√
g̃
gαβǫ

αγδ
F̃γδΠ̃

β
, (D.19)

are separately invariant under (D.18) if we replace the integers F̃αβ ∈ Z3, Π̃α ∈ Z3 by

F̃ab → F̃a+1,b+1, F̃a3 → −F̃a+1,4, Π̃3 → Π̃4, Π̃a → −Π̃a+1. (D.20)

However, acted on by M3 with the field shift (D.20), the term

2πiγαΠ̃βF̃αβ → −2πiγαΠ̃βF̃αβ (D.21)

changes sign. Thus we have

M3 : Z4d
zero modes → Z4d ∗

zero modes (D.22)

The action of U ′ on Z4d

zero modes
. Next we show that under U ′, Z4d

zeromodes transforms

to |τ̃ |2 Z4d
zeromodes. From (A.5) and (A.9), we have

Z4d
zero modes =

(
4π

e2

)− 3
2 g̃

1
4

R
3
2
6

∑

F̃ij∈Z6

exp

{
− 2π2

e2
R6

√
g̃gijgi

′j′F̃ii′F̃jj′ −
i

2
θǫαβγF̃6αF̃βγ

}
,

(D.23)

from which it will be easy to see how it transforms under the U ′ transformation. Under U ′

from (D.16), the coefficient transforms as

U ′ :

(
4π

e2

)− 3
2 g̃

1
4

R
3
2
6

→
(
4π

e2

)− 3
2 g̃

1
4

R
3
2
6

|τ̃ |2. (D.24)

The Euclidean action for the zero mode computation is invariant under U ′, as we show

next by first summing i = {3, a, 6}, with 4 ≤ a ≤ 5.
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− 2π2R6

√
g̃

e2
R1

R2
g
ij
g
i′j′

F̃ii′ F̃jj′

= −2π2R6

√
g̃

e2

(
G̃

aa′

4 G̃
bb′

4 F̃abF̃a′b′ + 4G̃aa′

4 G̃
b3
4 F̃abF̃a′3 + 4G̃aa′

4 G̃
b6
4 F̃abF̃a′6 + 2G̃aa′

4 G̃
33
4 F̃a3F̃a′3

− 2G̃a3
4 G̃

a′3
4 F̃a3F̃a′3 + 4G̃aa′

4 G̃
36
4 F̃a3F̃a′6 − 4G̃a6

4 G̃
a′3
4 F̃a3F̃a′6 + 4G̃a3

4 G̃
b6
4 F̃abF̃36

+ 2G̃aa′

4 G̃
66
4 F̃a6F̃a′6 − 2G̃a6

4 G̃
a′6
4 F̃a6F̃a′6 + 4G̃a3

4 G̃
36
4 F̃a3F̃36 − 4G̃a6

4 G̃
33
4 F̃a3F̃36

+ 4G̃a3
4 G̃

66
4 F̃a6F̃36 − 4G̃a6

4 G̃
36
4 F̃a6F̃36 − 2G̃36

4 G̃
36
4 F̃36F̃36 + 2G̃33

4 G̃
66
4 F̃36F̃36

)
. (D.25)

Letting the U ′ transformation (D.16) act on (D.25), we see the first term in the exponent

of (D.23) changes to

− 2π2R6

√
g̃

e2

(
G̃

aa′

4 G̃
bb′

4 F̃abF̃a′b′ + 4G̃aa′

4 G̃
b6
4 F̃abF̃a3 − 4G̃aa′

4 G̃
b3
4 F̃abF̃a′6 +

2

|τ̃ |2 G̃
aa′

4 G̃
33
4 F̃a3F̃a′3

− 2G̃a6
4 G̃

a′6
4 F̃a3F̃a′3 − 4G̃aa′

4 G̃
36
4 F̃a3F̃a′6 + 4G̃a3

4 G̃
a′6
4 F̃a3F̃a′6 − 4G̃α6

5 G̃
α′3
5 F̃aa′ F̃36

+ 2|τ̃ |2G̃aa′

4 G̃
66
4 Fa6Fa′6 − 2G̃a6

4 G̃
a′3
4 F̃a6F̃a′6 − 4G̃a6

4 G̃
36
4 F̃a3F̃36 +

4

|τ̃ |2 G̃
a3
4 G̃

33
4 F̃a3F̃36

+ 4|τ̃ |2G̃a6
4 G̃

66
4 F̃a6F̃36 − 4G̃a3

4 G̃
36
4 F̃a6F̃36 − 2G̃36

4 G̃
36
4 F̃36F̃36 + 2G̃33

4 G̃
66
4 F̃36F̃36

)
. (D.26)

