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1 Introduction

In ref. [1], Witten proposed that three-dimensional quantum gravity on Anti-de Sitter

(AdS) space could be dual to a two-dimensional conformal field theory (CFT) with holo-

morphic factorization. This proposal led to an elegant construction at the highly quantum

level. However, soon after, the hypothesis of holomorphic factorization as holding for

generic values of the coupling constants was criticized by some authors [2, 3]. Still, it

became clear that the idea of demanding the partition function to be holomorphically fac-

torizable was an ingenious one, as such property would have been of help to overcome

several problems encountered when trying to define a quantum version of general relativity

(GR) in three dimensions [4]. In ref. [5], Li, Song and Strominger, reversing the approach,

proposed a three-dimensional theory of gravity that, by construction, seemed to be dual

to a holomorphic (chiral) CFT2. The theory proposed in [5] is known as Chiral Gravity

(CG), and it corresponds to Topologically Massive Gravity (TMG) [6, 7] formulated at a

special point in parameter space, where the curvature radius of AdS3, l, equals the inverse

of the graviton mass, µ. The consistency of this construction has been discussed in [8–16].
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Although it became clear after ref. [16] that, provided suitable boundary conditions

are imposed, the CG theory may represent a consistent quantum gravity theory in AdS3,

some questions remain open, such as that about the relevant geometries that contribute

to the partition function [17], or the question about how such a model could be embedded

in string theory. Another interesting question is how to generalize CG in order to include

more fields and local degrees of freedom, for instance. Here, we address the latter question.

We propose a generalization of CG defined by a Chern-Simons action for a deformed

Lorentz connection in 2+1 dimensions. The deformed connection consists of a torsion-free

Riemannian connection ω̃ and a conformal family of contorsion tensors φǫabµ, where φ is

a scalar field that describes the only1 propagating degree of freedom of the theory. The

torsion-free condition for ω̃ is enforced in a standard way through a Lagrange multiplier.

The paper is organized as follows: in section 2, the Lorentz-Chern-Simons theory

is introduced, adding to it a constraint term for the torsion in such a way that the spin

connection acquires a single additional mode in its contorsion part. Section 3 discusses how

this model corresponds to a non-minimal extension of TMG at the chiral point, including

CG as a particular sector. In section 4, the field equations of the theory are obtained,

including the constraint equation, both in the first-order and second-order formalisms. In

section 5, the linear approximation of the theory is discussed, analyzing the linearized field

equations around maximally symmetric backgrounds. Section 6 discusses the theory at

non-linear level, exhibiting exact solutions to the field equations, which present interesting

geometrical features. We also discuss how the black hole solutions of GR are embedded

in this model. In section 7, we speculate about the possibility that this theory be dual

to a holomorphic CFT2 reviewing, in particular, the computation of the AdS3 black hole

entropy from the viewpoint of the CFT2. Section 8 contains our conclusions and further

remarks.

2 Lorentz-Chern-Simons theory

Let us consider the three-dimensional Chern-Simons (CS) Lagrangian

LCS(ω) = ωa
b ∧ dωb

a +
2

3
ωa

b ∧ ωb
c ∧ ωc

a, (2.1)

where ωab are the components of the spin connection 1-form ωab = ωab
µdx

µ on a three-

dimensional manifold M3. Here, Latin characters correspond to Lorentz indices, while

Greek characters are coordinate indices. We work in the Einstein-Cartan formalism where

the spin connection ωab and the dreibein 1-form ea = eaµdx
µ are considered as indepen-

dent dynamical fields on equal footing. The spin connection can be decomposed in two

independent parts

ωab = ω̃ab + κab, (2.2)

1In TMG, there exists a local degree of freedom, corresponding to the massive graviton. However, at the

chiral point and when Brown-Henneaux boundary conditions are imposed, the theory loses its local degree

of freedom.
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where the Riemannian (purely metric) connection ω̃ab is defined to satisfy the torsion-free

condition

D̃ea = dea + ω̃a
b ∧ eb ≡ 0, (2.3)

where D̃ = d + ω̃ denotes covariant derivative in the Riemannian connection, and the

contorsion tensor κab is related to the torsion 2-form,

T a = dea + ωa
b ∧ eb = κab ∧ eb. (2.4)

The field equations for the Lagrangian (2.1) imply that all classical configurations are

Lorentz-flat,

Rab = 0. (2.5)

As a direct consequence of this, the torsion 2-form must be covariantly constant,

DT a = dT a + ωa
b ∧ T b = Ra

b ∧ eb ≡ 0.

