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problem we also find the corresponding gyraton-type solutions of the ghost-free gravita-
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the solutions of the linearized Einstein equations and smooth out their singularities.

Keywords: Models of Quantum Gravity, Spacetime Singularities, Effective field theories,

Field Theories in Higher Dimensions

ArXiv ePrint: 1504.00412

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)107

mailto:vfrolov@ualberta.ca
mailto:zelnikov@ualberta.ca
mailto:depaulan@ualberta.ca
http://arxiv.org/abs/1504.00412
http://dx.doi.org/10.1007/JHEP06(2015)107


J
H
E
P
0
6
(
2
0
1
5
)
1
0
7

Contents

1 Introduction 1

2 Non-local Newtonian gravity 3

2.1 Newtonian potential in the ghost-free gravity 3

2.2 Heat kernel approach 5

3 Non-spinning gyratons in the ghost-free gravity 7

4 Null shell collapse 10

4.1 Null shell as a superposition of null gyratons 10

4.2 Stress-energy tensor 12

4.3 Averaged metric 12

4.4 A case of linearized Einstein equations 14

4.5 Ghost-free case 15

5 Spherical “thick” null shell collapse: results 16

5.1 “Thick” null shell model 16

5.2 Gravitational field in the I-domain 17

5.2.1 Linearized Einstein theory 17

5.2.2 Ghost-free gravity case 17

5.2.3 (∇r)2 invariant 18

5.3 Gravitational field in the R domain 18

5.4 Gravitational field in the N±-domains 20

6 Summary and discussion 21

A Useful geometric relations 23

B Evaluating integrals 25

1 Introduction

It is widely believed that the quantum gravity will “cure” a decease of the classical general

relativity, its singularities. In particular, in the domain of a spacetime near singularities,

where the curvature becomes large, the Einstein equations should be modified. Such a

modification, which, for example, is dictated by the string theory, should include additional

terms in the gravitational effective action, that are both, higher in curvature and in its

derivatives. It was proposed many different modifications of the Einstein theory of the

general relativity, that, in particular, change its infrared and ultraviolet behavior (see, e.g.

– 1 –



J
H
E
P
0
6
(
2
0
1
5
)
1
0
7

a review [1]). In this paper we discuss a special class of the modified gravity theory with

higher derivatives. It is instructive to check at first the effects of such a modification in the

linearized version of the corresponding theory. It is well known that addition of quadratic

in the curvature corrections modifies the standard Laplace equation for the gravitational

potential ϕ in the Newtonian approximation, which takes, for example, the following form

(l2 4+1)4 ϕ = 4πρ . (1.1)

It is easy to show that such a modified equation for a point mass has a decreasing at the

infinity solution, which remains finite at r = 0. The parameter l, which is determined

by the coupling constant for the quadratic in the curvature term in the effective action,

provides a UV cut-off in the regularized solution (see e.g. [2, 3]). A general analysis of the

Newtonian singularities in higher derivative gravity models was recently performed in [4].

A connected problem is a possibility of mini-black hole production in the gravitational

collapse of a small mass. To study such a problem one may consider it first in the linearized

version of the theory. If a corresponding solution is regular and its curvature for a small

mass M is uniformly small in the whole spacetime, one might conclude that in this regime

higher in curvature corrections are small and can be neglected. In such a case one can

expect that for the small enough mass M a black hole is not formed. In other words, in

such a theory there exists a mass gap for the back hole formation. Long time ago in the

paper [3] it was demonstrated that the gravitational theory with quadratic in the curvature

terms in the action possesses this property.

However, in a general case, a propagator in a theory with higher derivatives contains

extra poles, reflecting the existence of the additional to the gravitons degrees of freedom. As

a result, the corresponding theory with higher derivatives usually contains ghosts [2, 5, 6].

In order to avoid this problem a new type of the modification of the Einstein theory, called

ghost-free gravity, was proposed [7–11]. A similar model was proposed earlier in [12] (for

general discussion see [13, 14]).

The main idea of this approach is to consider a theory, which is non-local in derivatives.

Suppose that in the linearized version of such a theory the box operator � is modified and

takes the form a(�)�, where a(z) is an entire function of the complex variable z. Then

the propagator for such a theory does not have additional poles, different from the original

pole, describing propagation of the gravitons. There exists a variety of entire functions.

It is sufficient to use the function a(z) to be an exponent of the polynomial in z. The

simplest choice is when this polynomial is a linear function, so that the modified box-

operator is exp(−�/µ2)�, where µ, which has the dimensionality of the mass, is the UV

cut-off parameter. One may hope that such cut-off regularizes singularities inside black

holes [15, 16] and in the big-bang cosmology [16–20]. It should be emphasized that non-

local operators of a similar form and their properties were considered long time ago in the

papers [21–26].

In the present paper we study solutions of the ghost-free gravitational equations in

the linearized approximation. In the section 2 we demonstrate that for any number of

spacetime dimensions D a solution for the Newtonian potential for a point mass can be

obtained by using the heat kernel method. We describe these solutions and compare them
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with the solutions of the linearized Einstein equations. We demonstrate that for D ≥ 4 the

gravitational potential is regular at the position of the source, and the parameter µ is the

scale of the UV regularization. We also show that for D = 4 the obtained result coincides

with the one obtained earlier by the Fourier method and presented in the paper [7]. In

section 3 we boost the solution for a static point mass. By taking the Penrose limit

with v → c of the boosted metric, we obtain a solution of the ghost-free equations for

gravitational field of a ”photon” moving in D-dimensional spacetime. We show that these

solutions are similar to the field of non-rotating gyratons [27–29]. The main difference is

that a function of (D − 2) transverse variables, which enters the metric of the gyraton

and which is a solution of the (D − 2) flat Laplace equation, in the ghost-free gravity

becomes a solution of the (D − 2) operator a(−4)4. As a result, the singularity of the

gyraton metric at its origin is smooth. In the next sections 4–5 we study the problem of

the spherical collapse of null fluid in the ghost-free gravity. In section 4 we demonstrate