The second term in the exponential of (D.23) is a topological term, and is left invariant

under the action of U ′ by inspection. If we replace the integers F̃3a → F̃6a and F̃a6 → −F̃a3,

the two terms are left invariant, so the sum

∑

F̃ij∈Z6

e
− 2π2√g

e2
gijgi

′j′ F̃ii′ F̃jj′+i θ
2
ǫαβγ F̃6αF̃βγ (D.27)

is invariant. Thus we have shown that under the U ′ transformation (D.16),

Z4d
zeromodes(R3|τ̃ |, R6|τ̃ |−1, gab,−γ3|τ̃ |−2, γ̃a,−κa) = |τ̃ |2 Z4d

zeromodes(R3, R6, gab, γ
3, κa, γ̃a).

(D.28)

Also from (D.23), we can write (D.22) as

M3 : Z4d
zero modes(e

2, θ, Gij) → Z4d
zero modes(e

2,−θ,Gij). (D.29)

and thus under the GL(4,Z) generator U1,

Z4d
zeromodes → |τ̃ |2

(
Z4d
zeromodes

)∗
. (D.30)

The residual factor |τ̃ |2 is sometimes referred to as an SL(2,Z) anomaly of the zero mode

partition function, because U ′ includes the τ̃ → − 1
τ̃
transformation. Finally we will show

how this anomaly is canceled by the oscillator contribution.

Under U3, the metric parameters transform as

R6 → R6, γ3 → −γ3, γa → γa, gab → gab, ga3 → −ga3, g33 → g33,

gab → gab, ga3 → −ga3, g33 → g33, det gαβ = g̃, g̃ → g̃. Or equivalently,

Gab → Gab, Ga3 → −Ga3, Ga6 → Ga6, G33 → G33, G66 → G66, G36 → −G36,

G̃ab
4 → G̃ab

4 , G̃a3
4 → −G̃a3

4 , G̃a6
4 → G̃a6

4 , G̃33
4 → G̃33

4 , G̃36
4 → −G̃36

4 , G̃66
4 → G̃66

4 ,

det G̃4 = R6 g̃, det G̃4 → det G̃4, (D.31)
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where 4 ≤ a, b ≤ 5 and G̃αβ is the 3d inverse. We can check that Z4d
zeromodes becomes

its complex conjugate under U3 given in (D.31) as follows. Letting the U3 transforma-

tion (D.31) act on (2.7), we find that three of the terms in the exponent

−e2R6

√
g̃

8

(
θ2

4π2
+

16π2

e4

)(
g
aa′

g
bb′

FabFbb′ + 4gaa
′

g
b3
FabFa′3 + 2gaa

′

g
33
Fa3Fa′3 − 2ga3ga

′3
Fa3Fa′3

)
,

−e2R6

4
√
g̃
Π̃α

gαβΠ̃
β
,

−θe2R6

8π
√
g̃
gαβǫ

αγδ
F̃γδΠ̃

β
, (D.32)

are separately invariant under (D.18), if we replace the the integers F̃αβ ∈ Z3, Π̃α ∈ Z3 by

F̃ab → F̃ab, F̃a3 → −F̃a3, Π̃3 → Π̃3, Π̃a → −Π̃a, (D.33)

However the subterm

2πiγαΠ̃βF̃αβ → −2πiγαΠ̃βF̃αβ (D.34)

acted by U3 with the field shift in (D.33). Therefore the zero mode partition function goes

to its complex conjugate under U3.

Appropriate generators for SL(4,Z). We claim that U2
1 , U2 and U1U3 generate the

group SL(4,Z) since GL(n,Z) is generated by U1, U2 and U3 or alternatively R1 = U1,

R2 = U−1
3 U2 and R3 = U3, i.e., any element in GL(n,Z) U can be written as

U = R1
n1R2

n2R3
n3R1

n4R2
n5R3

n6 . . . . (D.35)

It is understood that SL(n,Z) is generated by even numbers of R1, R2 and R3. Thus, the

possible set of group generators for SL(n,Z) is

R2
1, R

2
2, R

2
3, R1R2, R2R3, R3R1, R2R1, R3R2, R1R3 (D.36)

with the properties that R2
2 = 1 and R2

3 = 1. A smaller set of the SL(4,Z) generators is

R2
1, R1R3, R2R3, (D.37)

since other generators in (D.36) can be expressed with the generators in (D.39) through

the following relations

R1R2 = R1R3(R2R3)
−1, R2R1 = (R1R2)

−1R2
1

R3R2 = (R2R3)
−1, R3R1 = (R1R3)

−1R2
1. (D.38)

Notice that

{R2
1, R1R3, R2R3} = {U2

1 , U1U3, U
−1
2 }. (D.39)
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These three matrices generate SL(4,Z). They can be shown to generate Trott’s

twelve generators Bij [36].

