
J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

Published for SISSA by Springer

Received: May 7, 2015

Accepted: June 3, 2015

Published: June 18, 2015

Dark-matter bound states from Feynman diagrams

Kalliopi Petraki,a Marieke Postmaa and Michael Wiechersa,b

aNikhef, Science Park 105,

1098 XG Amsterdam, The Netherlands
bGRAPPA Institute, University of Amsterdam,

Science Park 904, 1090 GL Amsterdam, The Netherlands

E-mail: kpetraki@nikhef.nl, mpostma@nikhef.nl, mwiecher@nikhef.nl

Abstract: If dark matter couples directly to a light force mediator, then it may form

bound states in the early universe and in the non-relativistic environment of haloes today.

In this work, we establish a field-theoretic framework for the computation of bound-state

formation cross-sections, de-excitation and decay rates, in theories with long-range in-

teractions. Using this formalism, we carry out specific computations for scalar particles

interacting either via a light scalar or vector mediator. At low relative velocities of the

interacting particles, the formation of bound states is enhanced by the Sommerfeld effect.

For particle-antiparticle pairs, we show that bound-state formation can be faster than an-

nihilation into radiation in the regime where the Sommerfeld effect is important. The

field-theoretic formalism outlined here can be generalised to compute bound-state forma-

tion cross-sections in a variety of theories, including theories featuring non-Abelian (albeit

non-confining) interactions, such as the electroweak interactions.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM, Nonpertur-

bative Effects

ArXiv ePrint: 1505.00109

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)128

mailto:kpetraki@nikhef.nl
mailto:mpostma@nikhef.nl
mailto:mwiecher@nikhef.nl
http://arxiv.org/abs/1505.00109
http://dx.doi.org/10.1007/JHEP06(2015)128


J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

Contents

1 Introduction 1

2 Bound-state and two-particle state wavefunctions 5

2.1 The Bethe-Salpeter wavefunctions 5

2.2 The 4-point Green’s function and Dyson-Schwinger equation 7

2.3 Completeness relation and decomposition of the 4-point function 8

2.4 The Bethe-Salpeter equation for bound and scattering states 10

2.5 Normalization of the Bethe-Salpeter wavefunctions 12

2.6 The instantaneous approximation and the Schrödinger equation 13

2.7 Normalization of the Schrödinger wavefunctions 15

3 Radiative level transitions 16

3.1 The 5-point Green’s function 17

3.2 Transition amplitudes 19

3.3 Instantaneous approximation 21

3.4 On-shell approximation 22

3.5 Bound-state formation cross-sections 23

3.6 Bound-state de-excitation rates 24

4 Decay of unstable bound states and (co-)annihilation of unbound pairs 24

4.1 Non-perturbative amplitude 24

4.2 On-shell approximation 26

4.3 Two-body (co-)annihilation cross-sections and bound-state decay rates 26

5 Bound-state formation, de-excitation and decay rates for specific inter-

actions 28

5.1 Scalar mediator 30

5.1.1 Bound-state formation amplitudes 31

5.1.2 Bound-state formation cross-sections and partial-wave unitarity 34

5.1.3 De-excitation rate 35

5.1.4 Annihilation vs bound-state formation for particle-antiparticle pairs 36

5.1.5 Particle-antiparticle bound-state decay rates 36

5.2 Vector mediator 37

5.2.1 Bound-state formation amplitude, cross-section and partial-wave uni-

tarity 38

5.2.2 Annihilation vs bound-state formation for particle-antiparticle pairs 39

5.2.3 Particle-antiparticle bound-state decay rate 40

6 Discussion 40

A Bethe-Salpeter wavefunctions: summary of definitions 42

– i –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

B Calculation of h(x0) 42

C Calculation of S0(p;P ), S(t; p;P ) and S1,2(t; p;P ) 43

D Partial-wave analysis for (co-)annihilation and decay processes 45

E Integrals for the non-relativistic reduction of transition amplitudes 46

F Schrödinger wavefunctions and convolution integrals 50

F.1 Solutions of the Schrödinger equation 50

F.2 Convolution of the wavefunctions 51

1 Introduction

Dark matter (DM) with long-range interactions, mediated by a light or massless force car-

rier, appears in diverse theories motivated on various grounds. Let us mention a few impor-

tant examples. Dark matter with sizable self-interactions, mediated by a light particle, can

explain the observed galactic structure better than collisionless DM [1–10]. Asymmetric

DM [11–14] — motivated in part by the similarity of the dark and the ordinary matter

abundances — resides, in most implementations, in a hidden sector that often includes

long-range interactions [15–20]. Dark matter which dissipates energy via its coupling to a

light force mediator may provide a dynamical explanation for some of the observed scaling

relations governing haloes [21–24], and other features [25, 26]. Inside haloes, the inelastic

scatterings of either symmetric or asymmetric DM with long-range interactions can produce

radiative signals [27–35], which can potentially account for anomalous excesses observed

in the radiation backgrounds [27–32]. Moreover, long-range DM-nucleon scattering implies

a different interpretation of the direct-detection data than the commonly assumed short-

range scattering [36–39]. Notably, the long-range character of DM interactions is relevant

not only for theories involving hidden sectors; even the electroweak interactions of the

Standard Model manifest as long-range if DM is heavier than a few TeV [40–42]. Clearly,

long-range interactions play a central role in the venture to identify DM. In order to extract

accurate predictions for the DM phenomenology, it is then essential to fully understand

their implications.

Long-range interactions typically imply the existence of bound states. The formation

of DM bound states in the early universe and/or in the dense environment of haloes today

affects the phenomenology of DM in many important ways. In the early universe, symmetric

DM may form unstable bound states, whose decay contributes to the DM annihilation

rate and affects the DM relic abundance [43]. Asymmetric DM may form stable bound

states [15–20, 34, 44–52], which affect all manifestations of DM today, including the DM

self-scattering in haloes [19, 46–48], the expected indirect-detection [29–34] and direct-

detection [53] signals, as well as the kinetic decoupling of DM from dark radiation [54].

Inside haloes, DM bound states — whether they are stable or unstable — may form
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radiatively and yield detectable signatures [28–30, 35]. Radiative signals may also be

produced in transitions between the bound-state energy levels [31–33], or other related

inelastic processes [34]. Moreover, the formation of DM bound states may be detectable at

the LHC [55]. These rich phenomenological implications strongly suggest that it is critical

to accurately account for the formation of DM bound states, in order to constrain the DM

properties and eventually detect DM. This work is a step toward this goal.

There are, of course, two different classes of bound states: those arising due to non-

confining interactions, such as the atomic bound states in QED, and those arising due to

confining interactions, such as the hadrons in QCD. Particles charged under a confining

force always combine into hadronic states, roughly once the kinetic energy in their center-

of-mass frame (or the temperature of their plasma) drops below the confinement scale.

On the other hand, in the case of non-confining interactions, the efficiency of bound-

state formation (BSF) depends on the corresponding cross-sections and the details of the

thermodynamic environment. Here we shall consider bound states due to non-confining

interactions, and calculate the cross-sections for their formation in the non-relativistic

regime, which is relevant for cosmology and DM indirect detection signals.1

The formation of DM bound states in the early universe and inside the non-relativistic

environment of haloes differs from BSF in colliders in some important ways. In high-energy

colliders, the initial-state particles are highly relativistic.2 However, BSF is more efficient

when the relative velocity of the interacting particles is lower than the expectation value

of the relative velocity of the particles inside the bound state. Equivalently, this is when

the kinetic energy in the center-of-mass (CM) frame is lower than the binding energy;

clearly, this lies within the non-relativistic regime. In this regime, the long-range interac-

tion distorts the wavefunctions of the incoming particles, which cannot be approximated

by momentum eigenstates (plane waves). This is the well-known Sommerfeld effect [62].

If the interaction is attractive, the Sommerfeld effect enhances the cross-section for any

process the two particles may participate in, including the formation of bound states. It

follows that, cosmologically, DM bound states form most efficiently after the temperature

of the dark plasma drops below the binding energy. While the formation of bound states in

the early universe eventually freezes out due to the cosmological expansion, bound states

may again form efficiently in today’s dense and non-relativistic haloes. In either case, to

accurately estimate the formation of DM bound states, we must account for the Sommer-

feld effect, which is a non-perturbative phenomenon, as is of course the very existence of

bound states.

In this paper, we establish a field-theoretic framework for the calculation of BSF cross-

sections and other level-transition rates, as well as the decay rates of unstable bound states.

Then, we carry out computations for specific interactions. We organise our work as follows.

We begin, in section 2, with reviewing how to determine the wavefunctions of the

two-particle states and the bound states in the presence of a long-range interaction. We

derive the Bethe-Salpeter equation for the wavefunctions, and reduce it to the Schrödinger

1Another class of bound states — non-topological solitons — has also been considered in the context of

DM [2, 56–60].
2See, however, ref. [61].
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Scalar mediator Vector mediator

α = g1g2/(16π), g1g2 > 0 α = −c1c2g2/(4π), c1c2 < 0

σ{100}
BSF

vrel / σc

degenerate species: g1 = g2, η1 = η2 = 1/2

[
(η2c1 − η1c2)2

−c1c2

]
27ζ4e−4ζarccotζ

3(1 + ζ2)2

26α2

15

ζ2(3 + 2ζ2)

(1 + ζ2)2
e−4ζarccotζ

non-degenerate species

[
(g1η2 − g2η1)2

16πα

]
26ζ4 e−4ζarccotζ

3(1 + ζ2)2

σ{210}
BSF

vrel / σc

[
(g1η2 + g2η1)

2

16πα

]
27ζ6(28 + 23ζ2)

15(4 + ζ2)4
e−4ζarccot(ζ/2)

σannvrel / σc 1
1

2

Γ{100}→ϕϕ µα5 µα5

2

Γ{210}→ϕϕ
µα7

273

Γ{210}→{100}+ϕ
27µα5

37

[
(g1η2 + g2η1)

2

16πα

]

Table 1. Summary of the bound-state-formation and annihilation cross-sections, the decay and

de-excitation rates, computed in section 5, for scalar particles interacting via a light scalar or

vector mediator. The annihilation cross-sections and the rates of decay into ϕ-mediators refer to

unbound and bound particle-antiparticle pairs respectively; all other formulae apply to any pair

of particles. The cross-sections are normalised to σc ≡ (πα2/µ2) × 2πζ/(1 − e−2πζ), where α is

the fine-structure constant entering the Coulomb potential, µ = m1m2/(m1 + m2) is the reduced

mass of the interacting species, and ζ = α/vrel, with vrel being the relative velocity of the incoming

particles. Also, η1,2 = m1,2/(m1 +m2), and g1,2, c1,2 are the couplings of the interacting particles

to the force mediators, as described by the Lagrangian densities of section 5. In our computations,

we have neglected the mediator mass. Unitarity suggests that the range of validity of the above

computations is α . 0.5.

equation using the instantaneous approximation in the non-relativistic regime. In section 3,

we determine the amplitudes for transitions between energy levels with the emission of a

force mediator; this includes the radiative capture to a bound state. In the fully relativistic

regime, we express the amplitudes for such processes in terms of the Bethe-Salpeter wave-

functions describing the initial and final states, and a perturbative interaction. We then

employ the instantaneous and the non-relativistic approximations, to express the transition

amplitudes in terms of the Schrödinger wavefunctions. In section 4, we repeat the analysis
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Figure 1. Comparison of the cross-sections for annihilation (dashed blue lines) and the dominant

radiative capture process to a bound state (solid purple lines), for a scalar particle-antiparticle pair.

The cross-sections times relative velocity, σvrel, are normalised to the perturbative value for s-wave

annihilation, σ0. Left : for a scalar mediator, σ0 = πα2/µ2. The leading capture process is to the

excited state {210} and consists dominantly of the J = 2 partial wave. At ζ � 1, the ratio of the

bound-state formation and annihilation cross-sections is σ
BSF

/σann ' 0.066. Right : for a vector

mediator, σ0 = πα2/(2µ2). The leading capture process is to the ground state {100} and consists

dominantly of the J = 0 and J = 2 partial waves. At ζ � 1, σBSF/σann ' 1.56.

for the decay of unstable bound states into radiation, as well as for the (co-)annihilation

of unbound pairs of particles into radiation — two closely related processes. While we lay

out our formalism in terms of scalar particles, it is straightforward to extend it to include

fermionic species.

We continue by applying our formalism to specific interactions. In section 5, we con-

sider scalar particles interacting either via a scalar or a vector mediator, and calculate the

cross-sections for the dominant radiative capture to a bound state. We estimate the range

of validity of our computations, using the unitarity bound on the inelastic cross-section.

For bound states made of particle-antiparticle pairs or pairs of self-conjugate particles, we

compare BSF with annihilation, and show that BSF can be the dominant inelastic process

in the regime where the Sommerfeld effect is important; we sketch this comparison in fig-

ure 1. In addition, we calculate the decay rates of particle-antiparticle bound states into

force mediators. We cast our results in terms of a minimal parametrisation, which makes

their potential implications more transparent, and summarise them in table 1. We con-

clude with a discussion of the phenomenological implications of DM bound-state formation

in section 6, and present many of the detailed calculations in the appendices.

The field-theoretic formalism developed in this work has several advantages in compar-

ison to previous quantum mechanical calculations [29, 35, 51, 63, 64]. It can accommodate

the possibility of DM coupled to non-Abelian interactions. Such interactions can convert

the incoming particles into different species which may subsequently form bound states;

importantly, DM coupled to the electroweak interactions of the Standard Model belongs

to this category. Moreover, the field-theoretic approach allows for a systematic inclusion of

higher-order corrections, both in the interaction strength and in the momentum transfer

between the interacting degrees of freedom.

– 4 –
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We emphasise that BSF is distinct from processes such as the direct annihilation

into mediators or elastic scattering, in which particles coupled to a long-range interaction

may participate. While all these processes are influenced by the Sommerfeld effect, the

final-state particles are obviously different. Field-theoretic treatments of the annihilation

processes, analogous to the formalism presented here for BSF and discrete level transitions,

have been presented in refs. [65, 66].

2 Bound-state and two-particle state wavefunctions

We shall consider two scalar particle species χ1 and χ2, interacting via a light or massless

force mediator ϕ. Specific interaction Lagrangians will be introduced in section 5 (cf.

eqs. (5.13), (5.14) and (5.48)). In this section, we aim to determine the wavefunctions

which describe two-particle states and bound states with the quantum numbers of χ1 and

χ2. Our presentation draws largely from the pedagogical discussions of refs. [67, 68].

Let us first introduce some notation. We denote the masses of χ1, χ2 and ϕ by m1, m2

and mϕ respectively. We define the total and the reduced χ1, χ2 masses,

m ≡ m1 +m2 , (2.1)

µ ≡ m1m2

m1 +m2
. (2.2)

Obviously, µ 6 m/4. In the following, |BQ,n〉 stands for a χ1 − χ2 bound state, of total

momentum Q and energy ωQ,n =
√

Q2 +M2
n, where n denotes collectively all the dis-

crete quantum numbers characterizing the bound state, and Mn < m is the bound-state

mass. |UQ,q〉 stands for a χ1 − χ2 unbound two-particle state, with total momentum Q,

expectation value of relative velocity vrel = q/µ, and energy ωQ,q > m. (As is common in

scattering theory, we shall often refer to the unbound states as scattering states.) Moreover,

|ϕQ〉 stands for a ϕ particle state with momentum Q and energy ωϕ =
√

Q2 +m2
ϕ.

2.1 The Bethe-Salpeter wavefunctions

We shall now introduce the Bethe-Salpeter wavefunctions that will appear in the fully

relativistic version of the transition amplitudes of sections 3 and 4. The Bethe-Salpeter

wavefunctions are related to the more familiar Schrödinger wavefunctions, which we will

use in evaluating the amplitudes of interest in the non-relativistic regime.

We are interested in the following wavefunctions:

ΨQ,n(x1, x2) ≡ 〈Ω|Tχ1(x1)χ2(x2)|BQ,n〉 , (2.3)

Ψ?
Q,n(x1, x2) ≡ 〈BQ,n|Tχ†1(x1)χ

†
2(x2)|Ω〉 (2.4)

and

ΦQ,q(x1, x2) ≡ 〈Ω|Tχ1(x1)χ2(x2)|UQ,q〉 , (2.5)

Φ?
Q,q(x1, x2) ≡ 〈UQ,q|Tχ†1(x1)χ

†
2(x2)|Ω〉 , (2.6)

– 5 –
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where T is the time-ordering operator, and |Ω〉 is the vacuum of the interacting theory. If

χ1, χ2 are a particle-antiparticle pair, in the above definitions we replace χ1 → χ, χ2 → χ†.

Note that ? does not denote complex conjugation, for which we shall use the symbol ∗, as

usual. In fact

Ψ?
Q,n(x1, x2) = 〈Ω|T̄ χ1(x1)χ2(x2)|BQ,n〉∗ , (2.7)

Φ?
Q,q(x1, x2) = 〈Ω|T̄ χ1(x1)χ2(x2)|UQ,q〉∗ , (2.8)

where T̄ is the anti-time-ordering operator.

We define the coordinate transformation and its inverse

x ≡ x1 − x2 , X ≡ η1x1 + η2x2 , (2.9)

x1 ≡ X + η2x , x2 ≡ X − η1x , (2.10)

where η1 + η2 = 1 for the Jacobian to be 1, and we choose specifically

η1,2 =
m1,2

m1 +m2
. (2.11)

In the non-relativistic regime, this choice will enable us to separate the motion of the CM

from the relative motion. Using the 4-momentum operator P̂ , we obtain

χ1(x1) = exp(iP̂X)χ1(η2x) exp(−iP̂X) , (2.12)

χ2(x2) = exp(iP̂X)χ2(−η1x) exp(−iP̂X) . (2.13)

Then, the wavefunction of eqs. (2.3) becomes

ΨQ,n(x1, x2) = θ(x0)〈Ω|χ1(x1)χ2(x2)|BQ,n〉+ θ(−x0)〈Ω|χ2(x2)χ1(x1)|BQ,n〉

= θ(x0)〈Ω|eiP̂Xχ1(η2x)χ2(−η1x)e−iP̂X |BQ,n〉

+ θ(−x0)〈Ω|eiP̂Xχ2(−η1x)χ1(η2x)e−iP̂X |BQ,n〉
= e−iQX〈Ω|Tχ1(η2x)χ2(−η1x)|BQ,n〉
≡ e−iQXΨQ,n(x) , (2.14)

where it is understood that Q0 = ωQ,n, and we defined

ΨQ,n(x) ≡ 〈Ω|Tχ1(η2x)χ2(−η1x)|BQ,n〉 . (2.15)

This is the first step in separating the motion of the CM from the relative motion. For

notational simplicity, we are using the same symbol for ΨQ,n(x1, x2) and ΨQ,n(x). We also

define the Fourier transforms

ΨQ,n(x) ≡
∫

d4p

(2π)4
Ψ̃Q,n(p) e−ipx , Ψ̃Q,n(p) ≡

∫
d4xΨQ,n(x) eipx . (2.16)

We repeat the above for the amplitudes of eqs. (2.4)–(2.6), and summarise the definitions

in appendix A.