how a solution for the spherical null shell collapse can be obtained as a superposition of a

spherical distribution of gyratons, that pass through the fixed point and are the generators

of the null shell. The method can be used in a spacetime with an arbitrary number of

dimensions. In the present paper we illustrate it for a special case of the four dimensional

spacetime. We use this approach to obtain a solution for the gravitational field of a thin

null shell in the ghost-free theory. We show that a solution, obtained in the developed

gyraton-based approach, correctly reproduces the known solution for the collapsing null

shell in the linearized Einstein gravity. We obtain also a solution for the ghost-free gravity

and compare it with the solution for the Einstein gravity. In particular, we calculate

the Kretschmann curvature invariant for the solution and demonstrate that its singularity

is smoothened. However, it remains divergent at the origin r = 0. Finally, we study the

collapse of a spherical thick null shell and obtain its gravitational field by taking a specially

chosen superposition of thin null shells (section 5). We demonstrate that the ghost-free

gravitational field is everywhere regular in this model, and for small mass M the apparent

horizon (and hence a black hole) does not form. This means that in the ghost-free gravity

there is a mass gap for the mini black hole formation in the gravitational collapse, and, in

this sense, its properties are somehow similar to the properties of the theory with quadratic

in curvature corrections, discussed in [3]. Section 6 contains summary and discussions of

the obtained results. Appendices contain details of the derivation of the thin null shell

metric from the gyraton solutions. In this paper we use the sign convention adopted in the

book [30].

2 Non-local Newtonian gravity

2.1 Newtonian potential in the ghost-free gravity

In this paper we consider solutions of the linearized ghost-free gravity equations. We start

by analyzing static solutions for a point mass in this approximation. Such a solution gives a

modified Newtonian potential. The gravitational field of a point source in four dimensions

was obtained earlier in [7, 15]. The authors of these papers used the Fourier method for

this purpose. We demonstrate that this result can be obtained much easier by using the
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method of the heat kernels. This method, practically without any changes, allows one

to solve a similar problem in the higher dimensional case. We consider a flat spacetime

and denote by D the number of its dimensions. It is often convenient to use a number n,

connected with D as follows D = n+ 3. The static metric in the weak-field approximation

in the standard D dimensional gravity can be written in the form (see e.g. [29])

ds2 = −(1 + 2ϕ)dt2 +

(
1− 2

n
ϕ

)
d`2 , d`2 = δijdx

idxj , i, j = 1, . . . , D − 1 , (2.1)

where the Newtonian potential ϕ satisfies the equation

4 ϕ = 4πGρ , G =
2n

n+ 1
GD . (2.2)

The operator 4 is a standard (D − 1)-dimensional Laplace operator, which in the flat

(Cartesian) coordinates is of the form

4 (. . .) = δij(. . .),ij . (2.3)

In the four-dimensional spacetime n = 1, so that G = G4 and (2.2) takes the standard form

of the Poisson equation for the Newtonian gravitational potential. It should be emphasized

that there exists an ambiguity in the choice of the form of the higher dimensional coupling

constant. We denote this constant by GD and fixed it by the requirement that the form of

the Einstein equation is the same in any number of dimensions

S[g] =
1

16πGD

∫
dDx
√
−gR . (2.4)

We introduce another constant G, related with GD in such a way, that the form of the

equation for the Newtonian potential ϕ is the same for any D. For a point mass m

ρ = mδn+2(x) , (2.5)

and the potential ϕ is (see e.g. [29])

ϕ = −2Γ(1 + n/2)

πn/2n

Gm

rn
. (2.6)

In the four-dimensional case this expression takes the standard form ϕ = −Gm/r.
Following [7] we write the modified ghost-free equation for the Newtonian gravitational

potential ϕ̃, created by a point source of the mass m, in the form

F̂ ϕ̃ = 4πGρ , F̂ = a(4)4 . (2.7)

We shall use the following form of the non-local operator a(4), proposed in [7]

a(4) = e−4/µ
2
. (2.8)

The parameter µ specifies the characteristic energy scale, where the adopted theory modi-

fication becomes important. In what follows we shall also use another parameter, s, related

with µ as follows

s = µ−2 . (2.9)
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This is convenient, since some of the relations will contain derivatives and integrals over s,

which do not look “elegant” in terms of µ. On the other hand, µ has more direct “physical

meaning” as the mass (energy) of the UV cut-off of the modified gravity. After required

calculations are performed one can simply substitute the parameter s in terms of µ by

using the relation (2.9).

2.2 Heat kernel approach

Let us discuss now equation (2.7) and its solution. We shall use the following standard

notions. For any operator B̂ we denote by B(x, x′) its value in the x-representation

B(x, x′) = 〈x|B̂|x′〉 . (2.10)

In these notations δ-function is

δ(x, x′) = 〈x|Î|x′〉 , (2.11)

where Î is a unit operator. Using these notations one can write the equation (2.7) as follows∫
dx′ F (x, x′)ϕ̃(x′) = 4πGρ(x) . (2.12)

We denote by Â an inverse to F̂ operator

Â = F̂−1 =
1

4
es4 = es4

1

4
. (2.13)

We denote

D̂ = − 1

4
, K̂(s) = es4 , (2.14)

so that relation (2.13) takes the form

Â = −D̂K̂(s) = −K̂(s)D̂ . (2.15)

In the x-representation D(x, x′) is nothing but a usual Green function of the Laplace

operator and it obeys the equation

4 D̂ = −Î . (2.16)

The other operator, K̂(s), is also well known. In x-representation it is just a standard heat

kernel Kn(x, x′|s) of the Laplace operator. It has the following form

Kn(x, x′|s) ≡ 1

(4πs)1+n/2
e−λ(x,x

′)/(4s) . (2.17)

This formula requires some explanations. We remind that we denoted by D = n + 3 the

total number of spacetime dimensions. Since the gravitational field of a static source is

static, the gravitational potential depends only on D − 1 = n + 2 spatial coordinates.