Since we have tested the invariance of the zero mode partition function under U2, we

only need to check invariance under U1U3 and U2
1 . For U1U3, as previously we separate U1

into U ′ and M3,

U1U3 = U ′M3U3 = U ′(M3U3). (D.40)

Since both M3 and U3 take Z4d
zeromodes to its complex conjugate, M3U3 is an invariance of

the zero mode partition function. Thus from (D.28),

U1U3 : Z4d
zero modes → |τ̃ |2Z4d

zero modes. (D.41)

U1
2 acts on Z4d

zero modes
. Since we have shown before

U1 : Z4d
zero modes → |τ̃ |2Z4d ∗

zero modes, (D.42)

then

U1
2 : Z4d

zero modes → Z4d
zero modes. (D.43)

To summarize, we have

U2 : Z4d
zero modes → Z4d

zero modes,

U1U3 : Z4d
zero modes → |τ̃ |2Z4d

zero modes,

U1
2 : Z4d

zero modes → Z4d
zero modes. (D.44)

One can derive a similar transformation property for Z6d
zero modes using (2.9),

U2 : Z6d
zero modes → Z6d

zero modes,

U1U3 : Z6d
zero modes → |τ̃ |3Z6d

zero modes,

U1
2 : Z6d

zero modes → Z6d
zero modes, (D.45)

which follows from transformations on the factor ǫ, given in (2.10). By inspection ǫ is

invariant under U2 and M3, and transforms as

U ′ : ǫ → |τ̃ |ǫ. (D.46)

This can be seen by Poisson resummation since ǫ can be written as

ǫ =
∑

na

exp

{
− πR6

√
g̃

R1R2
g
ab
nanb −

πR6
√
ḡ

R3R1R2|τ̃ |2
γ̃
a
γ̃
b
nanb}

∑

m,n3

exp{−π(N + x) ·A · (N + x)

}
,

= |τ̃ |−1
U

′
ǫ, (D.47)

where

H12α = nα, Hαβδ =
ǫαβδ

g̃
m, m, nα ∈ Z4,

A =

(
R6

√
ḡ

R3R1R2
iγ3

iγ3 R6R1R2

R3
√
ḡ

)
, detA = |τ̃ |2, N =

(
n3

m

)
, x =

(
κana +

γ3γ̃ana

|τ̃ |2

i
R6

√
ḡ γ̃3na

R3R1R2|τ̃ |2 ,

)
.
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U ′ acts on Z4d

osc
. To derive how U ′ acts on Z4d

osc, we first separate the product on ~n =

(n, na) 6= ~0 into a product on (all n, but nα 6= (0, 0)) and on (n 6= 0, na = (0, 0)).

Then using the regularized vacuum energy (C.1) expressed as sum over zero and non-zero

transverse momenta p⊥ = na in (C.2), we find that (4.32) becomes

Z4d,Maxwell = Z4d
zero modes ·

(
e

πR6
6R3

∏

n 6=0

1

1− e
−2π

R6
R3

|n|−2πiγ3n

)2

·
( ∏

na∈Z2 6=(0,0)

e−2πR6〈H〉p⊥
∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

. (D.48)

As in [12, 13] we observe the middle expression above can be written in terms of the

Dedekind eta function η(τ̃) ≡ e
πiτ̃
12

∏
n∈Z6=0(1− e2πiτ̃ ), with τ̃ = γ3 + iR6

R3
,

(
e

πR6
6R3

∏

n 6=0

1

1− e
−2π

R6
R3

|n|−2πiγ3n

)2

= (η(τ̃)η̄(¯̃τ))−2. (D.49)