– 6 –
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y1
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W G(4)

Figure 2. Diagrammatic representation of the Dyson-Schwinger equation (2.19) for the 4-point

function G(4)(x1, x2, y1, y2). and stand for the χ1 and χ2 full propagators, respectively.

2.2 The 4-point Green’s function and Dyson-Schwinger equation

Consider the 4-point Green’s function

G(4)(x1, x2, y1, y2) = 〈Ω|Tχ1(x1)χ2(x2)χ
†
1(y1)χ

†
2(y2)|Ω〉 , (2.17)

and let W (x1, x2, y1, y2) be the perturbative 4-point interaction kernel between χ1 and χ2.

Then, G(4) satisfies the Dyson-Schwinger equation,

G(4)(x1, x2, y1, y2) = S1(x1 − y1)S2(x2 − y2)

+

∫
d4z1 d

4z′1 d
4z2 d

4z′2 S1(x1 − z1)S2(x2 − z2)W (z1, z2; z
′
1, z
′
2)

× S1(z′1 − y1)S2(z′2 − y2) + . . . , (2.18)

where S1, S2 are the full propagators for χ1, χ2. Symbolically, the above series can be

written as

G(4) = S1S2 + S1S2WS1S2 + S1S2WS1S2WS1S2 + . . .

= S1S2 + S1S2W (S1S2 + S1S2WS1S2 + . . .)

= S1S2 + S1S2WG(4). (2.19)

Equation (2.19) is sketched in figure 2.

Due to translational invariance, W and G(4) depend only on coordinate differences. We

shall take them to be x, y,X − Y , where we used the definitions of eq. (2.9) and assumed

analogous definitions for the y1, y2 variables. Thus

G(4)(x1, x2, y1, y2) = G(4)(x, y;X − Y ) , (2.20)

W (x1, x2, y1, y2) = W (x, y;X − Y ) , (2.21)

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

where we retained the same symbols to keep the notation simple. Equation (2.18) becomes

G(4)(x, y;X − Y ) = S1 [X − Y + η2(x− y)]S2 [X − Y − η1(x− y)]

+

∫
d4z d4Z d4z′ d4Z ′ S1 [X − Z + η2(x− z)]S2 [X − Z − η1(x− z)]

×W (z, z′;Z − Z ′)G(4)(z′, y;Z ′ − Y ) (2.22)

We define the Fourier transforms of G,W,S1 and S2,

G̃(4)(p, p′;Q) ≡
∫
d4x d4y d4(X − Y )G(4)(x, y;X − Y ) exp(ipx− ip′y) exp [iQ(X − Y )] ,

(2.23)

W̃ (p, p′;Q) ≡
∫
d4x d4y d4(X − Y )W (x, y;X − Y ) exp(ipx− ip′y) exp [iQ(X − Y )] ,

(2.24)

and

S̃j(p) =

∫
d4z eipz Sj(z) , (2.25)

with S̃j(p) being the momentum-space propagator for χj . From the above, we deduce the

relation between the conjugate momenta of x1, x2, which we shall call here p1, p2, and the

conjugate momenta of x,X, denoted above as p,Q:

Q = p1 + p2, p = η2p1 − η1p2 , (2.26)

p1 = η1Q+ p, p2 = η2Q− p . (2.27)

Analogous relations hold between the conjugate momenta of y1, y2 and those of y, Y .

For convenience, we also define

S(p;Q) ≡ S̃1(η1Q+ p) S̃2(η2Q− p) . (2.28)

We may now rewrite the Dyson-Schwinger eq. (2.22) for the 4-point function, in momen-

tum space

G̃(4)(p, p′;Q) = (2π)4δ4(p− p′)S(p;Q) +S(p;Q)

∫
d4k

(2π)4
W̃ (p, k;Q) G̃(4)(k, p′;Q) . (2.29)

We shall use eq. (2.29) to derive the Bethe-Salpeter equation for the wavefunctions of

section 2.1.

2.3 Completeness relation and decomposition of the 4-point function

To compute the Bethe-Salpeter wavefunctions of section 2.1, we have to decompose the 4-

point Green’s function of section 2.2 using the one- and two-particle completeness relation.

Then, eq. (2.29) will yield the equations which the wavefunctions ΨQ,n and ΦQ,q satisfy.

Including the one- and two-particle states with the same quantum numbers as χ1 and

χ2, the completeness relation is

1 =
∑
n

∫
d3Q

(2π)3 2ωQ,n
|BQ,n〉〈BQ,n|+

∫
d3q

(2π)3
d3Q

(2π)3
1

2ωQ,q 2εQ,q
|UQ,q〉〈UQ,q| , (2.30)

– 8 –
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where we have assumed the standard relativistic normalization of one-particle momentum

eigenstates 〈p|k〉 = 2Ep (2π)3δ3(p − k), with Ep being the energy of the state |p〉. To

lowest (zeroth) order in the interaction strength,

2ωQ,q2εQ,q ' 2E1(q; Q) 2E2(q; Q) , (2.31)

where

E1(q; Q) ≡
√

(η1Q + q)2 +m2
1 , E2(q; Q) ≡

√
(η2Q− q)2 +m2

2 . (2.32)

Next, we insert the unity operator of eq. (2.30) in G(4), to obtain the decomposition

G(4)(x, y;X − Y ) =
∑
n

G(4)
n (x, y;X − Y ) +G

(4)
U (x, y;X − Y ) , (2.33)

where G
(4)
n (x, y;X − Y ) and G

(4)
U (x, y;X − Y ) are the contributions of the bound and the

scattering states, respectively. We compute them below. We shall make use of the fact

that a non-zero contribution to G(4) from a one- or two-particle state arises only when two

annihilation operators act on that state to obtain the quantum numbers of the vacuum.

Moreover, in order to extract the poles and the branch-cuts of G
(4)
n and G

(4)
U , we will use

the integral representation of the θ-function,

θ(z) =
i

2π

∫ ∞
−∞

dk
e−ikz

k + iε
, (2.34)

and

θ
[
min(x01, x

0
2)−max(y01, y

0
2)
]

= θ
[
X0 − Y 0 + h−(x0)− h+(y0)

]
, (2.35)

where

h±(x0) ≡ 1

2
(η2 − η1)x0 ±

1

2
|x0| . (2.36)

(For eqs. (2.35) and (2.36), see ref. [68] and appendix B.)

Contribution of the bound states to the 4-point function. The contribution of

the nth bound state to G(4) is

G(4)
n (x, y;X − Y ) =

=

∫
d3K

(2π)3
1

2ωK,n
〈Ω|Tχ1(x1)χ2(x2)|BK,n〉〈BK,n|Tχ†1(y1)χ

†
2(y2)|Ω〉

× θ
[
min(x01, x

0
2)−max(y01, y

0
2)
]

=

∫
d3K

(2π)3
1

2ωK,n
ΨK,n(x)Ψ?

K,n(y)e−iωK,n(X
0−Y 0)eiK·(X−Y) θ

[
X0−Y 0+h−(x0)−h+(y0)

]
=

∫
d3K

(2π)3
1

2ωK,n
ΨK,n(x)Ψ?

K,n(y)e−iωK,n(X
0−Y 0)eiK·(X−Y)

× i

2π

∫ ∞
−∞

dK0 exp
{
−i
[
K0 − ωK,n

] [
X0 − Y 0 + h−(x0)− h+(y0)

]}
K0 − ωK,n + iε

= i

∫
d4K

(2π)4
e−iK(X−Y ) ΨK,n(x) Ψ?

K,n(y)
exp

{
−i
[
K0 − ωK,n

]
[h−(x0)− h+(y0)]

}
2ωK,n [K0 − ωK,n + iε]

,
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where in the third step we made use of the integral representation of the θ function, given in

eq. (2.34), which introduces the integration over K0. The Fourier transform of the above is

G̃(4)
n (p, p′;Q) =

∫
d4x d4y d4(X − Y ) eipx−ip

′y+iQ(X−Y ) G(4)
n (x, y;X − Y )

= i

∫
d4x d4y eipx−ip

′y ΨQ,n(x)Ψ?
Q,n(y)

×
exp

{
−i
[
Q0 − ωQ,n

]
[h−(x0)− h+(y0)]

}
2ωQ,n [Q0 − ωQ,n + iε]

. (2.37)

At Q0 → ωQ,n, this becomes

G̃(4)
n (p, p′;Q)→

iΨ̃Q,n(p)Ψ̃?
Q,n(p′)

2ωQ,n [Q0 − ωQ,n + iε]
. (2.38)

Equation (2.37) is the contribution of the nth bound state to G̃(4)(p, p′;Q). Evidently, the

scattering amplitude has a pole at energy equal to the bound-state energy.

Contribution of two-particle scattering states to the 4-point function. Following

similar steps, we find the contribution of the two-particle states to G(4),

G
(4)
U (x, y;X − Y ) = i

∫
d3k

(2π)3
d4K

(2π)4
e−iK(X−Y ) ΦK,k(x) Φ?

K,k(y)

×
exp

{
−i
[
K0 − ωK,k

]
[h−(x0)− h+(y0)]

}
2ωK,k 2εK,k [K0 − ωK,k + iε]

. (2.39)

The Fourier transform of G
(4)
U (x, y;X − Y ) is

G̃
(4)
U (p, p′;Q) = i

∫
d3q

(2π)3

∫
d4x d4y eipx−ip

′y ΦQ,q(x) Φ?
Q,q(y)

×
exp

{
−i
[
Q0 − ωQ,q

]
[h−(x0)− h+(y0)]

}
2ωQ,q 2εQ,q [Q0 − ωQ,q + iε]

. (2.40)

Clearly, the contribution of the two-particle states to G̃(4)(p, p′;Q) gives rise to a branch-cut

in the scattering amplitude.

Summing the contributions from the bound and the scattering states, we obtain the

decomposition of the momentum-space 4-point function

G̃(4)(p, p′;Q) =
∑
n

G̃(4)
n (p, p′;Q) + G̃

(4)
U (p, p′;Q) . (2.41)

We shall now combine the Dyson-Schwinger eq. (2.29) and eq. (2.41), to obtain the Bethe-

Salpeter equation for the wavefunctions ΨQ,n and ΦQ,q.

2.4 The Bethe-Salpeter equation for bound and scattering states

We introduce the operator

A(p, p′;Q) ≡ (2π)4δ4(p− p′)
S(p;Q)

− W̃ (p, p′;Q) . (2.42)
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Then, the Dyson-Schwinger eq. (2.29) can be cast in the form∫
d4k

(2π)4
A(p, k;Q) G̃(4)(k, p′;Q) = (2π)4δ4(p− p′) . (2.43)

This is formally solved by

G̃(4)(p, p′;Q) =
∑
n

1

cn(Q)
Cn(p;Q)C†n(p′;Q) +

∫
da

fa(Q)
Fa(p;Q)F †a (p′;Q) , (2.44)

where Cn(p;Q) and Fa(p;Q) are the eigenfunctions of the discrete and the continuous

spectrum of the operator A(p, q;Q), with eigenvalues cn(Q) and fa(Q) respectively,∫
d4k

(2π)4
A(p, k;Q)Cn(k;Q) = cn(Q)Cn(p;Q) , (2.45)∫

d4k

(2π)4
A(p, k;Q)Fa(k;Q) = fa(Q)Fa(p;Q) , (2.46)

normalised according to∑
n

Cn(p;Q)C†n(p′;Q) +

∫
da Fa(p;Q)F †a (p′;Q) = (2π)4 δ4(p− p′) . (2.47)

We may now collect eqs. (2.37), (2.40), (2.41), and (2.44). Matching the various con-

tributions between (2.41) and (2.44), we deduce the following. For the discrete spectrum:

Cn(p;Q) ∝
∫
d4xΨQ,n(x) eipx e−i[Q

0−ωQ,n]h−(x
0) , (2.48)

C†n(p′;Q) ∝
∫
d4y Ψ?

Q,n(y) e−ip
′y ei[Q

0−ωQ,n]h+(y0) , (2.49)

cn(Q) ∝ 1− ωQ,n/Q
0 . (2.50)

For the continuous spectrum, we identify a→ q, and deduce

Fa(p;Q) ∝
∫
d4x ΦQ,q(x) eipx e−i[Q

0−ωQ,n]h−(x
0) , (2.51)

F †a (p′;Q) ∝
∫
d4y Φ?

Q,q(x) e−ip
′y ei[Q

0−ωQ,n]h+(y0) , (2.52)

fa(Q) ∝ 1− ωQ,q/Q
0 . (2.53)

The relations (2.48), (2.49), (2.51) and (2.52) are stipulated because cn, fa are independent

of the momenta p, p′; all the p, p′-dependent factors must arise from the eigenfunctions, Cn
and Fa. The relations (2.50), (2.53) are warranted so that Cn and Fa are not singular in the

limit Q0 → ωQ,n and Q0 → ωQ,q respectively; the factors [1−ωQ,n/Q
0]−1, [1−ωQ,q/Q

0]−1

cannot be part of the eigenfunctions, and thus belong to the eigenvalues.

Inserting the above into the eigenvalue equations (2.45) and (2.46), and taking the

limits Q0 → ωQ,n and Q0 → ωQ,q respectively, we obtain the Bethe-Salpeter equations for
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the bound and the scattering states3

Ψ̃Q,n(p) = S(p;Q)

∫
d4k

(2π)4
W̃ (p, k;Q) Ψ̃Q,n(k) , (2.54)

Φ̃Q,q(p) = S(p;Q)

∫
d4k

(2π)4
W̃ (p, k;Q) Φ̃Q,q(k) . (2.55)

These are homogeneous equations and do not determine the normalisation of ΨQ,n and

ΦQ,q. Moreover, because we do not know the exact eigenvalues cn and fa, we cannot use

eq. (2.47) to obtain the normalisation of ΨQ,n and ΦQ,q. We derive their normalisation in

the next section.

2.5 Normalization of the Bethe-Salpeter wavefunctions

We derive the normalisation of the wavefunctions ΨQ,n and ΦQ,q from the inhomogeneous

Dyson-Schwinger eq. (2.29), or equivalently from eq. (2.43), using the method described

in ref. [68].

We define the symbolic multiplication

[O1 O2] (p, p′;Q) ≡
∫

d4k

(2π)4
O1(p, k;Q)O2(k, p

′;Q) , (2.56)

and the unity operator I(p, p′) ≡ (2π)4 δ4(p − p′). Then, eq. (2.43) can be expressed in

symbolic form

A G̃(4) = G̃(4)A = I . (2.57)

We differentiate eq. (2.57) over Q0 and re-use it, to obtain

G̃(4) dA

dQ0
G̃(4) = −dG̃

(4)

dQ0
. (2.58)

We shall use eq. (2.58) to obtain the normalisation of the Bethe-Salpeter wavefunctions.

For later convenience, we define

Ñn(p, p′; Q) ≡ i
[
dA(p, p′;Q)

dQ0

]
Q0=ωQ,n

, (2.59)

Ñq(p, p′; Q) ≡ i
[
dA(p, p′;Q)

dQ0

]
Q0=ωQ,q

, (2.60)

and their Fourier transforms,

Nn(x, x′; Q) ≡ i
[
d

dQ0

∫
d4p

(2π)4
d4p′

(2π)4
e−ipx A(p, p′;Q) eip

′x′
]
Q0=ωQ,n

, (2.61)

Nq(x, x′; Q) ≡ i
[
d

dQ0

∫
d4p

(2π)4
d4p′

(2π)4
e−ipx A(p, p′;Q) eip

′x′
]
Q0=ωQ,q

. (2.62)

3It is possible to obtain eq. (2.54) more easily, by taking the residue of both sides of eq. (2.41) at

Q0 → ωQ,n. However, this is not possible for the two-particle states.
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Bound states. Substituting the contribution to the 4-point function from the nth bound

state, given in eq. (2.38), into eq. (2.58), and taking the limit Q0 → ωQ,n, we obtain the

normalisation condition∫
d4p

(2π)4
d4p′

(2π)4
Ψ̃?

Q,n(p) Ñn(p, p′; Q) Ψ̃Q,n′(p
′) = 2ωQ,n δnn′ . (2.63)

In coordinate space, this becomes∫
d4x d4x′ Ψ?

Q,n(x)Nn(x, x′; Q)ΨQ,n′(x
′) = 2ωQ,n δnn′ . (2.64)

Two-particle states. Substituting the contribution to the 4-point function from the

two-particle states, eq. (2.40), into eq. (2.58), we deduce the normalisation condition4∫
d4p

(2π)4
d4p′

(2π)4
Φ̃?
Q,q(p) Ñq(p, p′; Q) Φ̃Q,q′(p

′) = 2ωQ,q 2εQ,q (2π)3δ3(q− q′) . (2.65)

In coordinate space, this becomes∫
d4x d4x′ Φ?

Q,q(x)Nq(x, x′; Q) ΦQ,q′(x
′) = 2ωQ,q 2εQ,q (2π)3δ3(q− q′) . (2.66)

Note that in the fully relativistic case, the normalisation of the wavefunctions depends

in general on the potential.