Correspondingly, the heat kernel (2.17) is a function of 2 spatial points, x and x′ and

λ(x, x′) is the square of the spatial distance between these points

λ(x, x′) = |x− x′|2 . (2.18)
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The degree 1 + n/2 of expression in the denominator reflects the fact that we are working

in a space with D − 1 = n+ 2 dimensions.

It is easy to check that the operator Â can be written in terms of K̂(s) as follows

Ân = −
∫ ∞
s

ds K̂n(s) . (2.19)

Relations (2.17) and (2.19) allow one to obtain a solution of the equation (2.7)–(2.8). For

a point mass m at point x′ = 0 one has

ϕ̃(x) = 4πmAn(x, 0) = −4πGm

∫ ∞
s

ds K̂n(x, 0|s) . (2.20)

Before presenting explicit form of the solutions for the Newtonian potential ϕ̃ in the

ghost-free gravity, let us make the following remark. The equations (2.7)–(2.8) can be

identically rewritten in the form

4 ϕ̃ = 4πGρ̃ , ρ̃ = K̂n(s)ρ . (2.21)

In other words, the Newtonian potential ϕ̃ in the ghost-free gravity is a solution of the

standard Poisson equation for the source ρ̃, which is obtained by smearing the original

distribution ρ(x). For the point mass (2.5) the smeared source is

ρ̃(x) = mKn(x, 0|s) . (2.22)

In this approach one may say that the ghost-free gravity regularizes the potential ϕ̃ by

smearing a source, which generates it. Of course, the results obtained by the source smear-

ing and by applying Â operator to “un-smeared” source ρ are the same. Let us present

the results.

In flat three-dimensional space (D = 4, n = 1) in Cartesian coordinates

K1(x, x
′|s) =

1

(4πs)3/2
e−

λ
4s , (2.23)

A1(x, x
′) = − 1

4π
√
λ

erf

( √
λ

2
√
s

)
, (2.24)

ϕ̃ = −Gm
r

erf
(µr

2

)
. (2.25)

Here erf(x) is the Gauss error function, which is defined as follows

erf(x) =
2√
π

∫ x

0
e−t

2
dt . (2.26)

Formula (2.25) correctly reproduces the expression for the gravitational potential in the

linearized ghost-free gravity, obtained earlier [7, 15].

In flat four-dimensional space (D = 5, n = 2) in Cartesian coordinates

K2(x, x
′|s) =

1

(4πs)2
e−

λ
4s , (2.27)

A2(x, x
′) = − 1

4π2λ

[
1− e−λ/(4s)

]
, (2.28)

ϕ̃ = −Gm
πr2

(
1− exp

(
−µ2r2/4

))
. (2.29)
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There exist simple relations between Kn(x, x′|s) and An(x, x′) in spacetimes with dif-

ferent number of dimensions

Kn+2(x, x
′|s) =

1

π

∂

∂λ
Kn(x, x′|s) , An+2 =

1

π

∂

∂λ
An(x, x′) . (2.30)

Using these relations one can obtain a general expression for An(x, x′)

An(x, x′) = −γ (n/2, λ/(4s))

4π(n+1)/2λn/2
, n ≥ 2 . (2.31)

This relation contains a so called lower incomplete gamma function γ(a, x), which is is

defined as

γ(a, x) =

∫ x

0
ta−1e−tdt = xaΓ(a)e−x

∞∑
k=0

xk

Γ(a+ k + 1)
. (2.32)

Thus in the ghost-free gravity the Newtonian field of a point mass m is

ϕ̃(r) = −Gm
γ
(
n/2, r2/(4s)

)
π(n−1)/2rn

. (2.33)

At small x one has γ(a, x) ≈ xa/a. Hence

ϕ̃(r = 0) = − 2Gm

nπ(n−1)/2(4s)n/2
. (2.34)

This relation implies that the Newtonian potential of a point mass in the ghost-free gravity

in any number of dimensions D ≥ 4 is finite at the origin. In other words, this potential is

properly regularized.

3 Non-spinning gyratons in the ghost-free gravity

We obtain now the gravitational field of an ultra-relativistic particle in the framework of

the ghost-free gravity. Instead of solving the modified gravitational equations for a source

moving with the speed of light we use the following procedure which is well known in

the standard General Relativity. We first make the Lorentz transformation of the static

solution for a point mass m and obtain the metric for the object moving with velocity β.

After this we take a so called Penrose limit of the metric of the moving body. Namely, we

take the limit β → 1, while keeping the energy of the object γm fixed. As a result one

obtains an object in D-dimensional spacetime which was called a gyraton [27–29]. In a

general case, when a static source has an angular momentum, the corresponding gyraton

is spinning. We restrict ourselves by the case of non-spinning gyratons. A new element

in our derivation is performing the described procedure not within the General Relativity,

but in the ghost-free theory of gravity.

To perform the calculations it is convenient to use the following notations for the

standard Cartesian coordinates xµ = (t̄, y, ζ⊥). Here t̄ is just the time in the frame, where

the source is at rest, y is the coordinate in the direction of motion of the source, and

ζ⊥ = (ζ2, . . . , ζD−2) are the coordinates in (D − 2) dimensional plane orthogonal to the

– 7 –
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direction of the motion. We shall call the latter the transverse coordinates. The Newtonian

potential for a point source of mass m in the ghost-free gravity, obtained in the previous

section, takes the following form in these coordinates

ds2 = ds20 + dh2 , (3.1)

ds20 = −dt̄2 + dy2 + dζ2⊥ , dζ2⊥ =
n+1∑
2

(dζi)
2 , (3.2)

dh2 = −2ϕ̃

[
dt̄2 +

1

n

(
dy2 + dζ2⊥

)]
, (3.3)

where ϕ̃ is defined by (2.33).

To obtain a metric for a source moving with the velocity β (along the y-axis in the

positive direction) we make the following Lorentz transformation

y = γ(ξ − βt) =
γ

2
[(1− β)v − (1 + β)u] ,

t̄ = γ(t− βξ) =
γ

2
[(1− β)v + (1 + β)u] .