In three dimensions, this equation can be integrated and the solution is

T a = φ0ǫ
a
bce

b ∧ ec, (2.6)

where φ0 is a constant with dimension [length]−1. Comparing (2.6) and (2.4), the contorsion

is found to be

κab = −φ0ǫ
ab

ce
c. (2.7)

Finally, combining (2.2), (2.7) and (2.5) the Riemannian curvature R̃ab = dω̃ab + ω̃a
c ∧ ω̃cb

can be seen to be constant and negative,

R̃ab = −(φ0)
2ea ∧ eb. (2.8)

In other words, all on-shell configurations obtained from (2.1) are three-dimensional locally

AdS spacetimes with constant torsion, where the cosmological constant Λ = −(φ0)
2 ≤ 0 is

an integration parameter [18].

We now consider a minimal deviation from the strictly covariantly constant torsion

case. Presumably, this could be the result of some form of spinning matter that acts as a

local source for torsion. One way to allow for this degree of freedom is by promoting φ0 to

be a local dynamical field φ, so that the connection now reads

ωab = ω̃ab−φǫabce
c. (2.9)

Inserting (2.2) in the Lagrangian (2.1) yields

LCS(ω) = LCS(ω̃) + 2κab ∧ R̃b
a +

2

3
κab ∧ κbc ∧ κca + κab ∧ D̃κba + d

(

ω̃a
b ∧ κba

)

.

The torsion-free CS Lagrangian can be expressed in terms of the Christoffel connec-

tion Γ̃α
βµ ≡ {αβµ},

LCS(ω̃) =

[

Γ̃α
βµ∂νΓ̃

β
αρ +

2

3
Γ̃α
βµΓ̃

β
λνΓ̃

λ
αρ

]

ǫµνρd3x.

– 3 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
3

The choice (2.9) reduces the number of independent components of κab from nine to

one. In this case the theory defined by Lagrangian (2.1) resembles TMG non-minimally

coupled to a scalar field,

ICS ≡ k

4π

∫

M3

LCS(ω) =
k

2π

∫

M3

[

1

2
LCS(ω̃) + φ2ea ∧ T̃ a

+ φǫabc

(

R̃ab +
1

3
φ2ea ∧ eb

)

∧ ec +
1

2
d
(

φǫabcω̃
ab ∧ ec

)

]

.

(2.10)

This expression could be further simplified by dropping the term involving T̃ a = D̃ea which

vanishes by virtue of (2.3). However, we prefer to keep this term for future convenience, be-

cause in section 4.2 the constraint T̃ = 0 is implemented by means of a Lagrange multiplier,

adding to (2.10) the term

k

8π

∫

M3

ζa ∧ T̃ a, (2.11)

where ζa is a vector-valued 1-form. The variation with respect to ζa yields the compatibility

condition (2.3).

In the expressions above, k is the level of the Chern-Simons action, and is given by a

positive integer number,

k ∈ Z>0.

The scalar field φ enters in (2.10) as an effective cosmological (non-constant) term, and

also acts as a non-constant Planck scale.

The theory defined by action (2.10) with the constraint term (2.11) represents a gener-

alization of TMG [6, 7] (at the chiral point [5]). In fact, one can verify that any solution of

the latter theory solves the equations of motion derived from (2.10) for φ = const. In ad-

dition, as we will show, the theory contains more general dynamical sectors (with dφ 6= 0)

which exhibit new geometrical features; for instance, we will exhibit asymptotically AdS3
solutions with non-constant curvature.