This transforms under U ′ in (D.16) as

(η(−τ̃−1)η̄(−¯̃τ
−1

))−2 = |τ̃ |−2 (η(τ̃)η̄(¯̃τ))−2, (D.50)

where η(−τ̃−1) = (iτ̃)
1
2 η(τ̃). In this way the anomaly of the zero modes in (D.28) is canceled

by (D.50). Lastly we demonstrate the third expression in (D.48) is invariant under U ′,

( ∏

na∈Z2 6=(0,0)

e−2πR6〈H〉⊥
∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

= PI, (D.51)

where PI is the modular invariant 2d path integral of two massive scalar bosons of mass√
g̃abnanb, coupled to a worldsheet gauge field, on a two-torus in directions 3,6. Follow-

ing [12, 13], with more detail in (D.68), we extract from (4.30)

Z4d
osc =

(
e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏

~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

(D.52)

the 2d path integral of free massive bosons coupling to the gauge field, where na is fixed

and non-zero,

(PI)
1
2 ≡ e

−πR6
∑

n3∈Z
√

gαβnαnβ
∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

=
∏

s∈Z

e−
β′E
2

1− e−β′E+2πi(γ3s+γana)
where s ≡ n3, E ≡

√
gαβnαnβ, β′ ≡ 2πR6

=
∏

s∈Z

1√
2
√
coshβ′E − cos 2π(γ3s+ γana)

for na → −na

= e−
1
2

∑
s∈Z

(
ln [cosh β′E−cos 2π(γ3s+γana)]+ln 2

)
≡ e−

1
2

∑
s∈Z ν(E), (D.53)
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where

∑

s∈Z
ν(E) ≡

∑

s∈Z

(
ln [coshβ′E − cos 2π(γ3s+ γana)] + ln 2

)

=
∑

s∈Z

∑

r∈Z
ln

[
4π2

β′2 (r + γ3s+ γana)
2 + E2

]
. (D.54)

We can show directly that (D.54) is invariant under U ′, since

E2 = gαβnαnβ = g33s2 + 2g3asna + gabnanb =
1

R2
3

(s+ κana)
2 + g̃abnanb,

4π2

β′2 (r + γ3s+ γana)
2 =

1

R2
6

(r + γ̃ana + γ3(s+ κana))
2, (D.55)

then

4π2

β′2 (r + γ3s+ γana)
2 + E2

=
1

R2
6

(s+ κana)
2 |τ̃ |2 + 1

R2
6

(r + γ̃ana)
2 +

2γ3

R2
6

(r + γ̃ana)(s+ κana) + g̃abnanb. (D.56)

So we see the transformation U ′ given in (D.16) leaves (D.56) invariant if s → r and r → −s.

Therefore (D.54) is invariant under U ′, so that (PI)
1
2 given in (D.53) is invariant under U ′.

M3 acts on Z4d

osc
. M3 leaves the Z4d

osc invariant as can be seen from (D.48) by shifting

the integer nα as

n3 → −n4, na → na+1. (D.57)

So, under U1 = U ′M3,

Z4d
osc → |τ̃ |−2Z4d

osc. (D.58)

U2 is an invariance of the oscillator partition function by inspection.

U3 acts on Z4d

osc
. U3 leaves the Z4d

osc invariant as can be seen from (D.48) by shifting the

integers nα as

n3 → −n3, na → na. (D.59)

Thus, the oscillator partition function transforms under the SL(4,Z) generators

{U2
1 , U1U3, U2} as

U2 : Z4d
osc → Z4d

osc,

U1U3 : Z4d
osc → |τ̃ |−2Z4d

osc,

U1
2 : Z4d

osc → Z4d
osc. (D.60)

So together with (D.44) we have established invariance under (D.39), and thus proved the

partition function for the 4d Maxwell theory on T 4, given alternatively by (4.32) or (D.48),

is invariant under SL(4,Z), the mapping class group of T 4.
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U ′ acts on Z6d

osc
. For the 6d chiral theory on T 2×T 4, where 〈H〉6d ≡ 1

2

∑
~p∈Z5

√
Glm

5 plpm

appears in (4.36), the SL(3,Z) invariant regularized vacuum energy [12, 13] becomes,

〈H〉6d = − 1

2π4

√
G5

∑

~n 6=~0

1

(Glmnlnm)3
(D.61)