(3.4)

Here (t, ξ, ζ⊥) are Cartesian coordinates in the new inertial frame, where the source is

moving. We also denoted

γ = (1− β2)−1/2 , u = t− ξ , v = t+ ξ . (3.5)

The flat metric ds20 in the new coordinates xµ = (u, v, ζ⊥) is

ds20 = −du dv + dζ2⊥ . (3.6)

The form of this metric remains the same in the limit β → 1, while in this limit

y ∼ −γu , t̄ ∼ γu , λ(x, 0) ∼ γ2u2 + ζ2⊥ , (3.7)

dt̄2 +
1

n

(
dy2 + dζ2⊥

)
∼ n+ 1

n
γ2du2 + . . . . (3.8)

Here . . . denote sub-leading in γ terms. As a result, the metric perturbation in this limit

takes the form

dh2 = Φdu2 , Φ = −2(n+ 1)

n
lim
γ→∞

(γ2ϕ̃) . (3.9)

When taking this limit, we assume, as usual, that the energy of the object, γm is fixed

(the Penrose limit), and we denote

M = Gγm . (3.10)

We also use the following relation

lim
γ→∞

γe−
γ2u2

4s =
√

4πsδ(u) . (3.11)

Combining these results, we finally obtain the following expression for the function Φ

Φ = −8π
n+ 1

n
Mδ(u)An−1(ζ⊥) , (3.12)

– 8 –
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where

An−1(ζ⊥) = −
∫ ∞
s

ds

(4πs)
n+1
2

e−ζ
2
⊥/(4s) . (3.13)

Let us notice, that An−1(ζ⊥) is nothing, but a solution of the ghost-free gravity equa-

tions for a point source, reduced to D − 2 dimensional transverse plane with coordinates

ζ⊥. For large µ it reduces to a solution of the D − 2 dimensional Poisson equations. This

means, that in this limit the obtained solution of the ghost-free gravity equations reduces

to the standard metric of non-rotating gyratons [27–29].

In what follows we restrict ourselves by considering a four dimensional spacetime. For

this case the integral, which enters the definition of A0, has an infrared divergence at large

s. Let us discuss this case in more detail. Let us notice that

A0 = − 1

4π

∫ η2

s

ds

s
e−ζ

2
⊥/(4s) =

1

4π

[
Ei
(
1, ζ2⊥/(4s)

)
− Ei

(
1, ζ2⊥/(4η

2)
)]
. (3.14)

The parameter η, which has the dimensionality of the length, is an infra-red cut-off param-

eter. Here Ei(a, z) is the exponential integral defined as

Ei(a, z) =

∫ ∞
1

dxx−a e−xz . (3.15)

The function Ei(1, z) for small z has the following expansion

Ei(1, z) = − ln(z)− γ + . . . . (3.16)

Here γ = 0.5772156649 is the Euler constant, and . . . denote the terms vanishing in the

z = 0 limit. Assuming that η2 is large and using (3.16) one can write

A0 =
1

4π

[
ln(ζ2⊥/η

2) + γ + Ei
(
1, ζ2⊥/(4s)

)]
. (3.17)

The corresponding expression for the metric is

ds2 = −dudv + dζ2⊥ + dh2 , 2 = Φdu2 , (3.18)

Φ = −4Mδ(u)F (ζ2⊥) , (3.19)

F (ζ2⊥) = ln(ζ2⊥/η
2) + γ + Ei

(
1, ζ2⊥/(4s)

)
. (3.20)

In the limit µ→∞, when the ghost-free gravity reduces to the Einstein theory,

F (ζ2⊥) = ln
(
ζ2⊥/η

2
)

+ γ . (3.21)

This result reproduces the well known Aichelburg-Sexl solution [31] (see also [32]).

Let us notice that the solution (3.20) contains an arbitrary parameter, the infrared

cut-off parameter η. However, the change of this parameter can be easily absorbed into

the redefinition of the advanced time v. Hence, this ambiguity just reflects freedom in the

gauge choice. In order to demonstrate this, let us consider a metric of the form

ds2 = −dudv + dζ2⊥ + f(u)du2 . (3.22)

– 9 –
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Let us define a new coordinate

v̄ = v −
∫
duf(u) . (3.23)

Then one gets

ds2 = −dudv̄ + dζ2⊥ . (3.24)

This confirms our above conclusion, that the ambiguity in the choice of the cut-off param-

eter η can always been absorbed in the change of the coordinates. In what follows we use

this option and simply put η2 = 4s. For this choice

F (z) = ln(z) + γ + Ei(1, z) , z = ζ2⊥/(4s) . (3.25)

For this choice the expansion of the function F (z) for small z takes a very simple form

F (z) = z − 1

4
z2 +O(z3) . (3.26)

4 Null shell collapse

4.1 Null shell as a superposition of null gyratons

We use now the above described gyraton metric in order to study the gravitational collapse

in the ghost-free gravity. Namely, we consider a collapse of a spherical null shell. As earlier

we use linearized gravitational equations. For simplicity, we restrict ourselves by 4D case.

Instead of solving the corresponding equations we shall use the following trick. Let us

notice that a sum of solutions of the linearized theory is again a solution. In the linear

approximation the solution has the form

ds2 = ds20 + dh2 . (4.1)

Here ds20 is the flat metric and dh2 is a perturbation.