Before going further, let us consider a generalization of the action above by introducing

two deformation parameters (λ and m), which will allow to adjust the cosmological constant

(Λ) and the mass parameter of the topologically massive term (µ). Namely, we consider

the action

I[λ,m] =
k

2π

∫

M3

[

ǫabc

(

φR̃ab ∧ ec +
λ

3!
φ3ea ∧ eb ∧ ec

)

+
1

2m
LCS(ω̃)

]

+
k

2π

∫

M3

[

φ2ea ∧ T̃ a +
1

2m
ζa ∧ T̃ a 1

2
d
(

φǫabcω̃
ab ∧ ec

)

]

. (2.12)

Theory (2.12) clearly reduces to (2.10) with (2.11) for the special case λ = 2, m = 1;

namely ICS = I[2,1].
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3 Chiral Gravity

Let us now see that the original case λ = 2m = 2, for a fixed value of φ, corresponds to a

generalization of TMG formulated at the so-called chiral point of the parameter space [5],

in the sense that for φ = φ0 the two Lagrangians are the same. In order to see this, let

us first assume that φ takes the value φ0 in certain limit (say close to the boundary in

asymptotically Anti-de Sitter space). Then, since λ = 2, the first two terms in (2.12)

become2
k

2π

∫

M3

ǫabcφR̃
ab ∧ ec = −kφ0

2π

∫

M3

d3x
√−gR̃

and
k

6π

∫

M3

ǫabcφ
3ea ∧ eb ∧ ec = −kφ3

0

π

∫

M3

d3x
√−g

respectively. Comparing these formulas with the standard expressions

−1

16πG

∫

M3

d3x
√−gR̃ and

Λ

8πG

∫

M3

d3x
√−g,

allows identifying the effective three-dimensional Newton constant as G = 1/(8kφ0), and

the effective cosmological constant as Λ ≡ −l−2 = −8Gkφ3
0, and therefore l2 = 1/φ2

0, in

agreement with (2.8).

On the other hand, comparing with the standard topologically massive term,

1

32πGµ

∫

M3

d3xǫµνρΓ̃η
µα

(

∂ν Γ̃
α
ρη +

2

3
Γ̃α
νβΓ̃

β
ρη

)

implies k/4π = 1/(32πGµ). Combining these identifications, the following relations are

found

µ = φ0 = ±1

l
, (3.1)

k = ± l

8G
. (3.2)

Equation (3.1) defines the so-called chiral point of TMG, and, for this choice of couplings,

the theory formulated about asymptotically AdS3 is referred to as Chiral Gravity. TMG

at (3.1) exhibits special features and it was proposed as a candidate for a consistent quan-

tum theory [5].

4 Field equations

4.1 The Chern-Simons theory

Including the term (2.11) in the action (2.10) breaks conformal symmetry; without this

term it would be possible to absorb φ in a redefinition of the dreibein,

θa ≡ φea, (4.1)

2Our conventions are such that gµν = ηabe
a
µe

b
ν with ηab = diag(−,+,+). The inverse relation is gµν =

ηabEµ
aE

ν
b , where e

a
µEa

ν =δνµ. The (Riemannian) curvature two-form is given by R̃ab=(1/2)R̃ab
µνdx

µ∧dxν .
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eliminating the scalar field from the Lagrangian. Then, in terms of the new dreibein θa,

the field equations obtained varying with respect to θa and ω̃ab are

ǫabcR̃
ab +

1

2
λǫabcθ

a ∧ θb + 2τ̃c = 0,

− 1

m

R̃ab + ǫabcτ̃
c − θa ∧ θb = 0.

Here the 2-form τ̃ = 1
2 τ̃µνdx

µ ∧ dxν is the torsion defined with the rescaled basis (4.1) and

ω̃, namely τ̃a = dθa + ω̃a
b ∧ θb. These equations can also be written as

ǫabc

(

R̃ab +
λ

2
θa ∧ θb

)

+ 2τ̃c = 0, (4.2)

ǫabc

(

1

m

R̃ab + θa ∧ θb
)

+ 2τ̃c = 0, (4.3)

which, for λ 6= 2m, can be solved for R̃ and τ̃ ,

R̃ab =

(

m− λ/2

m− 1

)

θa ∧ θb,

τ̃c = −1

2

(

m− λ/2

m− 1

)

ǫabc θ
a ∧ θb.

This means that the solutions of this system have locally constant curvature and con-

stant torsion. This system corresponds to the Mielke-Baekler theory [19]. In the case

m = λ/2 and τ̃c = 0, equations (4.2) and (4.3) coincide and the theory degenerates. On

the other hand, the even more special case m = λ/2 = 1 is similar to the one studied

in ref. [20].