2.6 The instantaneous approximation and the Schrödinger equation

In the non-relativistic regime, it is possible to simplify the Bethe-Salpeter equations. The

momentum exchange between the two unbound particles is |q| ∼ µvrel, while between two

bound particles |q| ∼ µα, with α characterising the interaction strength; in either case, for

α, vrel � 1, the energy exchange is q0 ∼ q2/(2µ)� |q|. It is then reasonable to ignore the

dependence of the kernel W̃ (p, p′;Q) on p0, p′0. This is the instantaneous approximation.5

In fact, in the cases of interest, W̃ (p, p′;Q) depends only on |p − p′|, rather than on p

and p′ separately, and it does not depend on Q (except perhaps for Q2, which, in the

non-relativistic regime, we shall approximate with Q2 ' m2). We shall thus assume that

W̃ (p, p′;Q) ' W(|p− p′|) . (2.67)

In this approximation, we deduce from the Bethe-Salpeter eqs. (2.54), (2.55), that

Ψ̃Q,n(p)/S(p;Q) and Φ̃Q,q(p)/S(p;Q) are independent of p0. We define

S0(p;Q) ≡
∫
dp0

2π
S(p;Q) , (2.68)

ψ̃Q,n(p) ≡
√

2NQ(p)

[
S0(p;Q)

S(p;Q)

]
Ψ̃Q,n(p) , (2.69)

φ̃Q,q(p) ≡

√
2NQ(p)

2εQ,q

[
S0(p;Q)

S(p;Q)

]
Φ̃Q,q(p) , (2.70)

4In fact, from eqs. (2.40) and (2.58) we obtain the normalisation condition described in eq. (2.65) with

the functions Φ̃Q,q(p) replaced by Fq(p;Q) =
∫
d4x eipx ΦQ,q(x) e−i[Q

0−ωQ,q]h(x0) (cf. eq. (2.51)). Then,

taking Q0 → ωQ,q, we obtain the exact form of eq. (2.65).
5For a discussion on relativistic corrections, see e.g. ref. [69] and references within.
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where we choose the normalization factor

NQ(p) ≡ E1(p; Q)E2(p; Q)

E1(p; Q) + E2(p; Q)
, (2.71)

such that we recover the conventional normalisation for ψ̃Q,n and φ̃Q,q, as we shall see in sec-

tion 2.7. We calculate S0(p;Q) in appendix C. Multiplying both sides of eqs. (2.69), (2.70)

with S(p;Q), integrating over p0, and using eq. (2.68), it follows that

ψ̃Q,n(p) =
√

2NQ(p)

∫
dp0

2π
Ψ̃Q,n(p)

=
√

2NQ(p)

∫
d3x ΨQ,n({x0 = 0,x}) e−ip·x , (2.72)

φ̃Q,q(p) =

√
2NQ(p)

2εQ,q

∫
dp0

2π
Φ̃Q,q(p)

=

√
2NQ(p)

2εQ,q

∫
d3x ΦQ,q({x0 = 0,x}) e−ip·x . (2.73)

ψ̃Q,n(p) and φ̃Q,q(p) are sometimes called the “equal-time wavefunctions”. From the

above, and recalling eqs. (2.7), (2.8) we see that

ψ̃?Q,n(p) = ψ̃∗Q,n(p) , φ̃?Q,q(p) = φ̃∗Q,q(p) . (2.74)

Given the definitions (2.69), (2.70) and eqs. (2.72), (2.73), the Bethe-Salpeter

eqs. (2.54) and (2.55) become

ψ̃Q,n(p)√
2NQ(p) S0(p;Q)

=

∫
d3k

(2π)3
W(|p− k|)√

2NQ(k)
ψ̃Q,n(k) , with Q0 = ωQ,n , (2.75)

φ̃Q,q(p)√
2NQ(p) S0(p;Q)

=

∫
d3k

(2π)3
W(|p− k|)√

2NQ(k)
φ̃Q,q(k) , with Q0 = ωQ,q . (2.76)

Non-relativistic approximation. Using the non-relativistic approximation described

in appendix C, eqs. (C.18)–(C.22), and setting, in accordance to eq. (C.21),

ωQ,n = m+ Q2/2m+ En , (2.77)

ωQ,q = m+ Q2/2m+ Eq , (2.78)

equations (2.75) and (2.76) become(
−p2

2µ
+ En

)
ψ̃n(p) = − 1

i 4mµ

∫
d3k

(2π)3
W(|p− k|) ψ̃n(k) , (2.79)(

−p2

2µ
+ Eq

)
φ̃q(p) = − 1

i 4mµ

∫
d3k

(2π)3
W(|p− k|) φ̃q(k) . (2.80)

These are the Schrödinger equations for the bound and the scattering states in momentum

space. They are eigenvalue equations, and as such, their solutions determine En and Eq.
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Because in eqs. (2.79), (2.80), all dependence on the CM momentum Q has been eliminated,

we have dropped this subscript from the ψ, φ wavefunctions, but kept the same symbols in

order to avoid cluttering the notation. Note that from eq. (2.77), it follows that the mass

of the bound state is

Mn = m+ En . (2.81)

It is convenient to Fourier-transform eqs. (2.79) and (2.80) to coordinate space. We set

ψn(r) =

∫
d3p

(2π)3
ψ̃n(p) eip·r , ψ̃n(p) =

∫
d3r ψn(r) e−ip·r , (2.82)

φq(r) =

∫
d3p

(2π)3
φ̃q(p) eip·r , φ̃q(p) =

∫
d3r φq(r) e−ip·r . (2.83)

Acting on both sides of eqs. (2.79), (2.80) with
∫ d3p

(2π)3
eip·r, we obtain the Schrödinger

equations in coordinate space[
−∇

2

2µ
+ V (r)

]
ψn(r) = Enψn(r) , (2.84)[

−∇
2

2µ
+ V (r)

]
φq(r) = Eqφq(r) , (2.85)

where V (r) is the non-relativistic potential,

V (r) ≡ − 1

i 4mµ

∫
d3k

(2π)3
W(k) eik·r . (2.86)

We quote the bound-state and scattering-state solutions of the Schrödinger equation for a

Coulomb potential, in appendix F, and use them in our computations in section 5.

2.7 Normalization of the Schrödinger wavefunctions

To find the normalization of ψn and φp, it is easiest to follow a similar procedure to that

of section 2.5. We first define

G(4)(p,p′;Q) ≡
∫
dp0

2π

dp′0

2π
G̃(4)(p, p′;Q) , (2.87)

G(4)n (p,p′;Q) ≡
∫
dp0

2π

dp′0

2π
G̃(4)
n (p, p′;Q)

=
1√

2NQ(p)2NQ(p′)

iψ̃n(p)ψ̃?n(p′)

2ωQ,n [Q0 − ωQ,n + iε]
. (2.88)

G(4)U (p,p′;Q) ≡
∫
dp0

2π

dp′0

2π
G̃

(4)
U (p, p′;Q)

=
1√

2NQ(p)2NQ(p′)

∫
d3q

(2π)3
iφ̃q(p)φ̃?q(p′)

2ωQ,q [Q0 − ωQ,q + iε]
. (2.89)

Integrating eq. (2.29) with respect to p0, k0 yields

G(4)(p,p′;Q) = (2π)3δ3(p− p′)S0(p;Q) + S0(p;Q)

∫
d3k

(2π)3
W(|p− k|) G(4)(k,p′;Q) .

(2.90)
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Following the steps of section 2.5, we find the equivalent of eq. (2.58),∫
d3k

(2π)3
G(4)(p,k;Q)

d

dQ0

[
1

S0(k;Q)

]
G(4)(k,p′;Q) = − d

dQ0
G(4)(p,p′;Q) . (2.91)

From eq. (C.14),

d

dQ0

[
1

S0(k;Q)

]
= −i 2NQ(k) 2Q0 . (2.92)

We may now obtain the normalisation conditions for the wavefunctions ψn and φp.

Bound states. Close to the pole, at Q0 → ωQ,n, we may substitute the contribution

from the nth bound state, eq. (2.88), into (2.91). We obtain∫
d3p

(2π)3
ψ̃?n(p) ψ̃n(p) =

∫
d3r ψ?n(r) ψn(r) = 1 . (2.93)

Two-particle states. Substituting the contribution from the two-particle states,

eq. (2.89) into (2.91), and for Q0 → ωQ,q, we deduce the normalisation condition∫
d3p

(2π)3
φ̃?q(p) φ̃q′(p) =

∫
d3r φ?q(r) φq′(r) = (2π)3δ3(q− q′) . (2.94)

Note that in obtaining the normalisation conditions (2.93) and (2.94), we did not make

use of the non-relativistic expansions of the factors NQ(p) and εQ,q, given in eqs. (3.33)

and (3.35).

3 Radiative level transitions

In this section, we determine the amplitudes for the radiative BSF and de-excitation

processes

χ1 + χ2 → (χ1χ2)bound + ϕ , (3.1)

(χ1χ2)bound,n′ → (χ1χ2)bound,n + ϕ , (3.2)

in terms of the bound-state and scattering-state wavefunctions computed in section 2 and a

perturbative interaction which describes the emission of the force mediator. The S-matrix

elements of interest are

out〈BP,n ; ϕPϕ
| UK,k〉in = 〈BP,n ; ϕPϕ

| S | UK,k〉 , (3.3)

out〈BP,n ; ϕPϕ
| BK,n′〉in = 〈BP,n ; ϕPϕ

| S | BK,n′〉 , (3.4)

where the indices stand for the momenta and the quantum numbers of the corresponding

states, as stated in the beginning of section 2.
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η1K + k

η2K − k

η1P + p

η2P − p

Pϕ

G̃(5) =

η1K + k

η2K − k

G̃(4) A(5)

G̃(4)

Pϕ

η1P + p

η2P − p

Figure 3. Diagrammatic representation of the equation (3.12) for the 5-point function G̃(5).

stands for the full propagator of the force mediator ϕ, which may be either a scalar or

a vector boson.

3.1 The 5-point Green’s function

Since BQ,n and UQ,q are generated by the action of χ†1 and χ†2 on the vacuum (cf.

eqs. (2.4), (2.6)), in order to compute the S-matrix elements of eqs. (3.3) and (3.4) we

need to consider the 5-point function

G(5)(Xϕ, x1, x2; y1, y2) ≡ 〈Ω|Tϕ(Xϕ)χ1(x1)χ2(x2)χ
†
1(y1)χ

†
2(y2)|Ω〉 . (3.5)

We define the Fourier transform

G̃(5)(Pϕ, p1, p2; k1, k2) =

=

∫
d4Xϕ d

4x1 d
4x2 d

4y1 d
4y2 e

i(PϕXϕ+p1x1+p2x2−k1y1−k2y2) G(5)(Xϕ, x1, x2; y1, y2) .

(3.6)

As in eq. (2.9), we set

x ≡ x1 − x2 , X ≡ η1x1 + η2x2 (3.7)

y ≡ y1 − y2 , Y ≡ η1y1 + η2y2 , (3.8)

and rewrite the above as

G̃(5)(Pϕ, η1P + p, η2P − p; η1K + k, η2K − k) =

=

∫
d4Xϕ d

4X d4x d4Y d4y ei(PϕXϕ+PX+px−Ky−ky)

×G(5)(Xϕ, X + η2x,X − η1x; Y + η2y, Y − η1y) , (3.9)

i.e. the conjugate momenta of X,x are P, p, and the conjugate momenta of Y, y are K, k

defined as

P ≡ p1 + p2 , p ≡ η2p1 − η1p2 , (3.10)

K ≡ k1 + k2 , k ≡ η2k1 − η1k2 . (3.11)

– 17 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

The 5-point Green’s function G(5)(Xϕ, x1, x2; y1, y2) is equal to the sum of all connected

diagrams with five external points. The momentum-space G̃(5) is sketched in figure 3, and

can be written as

G̃(5)(Pϕ, η1P + p, η2P − p; η1K + k, η2K − k) =

= S̃ϕ(Pϕ)

∫
d4p′

(2π)4
d4k′

(2π)4
G̃(4)(p, p′;P )(2π)4δ4(K − P − Pϕ)

× iA(5)(Pϕ, η1P + p′, η2P − p′; η1K + k′, η2K − k′) G̃(4)(k′, k;K) , (3.12)

where

S̃ϕ(Pϕ) =
iZϕ(Pϕ)

P 2
ϕ −m2

ϕ + iε
(3.13)

is the ϕ propagator, with

Zϕ(q) ≡ |〈Ω|ϕ(0)|ϕq〉|2 (3.14)

being the field-strength renormalisation parameter for ϕ. A(5) is defined via the relation

i C(5)(Pϕ, p1, p2; k1, k2) = S̃ϕ(Pϕ)S̃1(p1)S̃2(p2)S̃1(k1)S̃2(k2) iA(5)(Pϕ, p1, p2; k1, k2) , (3.15)

where

i C(5)(Pϕ, p1, p2; k1, k2) = sum of all connected diagrams. (3.16)

Note that C(5) may include diagrams that are not fully connected, i.e. diagrams in which

external legs are disconnected from each other,6 but it does not, of course, include vacuum

bubble diagrams. (If only fully connected diagrams contributed to C(5), then A(5) would

simply be the sum of all connected and amputated diagrams, as conventionally defined.)

For later convenience, we also define C(5)ϕ−amp as the sum of all connected diagrams with

only the ϕ-leg amputated,

i C(5)(Pϕ, p1, p2; k1, k2) = S̃ϕ(Pϕ) i C(5)ϕ−amp(Pϕ, p1, p2; k1, k2) . (3.17)

Then, A(5) appearing in eq. (3.12), becomes

iA(5)(Pϕ, η1P + p, η2P − p; η1K + k, η2K − k)

=
i C(5)ϕ−amp(Pϕ, η1P + p, η2P − p; η1K + k, η2K − k)

S(p;P )S(k;K)
, (3.18)

where we remind that S(p;P ) ≡ S̃1(η1P + p) S̃2(η2P − p) (cf. eq. (2.28)). We sketch

eqs. (3.15) and (3.17) in figure 4.

6In fact, the lowest-order contribution to C(5), for the transition processes considered in section 5, arises

from diagrams that are not fully connected, as shown in figure 7. However, the entire transition processes

are described by fully connected diagrams, shown in figure 8.
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k1

k2

p1

p2

Pϕ

C(5) =

k1

k2

p1

p2

Pϕ

C(5)ϕ−amp
=

k1

k2

p1

p2

Pϕ

A(5)

Figure 4. Diagrammatic representation of the equations (3.15) and (3.17). C(5) stands for the

sum of all connected diagrams with no legs amputated; this includes not fully connected diagrams.

C(5)ϕ−amp is equal to C(5) with only the ϕ-leg amputated. and stand for the χ1 and

χ2 full propagators, respectively. stands for the full propagator of the force mediator ϕ,

which may be either a scalar or a vector boson.

3.2 Transition amplitudes

We now extract the S-matrix elements of eqs. (3.3) and (3.4) from the 5-point Green’s

function of eq. (3.5). Our analysis follows closely section 7.2 of ref. [70].

Let us first focus on the BSF amplitude of eq. (3.3), for which

P 0
ϕ → ωϕ(Pϕ), P 0 → ωP,n, K

0 → ωK,k . (3.19)

In this limit, the Lehmann-Symanzik-Zimmermann reduction formula yields∫
d4Xϕ e

iPϕXϕ

∫
d4X eiPX

∫
d4Y e−iKY G(5)(Xϕ, X+η2x,X−η1x; Y +η2y, Y −η1y) ∼

∼

[
i 〈Ω|ϕ(0)|ϕPϕ

〉
2ωϕ(Pϕ)(P 0

ϕ − ωϕ(Pϕ) + iε)

] [
i 〈Ω|Tχ1(η2x)χ2(−η1x)|BP,n〉

2ωP,n(P 0 − ωP,n + iε)

]

×
∫

d3k′

(2π)32εK,k′

i 〈UK,k′ |Tχ†1(η2y)χ†2(−η1y)|Ω〉
2ωK,k′(K0 − ωK,k′ + iε)

〈BP,n, ϕ(Pϕ)|S|UK,k′〉 . (3.20)

Here, the ∼ sign means that the two sides have the same singularities in the limit (3.19); to

compute the S-matrix element, we need to extract the residues of these singularities from

both sides of eq. (3.20).

In the above expression, the correlation functions involving the χ1 and χ2 fields cor-

respond to the bound and scattering state wavefunctions (cf. eqs. (A.5), (A.8)). The

correlation function involving the ϕ field is the ϕ field-strength renormalisation parameter

(cf. eq. (3.14)). We Fourier-transform eq. (3.20) with respect to x, y, to obtain∫
d4Xϕd

4Xd4Y d4xd4yei(PϕXϕ+PX−KY )ei(px−qy)G(5)(Xϕ, X+η2x,X−η1x; Y+η2y, Y−η1y)

∼

[
i
√
Zϕ(Pϕ)

2ωϕ(Pϕ)(P 0
ϕ − ωϕ(Pϕ) + iε)

][
i Ψ̃P,n(p)

2ωP,n(P 0 − ωP,n + iε)

]

×
∫

d3k′

(2π)32εK,k′

i Φ̃?
K,k′(q)

2ωK,k′(K0 − ωK,k′ + iε)
〈BP,n, ϕ(Pϕ)|S|UK,k′〉 . (3.21)
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The left side of the above equation is G̃(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q), which

may be decomposed according to eq. (3.12). Recalling eqs. (2.37), (2.40) and (2.41) for the

4-point function G̃(4), and keeping only the leading singularities in the limit (3.19), the left

side of eq. (3.21) becomes

G̃(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) ∼

∼ iZϕ(Pϕ)

P 2
ϕ −m2

ϕ + iε

∫
d4p′

(2π)4
d4q′

(2π)4
iΨ̃P,n(p)Ψ̃?

P,n(p′)

2ωP,n [P 0 − ωP,n + iε]

×
∫

d3k′

(2π)3
iΦ̃K,k′(q

′)Φ̃?
K,k′(q)

2ωK,k′2εK,k′ [K0 − ωK,k′ + iε]
(3.22)

× (2π)4δ4(K − P − Pϕ) iA(5)(Pϕ, η1P + p′, η2P − p′; η1K + q′, η2K − q′) .

At P 0
ϕ → ωϕ(Pϕ) and P 0 → ωP,n, this expression has the same poles as the right side of

eq. (3.21). Identifying their residues, we obtain√
Zϕ(Pϕ)

∫
d4p′

(2π)4
d4q′

(2π)4
Ψ̃?

P,n(p′)

∫
d3k′

(2π)3
iΦ̃K,k′(q

′)Φ̃?
K,k′(q)

2ωK,k′2εK,k′ [K0 − ωK,k′ + iε]

× (2π)4δ4(K − P − Pϕ) iA(5)(Pϕ, η1P + p′, η2P − p′; η1K + q′, η2K − q′) ∼

∼
∫

d3k′

(2π)32εK,k′

i Φ̃?
K,k′(q)

2ωK,k′ [K0 − ωK,k′ + iε]
〈BP,n, ϕ(Pϕ)|S|UK,k′〉 .