Let us consider a set of gyratons passing through a chosen point O of the spacetime. We

use the Cartesian coordinates (t,X, Y, Z) in the the Minkowski spacetime, and identify a

point O with the origin of the coordinate system O = (0, 0, 0, 0). We denote by (eX , eY , eZ)

unit vectors in the directions of the axes X, Y , and Z, respectively, and by n a unit vector

in 3D space in the direction of the motion of a fixed gyraton. One has

n = sinα (cosβ eX + sinβ eY ) + cosα eZ . (4.2)

Here (α, β) are standard coordinates on a unit 2D sphere. Let a be an index enumerating

the gyratons and the metric perturbation created by such a gyraton is dh2a. Then the

perturbation 〈dh2〉 created by a set of the gyratons has the form

〈dh2〉 =
∑
a

dh2a . (4.3)

We assume that all gyratons have the same energy. We also take a continuous limit of

the discrete distribution of the gyratons and assume that such a distribution is spherically

symmetric. Thus, we write

〈dh2〉 =
1

4π

∫ π

0
dα sinα

∫ 2π

0
dβ dh2(α,β) . (4.4)

An extra factor (4π)−1 reflects that we use averaging over a unit sphere.
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As a result of the averaging, the source of the metric dh2 is a thin null shell located at

the null cones Γ±
t = ±

√
X2 + Y 2 + Z2 . (4.5)

For the sign minus, Γ− is a null cone with apex at O, which describes a collapsing spherical

null shell. For the sign plus, the null cone Γ+ describes an expanding null shell. Our

starting point is gyraton metric (3.18), which we rewrite in the form

ds20 = −dt2 + dξ2 + dζ2⊥ , dh2 = Φ(dt− dξ)2 , Φ = −4MF (ζ2⊥)δ(t− ξ) . (4.6)

Here

F =

{
ln(ζ2⊥/η

2) , for the Einstein theory ;

Ei(1, ζ2⊥/4s) + γ + ln(ζ2⊥/4s) , for the ghost-free gravity .
(4.7)

Let us notice that this is a metric of a gyraton without spin. Namely these gyratons will be

considered in this paper. We also found convenient to use the following terminology. We call

a worldline of a gyraton a null string. Its projection to the 3D space, the gyraton trajectory,

is an oriented straight line. A unit orientation vector n along this line determines a direction

of the motion. Quantity ξ is the coordinate along the trajectory in the direction of motion

of the ”photon”, and ζ⊥ = (ζ1, ζ2) are Cartesian coordinates in the 2D plane orthogonal to

this direction. We study a spherically symmetric distribution of the gyratons, which has the

property that the null strings, representing them, intersect at a single spacetime point O.

We also choose the parameter ξ along each of the strings to vanish at this point O. Consider

a point P = (X,Y, Z) of the 3D space. There exist exactly two gyraton trajectories, passing

through this point. Let (α+, β+) be angles of a unit vector n+ (see (4.2)) along the line,

connecting the origin with the point P . The parameter ξ+ at P for such a trajectory is

positive. The direction vector for the second trajectory is n− = −n+ and its angles are

(α− = π − α+, β− = π + β+), while the corresponding coordinate ξ− = −ξ+ is negative.

It is convenient to perform the calculations of 〈dh2〉 in two steps. First we introduce

the following objects

T (α,β)(y⊥) = δ2(y⊥ − ζ⊥)δ(t− ξ)(dt− dξ)2 , (4.8)

〈T (y⊥)〉 =
1

4π

∫ π

0
dα sinα

∫ 2π

0
dβ T (α,β)(y⊥) . (4.9)

For y⊥ = 0

T (α,β) = T (α,β)
µν dxµdxν (4.10)

is the stress-energy tensor of a gyraton moving in the direction n (see (4.2)). Similarly,

for y⊥ = 0

M〈T 〉 = Tµνdx
µdxν , (4.11)

where Tµν is the stress-energy tensor of a spherical null shell, constructed from gyraton

null strings. Next, we use 〈T (y⊥)〉 to find the metric perturbation 〈dh2〉 for the thin null

shell of mass M

〈dh2〉 = M

∫
dy⊥F (y2⊥)〈T (y⊥)〉 . (4.12)
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It should be emphasized that the quantities dh2(α,β) and T (α,β)(y⊥), which enter (4.4)

and (4.9), must be first written in the coordinate system, that does not depend on the

particular value of the parameters (α, β). We use the Cartesian coordinates (X,Y, Z) for

this purpose. Thus we need first to establish relations between the gyraton associated

coordinates (ξ, ζ⊥) and the Cartesian coordinates (X,Y, Z). This problem is solved in the

appendix A. After this we need to calculate the integral over the sphere, which enters

relation (4.9) for the average value 〈T (y⊥)〉. The details of these calculations are collected

in appendix B.

4.2 Stress-energy tensor

The relation (B.18) can be used to find the stress-energy tensor of the null shell constructed

from null strings representing a set of gyratons. Using (4.9) and (B.18) one gets

〈T (y⊥)〉 =
1

4π|Qξ|
[
sinα+ δ(t− ξ+) (dt− dξ+)2 + sinα− δ(t− ξ−) (dt− dξ−)2

]
y⊥

. (4.13)

Taking the limit y⊥ → 0 in this relation and using relations (4.11) and (B.14) one obtains

M〈T 〉 = Tµνdx
µdxν =

M

4πr2
[δ(u)du2 + δ(v)dv2] , (4.14)

where u = t− r, v = t+ r. This relation correctly reproduces the expected expression for

the stress-energy tensor of the null shell. It is a superposition of the stress-energy tensors

of contracting and expanding spherical null shells of mass M . One can easily solve the

linearized Einstein equations for such a null-shell problem. The solution is well known and

simple. Inside both the collapsing and expanding shells the spacetime is flat, while outside

them the metric is a linearized version of the Schwarzschild metric

〈dh2〉 =
2M

r
(dt2 + dr2) . (4.15)

Our next goal is to reproduce this result by using the representation (4.12). This will

provide us with a useful test of the validity of our approach.