4.2 Implementing the constraint

The field equations for the theory defined by (2.10) with the addition of the constraint

term (2.11), are

0 = φǫabcR̃
ab +

λ

2
ǫabcφ

3ea ∧ eb + 2φdφ ∧ ec + 2φ2T̃c +
1

2m
D̃ζc, (4.4)

0 = − 1

m

R̃ab + ǫabcD̃ (φec)− φ2ea ∧ eb − 1

2m
ζ [a ∧ eb], (4.5)

0 = ǫabcR̃
ab ∧ ec +

λ

2
φ2ǫabce

a ∧ eb ∧ ec + 2φea ∧ T̃ a, (4.6)

0 =
1

2m
T̃ a, (4.7)

obtained by varying with respect to ea, ω̃ab, φ and ζa, respectively. Bracketed indices

denote normalized antisymmetrization A[ab] =
1
2(Aab −Aba) and (4.7) is the compatibility

condition (2.3).

– 6 –
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Eq. (4.5) can be algebraically solved for ζa by applying systematically the contraction

operator ιa, defined to act on a p-form as ιap = 1
p!E

µ
a pµµ1···µp−1dx

µ1 ∧ · · · ∧ dxµp−1 . We

obtain

ζa = 4m

(

−Ba +
1

4
Bea

)

,

where we have defined

Ba = − 1

m

R̃a + ǫabc∂bφe
c + 2φ2ea

B = − 1

m

R̃+ 6φ2,

and

R̃a = ιbR̃
ab = E µ

b R̃ab
νµdx

ν

R̃ = ιaR̃
a = E ν

a E µ
b R̃ab

νµ.

Substituting ζ in (4.4) and solving (4.7) for ω̃, gives a system of third order differential

equations for eaµ

1

2
φǫabc

(

R̃ab +
λ

2
φ2ea ∧ eb

)

+
1

m

Cc − D̃ ∗ (dφ ∧ ec) = 0, (4.8)

where we have defined the Cotton 2-form

Ca ≡ D̃

(

R̃a − 1

4
R̃ea

)

, (4.9)

and ∗ stands for the Hodge dual.3 The system is now given by (4.6) and (4.8), and remains

to be solved for the dreibein and the scalar field.

Contracting eq. (4.8) with ec and using the identity Ca ∧ ea = 0 combined with (4.6),

one finds that the scalar field is classically a harmonic function,

d ∗ dφ = 0,

(cf. eq. (4.13) below).

4.3 Metric formulation

The theory can be conveniently studied in the second-order formalism, where the fields

are the metric gµν = eaµe
b
νηab and the scalar field φ. In this case, the equations obtained

from the reduced action, where the torsion has been set to zero, are equivalent to those

obtained in the first order form (4.4)–(4.7). As shown above, equations (4.5) and (4.7),

obtained by varying the original first-order action with respect to ω̃ and ζ respectively,

can be algebraically solved for these auxiliary fields, ω̃ = ω̃(ea, φ) and ζ = ζ(ea, φ). Then,

the reduced action in which these expressions for ω̃ and ζ have been used, yields the same

equations for ea and φ (see, e.g. [21]).

3Our convention is such that ∗ (ea1 ∧ · · · ∧ eap) = 1
(D−p)!

ǫa1···ap
ap+1···aD

eap+1 ∧ · · · ∧ eaD .
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Let us consider the Hodge dual of eq. (4.8),

0 = φ

(

R̃µν −
1

2
gµνR̃

)

− λ

2
φ3gµν +

1

m

C̃µν + gµν∇̃α∇̃αφ− ∇̃µ∇̃νφ , (4.10)

where, symbolically, ∇̃ = ∂ + Γ̃ is the covariant derivative for the Christoffel connection

and C̃µν is now the Cotton tensor, defined by

C̃µ
ν =

1

2
ǫµαβ∇̃αR̃βν +

1

2
ǫν

αβ∇̃αR̃
µ
β ,

that can also be written as a derivative of the Schouten tensor,

C̃µν = ǫµ
αβ∇̃α

(

R̃βν −
1

4
gβνR̃

)

,

cf. eq. (4.9). On the other hand, (4.6) reads

R̃+ 3λφ2 = 0. (4.11)

By taking the trace of (4.10) and considering (4.11), one finds the equivalent set of equations

φ

(

R̃µν −
1

2
gµνR̃

)

− λ

2
φ3gµν +

1

m

C̃µν − ∇̃µ∇̃νφ = 0, (4.12)

and the harmonic equation

∇̃µ∇̃µφ = 0. (4.13)

From this, it follows that in the case φ = const. equations (4.12)–(4.13) reduce to Topolog-

ically Massive Gravity [6, 7] with cosmological constant given by Λ = −λφ2
0/2 and graviton

mass µ = mφ0.