= −32π2
√
G5

∑

~n 6=~0

1

(2π)6
(
gαβnαnβ + (R2

1 +R2
2β

2β2)(n1)2 − 2β2R2
2n

1n2 +R2
2(n

2)2
)3

and can be decomposed similarly to (C.2),

〈H〉6d =
∑

p⊥∈Z4

〈H〉6dp⊥ = 〈H〉6dp⊥=0 +
∑

p⊥∈Z4 6=0

〈H〉6dp⊥ , (D.62)

where

〈H〉6dp⊥ = −32π2
√
G5

1

(2π)4

∫
d4y⊥e

−ip⊥·y⊥
∑

n3∈Z6=0

1

|2πn3 + y⊥|6
, (D.63)

with denominator |2πn3 + y⊥|2 = G33(2πn
3)2 + 2(2πn3)G3ky

k
⊥ + Gkk′y

k
⊥y

k′
⊥ , with k =

1, 2, 4, 5,

〈H〉6dp⊥=0 = − 1

12R3
,

〈H〉6dp⊥ 6=0 = |p⊥|2R3

∞∑

n=1

cos(paκ
a2πn)

[
K2(2πnR3|p⊥|)−K0(2πnR3|p⊥|)

]

= −π−1|p⊥|R3

∞∑

n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, (D.64)

with p⊥ = (p1, p2, pa) = n⊥ = (n1, n2, na) = (n1, n2, n4, n5) ∈ Z4, |p⊥| =√
(n1)2

R2
1

+ 2 β2

R2
1
+ ( 1

R2
2
+ β22

R2
1
)n2

2 + g̃abnanb.

The U ′ invariance of (4.37) follows when we separate the product on ~n ∈ Z5 6= ~0

into a product on (n3 6= 0, n⊥ ≡ (n1, n2, n4, n5) = (0, 0, 0, 0)), and on (all n3, but n⊥ =

(n1, n2, n4, n5) 6= (0, 0, 0, 0)). Then

Z6d
osc =

(
e

πR6
6R3

∏

n3∈Z6=0

1

1− e
2πi (γ3 n3+i

R6
R3

|n3| )

)3

(D.65)

·
( ∏

n⊥∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥

∏

n3∈Z

1

1− e−2πR6

√
ñ2+gαβnαnβ +i2πγαnα

)3

=

(
η(τ̃) η̄(¯̃τ)

)−3

·
( ∏

(n1,n2,n4,n5)∈Z4 6=(0,0,0,0)

e
−2πR6〈H〉6dp⊥

∏

n3∈Z

1

1− e−2πR6

√
gαβnαnβ+ñ2 +i2πγαnα

)3

,
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where τ̃ = γ3 + iR6
R3

, and ñ2 ≡ n2
1

R2
1
+ 2 β2

R2
1
n1n2 + ( 1

R2
2
+ β22

R2
1
)n2

2. Under U ′,

η(τ̃) η̄(¯̃τ) → |τ̃ | η(τ̃) η̄(¯̃τ). (D.66)

U ′ leaves invariant the part of the 6d oscillator partition function (D.65) at fixed n⊥ 6= 0,

since

e
−2πR6〈H〉6dn⊥6=0

∏

n3∈Z

1

1− e
−2πR6

√
gαβnαnβ+

n2
1

R2
1
+2 β2

R2
1
n1n2+( 1

R2
2
+β2

2

R2
1
)n2

2 +i2πγαnα

(D.67)

is the square root of the partition function on T 2 (now in the directions 3,6) of a massive

complex scalar with m2 ≡ G11n2
1+G22n2

2+2G12n1n2+ g̃abnanb, 4 ≤ a, b ≤ 5, that couples

to a constant gauge field Aµ ≡ iGµini with µ, ν = 3, 6; i, j = 1, 2, 4, 5. The metric on