4.3 Averaged metric

We have all the required expressions to perform the calculations. However, one can greatly

simplify the problem using the following observation. Since the distribution of the null

strings representing gyratons is spherically symmetric, the corresponding averaged metric

〈dh2〉 must also have this property. Hence, it can be written in the form

〈dh2〉 = httdt
2 + 2htrdtdr + hrrdr

2 +Hdω2 . (4.16)

Here the metric coefficients htt, htr, hrr and H are functions of t and r, and dω2 is the

metric on a unit sphere. The spherical coordinates (r, θ, φ) are related with the Cartesian

coordinates (X,Y, Z) as follows

X = r sin θ cosφ , Y = r sin θ sinφ , Z = r cos θ . (4.17)
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In order to find the metric (4.16) it is sufficient to obtain its value near a single spatial

point. We choose such a point as follows: PX = (X = r, 0, 0), where X > 0. For this choice

the metric (4.16) reduces to

〈dh2〉 = httdt
2 + 2htrdtdX + hrrdX

2 +
H

r2
(
dY 2 + dZ2

)
. (4.18)

We perform now calculations of 〈dh2〉 at PX and by comparing it with (4.18) we find the

expression for the metric perturbation (4.16). One has near PX

Q± = ±
√
X2 − y2p , ξ± = ±

√
X2 − y2⊥ , (4.19)

sinα± =
ξ±
Q±

, cosα± = − yk
Q±

, (4.20)

sinβ± =
yp
X
, cosβ± =

Q±
X

, (4.21)

dξ± =
ξ±
X
dX +

1

Q±

(
ξ±

yp
X
dY − yk dZ

)
. (4.22)

In order to obtain the metric perturbation 〈dh2〉 one must to calculate the integral

over (yp, yk) in (4.12). We introduce polar coordinates in the (yp, yk)-plane:

yp = ρ cosψ , yk = ρ sinψ . (4.23)

We also write

〈T (y⊥)〉 = T+ + T− , (4.24)

T± =
1

4πQ2
δ(t− ξ±) (dt− dξ±)2 . (4.25)

Because of the presence of δ-function the term T+ is non-zero only for t ≥ 0, while the

other term T− is non-zero for t ≤ 0. We write expression (4.12) in the form

〈dh2〉 = −4M

∫ ∞
0

dρρF (ρ2)(T + + T −) , (4.26)

T ± =

∫ 2π

0
dψT± . (4.27)

One has

(dt− dξ±)2 = A± +
B±
Q2

+ . . . , Q2 = X2 − ρ2 cos2 ψ , (4.28)

A± =

(
dt− ξ±

X
dX

)2

, B± = (a± cosψ + b sinψ)2 , (4.29)

a± =
ξ±ρdY

X
, b = −ρdZ , (4.30)

and dots indicate terms linear in yp and yk, which do not contribute to the integral over

ψ (4.27). Thus one has

T ± =
δ(t− ξ±)

4π
(A±K1 +K2) , K1 =

∫ 2π

0

dψ

Q2
, K2 =

∫ 2π

0

dψ B±
Q4

. (4.31)
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Integrals K1 and K2 can be easily taken with the following result

K1 =
2π

X
√
X2 − ρ2

, (4.32)

K2 =
π[(a2± + b2)X2 − b2ρ2]

X3(X2 − ρ2)3/2
=

πρ2

X3
√
X2 − ρ2

(
dY 2 + dZ2

)
. (4.33)

δ-function in (4.31) can be written as

δ(t∓
√
X2 − ρ2) =

|t|
ρ
δ(ρ−

√
X2 − t2) . (4.34)

This relation also implies that

t = ±
√
X2 − ρ2 . (4.35)

After integration in (4.26) the terms T ± give similar contributions, so that finally one

obtains the following result

〈dh2〉 =
−2MF (X2 − t2)

X

[(
dt− t

X
dX

)2

+
X2 − t2

2X2

(
dY 2 + dZ2

)]
. (4.36)

Comparing (4.36) with (4.18) we finally get

〈dh2〉 =
−2MF (r2 − t2)

r

[(
dt− t

r
dr

)2

+
r2 − t2

2
dω2

]
. (4.37)

This expression is valid everywhere in the domain r ≥ |t| for both positive and negative

time t.

Using GRTensor program one can check that the Ricci tensor for this perturbation of

the flat metric in the linear in M approximation vanishes everywhere outside the null shell.

This provides one with a good test of the correctness of the performed calculations.

4.4 A case of linearized Einstein equations

For the linearized Einstein equations

F (r2 − t2) = ln

(
r2 − t2

η2

)
. (4.38)

The corresponding expression (4.37) looks quite different from the expected answer (4.15).

However one can use the gauge freedom

hµν → hµν − V(µ;ν) , (4.39)

to transform (4.37) into the expected form. It is sufficient to choose

Vµ = (Vt, Vr, 0, 0) , (4.40)

Vt = −2Mt

r
(1 + t/r) ln

(
r2 − t2

η2

)
+ 2M ln

r − t
r + t

+
2Mt

r
, (4.41)

Vr = −M
r2

(r2 − t2) ln

(
r2 − t2

η2

)
. (4.42)
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After this gauge transformation one gets

〈dh2〉 =
2M

r
(dt2 + dr2) . (4.43)

Let us notice that the infrared cut-off η2 in (4.38) does not enter the final result and the

change of this parameter is simply absorbed into the redefinition of the gauge field Vµ. Let

us mention also that the Kretschmann invariant

R2 = RµναβR
µναβ (4.44)

in its lowest non-vanishing order is

R2 =
48M2

r6
, (4.45)

as it must be for the Schwarzschild metric. Let us emphasize that the same result can be

obtained directly from the perturbation of the metric in the form (4.37).

4.5 Ghost-free case

One can easily repeat similar calculations for the an arbitrary function F (z), where where

z = r2 − t2. We used the GRTensor program for this purpose. The calculations are

straightforward. However, the intermediate formulas are quite long. That is why we do

not reproduce them here. Let us only present the expression for the Kretschmann invariant

in its lowest order for such the metric in the ghost-free gravity

R2 =
48M2z2

r6
Q(z) , Q(z) = 2F ′2z2 + 2FF ′z + F2 , F = F ′ . (4.46)

For the ghost-free theory with a(�) = exp(−�/µ2) one has

F (z) = Ei(1, z/(4s)) + γ + ln(z/(4s)) , (4.47)

F(z) =
1

z

(
1− e−z/4s

)
, (4.48)

Q(z) =
1

8s2z2

(
(8s2 + 4sz + z2)e−z/2s − 4s(4s+ z)e−z/4s + 8s2

)
. (4.49)

Using the expansion (3.26) of F for small z

F (z) =
z

4s
− z2

64s2
+ . . . , (4.50)

one finds

R2 =
3M2z2

s2r6
+ . . . =

3M2β2

s2r4
+ . . . . (4.51)

Here β2 = 1− t2/r2 is a dimensionless parameter which outside the shell, where |t| < r, is

less or equal to 1. This means that the curvature for the linearized ghost-free theory in a

case of the collapse of the spherical null shell is weaker than the singularity for the linearized

Einstein equations. However, the ghost-free gravity solution still remains singular at least

for the chosen scheme of the regularization.
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Figure 1. Thick null shell collapse.