5 Linearized theory

Let us now study the linearized theory as a perturbation of the metric and the scalar field

about a given solution ḡµν , φ̄ of (4.10), (4.11). We consider

gµν = ḡµν + hµν ,

φ = φ̄+ ϕ.

The first order corrections of eqs. (4.10), (4.11) are

ϕḠµν + φ̄G(1)
µν − 1

2
λφ̄3hµν −

3

2
λφ̄2ϕḡµν +

1

m

C(1)
µν − γλµν∂λφ̄− ∇̄µ∇̄νϕ = 0, (5.1)

∇̄µ∇̄νh
µν − ∇̄2h− hµνR̄µν + 6λφ̄ϕ = 0 (5.2)

where γλµν stands for the first-order correction to the Christoffel symbol, Γ̃λ
µν = Γ̄λ

µν +γλµν +

O(h2), with

γλµν =
1

2

(

∇̄µh
λ
ν + ∇̄νh

λ
µ − ∇̄λhµν

)

,

where indices are raised and lowered with the background metric ḡµν , ḡµν .

The first-order corrections for the Ricci tensor R̃µν = R̄µν + R
(1)
µν , and Ricci scalar

R̃ = R̄+R(1), are given by

R(1)
µν =

1

2

(

2∇̄λ∇̄(µh
λ
ν) − ∇̄µ∇̄νh− ∇̄2hµν

)

,

R(1) = ∇̄µ∇̄νh
µν − ∇̄2h− hµνR̄µν ,

– 8 –
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from which one can build the first-order corrections of the Einstein and Cotton tensors,

G̃µν = Ḡµν +G
(1)
µν , C̃µν = C̄µν + C

(1)
µν ,

G(1)
µν = R(1)

µν − 1

2
(ḡµνR

(1) + hµνR̄),

C(1)
µν = ǫ(µ|

αβ
(

∇̄αR
(1)
β|ν) + γλν)αR̄λβ

)

+ 2ǫ(µ|λ
[αhβ]λ∇̄αR̄β|ν).

Here parenthesis denote normalized symmetrization A(µν) =
1
2(Aµν +Aνµ).

5.1 Gauge fixing

In order to identify the physical degrees of freedom it is necessary to separate the gauge

degrees of freedom from the propagating components of the fields. This is usually achieved

by making a gauge transformation in which the new metric is transverse (∇̄µh
′µν = 0) and

traceless (h′ = 0). In the metric form of the theory, the local Lorentz symmetry is gone since

the fields gµν and φ are trivially Lorentz invariant and the only remaining gauge invariance

is diffeomorphism symmetry. Under an infinitessimal diffeomorphism parametrized by

ξµ, the metric transforms as gµν → gµν + ∇(µξν). In the linearized approximation, this

corresponds to a change in hµν and ϕ given by4

δξhµν = ∇̄(µξν), δξϕ = ξµ∂µϕ.

If the transformed field is transverse and traceless, the diffeomorphism ξ must be

such that

∇̄µh
′µν = ∇̄µh

µν + ∇̄µ∇̄(µξν) = 0, (5.3)

h′ = h+ ∇̄µξ
µ = 0. (5.4)

In order for the transverse-traceless gauge to be accessible, these equations for ξ

must be integrable. Using the commutation relation of the covariant derivatives together

with (5.4), equation (5.3) can be written as

1

2

(

∇̄2ξν + R̄ ν
µ ξµ

)

+ ∇̄µh
µν − 1

2
∇̄νh = 0.

Taking the divergence of this expression one finds ∇̄µ∇̄νh
µν −∇̄2h+ ∇̄µ

(

R̄µ
νξ

ν
)

= 0.

