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Abstract: We show that the effective coupling constants τ of supersymmetric gauge

theories described by hyperelliptic curves do not distinguish between the lattices of the

two kinds of heterotic string. In particular, the following relation

ΘD+
16

(τ) = Θ2
E8
(τ)

holds. This is reminiscent of the relation, by T -duality, of the two heterotic strings. We

suggest that such a relation extends to all curves describing effective supersymmetric gauge

theories.
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Let us consider the Seiberg and Witten effective coupling constant [1, 2]

τij =
θij
π

+

(

8πi

g2

)

ij

. (1)

Positivity of g2, which is crucial to guarantee unitarity of the theory, is a consequence of

the Riemann bilinear relations, that imply

Im τij > 0 . (2)

We now show that τij satisfies another important relation.

The Seiberg-Witten theory, that in the simplest case has been proved in [3], is described

by hyperelliptic curves [4, 5]

y2 =

2g+2
∏

k=1

(x− ai) . (3)

The standard example is the case of gauge group SU(n) whose hyperelliptic curves have

genus g = n− 1.

A basic result for hyperelliptic curves follows by the polynomial identity





∑

{T
∐

T c}

∏

i<j; i,j∈T

(ai − aj)
2

∏

i<j; i,j∈T c

(ai − aj)
2





2

= 2g
∑

{T
∐

T c}

∏

i<j; i,j∈T

(ai − aj)
4

∏

i<j; i,j∈T c

(ai − aj)
4 , (4)

where the sum is over the 1
2

(2g+2

g+1

)

partitions T
∐

T c of {1, . . . 2g+2} for which both T and

T c have g + 1 elements. Such an identity, that holds for g ≥ 1, and that can be proved by

induction by letting a2g+1 = a2g+2, has been first derived by Poor [6]. Using the Thomae

formula and some theta identities, this leads to the following identity for all hyperelliptic

Riemann surfaces [6]

Fg(τ) = 0 , (5)

where Fg(Z) is the modular form of weight 8

Fg(Z) = 2g
∑

δ even
θ16[δ](0, Z)−

(

∑

δ even
θ8[δ](0, Z)

)2

, (6)

and Z is an arbitrary element of the Siegel upper half-space

Hg := {Z ∈ Mg(C) |
tZ = Z, ImZ > 0} .

It turns out that Fg is proportional to the difference between the theta series associated

to the even unimodular lattices E8 ⊕ E8 and D+
16

Fg(Z) = 22g(ΘD+
16

(Z)−Θ2
E8
(Z)) . (7)
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Let Ig be the closure of the locus of Riemann period matrices in Hg. F4 is the Schottky-

Igusa form [7, 8] and the irreducible variety in H4 defined by F4 = 0 is I4 ⊂ H4. This

explicitly solves the Schottky problem for g = 4.

A consequence of the above result is that the effective coupling constants of N = 2

super Yang-Mills theories with hyperelliptic curves satisfy the relation

ΘD+
16

(τ) = Θ2
E8
(τ) . (8)

This means that the effective coupling constants of effective supersymmetric gauge

theories do not distinguish between the two lattices defining the two kinds of heterotic

string, the heterotic SO(32) and the heterotic E8 × E8 [9]. This suggests a possible new

connection between string and SYM theories.

It would be then interesting to understand if (8) extends to all curves describing

effective supersymmetric gauge theories. An interesting example is provided by the Gaiotto

curves [10]

y2 =
P2n+2(x)

x2(x− x1)2 · · · (x− xn)2(x− 1)2
, (9)

where the xi’s denote the punctures, P2n+2(x) is a polynomial of degree (2n+ 2) depend-

ing on the Coulomb branch ui, on the masses and on the gauge couplings qi = xi/xi+1.

Recently, in [11], using the following analogous of the relation in [12]

Ui = qi
∂F

∂qi
, (10)

the functional dependence of the gauge invariant modulus Ui = 〈TrΦ2
i 〉 on the ai’s has

been obtained. Integrating (10) with respect to log qi one obtains the prepotential F [11].

In this way one may compare such an expression with the Nekrasov’s prepotential [13]. In

turn, all this is related to the recent work [14, 15], where it has been proposed to identify

the Ui’s with the residues of the quadratic differential y2(x) at the punctures.

We now provide some evidence that (8) holds for supersymmetric gauge theories de-

scribed by a prepotential. We first insist on the crucial role of duality. Let us consider the

case of gauge group SU(2). It is immediately verified that the theory has a basic invari-

ance under the translation of the effective coupling constant. This means that the gauge

invariant modulus u has the invariance

u(τ + 2) = u(τ) .

Denote by T the translation operator by a unit. On the other hand, the theory admits a

dual representation. This means that the same theory can be expressed in terms of dual

variables, in particular in terms of

τD = −
1

τ
.

Denote by S the inversion operator. Since the dual theory has the same formal properties

of the original formulation, it follows that it also remains invariant under T 2, that is

u(τD + 2) = u(τD) .

– 2 –
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It follows that the trivial T 2 symmetry, together with the existence of a dual formulation,

leads to the fundamental symmetry group generated by

u(T 2τ) = u(τ) ,

u(S−1T 2Sτ) = u(S−1T 2τD) = u(S−1τD) = u(τ) . (11)

Since acting iteratively with T 2 and S−1T 2S we get Γ(2), it follows that this is the sym-

metry group of N = 2 SYM with gauge group SU(2). This solves the theory and leads to

the relation [12]

u = πi

(

F −
a

2

∂F

∂a

)

. (12)

A similar construction should lead to a short proof for more general cases. What is im-

portant here, is just the existence of a dual formulation of the theory and translation

invariance. Existence of the prepotential, the above relation and the existence of a Rie-

mann period matrix, are strictly related facts. This identifies a particular class of Riemann

surfaces, namely the ones with period matrix

τij =
∂2F

∂ai∂aj
.

We note that the presence of punctures in Gaiotto curves may be considered as a suit-

able limit procedure corresponding to the degeneration of the moduli space of hyperelliptic

curves. However, as a direct check one should apply the polynomial identity (4) to the

polynomials of Gaiotto’s curves, identifies the period matrix τij by (10), and then using

the Thomae formulas to verify whether (8) holds in this case. More generally, one should

investigate, using the inversion method in [11], if all effective supersymmetric theories

admitting the relation (12) may correspond to effective coupling constants satisfying (8).

We conclude observing that a related approach to check (8) is to use the M-theory

construction [16, 17]. We also note that since the underlying theory of Riemann surfaces

is the uniformization theory, it follows that Liouville theory should emerge naturally in

such an investigation. The role of Liouville theory in supersymmetric Yang-Mills theories

has been observed in [12] and [3]. Subsequently, it has been shown that Seiberg-Witten

theory can be formulated on the moduli space of punctured spheres, whose geometry is

described by the Liouville action [18]. Interestingly, related structures also appear in the

AGT correspondence [19, 20].
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