5 Spherical “thick” null shell collapse: results

5.1 “Thick” null shell model

In the previous section we discussed the gravitational field of a spherical null thin shell.

This shell represents a spherical δ-type distribution of the energy. The mass of the shell

is M . It collapses with the speed of light and shrinks to zero radius at the moment of

time t = 0. In the linearized theory the corresponding perturbation of the background flat

metric is 〈dh2〉(t, r). Certainly, such a model is an idealization. To study more realistic

model of the collapse we assume that the spherical collapsing null fluid is represented by

a pulse, which is not infinitely sharp in time, but has final time duration. We characterize

its profile by a function q(t). The meaning of this function is the mass density per a unit

time, dM/dt, arriving to the center r = 0 at time t. The total mass of such “thick” shell is

M =

∫
dt q(t) . (5.1)

Using the linearity of the equations one can write the corresponding solution 〈〈dh2〉〉(t, r)
as the superposition of 〈dh2〉(t, r) perturbations as follows

〈〈dh2〉〉(t, r) =

∫
dt′q(t′)〈dh2〉(t− t′, r) . (5.2)

To simplify the calculations we further specify the model. Namely, we choose q(t) to

be a step function, which has a constant value M/b during the interval t ∈ (−b/2, b/2),

and which vanishes outside this interval. For such a step function a solution has different

form in the different spacetime domains (see figure 1). Let us describe first these domains.
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It is convenient to use the advanced time, v = t + r, and the retarded time, u = t − r,
coordinates. In the domains T−, where v < −b/2, and T+, where u > b/2, the spacetime

is empty, and the metric is flat there. In the domain N−, where v ∈ (−b/2, b/2) and

u < −b/2, one has only in-falling null fluid flux, while in N+, where u ∈ (−b/2, b/2) and

v > b/2 one has only out-going null fluid flux. In the domain, I, where v ∈ (−b/2, b/2) and

u ∈ (−b/2, b/2) one has a superposition of the in-coming and out-going null fluid fluxes.

And finally, in the domain R, where v > b/2 and u < −b/2, the spacetime is empty.

5.2 Gravitational field in the I-domain

Let us consider first I-domain. Denote by (t, r) the coordinates of the point of ”observation”

in this domain. A thin null shell, crossing the center r = 0 at time t′, contributes to the

integral (5.2) only if t′ ∈ (t− r, t+ r). Let us denote x = t′− t, then the formula (5.2) takes

the form

〈〈dh2〉〉(t, r) = −2M

br

∫ r

−r
dxH(r, x) , (5.3)

H(r, x) = F (r2 − x2)
(
dt2 − 2

x

r
drdt+

x2

r2
dr2 +

1

2
(r2 − x2)dω2

)
. (5.4)

Thus one has

〈〈dh2〉〉(t, r) = −2M

br

[
J0

(
dt2 +

1

2
r2dω2

)
+ J2

(
dr2

r2
− 1

2
dω2

)]
. (5.5)

Here

Jn =

∫ r

−r
dx xn F (r2 − x2) . (5.6)

The linear in x term in (5.37) disappears as a result of the integration.

5.2.1 Linearized Einstein theory

For this case

F (z) = ln z + C , C = − ln η2 , (5.7)

J0 = 4r(ln 2 + ln r − 1) + 2Cr , (5.8)

J2 =
4

9
r3(3 ln 2 + 3 ln r − 4) +

2

3
Cr3 . (5.9)

Calculations give

R2 =
252Ṁ2

r4
, Ṁ = M/b . (5.10)

5.2.2 Ghost-free gravity case

One has

F (z) = Ei(1, z/4s) + γ + ln(z/4s) . (5.11)

The Tailor expansion of this function for small z is

F (z) =
z

4s
− z2

64s2
+

z2

1152s3
+ . . . . (5.12)
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Using this expansion one gets for small r in the I-domain

J0 =
r3(420s2 − 21sr2 + r4)

1260s3
+ . . . , (5.13)

J2 =
r5(756s2 − 27sr2 + r4)

11340s3
+ . . . . (5.14)

Calculations of the Kretschmann invariant R2 for small r in the I-domain give

R2 =
32Ṁ2

3s2
− 32Ṁ2r2

9s3
+ . . . . (5.15)

Here, as earlier, Ṁ = M/b. This relation shows that for the thick shell model the curvature

remains finite at r = 0.

5.2.3 (∇r)2 invariant

There exists another useful invariant for the spherically symmetric geometry. This in-

variant is

(∇r)2 =
1

4f
gµνf,µf,ν , f = gθθ . (5.16)

A line in the (t, r) plane, where this invariant vanishes, is an apparent horizon. Using

GRTensor one find that in the leading order in M this invariant in the I-domain is

(∇r)2 = 1− 2Mr2

sb
+ . . . . (5.17)

Since in this domain r < b, one has

(∇r)2 > 1− 2Mb

s
. (5.18)

This relation means that for given s, which is the square of the UV cut-off parameter µ of

the ghost-free theory, s = µ−2, and fixed duration b of the pulse the mini-black hole is not

formed if the mass M is small enough.