We still have to extract the leading singularity at K0 → ωK,k. We multiply both sides

of the above expression with Ñk(q, q′′; K)ΦK,k(q′′), integrate over q and q′′, and use the

orthonormality condition (2.65), to obtain the S-matrix element for BSF

〈BP,n ; ϕPϕ
| S | UK,k〉 =

√
Zϕ(Pϕ)

∫
d4p

(2π)4
d4q

(2π)4
Ψ̃?

P,n(p) Φ̃K,k(q)

× (2π)4δ4(K − P − Pϕ) iA(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) . (3.23)

Following similar steps, we obtain the S-matrix element for transition between discrete

energy levels, 〈BP,n ; ϕPϕ
| S | BK,n′〉.

In standard notation, we write the S-matrix elements as

〈BP,n ; ϕPϕ
| S | UK,k〉 = (2π)4 δ4(K − P − Pϕ) iMk→n , (3.24)

〈BP,n ; ϕPϕ
| S | BK,n′〉 = (2π)4 δ4(K − P − Pϕ) iMn′→n , (3.25)

with

Mk→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4
d4q

(2π)4
Ψ̃?

P,n(p) Φ̃K,k(q) (3.26)

×A(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) ,

Mn′→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4
d4q

(2π)4
Ψ̃?

P,n(p) Ψ̃K,n′(q) (3.27)

×A(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) .

– 20 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

If non-fully connected diagrams contribute to the perturbative part of the transition

amplitudes, then A(5) should be replaced by C(5)ϕ−amp using eq. (3.18). In this case, we

obtain

Mk→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4
d4q

(2π)4
Ψ̃?

P,n(p)

S(p;P )

Φ̃K,k(q)

S(q;K)
(3.28)

× C(5)ϕ−amp(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) ,

Mn′→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4
d4q

(2π)4
Ψ̃?

P,n(p)

S(p;P )

Ψ̃K,n′(q)

S(q;K)
(3.29)

× C(5)ϕ−amp(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) .

In the case of a vector mediator ϕµ, Zϕ becomes the charge-renormalisation parameter

and the amplitudes contain the polarisation vector εµ, i.e. A(5) = εµA(5)
µ and C(5)ϕ−amp =

εµ C(5)ϕ−amp, µ.

3.3 Instantaneous approximation

In the instantaneous and non-relativistic approximations, we may express the transi-

tion amplitudes in terms of the Schrödinger wavefunctions defined in eqs. (2.69), (2.70),

as follows

Mk→n '
√

2εK,k

∫
d3p

(2π)3
d3q

(2π)3
ψ̃?n(p) φ̃k(q)√

2NP(p) 2NK(q)
Mtrans(q; p) , (3.30)

Mn′→n '
∫

d3p

(2π)3
d3q

(2π)3
ψ̃?n(p) ψ̃n′(q)√
2NP(p) 2NK(q)

Mtrans(q; p) , (3.31)

where we took Zϕ(Pϕ) ' 1 to lowest order, and set

Mtrans(q; p) ≡ 1

S0(q;K)S0(p;P )

∫
dp0

2π

dq0

2π
C(5)ϕ−amp(Pϕ, η1P+p, η2P−p; η1K+q, η2K−q) .

(3.32)

It is sufficient for our purposes, and consistent with our approximation (see foot-

note 14), to expand the normalisation factors up to first order in p2,q2, as follows

NQ(p) ' µ
[
1 +

p2

2µ2

(
1− 3µ

m

)]
, (3.33)

1√
2NP(p) 2NK(q)

' 1

2µ

[
1− p2 + q2

4µ2

(
1− 3µ

m

)]
. (3.34)

The p2, q2 terms in eq. (3.34) introduce corrections of order α2 and v2rel (see appendix F),

where α parametrises the strength of the interaction (for a Coulomb potential, it is the

fine-structure constant) and gives the expectation value of the relative velocity inside the

bound state. Similar corrections arise also in Mtrans (see appendix E). We shall retain

such corrections only where the dominant term in the respective expansion vanishes, as
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in the case of degenerate particles interacting via scalar boson exchange (see section 5.1).

Moreover, from eqs. (2.31) and (2.78), we find that to zeroth order in the relative velocity,

εK,k ' µ . (3.35)

Because εK,k factors out of the integrals, as seen in eq. (3.30), we neglect k2 corrections,

which always produce subdominant terms in v2rel. In addition, in our computations, we

consistently ignore corrections that involve at least one power of the total momentum of

any of the initial or final states (denoted typically with capital letters). In the CM frame,

these momenta are of order ∼ O(α2 + v2rel), which renders their scalar products with any

other momenta, of higher order in α and vrel than the p2,q2 corrections.

We shall employ eqs. (3.30)–(3.34) to evaluate the transition amplitudes of section 5.

3.4 On-shell approximation

Let us now consider the case when the perturbative part of the transition amplitude C(5)

consists only of fully connected diagrams.7 Then, A(5)(Pϕ, η1P +p, η2P −p; η1K+q, η2K−
q) is the perturbative amplitude for the 2 → 3 transition (with no on-shell conditions

imposed). Equation (3.32) becomes

Mtrans(q; p) '
∫
dp0

2π

dq0

2π

S(p;P )S(q;K)

S0(p;P )S0(q;K)

× A(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q). (3.36)

Provided that A(5) has no singularities in p0 and q0,8 the integrations over p0, q0 force

the evaluation of A(5) on the poles of S(p;P ) and S(q;K) that are located in either the

lower or upper p0 and q0 complex planes (depending on the choice of integration contours).

As described in appendix C, each integration picks out two poles: one physical pole, which

corresponds to setting one of the particles on-shell, and one unphysical pole, where the

energy of the other particle is negative (cf. eqs. (C.11), (C.12)). In the non-relativistic

regime, the contribution from the physical pole dominates. For concreteness, let us take

these poles to be in the lower p0, q0 complex planes (as in eq. (C.12)),

p0 = −η1P 0 + E1(p; P)− iε ,
q0 = −η1K0 + E1(q; K)− iε .

Fixing p0 and q0 to the pole values means that the energies of the χ1, χ2 particles in the

bound state and in the two-particle states are specified as functions of the 3-momenta

p,q,P,K and the quantum numbers n and k (note that P 0 = ωP,n and K0 = ωK,k), as

7This is the case if the initial-state particles and the particles participating in the bound state are

different.
8A(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) may have singularities in p0 and q0 (for the energy of

interest, K0 = ωK,k), if the initial-state particles and the particles participating in the bound state are

different.
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follows

p01 = η1P
0 + p0 = E1(p; P) , p02 = ωP,n − E1(p; P) ' E2(p; P) + En − p2/(2µ) , (3.37)

q01 = η1K
0 + q0 = E1(q; K) , q02 = ωK,k − E1(q; K) ' E2(q; K) + Ek − q2/(2µ) , (3.38)

where we used eqs. (2.77), (2.78) and (C.18), (C.19). Evidently, in both the bound state and

the two-particle state, the χ2 degree of freedom is off-shell, by En −p2/2µ and Ek − q2/2µ

respectively. However, 〈p2〉/(2µ) ∼ −En and 〈q2〉/(2µ) ∼ Ek; provided that En, Ek � µ,9

we may ignore this small deviation from the on-shell condition and evaluate A(5) on-shell.

Then, from eq. (3.32), we obtain

Mtrans(q; p) '
[
A(5)(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q)

]
on−shell

. (3.39)

This is the approximation presented in section 5.3 of ref. [70]. Note that, for consistency,

when using eq. (3.39) inside eqs. (3.30) and (3.31), the normalisation factor of eq. (3.34)

should be approximated to zeroth order in p2,q2. Indeed, corrections of the order p2,q2

arise not only due to the normalisation factor, but also due to the off-shellness of the

amplitude A(5). When important, such corrections should be included self-consistently,

by making use both of the full expansion of eq. (3.34), and of the off-shell momenta of

eqs. (3.37), (3.38) instead of the on-shell conditions.

We will not make use of eq. (3.39) in our computations in section 5.

3.5 Bound-state formation cross-sections

In the CM frame (K = 0), the differential cross-section for radiative BSF, UK=0,k →
BP,n + ϕ−P , is

dσ(n)
BSF

dΩ
=

1

2
√

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2

|P|
16π2

√
s
|Mk→n|2 , (3.40)

where s = ω2
K=0,k ' (m + Ek)2 (cf. eq. (2.78)), and Mk→n is found from eq. (3.30). The

bound-state and mediator momenta are

|P| =

[
(s−M2

n −m2
ϕ)2 − 4M2

nm
2
ϕ

4s

]1/2
' (Ek − En)

[
1−

m2
ϕ

(Ek − En)2

]1/2
, (3.41)

where we used Mn = m+ En (cf. eq. (2.81)). In addition,

2
√

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2 ' 4mk = 4mµvrel . (3.42)

Then

dσ(n)
BSF

dΩ
=

(Ek − En)

64π2m2µvrel

[
1−

m2
ϕ

(Ek − En)2

]1/2
|Mk→n|2 . (3.43)

9For a Coulomb or Yukawa potential with fine structure constant α, these conditions are equivalent to

α, vrel � 1 (cf. eq. (5.4)).
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Partial-wave decomposition and unitarity. It will be useful to decompose the am-

plitude Mk→n in partial waves

Mk→n(Ω) =
∑
J

(
2J + 1

4π

)
MJPJ(cos θ) (3.44)

where PJ are the Legendre polynomials, and

MJ =

∫
dΩPJ(cos θ)Mk→n(Ω) . (3.45)

Then, eq. (3.43) gives

σ(n)
BSF

=
∑
J

σ(n)
BSF,J

. (3.46)

with the partial-wave cross-section given by

σ(n)
BSF,J

=
(Ek − En)

64π2m2µvrel

[
1−

m2
ϕ

(Ek − En)2

]1/2
2J + 1

4π
|MJ |2 . (3.47)

Unitarity implies an upper limit on the partial-wave inelastic cross-sections. In the

non-relativistic regime, for the Jth partial wave, this is [71]

σinel,J 6 (σinel,J)max =
(2J + 1)π

µ2v2rel
. (3.48)

For a given inelastic process and associated cross-section, this bound yields an estimate

for the value of the coupling at which the probability for inelastic scattering saturates. In

section 5, we use the unitarity bound to deduce the range of validity of our calculation.

3.6 Bound-state de-excitation rates

The differential rate for the radiative de-excitation of a bound state, BK=0,n′ → BP,n +

ϕ−P , is
dΓn′→n
dΩ

=
|P|

32π2M2
n′
|Mn′→n|2 ,

where |Mn′→n|2 is found from eq. (3.31) and |P| is given by eq. (3.41) with the replacement

Ek → En′ . Setting M ′n = m+ En ' m, we obtain

Γn′→n '
(En′ − En)

32π2m2

[
1−

m2
ϕ

(En′ − En)2

]1/2 ∫
|Mn′→n|2 dΩ . (3.49)

4 Decay of unstable bound states and (co-)annihilation of unbound pairs

4.1 Non-perturbative amplitude

If an unbound χ1, χ2 pair can (co-)annihilate into a number of light particles f1, · · · fN ,

then the χ1−χ2 bound states are unstable against decay into the same final states (provided

that this is allowed by angular momentum conservation). For example, unbound and bound
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η1K + k

η2K − k

...
G̃ann =

η1K + k

η2K − k

...
G̃(4) Aann

Figure 5. Diagrammatic representation of equation (4.5). represent the full propagators of

annihilation/decay products fj .

particle-antiparticle pairs can annihilate and decay, respectively, into force mediators. (Co-

)annihilation and bound-state decay have the same diagrammatic representation, shown in

figure 5; the difference in evaluating these two processes is which initial state is singled out

from the G(4) function. In this section, we express the (co-)annihilation and the bound-state

decay amplitudes,

out〈f1f2 · · · fN | UK,k〉in = 〈f1f2 · · · fN | S | UK,k〉 , (4.1)

out〈f1f2 · · · fN | BK,n〉in = 〈f1f2 · · · fN | S | BK,n〉 , (4.2)

in terms of the initial state wavefunction and the perturbative interaction that gives rise

to these processes.10

To calculate the S-matrix elements (4.1) and (4.2), we need to consider the

Green’s function

Gann(x1, x2, . . . .xN ; y1, y2) ≡ 〈Ω|Tf(x1)f(x2) . . . f(xN )χ†1(y1)χ
†
2(y2)|Ω〉 . (4.3)

and its Fourier transform

G̃ann(p1, . . . pN ; k1, k2) =

N∏
j=1

∫
d4xj e

ipjxj

×
∫
d4y1 d

4y2 e
−i(k1y1+k2y2) Gann(x1, · · · , xN ; y1, y2) . (4.4)

Let Aann(p1, · · · pN ; k1, k2) be the sum of all connected and amputated diagrams contribut-

ing the (co-)annihilation of a χ1, χ2 pair with momenta k1, k2, into f1, · · · , fN particles

with momenta p1, · · · , pN .11 Then, as sketched in figure 5,

G̃ann(p1, · · · , pN ; η1K + k, η2K − k) =

=
N∏
j=1

S̃fj (pj)

∫
d4k′

(2π)4
Aann(p1, · · · , pN ; η1K + k′, η2K − k′) G̃(4)(k′, k;K) , (4.5)

10As already mentioned, for annihilation processes, similar analyses have been carried out in previous

works, e.g. [40–42, 65, 66, 72–74].
11Note that, in contrast to level transitions processes, all diagrams contributing to the perturbative part

of the (co-)annihilation processes are fully connected. The amputation of fully connected diagrams is well

defined, and it is thus sensible to express the full amplitudes for the (co-)annihilation and decay processes

of interest, in terms of the sum of amputated diagrams.
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where S̃fj (pj) is the propagator of the fj particle with momentum pj . As always, energy-

momentum conservation implies that

Aann(p1, · · · , pN ; k1, k2) = i(2π)4 δ4(k1 +k2−p1 · · ·−pN )Mpert
ann (k1, k2; p1, · · · , pN ) , (4.6)

where Mpert
ann is the perturbative annihilation amplitude, with no on-shell conditions im-

posed on the incoming and outgoing degrees of freedom. We follow a similar procedure as

in section 3.2, and determine the S-matrix elements of interest to be

〈f1 · · · fN | S | UK,k〉 = (2π)4 δ4(K − p1 · · · − pN ) iMann , (4.7)

〈f1 · · · fN | S | BK,n〉 = (2π)4 δ4(K − p1 · · · − pN ) iM(n)
dec , (4.8)

with

Mann =

N∏
j=1

√
Zfj (pj)

∫
d4q

(2π)4
Φ̃K,k(q) Mpert

ann (η1K + q, η2K − q; p1, · · · , pN ) (4.9)

'
√

2εK,k

∫
d3q

(2π)3
φ̃k(q)√
2NK(q)

∫
dq0

2π

S(q;K)

S0(q;K)
Mpert

ann (η1K+q, η2K−q; p1, · · · , pN ) ,

M(n)
dec =

N∏
j=1

√
Zfj (pj)

∫
d4q

(2π)4
Ψ̃K,n(q) Mpert

ann (η1K + q, η2K − q; p1, · · · , pN ) (4.10)

'
∫

d3q

(2π)3
ψ̃n(q)√
2NK(q)

∫
dq0

2π

S(q;K)

S0(q;K)
Mpert

ann (η1K + q, η2K − q; p1, · · · , pN ) ,

where K0 = ωK,k and K0 = ωK,n, respectively. In the above, Zfj (p) ≡ |〈Ω|fj(0)|fj,p〉|2,
with fj,p being a fj particle with momentum p. In the second line eqs. (4.9) and (4.10),

we have used the instantaneous approximation for the wavefunctions, and set Zfj (p) ' 1.

4.2 On-shell approximation

Following the same arguments as in section 3.3, we may evaluate the perturbative amplitude

Mpert
ann on-shell. This enables us to express the annihilation and decay amplitudes as follows

Mann '
∫

d3q

(2π)3
φ̃k(q) M̂pert

ann (η1K + q, η2K− q; p1, · · · ,pN ) , (4.11)

M(n)
dec '

1√
2µ

∫
d3q

(2π)3
ψ̃n(q) M̂pert

ann (η1K + q, η2K− q; p1, · · · ,pN ) , (4.12)

where M̂pert
ann is the on-shell perturbative (co-)annihilation amplitude. Note that, as dis-

cussed below eq. (3.39), the integrands in eqs. (4.11), (4.12) admit q2 and higher order

corrections from the normalisation factor of eq. (3.33) and from the off-shellness of the

perturbative amplitude Mpert
ann .

4.3 Two-body (co-)annihilation cross-sections and bound-state decay rates

Let us now focus on the case of decays and (co-)annihilations into two final-state particles.

In the CM frame (K = 0), the momenta of the final particles are |p1| = |p2| = |p|, with
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|p| ' ωK=0,k/2 = (m + Ek)/2 ' m/2 in the case of (co-)annihilation, and |p| ' Mn/2 =

(m+En)/2 ' m/2 in the case of decay. We ignore the masses of the final-state particles for

simplicity. The (co-)annihilation and decay amplitudes can be expanded in partial waves

as follows

Mann(Ωp) =
∞∑
`=0

(
2`+ 1

4π

)
P`(cos θp)Mann,` , (4.13)

M(n)
dec(Ωp) =

∞∑
`=0

(
2`+ 1

4π

)
P`(cos θp)M(n)

dec,` , (4.14)

where

Mann,` ≡
∫
dΩp P`(cos θp)Mann(Ωp), (4.15)

M(n)
dec,` ≡

∫
dΩp P`(cos θp)M(n)

dec(Ωp). (4.16)

Here and in the following, the indices in the angle variables specify the vector to which

this angle refers; a double index denotes the angle between the two vectors. The (co-

)annihilation cross-section times relative velocity and the decay rate are

σannvrel =
fs

128π2mµ

∫
|Mann(Ωp)|2 dΩp =

fs
128π2mµ

∑
`

2`+ 1

4π
|Mann,`|2 , (4.17)

Γ
(n)
dec =

fs
64π2m

∫
|M(n)

dec(Ωp)|2 dΩp =
fs

64π2m

∑
`

2`+ 1

4π
|M(n)

dec,`|
2 , (4.18)

where fs = 1/2 if the final-state particles are identical, or fs = 1 otherwise. We shall now

express Mann,` and M(n)
dec,` in terms of the perturbative on-shell annihilation amplitude.