For an AdS background, in particular, it reads

∇̄µ∇̄νh
µν − ∇̄2h+

2

l2
h = 0, (5.5)

which is incompatible with (5.2) if ϕ 6= 0. This means that the transverse-traceless condi-

tion cannot be met in general, starting from a generic hµν and ϕ, because (5.3) and (5.4)

are not integrable unless φ = const.

4Note that in order for this transformation to be compatible with the linearized approximation, ξµ must

be of the same order as hµν .
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On the other hand, a purely transverse gauge condition ∇̄µh
′µν = 0 is allowed by (5.2)

provided
(

∇̄2 − 2

l2

)

h = 6λφ̄ϕ, (5.6)

which is not contradictory if h′µν is not traceless Then, we find that the trace of the

perturbation h = ḡµνhµν is sourced by the perturbation of the scalar field ϕ which is in

turn a harmonic function

∇̄µ∇̄µϕ = 0.

In conclusion, the presence of the scalar field excites a new degree of freedom associ-

ated to h.

6 The non-linear theory

6.1 Gravitational waves

Now, let us study non-linear solutions to the equations of motion.

In the sector φ = const., theory (4.12)–(4.13) reduces to Topologically Massive Gravity

with a cosmological constant Λ = −l−2 = −λφ2
0/2 ≤ 0. In particular, it admits as an exact

solution three-dimensional Anti-de Sitter space whose metric, in Poincaré coordinates,

reads

ds2 =
l2

y2
(

−du2 − 2du dv + dy2
)

. (6.1)

A particularly interesting deformation of Anti-de Sitter solution (6.1) is given by the

so-called AdS-waves, which correspond to a particular case of the family of Siklos solutions

of Einstein equations. The AdS-wave ansatz, is

ds2 =
l2

y2
(

−F (u, y)du2 − 2du dv + dy2
)

, (6.2)

which represents a pp-wave propagating on AdS3 space where F (u, y) describes the profile

of the wave.

The equations for F (u, y) demand the scalar field to be constant. This is because the

Ricci scalar for (6.2) is R = −6/l2 (cf. (4.11)). Then, all solutions (6.2) reduce to the one

studied in ref. [22] and no deformation of this type gives rise dynamics for φ(x). In the

next section, we consider solutions of non-constant φ, which do not reduce to the TMG

solutions.

6.2 Circularly symmetric solutions

Now, let us consider circularly symmetric static solutions. Consider the diagonal form

ds2 = −f2(r)dt2 + h2(r)dr2 + r2dθ2

where r ∈ R≥0, t ∈ R, and θ ∈ [0, 2π).
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The system of differential equations for the radial metric functions f , h and φ read

0 =
φh′

rh3
+

1

2
λφ3 +

f ′φ′

fh2
, (6.3)

0 =
φf ′

rfh2
− 1

2
λφ3 − 1

h

(

φ′

h

)′

, (6.4)

0 =
φ

hf

(

f ′

h

)′

− 1

2
λφ3 − φ′

rh2
, (6.5)

0 = r2
[

1

fh

(

f ′

h

)′

+
h′

rh3

]′

+ r

[

1

fh

(

f ′

h

)′

− f ′

rfh2

]

+
r2f ′

f

(

h′

rh3
+

f ′

rfh2

)

, (6.6)

where the primes stand for derivatives with respect to the radial coordinate, f ′ ≡ ∂rf , etc.

The harmonic condition of the scalar field, on the other hand, takes the form

(

rf

h
φ′

)′

= 0. (6.7)

The system (6.3)–(6.7) admits an exact solution of the form

ds2 = −r2

l2
dt2 +

2r

φ2
0λ(r

2 − r20)
3/2

dr2 + r2dθ2, (6.8)

with r ≥ r0, t ∈ R and θ ∈ [0, 2π), and with a scalar field configuration

φ(r) =
φ0(r

2 − r20)
1/4

r1/2
, (6.9)

where l, φ0 and r0 are integration constants (notice that, however, by rescaling t, we can

set l2 ≡ 2/(φ2
0λ) without loss of generality). The asymptotic value of the scalar field at

infinity is

lim
r→∞

φ(r) = φ0. (6.10)

The metric (6.8) is not defined if φ = φ0 = 0. For r0 → 0 the scalar field approaches

φ = φ0 6= 0 and metric (6.8) approaches a locally AdS3 geometry that corresponds to the

massless BTZ solution [23, 24]. In other words, the scalar field is not an independent hair5

as it cannot be switched off; and when it approaches the constant value φ0, the generic

solution becomes a particular black hole solution of TMG. Something similar occurs in

other cases where scalar fields are supported by a black hole, in which case it is impossible

to switch off the scalar keeping the mass of the black hole fixed [25–27].