this T 2 is h33 = R2
3 , h66 = R2

6 + (γ3)2R2
3 , h36 = −γ3R2

3. Its inverse is h33 = 1
R2

3
+ (γ3)2

R2
6
,

h66 = 1
R2

6
and h36 = γ3

R2
6
. The manifestly SL(2,Z) invariant path integral is

P.I. =

∫
dφ dφ̄ e

−
∫ 2π
0 dθ3

∫ 2π
0 dθ6 hµν(∂µ+Aµ)φ̄(∂ν−Aν)φ+m2φ̄φ

=

∫
dφ̄ dφe

−
∫ 2π
0 dθ3

∫ 2π
0 dθ6φ̄(−( 1

R2
3

+
(γ3)2

R2
6

)∂2
3−( 1

R6
)2∂2

6−2 γ3

R2
6

∂3∂6+2A
3∂3+2A

6∂6+G
11n1n1+G

22n2n2+2G
12n1n2+G

abnanb)φ

= det

([
−

(
1

R2
3

+

(
γ3

R6

)2)
∂
2
3 −

(
1

R6

)2

∂
2
6 − 2γ3

(
1

R6

)2

∂3∂6 +G
11
n1n1 +G

22
n2n2

+ 2G12
n1n2 +G

ab
nanb + 2iG3a

na∂3 + 2iG6a
na∂6

])−1

=e
−trln

[
−( 1

R2
3

+( γ3

R6
)2)∂2

3−( 1
R6

)2∂2
6−2γ3( 1

R6
)2∂3∂6+G

11n1n1+G
22n2n2+2G

12n1n2+G
abnanb+2iG

3ana∂3+2iG
6ana∂6

]

=e
−∑

s∈Z

∑
r∈Z

[
ln( 4π2

β′2 r2+( 1
R2

3

+( γ3

R6
)2)s2+2γ3( 1

R6
)2rs+G11n1n1+G

22n2n2+2G
12n1n2+G

abnanb+2G
3ana s+2G6ana r)

]

= e
−∑

s∈Z
ν(E)

, (D.68)

where from (2.3), G11 = 1
R2

1
, G22 = 1

R2
2
+ β22

R2
1
, G12 = β2

R2
1
, Gab = gab + γaγb

R6
2 , G

3a = g3a +

γ3γa

R2
6
, G6a = γa

R2
6
, G63 = γ3

R2
6
, and ∂3φ = −isφ, ∂6φ = −irφ, s = n3, and β′ = 2πR6. The

sum on r is

ν(E) =
∑

r∈Z
ln

[
4π2

β′2 (r + γ3s+ γana)
2 + E2

]
, (D.69)

with E2 ≡ Glm
5 nlnm = G11

5 n1n1 +G22
5 n2n2 +G21

5 n2n1 +Gab
5 nanb + 2Ga3

5 nan3 +G33
5 n3n3,

and G11
5 = 1

R2
1
, G12

5 = β2

R2
1
, G22

5 = 1
R2 + β2β2

R2
1
, G1α

5 = G2α
5 = 0, G3a

5 = g3a = κa

R2
3
, G33

5 = g33 =

1
R2

3
, Gab

5 = gab = g̃ab + κaκb

R2
3
. We evaluate the divergent sum ν(E) on r by

∂ν(E)

∂E
=

∑

r

2E
4π2

β′2 (r + γ3s+ γana)2 + E2

= ∂E ln
[
coshβ′E − cos 2π

(
γ3s+ γana

)]
, (D.70)

using the sum
∑

n∈Z
2y

(2πn+z)2+y2
= sinh y

cosh y−cos z . Then integrating (D.70), we choose the

integration constant to maintain modular invariance of (D.68),

ν(E) = ln
[
coshβ′E − cos 2π

(
γ3s+ γana

)]
+ ln 2. (D.71)
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It follows for s = n3 that (D.68) gives

(P.I.)
1
2 =

∏

s∈Z

1√
2
√
coshβ′E − cos 2π(γ3s+ γana)

=
∏

s∈Z

e−
β′E
2

1− e−β′E+2πi(γ3s+γana)

= e−πR6
∑

s∈Z
√

Glm
5 nlnm

∏

s∈Z

1

1− e−2πR6

√
Glm

5 nlnm+2πiγ3s+2πiγana

= e−2πR6〈H〉n⊥
∏

n3∈Z

1

1− e−2πR6

√
Glm

5 nlnm+2πiγ3n3+2πiγana

, (D.72)

which is (D.67). Its invariance under U ′ follows from the U ′ invariance of (D.54), which

differs from (D.69) only by an additional contribution of ñ2 to the mass m2.

Hence (D.72) and thus (D.67) are invariant under U ′.
Furthermore Z6d

osc is invariant under M3, U2, U3 by inspection.

Using the same approach for proving SL(4,Z) symmetry of the 4d partition function,

we have shown the 6d oscillator partition function for the chiral boson given by (4.36), or

equivalently (D.65), transforms as

U2 : Z6d
osc → Z6d

osc,

U1U3 : Z6d
osc → |τ̃ |−3Z6d

osc,

U1
2 : Z6d

osc → Z6d
osc. (D.73)

Together with (D.45), the 6d partition function Z6d,chiral ≡ Z6d
zero modes Z

6d
osc is SL(4,Z)

invariant.
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