We expand M̂pert
ann in partial waves, as follows

M̂pert
ann (q,−q; p,−p) =

∞∑
`=0

ã`
(mµ)`

|p|` |q|` P`(cos θq,p) . (4.19)

In general, the expansion coefficients ãJ may depend on q; in the non-relativistic regime,

they can be expanded as

ã`(q) ' a` + F`(q2, εA · q) , (4.20)

where εA stands for the polarisation vectors of possible final-state vector bosons, and F`
is a polynomial function of the scalar products q2 and εA · q that vanishes at q = 0. Note

that |p| is determined by energy conservation. a` and F` may depend on scalar products

such as p2, εA · p and εA · εB. In the following, we consider only the a` contribution to

ã`; any corrections arising from the q-dependent terms of eq. (4.20) may be included only

in conjunction with similar corrections arising from the normalisation factor of eq. (3.33)

and from the off-shellness of the perturbative amplitude Mpert
ann .
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We may now insert eq. (4.19) into eqs. (4.11) and (4.12), and use the formula

∫
dΩp P`′(cos θp)

∫
d3q

(2π)3
φ̃k(q) |q|`P`(cos θq,p) =

= δ``′
(2`+ 1)!!

i` (2`+ 1) `!

[
d`

dr`

∫
dΩr P`(cos θr) φk(r)

]
r=0

, (4.21)

and similarly for ψn. We prove eq. (4.21) in appendix D. Keeping only the q-independent

term from the expansion of eq. (4.20), we find

Mann,` '
a` |p|`

(mµ)`
(2`+ 1)!!

i`(2`+ 1)`!

[
d`

dr`

∫
dΩrP`(cos θr)φk(r)

]
r=0

, (4.22)

M(n)
dec,` '

a` |p|`√
2µ (mµ)`

(2`+ 1)!!

i`(2`+ 1)`!

[
d`

dr`

∫
dΩrP`(cos θr)ψn(r)

]
r=0

. (4.23)

Using eqs. (4.17) and (4.18), we find the contribution of the ` partial wave to σannvrel and

Γ
(n)
dec to be

(σann vrel)` = σ` S`,ann , (4.24)

Γ
(n)
`,dec = σ` S`,dec , (4.25)

where

σ` =
[`!/(2`)!!]2

2`+ 1

fs |a`|2

32πmµ
, (4.26)

and

S`,ann =

[
(2`+ 1)!/(`!)2

]2
4`+2 π2 µ2`

∣∣∣∣ d`dr`
∫
dΩrP`(cos θr)φk(r)

∣∣∣∣2
r=0

, (4.27)

S
(n)
`,dec =

[
(2`+ 1)!/(`!)2

]2
4`+2 π2 µ2`

∣∣∣∣ d`dr`
∫
dΩrP`(cos θr)ψn(r)

∣∣∣∣2
r=0

. (4.28)

In the limit where the interaction in the two-particle state can be neglected, φk(r) = eik·r

and S`,ann = (|k|/µ)2` = v2`rel.

Similar analyses to the above for the non-perturbative annihilation cross-section,

have been performed in refs. [65, 66], where also the Sommerfeld enhancement factors

of eq. (4.27) have been computed for a Yukawa potential.

5 Bound-state formation, de-excitation and decay rates for specific in-

teractions

We now focus on specific interactions and apply the formalism of the previous sections to

calculate the BSF cross-sections, and the rates for de-excitation or decay of bound states,

where relevant. We consider the interaction of two scalar particles (i) via a light scalar

boson (section 5.1), and (ii) via an Abelian gauge vector boson (section 5.2).
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In the instantaneous approximation, these interactions are described in general by a

Yukawa potential.12 (Of course, an unbroken gauge symmetry gives rise to a Coulomb

potential.) A Yukawa potential admits bound state solutions if mϕ < αµ, where α is

the fine-structure constant of the interaction. On the other hand, the radiative formation

of bound states via emission of a force mediator is kinematically possible if mϕ < (α2 +

v2rel)µ/2; for vrel < α — which is when the Sommerfeld effect renders bound-state formation

efficient — this is a much stronger condition. Provided that this condition holds, the

distortion of the wavefunctions due to the non-zero mediator mass, from their Coulomb

limit, is expected to be negligible. For simplicity, we shall thus perform our computations

in the Coulomb limit.

As is well known, in the presence of an attractive Coulomb potential

V (r) = −α
r
, α > 0 , (5.1)

there is a discrete spectrum and a continuous spectrum of energy eigenstates. The contin-

uous spectrum corresponds to the two-particle states, and is characterised by a continuous

quantum number that stands for the expectation value of the momentum of the reduced

system, k = µvrel, with vrel being the expectation value of the relative velocity. The

discrete spectrum corresponds to the bound states, and is characterised by the integer-

valued quantum numbers {n`m}. In the discrete spectrum, the expectation value of the

momentum of the reduced system is κ/n, with κ ≡ µα being the Bohr momentum. As we

shall see, the parameter that essentially determines the efficiency of BSF is the ratio of the

momentum expectation values of the bound and the scattering states,

ζ ≡ κ

k
=

α

vrel
. (5.2)

The energies of the states of the discrete and the continuous spectra are

ωP,n = m+
P2

2m
+ En , ωK,k = m+

K2

2m
+ Ek , (5.3)

where P, K are the momenta of the CM of the bound and the two-particle states respec-

tively, and

En = −κ
2

2µ
= −µα

2

2n2
, Ek =

k2

2µ
=
µv2rel

2
. (5.4)

The wavefunctions are given in appendix F.1.

Useful integrals. For the calculation of the amplitudesMk→n andMn′→n, we will find

it useful to define the integrals

Ξ1(q,p;K,P ) ≡
∫
dq0

2π
S(q;K)

∫
dp0

2π
S̃1(η1P + p) (2π)δ(q0 − p0 − η2P 0

ϕ) , (5.5)

Ξ2(q,p;K,P ) ≡
∫
dq0

2π
S(q;K)

∫
dp0

2π
S̃2(η2P − p) (2π)δ(q0 − p0 + η1P

0
ϕ) . (5.6)

12For a classification of the low-energy effective potentials generated by long-range interactions, and a

systematic renormalisation procedure of singular potentials, see ref. [75].
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We evaluate Ξ1 and Ξ2 in appendix E. We will also need the following integrals involving

the initial and final state wavefunctions

Ik,n(b) ≡
∫

d3p

(2π)3
ψ̃?n(p) φ̃k(p + b) , (5.7)

J k,n(b) ≡
∫

d3p

(2π)3
p ψ̃?n(p) φ̃k(p + b) , (5.8)

Kk,n(b) ≡
∫

d3p

(2π)3
p2 ψ̃?n(p) φ̃k(p + b) , (5.9)

and

In′,n(b) ≡
∫

d3p

(2π)3
ψ̃?n(p) ψ̃n′(p + b) , (5.10)

J n′,n(b) ≡
∫

d3p

(2π)3
p ψ̃?n(p) ψ̃n′(p + b) , (5.11)

Kn′,n(b) ≡
∫

d3p

(2π)3
p2 ψ̃?n(p) ψ̃n′(p + b) . (5.12)

We evaluate I,J and K in appendix F, for the initial and final states of interest. We shall

use the integrals (5.5)–(5.12) in sections 5.1 and 5.2.

5.1 Scalar mediator

We consider the interaction Lagrangians

δLS,r =
1

2
∂µχ1 ∂

µχ1 +
1

2
∂µχ2 ∂

µχ2 +
1

2
∂µϕ∂

µϕ− 1

2
m2

1χ
2
1 −

1

2
m2

2χ
2
2 −

1

2
m2
ϕφ

2

− 1

2
g1m1ϕχ

2
1 −

1

2
g2m2ϕχ

2
2 , (5.13)

δLS,c = ∂µχ
†
1 ∂

µχ1 + ∂µχ
†
2 ∂

µχ2 +
1

2
∂µϕ∂

µϕ−m2
1|χ1|2 −m2

2|χ2|2 −
1

2
m2
ϕφ

2

− g1m1ϕ|χ1|2 − g2m2ϕ|χ2|2 . (5.14)

In eq. (5.13), χ1 and χ2 are real scalar fields, while in eq. (5.14) they are complex. φ is a

real scalar boson, with mass mϕ � m1,m2, and g1, g2 are dimensionless couplings.13

To lowest order, the interaction between χ1 and χ2 is mediated by one-boson exchange,

as shown in figure 6. Then

W̃ (p, p′;Q) = − ig1g2m1m2

(p− p′)2 −m2
ϕ

. (5.15)

13In eqs. (5.13), (5.14) and (5.48), we omit the quartic couplings in the scalar potential, since they do

not enter our calculations.
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W̃ (p, p′;Q) =

η1Q+ p

η2Q− p

η1Q+ p′

η2Q− p′

'

η1Q+ p

η2Q− p

η1Q+ p′

η2Q− p′

Figure 6. In the non-relativistic regime, the one-boson exchange is the dominant contribution to

the χ1 − χ2 interaction. Consequently, the 4-point function is approximated by an infinite ladder

of one-boson exchange diagrams. The exchanged boson may be either scalar or vector.

In the instantaneous approximation14

W(|p− p′|) =
ig1g2m1m2

(p− p′)2 +m2
ϕ

. (5.16)

From eq. (2.86), we find the non-relativistic potential,

V (r) = − 1

i4mµ

∫
d3p

(2π)3
W(p) eip·r = − i g1g2m1m2

i4mµ

∫
d3p

(2π)3
eip·r

p2 +m2
ϕ

. (5.17)

That is,

V (r) = −αe
−mϕr

r
, with α =

g1g2
16π

. (5.18)

The interaction is attractive if g1g2 > 0, i.e. it is always attractive between particles of

the same species or particles and antiparticles, but it can be either attractive or repulsive

between particles of different species. As already mentioned, for our computations, we shall

consider the limit mϕ → 0.

5.1.1 Bound-state formation amplitudes

The lowest order contribution to the perturbative part of the radiative BSF amplitude

arises from the diagrams shown in figure 7. In our approximation, the entire BSF ampli-

tude corresponds to the ladder diagrams of figure 8. Recalling eqs. (3.16) and (3.17), the

diagrams of figure 7 evaluate to

(2π)4δ4(q1 + q2 − p1 − p2 − Pϕ) i C(5)ϕ−amp(Pϕ, p1, p2, q1, q2)

= −ig1m1S̃1(q1)S̃1(p1) (2π)4δ4(Pϕ + p1 − q1) S̃2(q2) (2π)4δ4(p2 − q2)
− ig2m2S̃2(p2)S̃2(q2) (2π)4δ4(Pϕ + p2 − q2) S̃1(q1) (2π)4δ4(p1 − q1) .

14Note that the leading-order correction to the approximation of eq. (5.16), and similarly of eq. (5.50),

are of order (p0 − p′0)2. Due to the linearity of the Bethe-Salpeter eqs. (2.54), (2.55), the corresponding

corrections to the approximations of the Bethe-Salpeter wavefunctions, Ψ̃Q,n(p) and Φ̃Q,q(p), that are

introduced via eqs. (2.69) and (2.70), would also be of the same order. As discussed in earlier sections, in

the regime of interest, p0 ∼ O(p2/µ), and such corrections would then be O(p4/µ2), i.e. of higher order

than the corrections considered in eq. (3.33) and which appear in the S-matrix elements (3.30) and (3.31).

This confirms the consistency of the approximation.
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η1K + q

η2K − q

η1P + p

η2P − p

Pϕ

C(5)ϕ−amp
=

η1K + q

η2K − q

η1P + p

η2P − p

Pϕ

+

η1K + q

η2K − q

η1P + p

η2P − p

Pϕ

Figure 7. The lowest order contribution to level transition amplitudes, including bound-state

formation.

Equivalently

C(5)ϕ−amp(Pϕ, η1P + p, η2P − p, η1K + q, η2K − q)
= −S(q;K)

[
g1m1 S1(η1P + p) (2π)4δ4(q − p− η2Pϕ)

+ g2m2 S2(η2P − p) (2π)4δ4(q − p+ η1Pϕ)
]
.

Using the above, eq. (3.32) can be expressed in terms of the Ξ1,Ξ2 integrals defined in

eqs. (5.5) and (5.6), as follows

Mtrans(q; p) =

= −
[
g1m1 Ξ1(q,p;K,P ) (2π)3δ3(q− p− η2Pϕ) + g2m2 Ξ2(q,p;K,P ) (2π)3δ3(q− p + η1Pϕ)

]
S0(p;P )S0(q;K)

' −2mµ

[
1+

p2

2µ2

(
1− 2µ

m

)] [
g1 (2π)3δ3(q−p−η2Pϕ) + g2 (2π)3δ3(q−p+η1Pϕ)

]
,

(5.19)

where in the second step, we used the non-relativistic approximations of Ξ1, Ξ2, given in

eqs. (E.23), (E.24). Inserting this into eq. (3.30), we obtain

Mk→n ' −m
√

2µ

∫
d3p

(2π)3

(
1 +

p2

2mµ

)
ψ̃?n(p)

[
g1 φ̃k(p + η2Pϕ) + g2 φ̃k(p− η1Pϕ)

]
.

(5.20)

The p2 term in the square brackets, will prove to be important in the cases of identical

particles and particle-antiparticle pairs (see below). In terms of the integrals (5.7)–(5.9),

eq. (5.20) becomes

Mk→n ' −m
√

2µ

[
g1Ik,n(η2Pϕ)+g2Ik,n(−η1Pϕ) +

g1Kk,n(η2Pϕ)+g2Kk,n(−η1Pϕ)

2mµ

]
.

(5.21)

Capture in the ground state. For capture in the {100} state, eq. (5.21) becomes

Mk→{100} ' −m
√

2µ

{[
g1Ik,{100}(η2Pϕ) + g2Ik,{100}(−η1Pϕ)

](
1− µα2

2m

)
+
g1K̄k(η2Pϕ) + g2K̄k(−η1Pϕ)

2mµ

}
,
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where we used eq. (F.22). We shall drop the α2 correction in the coefficient of the

Ik,{100} integrals. The mediator momentum is |Pϕ| = Ek − E{100} = (1 + ζ2)k2/(2µ)

(cf. eqs. (3.41), (5.4)). Using eqs. (F.40) and (F.42) for the integrals Ik,{100} and K̄k,

we find

Mk→{100} ' −R(ζ)

√
2m2

µk
×
[
(g1η2 − g2η1) cos θ

+
k

2µ

{
(g1η

2
2 + g2η

2
1)
[
(−1 + iζ) + 2(2− iζ) cos2 θ

]
+
µ

m
(g1 + g2)(1 + iζ)

}]
,

(5.22)

where θ is the angle between k and Pϕ, and R(ζ) is given in eq. (F.36). (We emphasise

that the above expression is not a consistent expansion in α, but rather only in v2rel). We

discern the following cases:

• For a particle-antiparticle pair, or for identical particles, g1 = g2 = g, η1 = η2 = 1/2

and µ = m/4; the first term in eq. (5.22) vanishes, and we obtain

Mk→{100} ' −8
√

2πζ R(ζ) vrel
[
iζ + (2− iζ) cos2 θ

]
= −16

√
2πζ R(ζ)

3
vrel [(1 + iζ) P0(cos θ) + (2− iζ) P2(cos θ)] , (5.23)

where in the second line, we decomposed the amplitude in partial waves.

• For non-degenerate particles, the first term in eq. (5.22) dominates, and

Mk→{100} ' −4
√

2πζR(ζ)

(
m

µ

)[
(g1η2 − g2η1)2

16πα

]1/2
P1(cos θ) . (5.24)

(The factor inside the square brackets becomes equal to 1 in the limit g1 = g2,

η1 � η2.)

Capture in excited state with non-zero angular momentum. Since for a pair of

degenerate particles, the cross-section for radiative capture to the ground state is either v2rel
or α2 suppressed (as seen by comparing eqs. (5.23) and (5.24)), we shall now calculate the

amplitude for capture in the {210} state. In this case, |Pϕ| = Ek−E{210} = (4+ζ2)k2/(8µ).

From eq. (5.21), and keeping only the leading order terms of eq. (F.43) for the Ik,{210}
integrals, we find

Mk→{210} ' −m
√

2µ
[
g1Ik,{210}(η2Pϕ) + g2Ik,{210}(−η1Pϕ)

]
' m

µ

(
g1η2 + g2η1√

16πα

)
27πi

3

ζ4(2− iζ) eπζ/2 Γ(1− iζ)

(4 + ζ2)3

(
iζ + 2

iζ − 2

)−iζ
× [(iζ + 2)P0(cos θ) + 8(iζ − 1)P2(cos θ)] .

The J = 0 and J = 2 contributions to the above yield the squared amplitudes

|Mk→{210},J=0|2 '
m2

µ2

[
(g1η2 + g2η1)

2

16πα

]
219π5

32
ζ9

(4 + ζ2)4
e−4ζarccot(ζ/2)

1− e−2πζ
, (5.25)

|Mk→{210},J=2|2 '
m2

µ2

[
(g1η2 + g2η1)

2

16πα

]
225π5

32 52
ζ9(1 + ζ2)

(4 + ζ2)5
e−4ζarccot(ζ/2)

1− e−2πζ
. (5.26)
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· · · · · · + · · · · · ·

Figure 8. The ladder diagrams giving the dominant contribution to bound-state formation and

other level transitions. The mediator can be either a scalar or a vector boson.

(We remind that MJ is defined in eq. (3.45), and note that the factor inside the square

brackets becomes equal to 1 in the limit g1 = g2, independently of η1, η2.)