For large r the metric (6.8) becomes

ds2 ≃ −r2

l2
dt2 +

2

φ2
0λr

2
dr2 + r2dθ2 + . . . (6.11)

5Nevertheless, it still represents a one-parameter family of static circularly symmetric solutions; the real

parameter being r0.
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where the ellipses stand for terms that are subleading in powers of r. In fact, solution (6.8)–

(6.9) is asymptotically Anti-de Sitter space satisfying the Brown-Henneaux conditions [28],

which in particular require

gtt ≃ −r2

l2
+O

(

r0
)

, grr ≃
l2

r2
+O

(

r−4
)

, (6.12)

gθt ≃ O
(

r0
)

, gθθ ≃ r2 +O
(

r0
)

. (6.13)

The theory actually admits other sets of boundary conditions, including logarithmic

fall-offs ∼ log(r) in the components above. This is known to happen in the CG the-

ory [10, 11, 15], where imposing such behavior leads to the definition of the so-called

Log-Gravity [16]. An important ingredient in the discussion in [10–12, 15, 16] was whether

it is consistent to define the TMG theory at the chiral point imposing the strong con-

ditions (6.12)–(6.13). In [16, 17], the question whether non-constant curvature solutions

obeying (6.12)–(6.13) actually existed was studied in relation to the contributions of the

Chiral Gravity partition function. This is why the fact of having found here non-constant

curvature solutions obeying such strong fall-off behavior is relevant.

In principle, metric (6.9) can be considered also in the region r < r0. However, the

geometry turns out to be singular at r = r0. This can be seen by computing the components

of the Riemann tensor, which in three dimensions is given in terms of the metric and the

Ricci tensor. At r = r0, both the metric and the Ricci tensor exhibit singularities; in

particular, Rrr = −(2r2 + r20)/(r
2(r2 − r20)). In addition, spacetime (6.8) also presents a

singularity at r = 0. Provided r0 6= 0, the scalar curvature invariants associated diverge

for r → 0 as R ∼ 1/r, RµνR
µν ∼ 1/r6, Rµ

αR
α
βR

β
µ ∼ 1/r9 and ∇µR

αβ∇αR
µ
β ∼ 1/r9,

while all of them vanish at r = r0.

6.3 Black holes

Let us now consider black hole solutions. Since the theory includes TMG as a particular

sector, it also exhibits black holes; in particular, the BTZ black hole [23].

In the sector φ = φ0 = const., equations (6.3)–(6.6) simplify considerably and can be

shown to admit solutions with

f(r) = h−1(r) =

(

r2 − r2+
l2

)1/2

, l2 =
2

λφ2
0

where r2+ is a real constant. This corresponds to the BTZ black hole [23, 24]

ds2 = −r2 − r2+
l2

dt2 +
l2

r2 − r2+
dr2 + r2dθ2,

with φ = φ0. The integration constant r+ represents the location of the black hole horizon.

The metric of the black hole solution that includes rotation reads

ds2 = −(r2 − r2+)(r
2 − r2−)

l2r2
dt2 +

l2r2dr2

(r2 − r2+)(r
2 − r2−)

+ r2
(

dθ2 +
r+r−
lr2

dt
)2

,

where r− represents the location of the inner horizon.

– 12 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
3

For this geometry, one can define two temperature parameters

T± =
1

2πl2
(r+ ± r−), (6.14)

which are associated to the inverse of the identification periods of the orbifold construc-

tion [24]. In particular, this gives the Hawking temperature

TH = T+ + T−.

In TMG, the expression of the black hole entropy does not satisfy the Bekenstein-

Hawking area law, but it involves as well the area of the inner horizon; namely, one finds

that the entropy is given by

SBH =
2π(r+ − r−)

4G
. (6.15)

In the next section we will review how this result can be obtained from a dual CFT2 point

of view.