5.1.2 Bound-state formation cross-sections and partial-wave unitarity

Combining eq. (3.47) for the partial-wave cross-section and the amplitudes (5.23)–(5.26),

we obtain

• For g1 = g2 = g and η1 = η2 = 1/2 (i.e. µ = m/4),

σ{100}
BSF,J=0

' 27π2 α3

32µ2
ζ4

1 + ζ2
e−4ζarccotζ

1− e−2πζ
, (5.27)

σ{100}
BSF,J=2

' 27π2 α3

325µ2
ζ4(4 + ζ2)

(1 + ζ2)2
e−4ζarccotζ

1− e−2πζ
, (5.28)

σ{100}
BSF

' σ{100}
BSF,J=0

+ σ{100}
BSF,J=2

' 27π2 α3

15µ2
ζ4(3 + 2ζ2)

(1 + ζ2)2
e−4ζarccotζ

1− e−2πζ
. (5.29)

• For non-degenerate particles,

σ{100}
BSF

' σ{100}
BSF,J=1

' 27π2 α

3µ2

[
(g1η2 − g2η1)2

16πα

]
ζ6

(1 + ζ2)2
e−4ζarccotζ

1− e−2πζ
. (5.30)

• For capture to the {210} state,

σ{210}
BSF,J=0

' 28π2 α

32µ2

[
(g1η2 + g2η1)

2

16πα

]
ζ8

(4 + ζ2)3
e−4ζarccot(ζ/2)

1− e−2πζ
, (5.31)

σ{210}
BSF,J=2

' 214π2 α

325µ2

[
(g1η2 + g2η1)

2

16πα

]
ζ8(1 + ζ2)

(4 + ζ2)4
e−4ζarccot(ζ/2)

1− e−2πζ
, (5.32)

σ{210}
BSF

' σ{210}
BSF,J=0

+σ{210}
BSF,J=2

' 28π2 α

15µ2

[
(g1η2+g2η1)

2

16πα

]
ζ8(28 + 23ζ2)

(4 + ζ2)4
e−4ζarccot(ζ/2)

1− e−2πζ
. (5.33)
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Unitarity limit. For ζ � 1, eqs. (5.27), (5.28), (5.30), (5.31) and (5.32) become

σ{100}
BSF,J=0

→ π

µ2v2rel
× 27πα5

32e4
(degenerate particles: g1 = g2, η1 = η2 = 1/2) , (5.34)

σ{100}
BSF,J=2

→ 5π

µ2v2rel
× 27πα5

3252e4
(degenerate particles: g1=g2, η1=η2=1/2) , (5.35)

σ{100}
BSF,J=1

→ 3π

µ2v2rel
× 27πα3

32e4

[
(g1η2 − g2η1)2

16πα

]
(non-degenerate particles) , (5.36)

σ{210}
BSF,J=0

→ π

µ2v2rel
× 28πα3

32e8

[
(g1η2 + g2η1)

2

16πα

]
, (5.37)

σ{210}
BSF,J=2

→ 5π

µ2v2rel
× 214πα3

3252e8

[
(g1η2 + g2η1)

2

16πα

]
. (5.38)

It is interesting to note that in this low-velocity regime, the velocity dependence of all

partial waves is the same.15 This is in fact expected by unitarity, since ζ � 1 is both the

large coupling and the low-velocity limit. Indeed, the unitarity bounds on the partial-wave

inelastic cross-sections, shown in eq. (3.48), all have the same velocity dependence. They

are realised when the factors to the right of the × symbols in eqs. (5.34)–(5.38) become

≈ 1. The validity of our calculation is thus limited to at most α . αuni, with the strongest

bound, αuni ≈ 1, obtained from σ{100}
BSF,J=0

.

5.1.3 De-excitation rate

The radiative capture to the {210} state is the dominant BSF process for particle-

antiparticle pairs and pairs of self-conjugate particles. Moreover, for non-degenerate par-

ticles, it is slower but comparable to the capture to the ground state. Here, we shall thus

compute the de-excitation rate of the {210} state.

The radiative de-excitation of a bound state arises from the same diagrams as the

radiative capture to a bound state, albeit for different initial and final states. In our

approximation, these are the ladder diagrams shown in figure 8. Inserting eq. (5.19) into

eq. (3.31), we find

Mn′→n ' −m
{
g1In′,n(η2Pϕ) + g2In′,n(−η1Pϕ) +

g1Kn′,n(η2Pϕ) + g2Kn′,n(−η1Pϕ)

2mµ

}
.

(5.39)

In the {210} → {100} transition, the mediator is emitted with momentum |Pϕ| =

E{210} − E{100} = (3/8)µα2. Then, using eq. (F.46), we find

M{210}→{100} ' −m
[
g1I{210},{100}(η2Pϕ) + g2I{210},{100}(−η1Pϕ)

]
' i 26mα

√
2πα

34

[
g1η2 + g2η1√

16πα

]
. (5.40)

The de-excitation rate, given by eq. (3.49), becomes

Γ{210}→{100}+ϕ '
27α5µ

37

[
(g1η2 + g2η1)

2

16πα

]
. (5.41)

15This was also noted in ref. [66], for Sommerfeld-enhanced annihilation processes.
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· · ·

Figure 9. Annihilation of an unbound particle-antiparticle pair or decay of a bound particle-

antiparticle pair into two force mediators. The mediator may be either a scalar or a vector boson.

5.1.4 Annihilation vs bound-state formation for particle-antiparticle pairs

A particle-antiparticle pair or a pair of self-conjugate identical particles coupled to a light

scalar, can annihilate into two mediators, χ†χ → ϕϕ or χχ → ϕϕ, as shown in figure 9.

In both cases, the perturbative annihilation amplitude, evaluated in the CM frame, in the

non-relativistic regime, is

M̂pert
ann (q,−q; p,−p) ' a0 +

a1
mµ

(q · p) (5.42)

with a0 ' a1 ' 16πα. Using eqs. (4.24), (4.26) and (4.27), we find that the annihilation

cross-section is s-wave dominated, σannvrel ' σ0 S0,ann, with σ0 = fs|a0|2/(32πmµ) '
πα2/µ2 being the perturbative s-wave annihilation cross-section, and S0,ann = |φk(0)|2

being the s-wave Sommerfeld-enhancement factor for annihilation. Using the wavefunction

of eq. (F.11), we obtain

σannvrel '
πα2

µ2
2πζ

1− e−2πζ
. (5.43)

Note that here, µ = mχ/2 = m/4, with mχ being the mass of the annihilating particles.

We may now compare the BSF and annihilation cross-sections,

σ{100}
BSF

σann
' 26α2ζ2(3 + 2ζ2)

15(1 + ζ2)2
e−4ζarccotζ , (5.44)

σ{210}
BSF

σann
' 27ζ6(28 + 23ζ2)

15(4 + ζ2)4
e−4ζarccot(ζ/2) . (5.45)

At ζ � 1, σ{100}
BSF

/σann ' 0.15α2 and σ{210}
BSF

/σann ' 0.066.16 We compare σann and σ{210}
BSF

in figure 1. Since annihilation is the dominant inelastic process, it lowers the value of α at

which the unitarity bound appears to be realised, to αuni ≈ 0.54.

5.1.5 Particle-antiparticle bound-state decay rates

From (4.25), (4.26) and (4.28), we find that the decay of the {100} particle-antiparticle

bound state into two mediators, is dominated by the s-wave contribution,

Γ{100}→ϕϕ = σ0|ψ100(0)|2 =
πα2

µ2
κ3

π
= µα5 . (5.46)

16Note that for a Dirac fermion-antifermion pair, the annihilation into scalars is dominantly p-wave. The

spin-averaged annihilation cross-section times relative velocity is σannvrel ' σ1S1,ann, with σ1 ' 3πα2/(2µ2)

and S1,ann = v2rel(1 + ζ2) 2πζ/(1− e−2πζ). On the other hand, the BSF cross-sections do not depend on the

spins of the interacting particles, since in the non-relativistic regime, the spin is conserved separately from

the orbital angular momentum. Thus, for Dirac fermions, at ζ � 1, σ{100}
BSF

/σann ' 0.1 and σ{210}
BSF

/σann '
0.044/α2. This means that for α . 0.2, BSF is faster than annihilation in the regime where the Sommerfeld

effect is important.
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For the {210} bound state, the s-wave decay mode vanishes, since ψ210(0) = 0. How-

ever, a non-vanishing contribution arises from the p-wave mode. From eq. (4.26), we find

σ1 = fs|a1|2/(273πmµ) = πα2/(12µ2). From eq. (4.28) and the wavefunction (F.9), we

obtain S1,dec = κ5/(32πµ2). Then

Γ{210}→ϕϕ = σ1 S1,dec =
πα2

12µ2
κ5

32πµ2
=
µα7

27 3
. (5.47)

The decay rates into three mediators are expected to be suppressed by one additional

power of α with respect to the above. Recalling eq. (5.41), this suggests that for the excited

state {210}, the transition to the ground state is the dominant decay mode.

5.2 Vector mediator

We now consider two scalar particles χ1, χ2 coupled to a gauged U(1) force. The interaction

Lagrangian is

δLV = (Dµχ1)
†(Dµχ1) + (Dµχ2)

†(Dµχ2)−
1

4
FµνF

µν −m2
1|χ1|2 −m2

2|χ2|2 , (5.48)

where χ1, χ2 are complex scalar bosons, Fµν = ∂µϕν − ∂νϕµ and Dµ = ∂µ − icjgϕµ, with

c1, c2 being the charges of χ1, χ2.
13

The one-boson exchange diagram gives

W̃ (p, p′;Q) =
ic1c2g

2

(p− p′)2
[
(2η1Q+ p+ p′) · (2η2Q− p− p′)

]
.

In the non-relativistic regime, we shall approximate the above with

W̃ (p, p′;Q) ' i4η1η2Q
2 c1c2g

2

(p− p′)2
. (5.49)

In the instantaneous approximation, and setting Q2 ' m2

W(|p− p′|) ' − i4η1η2 c1c2g
2m2

(p− p′)2
, (5.50)

and

V (r) = − 1

i4mµ

∫
d3p

(2π)3
W(p) eip·r = c1c2g

2

∫
d3p

(2π)3
eip·r

p2
. (5.51)

That is,

V (r) = −α
r
, with α = −c1c2g

2

4π
. (5.52)

The interaction is attractive if c1c2 < 0.
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5.2.1 Bound-state formation amplitude, cross-section and partial-wave uni-

tarity

The perturbative part of the level-transition amplitudes is C(5)ϕ−amp = εµCµϕ−amp, with the

lowest order contribution depicted in figure 7,

(2π)4δ4(q1 + q2 − p1 − p2 − Pϕ) i Cµϕ−amp(Pϕ, p1, p2, q1, q2) '
' −igc1(pµ1 + qµ1 ) S̃1(p1)S̃1(q1) (2π)4δ4(Pϕ + p1 − q1) S̃2(q2) (2π)4δ4(p2 − q2)

− igc2(pµ2 + qµ2 ) S̃2(p2)S̃2(q2) (2π)4δ4(Pϕ + p2 − q2) S̃1(q1) (2π)4δ4(p1 − q1) .

From this, we obtain

Cµϕ−amp(Pϕ, η1P + p, η2P − p, η1K + q, η2K − q) =

= −g S(q;K)
{
c1[2η1K

µ − (η1 − η2)Pµϕ + 2pµ] S̃1(η1P + p) (2π)4δ4(q − p− η2Pϕ)

+ c2[2η2K
µ + (η1 − η2)Pµϕ − 2pµ] S̃2(η2P − p) (2π)4δ4(q − p+ η1Pϕ)

}
.

Then, Mtrans = εµMµ
trans, where for j = 1, 2, 3,

Mj
trans(q; p) = − g

S0(q;K)S0(p;P )

×
{
c1
[
2η1K

j−(η1−η2)P jϕ+2pj
]

Ξ1(q,p;K,P ) (2π)3δ3(q−p−η2Pϕ)

+ c2
[
2η2K

j+(η1−η2)P jϕ−2pj
]

Ξ2(q,p;K,P ) (2π)3δ3(q−p+η1Pϕ)
}
.

(5.53)

We remind that Ξ1,Ξ2 are defined in eqs. (5.5), (5.6). Using their non-relativistic approxi-

mations (E.23), (E.24), we find the amplitude of eq. (3.30) to beMk→n = εµMµ
k→n, where

for j = 1, 2, 3,

Mj
k→n = −g

√
2µ

∫
d3p

(2π)3
ψ̃?n(p)

{
c1
η1

[
2η1K

j − (η1 − η2)P jϕ + 2pj
]
φ̃k(p + η2Pϕ)

+
c2
η2

[
2η2K

j + (η1 − η2)P jϕ − 2pj
]
φ̃k(p− η1Pϕ)

}
.

We may rewrite the above in terms of the I, J integrals, defined in eqs. (5.7) and (5.8),

as follows

Mj
k→n = − 2g

√
2µ

{
c1
η1
J jk,n(η2Pϕ)− c2

η2
J jk,n(−η1Pϕ)

+

[
c1

(
Kj − η1−η2

2η1
P jϕ

)
Ik,n(η2Pϕ) + c2

(
Kj +

η1−η2
2η2

P jϕ

)
Ik,n(−η1Pϕ)

]}
.

(5.54)

Because the vector boson ϕµ is transverse, the µ = 0 component and the component

parallel to Pϕ do not contribute to the amplitude Mk→n = εµMµ
k→n. Dropping those

components, we obtain Mj
k→n → M̃

j
k→n. In the rest frame, K = 0, and for capture in

– 38 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

the ground state {100}, using eq. (F.41) for the Jk,{100} integrals, and keeping only the

leading term, we find

M̃j
k→n = −2g

√
2µ R(ζ)

kj sin θ

k3/2

(
c1
η1
− c2
η2

)
, (5.55)

where the sin θ factor arises from the projection of k on the plane vertical to Pϕ, and R(ζ)

is defined in eq. (F.36). (Recall that c1c2 < 0 for an attractive potential.) Note that the

partial wave decomposition of the θ-dependent factor of eq. (5.55) is

sin θ =
√

1− cos2 θ =
π

4
P0(cos θ)− 5π

25
P2(cos θ)− 32π

28
P4(cos θ) + . . . . (5.56)

The sum over the vector-boson polarisations is∑
ε

|εµMµ
k→n|

2 =Mµ∗
k→nM

ν
k→n

∑
ε

ε∗µεν = −Mµ∗
k→nM

ν
k→ngµν = M̃j∗

k→nM̃
j
k→n . (5.57)

In eq. (5.57), the contribution of the µ = 0 and ν = 0 components cancels the contribution

from the component ofM that is parallel to Pϕ, yielding the final result. Using eqs. (5.55)

and (F.37), we obtain∑
ε

|εµMµ
k→n|

2 =

[
(η2c1 − η1c1)2

−c1c2

]
212π3

η21η
2
2

ζ7

(1 + ζ2)3
e−4ζarccotζ

1− e−2πζ
sin2 θ . (5.58)

Note that for c1 = −c2 = 1, which includes the case of a particle-antiparticle pair, the

factor in the square brackets in the above expression becomes [(η2c1−η1c2)2/(−c1c2)] = 1.

Using eqs. (3.43) and (5.58), we find the unpolarised cross-section for radiative capture

to the ground state to be

σ{100}
BSF

vrel =

[
(η2c1 − η1c2)2

−c1c2

]
28π2 α2

3µ2
ζ5

(1 + ζ2)2
e−4ζarccotζ

1− e−2πζ
. (5.59)

This result agrees with ref. [63] (see eq. (75.6)), and is smaller than that of ref. [64] by a

factor of 2. At ζ � 1, eq. (5.59) becomes

σ{100}
BSF

vrel '
[

(η2c1 − η1c2)2

−c1c2

]
28π2 α2

3e4 µ2
ζ . (5.60)

The contribution from the J = 0 partial wave is σ{100}
BSF,J=0

= (π/4)2 σ{100}
BSF

(cf. eq. (5.56)).

The unitarity limit on the s-wave inelastic cross-section, given in eq. (3.48), is realised for

α = αuni, with

αuni ≈ 0.69

[
−c1c2

(η2c1 − η1c2)2

]1/3
. (5.61)

5.2.2 Annihilation vs bound-state formation for particle-antiparticle pairs

In the non-relativistic regime, the annihilation of a particle-antiparticle pair into two vector

mediators, χχ† → ϕϕ, is s-wave dominated, with the perturbative unpolarised cross-section

times relative velocity being σ0 = πα2/(2µ2). From eqs. (4.24) and (4.27), we find

σannvrel = σ0 |φk(0)|2 =
πα2

2µ2
2πζ

1− e−2πζ
, (5.62)

where here µ = mχ/2 = m/4, with mχ being the mass of the annihilating particles.
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We may now compare the BSF and annihilation cross-sections:

σ{100}
BSF

σann
' 28ζ4 e−4ζ arccotζ

3(1 + ζ2)2
. (5.63)

While at ζ < 1 BSF is negligible, at ζ & 1.11 the contribution of BSF to the inelastic

scattering dominates over annihilation. At ζ � 1, σ{100}
BSF

/σann ' 1.56.17 We compare σann
and σ{100}

BSF
in figure 1.

5.2.3 Particle-antiparticle bound-state decay rate

From eq. (4.25), we find the unpolarised decay rate of a particle-antiparticle bound state

into two vector mediators to be

Γ{100}→ϕϕ ' σ0|ψ100(0)|2 =
πα2

2µ2
κ3

π
=
µα5

2
. (5.64)

6 Discussion

The formation of bound states affects the phenomenology of dark matter in a variety

of ways. Computing the rates for bound-state formation and other related processes is

essential in calculating the cosmology of DM and accurately estimating the expected DM

signals and detection prospects.

In the non-relativistic regime, the formation of bound states is enhanced by the Som-

merfeld effect. The Sommerfeld effect has already been incorporated in computations of

the DM annihilation rate, in the context of various theories, and has been shown to have

important phenomenological implications. Besides enhancing the total DM annihilation

rate, it may also modify — depending on the nature of the DM interactions — the relative

strength of the various annihilation channels, thus changing the spectrum of the annihi-

lation products [73]. Our results demonstrate that, for particle-antiparticle pairs or pairs

of self-conjugate particles, the radiative formation of bound states can be faster than an-

nihilation, in the entire regime where the Sommerfeld effect is important. This suggests

that bound-state formation and decay may affect the annihilation signals of symmetric

thermal-relic dark matter, as well as its relic abundance, well beyond the experimental

uncertainty in the DM density [43]. Bound-state dynamics should then be incorporated in

any relevant analyses.

The importance of this point is underscored by present experimental results, which

strongly constrain sub-TeV DM with electroweak interactions, and thus motivate inves-

tigations in the multi-TeV regime. As is well known, for symmetric (or self-conjugate)

thermal-relic DM heavier than a few TeV, including WIMP DM, the Sommerfeld effect is

important, both in the determination of the relic abundance and in the estimation of the

expected indirect-detection signals. For the indirect detection of hidden-sector DM, the

Sommerfeld effect — and therefore the formation of bound states — can be important even

for lower DM masses.
17For a fermionic particle-antiparticle pair coupled to a gauged U(1), σ0 ' πα2/(4µ2). Then, at ζ � 1,

the importance of BSF relative to annihilation is even greater, with σ{100}
BSF

/σann ' 3.1.
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Asymmetric dark matter can couple even more strongly to light force mediators than

symmetric DM; indeed, in the presence of a particle-antiparticle asymmetry, the very effi-

cient annihilation which such a coupling would imply, cannot destroy the DM relic abun-

dance. It follows that, for a much larger range of masses, asymmetric DM may efficiently

form stable bound states in the early universe. This has important implications for its

phenomenology. On one hand, the formation of bound states typically curtails the DM

self-interactions and hastens the kinetic decoupling of DM from dark radiation in the early

universe; consequently, it regulates the potential effect of the DM dynamics on the galactic

structure. On the other hand, DM may participate in a variety of radiative processes in-

side haloes, such as excitations and de-excitations of bound states, or outright formation of

bound states. In addition, the scattering of DM on nucleons may involve a variety of inter-

actions, including both elastic and inelastic processes. This interplay between cosmology

and the fundamental interactions of the DM constituents, determines all manifestations

of DM today, and can be calculated only with precise knowledge of the rates governing

bound-state-related processes.

In this work, we established a field-theoretic framework for computing rates for pro-

cesses involving bound states. This framework can be employed in future investigations

of related effects, in a variety of theories. In particular, the computation of bound-state

formation rates in theories which involve non-Abelian interactions — including the elec-

troweak theory of the Standard Model — necessitates adopting a field-theoretic formalism.

Moreover, this framework allows for systematic expansions in the interaction strength and

in the momentum exchange between the interacting degrees of freedom; these higher-order

corrections are important when the leading-order terms cancel, as was explicitly shown in

our computations.

The significance of long-range interactions — and therefore, the importance of com-

prehending their implications — is affirmed by unitarity. Unitarity sets an upper bound

on the partial-wave inelastic cross-section, (σinel,J)max, shown in eq. (3.48). This, in turn,

yields an upper bound on the mass of thermal-relic DM [43, 71]. Notably, the velocity

dependence of (σinel,J)max suggests that the unitarity bound can be realised only if the

underlying interactions are long-ranged [43]. However, in the presence of long-range inter-

actions, the formation of bound states may be the dominant inelastic process, as shown

in the present work. The realisation of the unitarity bound, and its phenomenological

implications, are thus largely determined by the dynamics of bound states, which should

be fully incorporated in any related study. For example, the DM self-destruction in the

early universe via bound-state formation and decay involves an interplay between capture,

disassociation and decay processes that is absent in the case of direct annihilation into

radiation [43].

Moreover, our results show that in the large-coupling (or low-velocity) regime, the

dominant inelastic channel often belongs to a higher partial wave than usually assumed.

Since the unitarity bound on higher partial waves is more relaxed, this implies that thermal-

relic DM may be significantly heavier than previously estimated.

Lastly, using the computed bound-state-formation cross-sections, we may estimate the

interaction strength for which the unitarity bound is seemingly realised. Our leading-order

– 41 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

computations show that this is at α ∼ 0.5, i.e. well below what is often considered to be

the perturbativity limit, α ∼ π or 4π.
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A Bethe-Salpeter wavefunctions: summary of definitions

We summarise the definitions of the Bethe-Salpeter wavefunctions and their Fourier trans-

forms. Following section 2.1, we find

ΨQ,n(x1, x2) = e−iQXΨQ,n(x) , (A.1)

Ψ?
Q,n(x1, x2) = eiQXΨ?

Q,n(x) , (A.2)

ΦQ,q(x1, x2) = e−iQXΦQ,q(x) , (A.3)

Φ?
Q,q(x1, x2) = eiQXΦ?

Q,q(x) , (A.4)

with Q0 = ωn(Q) and Q0 = ωQ,q being the energies of |BQ,n〉 and |UQ,q〉, and where we

defined

ΨQ,n(x) ≡ 〈Ω|Tχ1(η2x)χ2(−η1x)|BQ,n〉 , (A.5)

Ψ?
Q,n(x) ≡ 〈BQ,n|Tχ†1(η2x)χ†2(−η1x)|Ω〉 , (A.6)

ΦQ,q(x) ≡ 〈Ω|Tχ1(η2x)χ2(−η1x)|UQ,q〉 , (A.7)

Φ?
Q,q(x) ≡ 〈UQ,q|Tχ†1(η2x)χ†2(−η1x)|Ω〉 . (A.8)

The Fourier transforms are

ΨQ,n(x) ≡
∫

d4p

(2π)4
Ψ̃Q,n(p) e−ipx , Ψ̃Q,n(p) ≡

∫
d4xΨQ,n(x) eipx . (A.9)

Ψ?
Q,n(x) ≡

∫
d4p

(2π)4
Ψ̃?

Q,n(p) eipx , Ψ̃?
Q,n(p) ≡

∫
d4xΨ?

Q,n(x) e−ipx , (A.10)

ΦQ,q(x) ≡
∫

d4p

(2π)4
Φ̃Q,q(p) e−ipx , Φ̃Q,q(p) ≡

∫
d4xΦQ,q(x) eipx , (A.11)

Φ?
Q,q(x) ≡

∫
d4p

(2π)4
Φ̃Q,q(p) eipx , Φ̃?

Q,q(p) ≡
∫
d4xΦ?

Q,q(x) e−ipx . (A.12)

B Calculation of h(x0)

As in eq. (2.9), we define

x1 = X + η2x , x2 = X − η1x , (B.1)

y1 = Y + η2y , y2 = Y − η1y . (B.2)

– 42 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

Then

min(x01, x
0
2)−max(y01, y

0
2) =

= min(X0 + η2x
0, X0 − η1x0)−max(Y 0 + η2y

0, Y 0 − η1y0)
= X0 + min(η2x

0,−η1x0)− Y 0 −max(η2y
0,−η1y0)

= X0 − Y 0 +


(−η1x0 − η2y0) , if x0 > 0, y0 > 0

(−η1x0 + η1y
0) , if x0 > 0, y0 < 0

(η2x
0 − η2y0) , if x0 < 0, y0 > 0

(η2x
0 + η1y

0) , if x0 < 0, y0 < 0

= X0 − Y 0 − 1

2

[
(η1 − η2)x0 + (η1 + η2)|x0|

]
+

1

2

[
(η1 − η2)y0 − (η1 + η2)|y0|

]
= X0 − Y 0 + h(x0)− h(y0) , (B.3)

where, as defined in eq. (2.36),

h±(x0) ≡ 1

2
(η2 − η1)x0 ±

1

2
|x0| . (B.4)

C Calculation of S0(p;P ), S(t; p;P ) and S1,2(t; p;P )

Here we calculate the integrals

S0(p;P ) ≡
∫
dp0

2π
S̃1(η1P + p)S̃2(η2P − p) , (C.1)

S(t; p;P ) ≡
∫
dp0

2π
S̃1(η1P + p)S̃2(η2P − p)eip

0t , (C.2)

S1(t; p;P ) ≡
∫
dp0

2π
S̃1(η1P + p)e−ip

0t , (C.3)

S2(t; p;P ) ≡
∫
dp0

2π
S̃2(η2P − p)e−ip

0t . (C.4)

(Note the different sign in the exponential between the definitions (C.2) and (C.3), (C.4),

chosen so for later convenience.)

We shall use the perturbative propagators

S̃1(p1) =
i

p21 −m2
1 + iε

, S̃2(p2) =
i

p22 −m2
2 + iε

, (C.5)

and we define E1(p; P) =
√

(η1P + p)2 +m2
1 and E2(p; P) =

√
(η2P− p)2 +m2

2. For

convenience, we also define

ρ1(p;P ) ≡ η1P 0 − E1(p; P) , (C.6)

ρ2(p;P ) ≡ η2P 0 − E2(p; P) , (C.7)

σ1(p;P ) ≡ η1P 0 + E1(p; P) , (C.8)

σ2(p;P ) ≡ η2P 0 + E2(p; P) . (C.9)

– 43 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
8

We first consider the integral (C.2),

S(t; p;P ) =

∫
dp0

2π

i

[η1P 0 + p0 − E1(p; P) + iε] [η1P 0 + p0 + E1(p; P)− iε]

× i

[η2P 0 − p0 + E2(p; P)− iε] [η2P 0 − p0 − E2(p; P) + iε]
eip

0t . (C.10)

We may evaluate S(t; p;P ) by closing the p0 contour above and below the real axis for

t > 0 and t < 0, respectively. The poles that contribute in each case are

t > 0 : p0 = −η1P 0 − E1(p; P) + iε , p0 = η2P
0 − E2(p; P) + iε , (C.11)

t < 0 : p0 = −η1P 0 + E1(p; P)− iε , p0 = η2P
0 + E2(p; P)− iε . (C.12)

Then

S(t; p;P ) =


i

[
e−iρ1(p;P )t

2E1

[
(P 0 − E1)2 − E2

2

] +
eiσ2(p;P )t

2E2

[
(P 0 + E2)2 − E2

1

]] , for t < 0 ,

i

[
e−iσ1(p;P )t

2E1

[
(P 0 + E1)2 − E2

2

] +
eiρ2(p;P )t

2E2

[
(P 0 − E2)2 − E2

1

]] , for t > 0 ,

(C.13)

and

S0(p;P ) = S(t = 0; p;P ) =
i(E1 + E2)

2E1E2 [(P 0)2 − (E1 + E2)2]
. (C.14)

It will be useful to rewrite eq. (C.13), using eq. (C.14), as follows

S(t; p;P ) =
S0(p;P )

E1 + E2
×

×


[(

P 0 + E1 + E2

P 0 − E1 + E2

)
E2 e

−iρ1(p;P )t +

(
P 0 − E1 − E2

P 0 − E1 + E2

)
E1 e

iσ2(p;P )t

]
, for t < 0 ,

[(
P 0 − E1 − E2

P 0 + E1 − E2

)
E2 e

−iσ1(p;P )t +

(
P 0 + E1 + E2

P 0 + E1 − E2

)
E1 e

iρ2(p;P )t

]
, for t > 0 .

(C.15)

(Note that in (C.13)–(C.15), it is implied that E1 and E2 come with the arguments (p; P).)

Similarly to the above, we find

S1(t; p;P ) =


eiσ1(p;P )t

2E1(p; P)
, for t < 0 ,

eiρ1(p;P )t

2E1(p; P)
, for t > 0 ,

(C.16)

and

S2(t; p;P ) =


e−iρ2(p;P )t

2E2(p; P)
, for t < 0 ,

e−iσ2(p;P )t

2E2(p; P)
, for t > 0 .

(C.17)
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Non-relativistic approximation. In the non-relativistic regime, P,p � P 0,m1,m2.

Then

E1(p; P) ' η1
(
m+

P2

2m

)
+

P · p
m

+
p2

2m1
(C.18)

E2(p; P) ' η2
(
m+

P2

2m

)
− P · p

m
+

p2

2m2
(C.19)

E1(p; P) + E2(p; P) ' m+
P2

2m
+

p2

2µ
(C.20)

Note that in the last expression, the cancellation of the mixed terms proportional to p ·P,

can be traced to eq. (2.11). This reflects the fact that in the non-relativistic regime, the

relative motion can be separated from the motion of the CM. For convenience, we set

P 0 = m+
P2

2m
+ E . (C.21)

With these approximations, eq. (C.14) becomes

S0(p;P ) ' − 1

i4mµ
(
P 0 −m− P2

2m −
p2

2µ

) = − 1

i4mµ
(
E − p2

2µ

) . (C.22)

D Partial-wave analysis for (co-)annihilation and decay processes

We will prove the following two relations∫
d3q

(2π)3
φ̃k(q) |q|`P`(cos θq,p) =

(2`+ 1)!!

4πi` `!

[
d`

dr`

∫
dΩr P`(cos θp,r) φk(r)

]
r=0

, (D.1)

and∫
dΩp P`′(cos θp)

∫
d3q

(2π)3
φ̃k(q) |q|`P`(cos θq,p) =

= δ``′
(2`+ 1)!!

i` (2`+ 1) `!

[
d`

dr`

∫
dΩr P`(cos θr) φk(r)

]
r=0

. (D.2)

We shall use the addition theorem of spherical harmonics,

P`(x̂ · ŷ) =
4π

2`+ 1

∑̀
m=−`

Y ∗`m(Ωx)Y`m(Ωy) , (D.3)

where x̂, ŷ are unit vectors, and Y`m are the spherical harmonics. From eq. (D.3) and the

orthonormality of Y`m, it follows that∫
dΩx Y`m(Ωx)P`′(cos θx,y) =

4π

2`+ 1
Y`m(Ωy) δ``′ . (D.4)

We will also need the expansion

eiq·r =

∞∑
`=0

(2`+ 1)i` j`(qr)P`(cos θq,r) , (D.5)
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where j` is the spherical Bessel function, which satisfies

d`j`(x)

dx`

∣∣∣∣
x=0

=
`!

(2`+ 1)!!
. (D.6)

We begin with the right side of eq. (D.1). Using eqs. (D.3)–(D.6) and the Fourier

transform of φ̃k(q), we find[
d`

dr`

∫
dΩr P`(cos θp,r) φk(r)

]
r=0

=

=
4π

2`+ 1

∑̀
m=−`

Y ∗`m(Ωp)

∫
d3q

(2π)3
φ̃k(q)

[
d`

dr`

∫
dΩr Y`m(Ωr)e

iq·r
]
r=0

=
4π

2`+ 1

∑̀
m=−`

Y ∗`m(Ωp)

∫
d3q

(2π)3
φ̃k(q)

×
∞∑
`′=0

(2`′ + 1) i`
′
[
d`

dr`
j`′(qr)

]
r=0

∫
dΩr Y`m(Ωr)P`′(cos θq,r)

=

(
4π

2`+ 1

)2 ∑̀
m=−`

Y ∗`m(Ωp)

∫
d3q

(2π)3
φ̃k(q) |q|` (2`+ 1) i`

[
d`j`(x)

dx`

]
x=0

Y`m(Ωq)

=
4π i` `!

(2`+ 1)!!

∫
d3q

(2π)3
φ̃k(q) |q|` P`(cos θp,q) . (D.7)

This proves eq. (D.1).

Acting on the left side of eq. (D.1) with
∫
dΩp P`′(cos θp), we find∫

dΩp P`′(cos θp)

∫
d3q

(2π)3
φ̃k(q) |q|`P`(cos θq,p) =

=
(2`+ 1)!!

4πi` `!

√
4π

2`+ 1

∫
dΩp Y`′,0(Ωp)

[
d`

dr`

∫
dΩr P`(cos θp,r) φk(r)

]
r=0

=
(2`+ 1)!!

4πi` `!

(
4π

2`+ 1

)3/2

δ``′

[
d`

dr`

∫
dΩr Y`,0(Ωr) φk(r)

]
r=0

= δ``′
(2`+ 1)!!

i` (2`+ 1) `!

[
d`

dr`

∫
dΩr P`(cos θr) φk(r)

]
r=0

. (D.8)

This proves eq. (D.2).

E Integrals for the non-relativistic reduction of transition amplitudes

The transition amplitudes of section 5 contain integrals of the following forms

Ξ1(q,p;K,P ) ≡
∫
dq0

2π
S(q;K)

∫
dp0

2π
S̃1(η1P + p) (2π)δ(q0 − p0 − η2P 0

ϕ) , (E.1)

Ξ2(q,p;K,P ) ≡
∫
dq0

2π
S(q;K)

∫
dp0

2π
S̃2(η2P − p) (2π)δ(q0 − p0 + η1P

0
ϕ) . (E.2)
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We are interested in evaluating Ξ1(q,p;K,P ) at q− p− η2Pϕ = 0, and Ξ2(q,p;K,P ) at

q − p + η1Pϕ = 0. To evaluate Ξ1 and Ξ2, we Fourier-transform the δ-function, and use

eqs. (C.15), (C.16) and (C.17).

For Ξ1, we obtain:

Ξ1(q,p;K,P ) =

∫ ∞
−∞

dt e−iη2P
0
ϕt

∫
dq0

2π
S(q;K) eiq

0t

∫
dp0

2π
S̃1(η1P + p) e−ip

0t

=

∫ 0

−∞
dt e−iη2P

0
ϕt S(t; q;K) S1(t; p;P )

+

∫ ∞
0

dt e−iη2P
0
ϕt S(t; q;K) S1(t; p;P )

=
S0(q;K)

[E1(q; K) + E2(q; K)] 2E1(p; P)
×
[
Ξ−1 (q,p;K,P ) + Ξ+

1 (q,p;K,P )
]
,

(E.3)

where

Ξ−1 (q,p;K,P ) =
K0 + E1(q; K) + E2(q; K)

K0 − E1(q; K) + E2(q; K)
E2(q; K)

∫ 0

−∞
dt ei[−η2P

0
ϕ−ρ1(q;K)+σ1(p;P )]t

+
K0 − E1(q; K)− E2(q; K)

K0 − E1(q; K) + E2(q; K)
E1(q; K)

∫ 0

−∞
dt ei[−η2P

0
ϕ+σ2(q;K)+σ1(p;P )]t ,

(E.4)

and

Ξ+
1 (q,p;K,P ) =

K0 − E1(q; K)− E2(q; K)

K0 + E1(q; K)− E2(q; K)
E2(q; K)

∫ ∞
0

dt ei[−η2P
0
ϕ−σ1(q;K)+ρ1(p;P )]t

+
K0 + E1(q; K) + E2(q; K)

K0 + E1(q; K)− E2(q; K)
E1(q; K)

∫ ∞
0

dt ei[−η2P
0
ϕ+ρ2(q;K)+ρ1(p;P )]t .

(E.5)

Using the definitions (C.6)–(C.9) and the overall energy-momentum conservation, K =

P + Pϕ, we may simplify the phases appearing in the above integrals, as follows

−η2P 0
ϕ − ρ1(q;K) + σ1(p;P ) = P 0 −K0 + E1(q; K) + E1(p; P) , (E.6)

−η2P 0
ϕ + σ2(q;K) + σ1(p;P ) = P 0 + E2(q; K) + E1(p; P) , (E.7)

−η2P 0
ϕ − σ1(q;K) + ρ1(p;P ) = P 0 −K0 − E1(q; K)− E1(p; P) , (E.8)

−η2P 0
ϕ + ρ2(q;K) + ρ1(p;P ) = P 0 − E2(q; K)− E1(p; P) . (E.9)

Adding a small imaginary parts to the integration variable t, such that the integrals
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in (E.4), (E.5) converge, we find

Ξ−1 (q,p;K,P ) =

= − i

K0 − E1(q; K) + E2(q; K)

×

([
K0+E1(q; K)+E2(q; K)

]
E2(q; K)

P 0−K0+E1(q; K)+E1(p; P)
+

[
K0−E1(q; K)−E2(q; K)

]
E1(q; K)

P 0+E2(q; K)+E1(p; P)

)

= −i
[
P 0 + E1(p; P) + E1(q; K) + E2(q; K)

]
[E1(q; K) + E2(q; K)]−K0E1(q;K)

[P 0 −K0 + E1(q; K) + E1(p; P)] [P 0 + E2(q; K) + E1(p; P)]
,

(E.10)

Ξ+
1 (q,p;K,P ) =

=
i

K0 + E1(q; K)− E2(q; K)

×

([
K0−E1(q; K)−E2(q; K)

]
E2(q; K)

P 0−K0−E1(q; K)−E1(p; P)
+

[
K0+E1(q; K)+E2(q; K)

]
E1(q; K)

P 0−E2(q; K)−E1(p; P)

)

= i

[
P 0 − E1(p; P)− E1(q; K)− E2(q; K)

]
[E1(q; K) + E2(q; K)]−K0E1(q;K)

[P 0 −K0 − E1(q; K)− E1(p; P)] [P 0 − E2(q; K)− E1(p; P)]
.