7 AdS3/CFT2

In the theory we have defined here, the effective cosmological constant l−2 (i.e. the inverse

of the curvature radius of its AdS3 solutions) enters as an integration constant, associated

to the boundary value φ0 (see, for instance, eqs. (6.10) and (6.11)). A priori, this could seem

surprising and, when thought of within the context of AdS3/CFT2 correspondence [29], it

could even seem puzzling. This is because the central charge of the dual conformal field

theory is typically given in terms of the curvature radius l [28]. Then, if l is free to take an

arbitrary value within a continuous range, this may seem to contradict the Zamolodchikov

c-theorem [30], which forbids the existence of a family of CFT2s parametrized by continuous

values of the central charge. However, this is not a problem here because, although l may

take values on a continuum, the ratio l/G, which is what actually enters in the central

charge, only takes specific (non-continuous) values, see (3.2). That is, the theory happens

to circumvent the obstruction imposed by the c-theorem and still present an infinite family

of AdS3 vacua parameterized by a continuous parameter l. Then, we conjecture that

the theory in AdS3 is holographically dual to a CFT2 with left- and right-moving central

charges given by

cL = 0 cR =
3l

G
= 24k. (7.1)

Indeed, this can be seen to be the case for a theory defined with φ = const. [31].

Modular invariance of such a CFT2 would require

cR − cL = 24k ∈ Z≥0,

which is actually satisfied due to the quantization of the CS level.

The temperature parameters (6.14) read T± = (φ2
0/2π)(r+ ± r−), and the black hole

entropy (6.15) is SBH = 4πkφ0(r+−r−). Then, one comes to the conclusion that, for (7.1),

Cardy formula in the dual CFT2 reads [32]

SCFT =
π2l

3
(cLT+ + cRT−) ,

exactly reproducing the black hole entropy (6.15).
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8 Conclusions and further remarks

Here, a generalization of the theory of Chiral Gravity has been proposed. The model follows

from considering a Chern-Simons action for the spin connection, supplemented with a scalar

field that plays the role of a cosmological “constant”, and a constraint that enforces the

spin connection to remain torsionless. This introduces a local degree of freedom in the

theory, which incarnates as a scalar field non-minimally coupled to the metric. The theory

includes TMG and Chiral Gravity of [5] as particular sectors.

In this theory, effective cosmological constant, i.e. the curvature radius of the maxi-

mally symmetric solutions, appears as an integration constant related to the value of the

contorsion at infinity. Its value is either negative or zero. In the former case, the theory

admits an infinite family of Anti-de Sitter (AdS) vacua, labeled by a continuous parame-

ter. We explained how this fact is not in conflict with Zamolodchikov’s c-theorem in the

dual conformal field theory (CFT). In fact, we conjecture that the theory on its AdS3
vacua is dual to a CFT2 with left- and right-moving central charges cL = 0 and cR = 24k,

respectively, where k is the level of the original Chern-Simons action.

In addition to the Chiral Gravity sector, which corresponds to constant contorsion, the

theory includes other interesting sectors. In particular, we presented an exact solution with

non-constant curvature, asymptotically AdS3 in the Brown-Henneaux sense. The theory

admits the solutions of Chiral Gravity, such as the BTZ black holes. The values of the

central charges of the conjectured CFT2 agree with the those needed for the Cardy formula

to reproduce the black holes entropy.

The theory we studied here can be naturally extended to include a vector field. This

can be achieved by decomposing the contortion in its irreducible parts κab = −φǫabce
c −

A[aeb]+Mabce
c, where the first term is the completely antisymmetric part, while the second

and third terms correspond to the vector and the traceless symmetric parts, respectively.

This may represent an interesting way of coupling Chiral Gravity to new matter fields.
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[24] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole,

Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

[25] M. Henneaux, C. Mart́ınez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1

gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].

[26] C. Mart́ınez, R. Troncoso and J. Zanelli, de Sitter black hole with a conformally coupled

scalar field in four-dimensions, Phys. Rev. D 67 (2003) 024008 [hep-th/0205319] [INSPIRE].

[27] C. Mart́ınez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled

scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].

[28] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic

Symmetries: An Example from Three-Dimensional Gravity,

Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

[29] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231]

[hep-th/9711200] [INSPIRE].

[30] A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field

Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
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