(E.11)

For Ξ2, we obtain:

Ξ2(q,p;K,P ) =

∫ ∞
−∞

dt eiη1P
0
ϕt

∫
dq0

2π
S(q;K) eiq

0t

∫
dp0

2π
S̃2(η1P − p) e−ip

0t f(p)

=

∫ 0

−∞
dt eiη1P

0
ϕt S(t; q;K) S2(t; p;P )

+

∫ ∞
0

dt eiη1P
0
ϕt S(t; q;K) S2(t; p;P )

=
S0(q;K)

[E1(q; K) + E2(q; K)] 2E2(p; P)
×
[
Ξ−2 (q,p;K,P ) + Ξ+

2 (q,p;K,P )
]
,

(E.12)

where

Ξ−2 (q,p;K,P ) =
K0 + E1(q; K) + E2(q; K)

K0 − E1(q; K) + E2(q; K)
E2(q; K)

∫ 0

−∞
dt ei[η1P

0
ϕ−ρ1(q;K)−ρ2(p;P )]t

+
K0 − E1(q; K)− E2(q; K)

K0 − E1(q; K) + E2(q; K)
E1(q; K)

∫ 0

−∞
dt ei[η1P

0
ϕ+σ2(q;K)−ρ2(p;P )]t ,

(E.13)

and

Ξ+
2 (q,p;K,P ) =

K0 − E1(q; K)− E2(q; K)

K0 + E1(q; K)− E2(q; K)
E2(q; K)

∫ ∞
0

dt ei[η1P
0
ϕ−σ1(q;K)−σ2(p;P )]t

+
K0 + E1(q; K) + E2(q; K)

K0 + E1(q; K)− E2(q; K)
E1(q; K)

∫ ∞
0

dt ei[η1P
0
ϕ+ρ2(q;K)−σ2(p;P )]t .

(E.14)
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Using the definitions (C.6)–(C.9) and the overall energy-momentum conservation, K =

P + Pϕ, we simplify the phases appearing in the above integrals, as follows

η1P
0
ϕ − ρ1(q;K)− ρ2(p;P ) = −P 0 + E1(q; K) + E2(p; P) , (E.15)

η1P
0
ϕ + σ2(q;K)− ρ2(p;P ) = −P 0 +K0 + E2(q; K) + E2(p; P) , (E.16)

η1P
0
ϕ − σ1(q;K)− σ2(p;P ) = −P 0 − E1(q; K)− E2(p; P) , (E.17)

η1P
0
ϕ + ρ2(q;K)− σ2(p;P ) = −P 0 +K0 − E2(q; K)− E2(p; P) . (E.18)

Adding a small imaginary parts to the integration variable t, as before, we find

Ξ−2 (q,p;K,P ) =

= − i

K0 − E1(q; K) + E2(q; K)

×

([
K0+E1(q; K)+E2(q; K)

]
E2(q; K)

−P 0+E1(q; K)+E2(p; P)
+

[
K0−E1(q; K)−E2(q; K)

]
E1(q; K)

−P 0+K0+E2(q; K)+E2(p; P)

)

= i

[
P 0 − E2(p; P)− E1(q; K)− E2(q; K)

]
[E1(q; K) + E2(q; K)]−K0E2(q; K)

[P 0 −K0 − E2(q; K)− E2(p; P)] [P 0 − E1(q; K)− E2(p; P)]
,

(E.19)

Ξ+
2 (q,p;K,P ) =

=
i

K0 + E1(q; K)− E2(q; K)

×

([
K0−E1(q; K)−E2(q; K)

]
E2(q; K)

−P 0−E1(q; K)−E2(p; P)
+

[
K0+E1(q; K)+E2(q; K)

]
E1(q; K)

−P 0+K0−E2(q; K)−E2(p; P)

)

= −i
[
P 0 + E2(p; P) + E1(q; K) + E2(q; K)

]
[E1(q; K) + E2(q; K)]−K0E2(q; K)

[P 0 −K0 + E2(q; K) + E2(p; P)] [P 0 + E1(q; K) + E2(p; P)]
.

(E.20)

Non-relativistic approximation. In the following, we consider the CM frame, K = 0,

as in section 5. We shall evaluate Ξ1(q,p;K,P ) and Ξ2(q,p;K,P ) at next-to-leading order

in the momenta q,p, applying the non-relativistic approximations of eqs. (C.18)–(C.20),

and setting, according to eq. (C.21),

K0 = m+
K2

2m
+ Ek , (E.21)

P 0 = m+
P2

2m
+ En , (E.22)

where En and Ek are given by eqs. (F.7) and (F.13). The next-to-leading order corrections

in q,p become important when the leading term in a v2rel expansion cancels, as is the case

for the interaction of two degenerate scalar particles via a scalar mediator (cf. section 5.1).

Note though that we drop subleading terms in the couplings; such corrections do not change

the structure of the wavefunction convolution integrals (cf. eqs. (5.7), (5.8)) that enter into

the transition amplitudes of section 5, and thus do not avert the cancellation of the leading
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term in the v2rel expansion. The same holds for P2 corrections. In addition, as seen from

eq. (3.41), P2 corrections are of order v4rel, α
4 and α2v2rel, while p2 corrections are only of

order v2rel. Similarly, P · p corrections are suppressed with respect to p2. As mentioned,

we are interested, in particular, in evaluating Ξ1(q,p;K,P ) at q − p − η2Pϕ = 0 and

Ξ2(q,p;K,P ) at q− p + η1Pϕ = 0. Then, according to the above, we shall keep only the

p2 corrections.

At q− p− η2Pϕ = 0, we find

Ξ1(q,p;K,P ) ' 2m2 S0(q;K)S0(p;P )

[
1 +

p2

2µ2

(
1− 2µ

m

)]
, (E.23)

and at q− p + η1Pϕ = 0, we find

Ξ2(q,p;K,P ) ' 2m1 S0(q;K)S0(p;P )

[
1 +

p2

2µ2

(
1− 2µ

m

)]
. (E.24)

F Schrödinger wavefunctions and convolution integrals

In the following, we shall consider the attractive Coulomb potential

V (r) = −α
r
. (F.1)

F.1 Solutions of the Schrödinger equation

The discrete spectrum of solutions to the Schrödinger equation (2.84),[
−∇

2

2µ
+ V (r)

]
ψn(r) = Enψn(r) , (F.2)

for the Coulomb potential of eq. (F.1), are (see e.g. [76])

ψn`m(r) = Rn`(r)Y`m(Ω) , (F.3)

Rn`(r) = (2κ/n)3/2
[

(n− `− 1)!

2n(n+ `)!

]1/2
e−κr/n (2κr/n)` L

(2`+1)
n−`−1 (2κr/n) , (F.4)

where Y`m(Ω) are the spherical harmonics and Ln−`−1 are the generalized Laguerre poly-

nomials of degree n− `− 1.18 In the above,

κ ≡ µα (F.6)

is the Bohr momentum, and the energy eigenvalues are

En = −µα
2

2n2
. (F.7)

18We assume the following normalisation for the Laguerre polynomials∫ ∞
0

xae−x L(a)
n (x)L(a)

m (x) dx =
Γ(n+ a+ 1)

n!
δn,m (F.5)
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In the following, we shall consider transitions to the ground state {100}. For the case

of a scalar mediator, we shall also consider radiative capture to the first excited state with

non-zero angular momentum {210}. The corresponding wavefuctions are

ψ100(r) =
κ3/2√
π
e−κr , (F.8)

ψ210(r) =
κ3/2

4
√

2π
κr e−κr/2 cos θr , (F.9)

where θr is the polar angle of the position vector r.

The continuous spectrum of solutions to the Schrödinger equation (2.85)[
−∇

2

2µ
+ V (r)

]
φk(r) = Ekφk(r) , (F.10)

is characterized by the quantum number k, which is the expectation value of the momentum

of the reduced system, with k = µvrel and vrel being the expectation value of the relative

velocity. The solutions are (see e.g. [76])

φk(r) = eπζ/2 Γ(1− iζ) F [iζ, 1, i(kr − k · r)] eik·r , (F.11)

where k = |k|, and

ζ ≡ κ/k . (F.12)

The energy eigenvalues are

Ek =
k2

2µ
=

1

2
µv2rel . (F.13)

Thus, ζ = α/vrel.

F.2 Convolution of the wavefunctions

We now want to calculate the integrals (5.7)–(5.9), appearing in the amplitudes of section 5,

Ik,n(b) ≡
∫

d3p

(2π)3
ψ̃?n(p) φ̃k(p + b) =

∫
d3r ψ?n(r) φk(r)e−ib·r , (F.14)

J k,n(b) ≡
∫

d3p

(2π)3
p ψ̃?n(p) φ̃k(p + b) = i

∫
d3r [∇ψ?n(r)] φk(r)e−ib·r , (F.15)

Kk,n(b) ≡
∫

d3p

(2π)3
p2 ψ̃?n(p) φ̃k(p + b) = −

∫
d3r [∇2ψ?n(r)] φk(r)e−ib·r , (F.16)

and

In′,n(b) ≡
∫

d3p

(2π)3
ψ̃?n(p) ψ̃n′(p + b) =

∫
d3r ψ?n(r) ψn′(r)e−ib·r , (F.17)

J n′,n(b) ≡
∫

d3p

(2π)3
p ψ̃?n(p) ψ̃n′(p + b) = i

∫
d3r [∇ψ?n(r)] ψn′(r)e−ib·r , (F.18)

Kn′,n(b) ≡
∫

d3p

(2π)3
p2 ψ̃?n(p) ψ̃n′(p + b) = −

∫
d3r [∇2ψ?n(r)] ψn′(r)e−ib·r , (F.19)

where we transformed into the coordinate space using eqs. (2.82) and (2.83).
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For the {100} state, the integrals (F.14)–(F.16) become

Ik,{100}(b) =
κ3/2 eπζ/2 Γ(1− iζ)√

π

∫
d3r ei(k−b)·r−κr F [iζ, 1, i(kr − k · r)] , (F.20)

J k,{100}(b) = − i κ
5/2 eπζ/2 Γ(1− iζ)√

π

∫
d3r r̂ ei(k−b)·r−κr F [iζ, 1, i(kr − k · r)] , (F.21)

Kk,{100}(b) = −κ2Ik,n=1(b) + K̄k(b) , (F.22)

where r̂ = r/r and

K̄k(b) ≡ 2κ5/2 eπζ/2 Γ(1− iζ)√
π

∫
d3r

r
ei(k−b)·r−κr F [iζ, 1, i(kr − k · r)] . (F.23)

For the {210} state, we will need only the integral (F.14),

Ik,{210}(b) =
κ5/2 eπζ/2 Γ(1− iζ)

4
√

2π

∫
d3r r cos θr e

i(k−b)·r−κr/2 F [iζ, 1, i(kr − k · r)] .

(F.24)

To evaluate these expressions, we make use of the identity [64]∫
d3r

ei(k−b)·r−κr

4πr
F [iζ, 1, i(kr − k · r)] =

[
b2 + (κ− ik)2

]−iζ
[(k− b)2 + κ2]1−iζ

≡ fk,b(κ) . (F.25)

Differentiating eq. (F.25) with respect to κ [29], with respect to bj [64], and with respect

to b, we obtain the following expressions

Ik,{100}(b) = −4
√
π eπζ/2 Γ(1− iζ)κ3/2

∂fk,b(κ)

∂κ
, (F.26)

J jk,{100}(b) = 4
√
π eπζ/2 Γ(1− iζ)κ5/2

∂fk,b(κ)

∂bj
, (F.27)

K̄k(b) = 8
√
π eπζ/2 Γ(1− iζ)κ5/2 fk,b(κ) . (F.28)

Ik,{210}(b) = −i
√
π

2
eπζ/2 Γ(1− iζ)κ5/2

[
∂2fk,b(κ′)

∂b ∂κ′

]
κ′=κ/2

. (F.29)

For the cases of interest, b = η2Pϕ or −η1Pϕ; evidently b = |b| < |Pϕ|. Moreover,

|Pϕ| is determined by energy-momentum conservation (cf. eq. (3.41)). In the CM frame

(K = 0), and in the non-relativistic regime, |Pϕ| ' µ(α2 +v2rel)/2 for capture in the ground

state, and |Pϕ| ' µ(α2/4 + v2rel)/2 for capture in the {210} state. As long as α, vrel < 1,

then b � κ if α > vrel, or b � k, if α < vrel. In evaluating eqs. (F.26)–(F.29), we may

thus expand in b and keep only the leading orders. In particular, to estimate ∂fk,b(κ)/∂κ,

∂fk,b(κ)/∂bj and ∂2fk,b(κ′)/∂b ∂κ′, we first differentiate f , then use κ = ζk (cf. eq. (F.12))

and expand up to order b2 around b = 0. (Note, though, that in most applications, we will

not need all of the terms included in the expansions below.) Setting

cos θ̃ ≡ k · b
k b

, (F.30)
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we find

fk,b(κ) ' 1

k2(1 + ζ2)2

(
iζ + 1

iζ − 1

)−iζ
×

[
1 +

2b cos θ̃

k(1 + iζ)
+
b2
[
− (1− iζ) + 2(2− iζ) cos2 θ̃

]
k2(1 + ζ2)(1 + iζ)

]
, (F.31)

∂fk,b(κ)

∂κ
' − 4ζ b

k4(1 + ζ2)2(1 + iζ)

(
iζ + 1

iζ − 1

)−iζ
×

[
cos θ̃ +

b
[
− (1− iζ) + 2(2− iζ) cos2 θ̃

]
k(1 + ζ2)

]
, (F.32)

∂fk,b(κ)

∂bj
' 2

k4(1 + ζ2)(1 + iζ)

(
iζ + 1

iζ − 1

)−iζ {
− bj

1 + iζ

[
1 +

4b cos θ̃

k(1 + ζ2)

]
(F.33)

+ kj

[
1 +

2(2− iζ)b cos θ̃

k(1 + ζ2)
−

2b2
[
1− iζ − (6− ζ2 − i5ζ) cos2 θ

]
k2(1 + ζ2)2

]}
, (F.34)

and

[
∂2fk,b(κ′)

∂b ∂κ′

]
κ′=κ/2

' 28b ζ(iζ − 2)

k5 (4 + ζ2)4

(
iζ + 2

iζ − 2

)−iζ
×
[
iζ − 2− 4(iζ − 1) cos2 θ̃

−
8b(iζ − 1)

[
3(iζ − 2)− 4(iζ − 3) cos2 θ̃

]
cos θ̃

k(4 + ζ2)

]
. (F.35)

For convenience, we define

R(ζ) ≡ 8
√
π ζ5/2 eπζ/2

1 + ζ2
Γ(1− iζ)

1 + iζ

(
iζ + 1

iζ − 1

)−iζ
. (F.36)

In evaluating the cross-sections of interest, we shall need

|R(ζ)|2 =
27π2ζ6

(1 + ζ2)3
e−4ζarccot ζ

1− e−2πζ
, (F.37)

where we used the identities

|Γ(1− iζ)|2 = 2πζ
e−πζ

1− e−2πζ
, (F.38)∣∣∣∣∣

(
iζ + 1

iζ − 1

)−iζ∣∣∣∣∣
2

= e−4ζ arccot ζ . (F.39)
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Collecting the above, we obtain

Ik,{100}(b) ' 2R(ζ)

1 + ζ2
b

k5/2

(
cos θ̃ +

b
[
− 1 + iζ + 2(2− iζ) cos2 θ̃

]
k(1 + ζ2)

)
, (F.40)

J k,{100}(b) ' R(ζ)

k3/2

{
− b

1 + iζ

[
1 +

4b cos θ̃

k(1 + ζ2)

]

+k

[
1 +

2(2− iζ)b cos θ̃

k(1 + ζ2)
+

2b2
[
− 1 + iζ + (6− ζ2 − i5ζ) cos2 θ̃

]
k2(1 + ζ2)2

]}
,

(F.41)

K̄k(b) ' R(ζ) k1/2

[
1 + iζ +

2b cos θ̃

k
+
b2
[
− 1 + iζ + 2(2− iζ) cos2 θ̃

]
k2(1 + ζ2)

]
, (F.42)

and

Ik,{210}(b) ' − i27
√

2π b

k5/2
ζ7/2 (iζ − 2) eπζ/2 Γ(1− iζ)

(4 + ζ2)4

(
iζ + 2

iζ − 2

)−iζ
×

[
iζ−2−4(iζ−1) cos2 θ̃ −

8b(iζ − 1)
[
3(iζ − 2)− 4(iζ − 3) cos2 θ̃

]
cos θ̃

k(4 + ζ2)

]
.

(F.43)

Note that in the above, the angle θ̃ is related to the angle θ between k and Pϕ, defined

by

cos θ =
k ·Pϕ

k|Pϕ|
, (F.44)

as follows

θ̃ =

{
θ, for b = η2Pϕ ,

π + θ, for b = −η1Pϕ .
(F.45)

For the computation of the {210} state de-excitation rate (section 5.1.3), we will need

the integral I{210},{100}(b). Starting from eq. (F.17), and using the wavefunctions (F.8)

and (F.9), it is easy to show that

I{210},{100}(b) = − i2
6
√

2

34
(2b)/(3κ)

[1 + (2b)/(3κ)]3
' − i 27

√
2 b

35 κ
, (F.46)

where we took into account that in the {210} → {100} radiative transition, the mediator is

emitted with momentum |Pϕ| = (3/8)µα2; then, for b = η1,2|Pϕ|, 2b/(3κ) = η1,2 α/4� 1.
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