5.3 Gravitational field in the R domain

The perturbation of the gravitational field in the R domain is described by the following

expression

〈〈dh2〉〉(t, r) = −2M

br

[
J0

(
dt2 +

1

2
r2dω2

)
− J1

2dt dr

r
+ J2

(
dr2

r2
− 1

2
dω2

)]
, (5.19)

where now

Jn =

∫ t+b/2

t−b/2
dx xn F (r2 − x2) . (5.20)

Here

F (z) = F0(z) + ∆F (z) , F0(z) = γ + ln(z/4s) , (5.21)

∆F (z) = Ei(1, z/4s) . (5.22)
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We denote by J0
n and ∆Jn the contribution to Jn of the terms F0 and ∆F , respectively, so

that one has

Jn = J0
n + ∆Jn . (5.23)

We consider the perturbed metric at large r in the R domain. We also assume that

r � |t± b/2| and use the following asymptotic form of the function ∆F (z) for large z

∆F (z) =
4s

z
e−z/4s(1 +O(1/z)) . (5.24)

Thus one can use the following approximation

∆F (r2 − x2) ≈ f(r)k(x) , f(r) =
1

r2
e−r

2/(4s) , k(x) = 4sex
2/(4s) . (5.25)

Using this approximation and (5.20) one obtains

∆Jn = f(r)An(t) , An(t) = (4s)
n+2
2

∫ C+

C−

dy yn ey
2
, C± =

t± b/2
2
√
s

. (5.26)

Calculation of J0
n is straightforward and J0

n can be easily obtained by using the Maple

program. One also obtains the following expressions for An(t)

A0(t) = −4is3/2
√
π (erf(iτ+) + erf(iτ−)) , (5.27)

A1(t) = 8s2
(
eτ

2
+ − eτ2−

)
, (5.28)

A3(t) = 4s2
[
2i
√
πs (erf(iτ+) + erf(iτ−)) + (2t+ b)eτ

2
+ − (2t− b)eτ2−

]
. (5.29)

Here

τ± =
±2t+ b

4
√
s

, (5.30)

and erf is the Error function, which is defined as

erf(x) =
2√
π

∫ x

0
dt exp(−t2) . (5.31)

Let us emphasize that in spite of the presence of the imaginary unit i in the above formulas,

expressions for An(t) are real, as they should be. After straightforward calculations by using

the GRTensor program, we obtain the following expression for the Kretschmann tensor in

the leading M2 order

R2 =
48M2

r6
+ ∆R2 , ∆R2 =

2M2

s2br10
e−r

2/(4s)W , (5.32)

W = −3A0r
6 +

(
4Ä0s

2 + 8Ȧ1s− 34A0s+A2

)
r4

+
(

80Ȧ1s
2 − 12Ä2s

2 − 160A0s
2 + 14A2s

)
r2 + 56A2s

2 . (5.33)

Keeping the first term in W , which contains the highest power of r, we obtain

∆R2 ∼ 24i
√
πM2

√
sbr4

e−r
2/(4s) (erf(iτ+) + erf(iτ−)) . (5.34)

Once again, in spite of the presence of i the answer for ∆R2 is real.

Expressions (5.32) and (5.34) imply that in the R domain for a fixed value of time t

and r → ∞ the curvature exponentially fast reaches its asymptotic value, which is equal

to the Schwarzschild curvature of a spherical object of mass M .
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5.4 Gravitational field in the N±-domains

Let us briefly discuss now the gravitational field in the N± domains. We focus on the

incoming N− domains. The case of the N+ is similar. Let (t, r) be coordinates of the ”ob-

servation” point. We denote v = t+ r and u = t− r. The condition that the “observation”

point is in the N− domain reads

v ∈ (−b/2, b/2) , u ∈ (−∞,−b/2) . (5.35)

The position t′ of the apex of the null-shells, that give non-zero contribution at the

point of the “observation”, obeys the conditions t′ ∈ (−b/2, t + r). As earlier, we denote

x = t− t′. Then

〈〈dh2〉〉(t, r) = −2M

br

∫ t+b/2

−r
dxH(r, x) , (5.36)

H(r, x) = F (r2 − x2)
((

dt− x

r
dr
)2

+
1

2
(r2 − x2)dω2

)
. (5.37)

Thus one has

〈〈dh2〉〉(t, r) = −2M

br

[
J0

(
dt2 +

1

2
r2dω2

)
− J1

2dt dr

r
+ J2

(
dr2

r2
− 1

2
dω2

)]
. (5.38)

Here

Jn =

∫ t+b/2

−r
dx xn F (r2 − x2) . (5.39)

In the linearized Einstein gravity one uses the following expression for F

F (r2 − t2) = ln

(
r2 − t2

η2

)
. (5.40)

The required integrals (5.20) can be easily calculated. We do not reproduce here these

results since the obtained expressions are quite long. We present here only final expression

for the Kretschmann tensor, which we obtained by using th GRTensor program

R2 =
48M2(v)

r6
, M(v) = Ṁ(v + b/2) . (5.41)

This is an expected result. Indeed, before the collapsing null fluid meets the outgoing flux,

that is in the N−-domain, one has simply the Vaidya solution with mass M(v) = M
b (v+b/2),

where v ∈ (−b/2, b/2). For a chosen model M(v) linearly grows from zero (at v = −b/2)

till its maximal value M . Calculations for the metric perturbation in the N+ are similar

and give the following result

R2 =
48M2(u)

r6
, M(u) = Ṁ(u+ b/2) . (5.42)

In the case of the ghost-free gravity the curvature is modified in the narrow “skin”

domains close to v = ±b/2 (for N− domain) and close to u = ±b/2 (for N+ domain), while

outside of them and at large r the ghost-free theory corrections only slightly modify the

above described Vaidya metric.
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6 Summary and discussion

Let us summarize and discuss the obtained results. We remind that we study the modi-

fication of the solutions of the Einstein theory in the framework of the ghost-free theory,

proposed in [7, 8, 10, 11]. We focus mainly on a special type of such a theory in which a free

field operator � is replaced by the non-local operator of the form exp(−�/µ2)�. We study

solutions of such a theory in the linearized approximation. We first study a gravitational

field of a point mass in this theory. Such a problem was solved in the four dimensional

space time in [7, 15] by using the Fourier methods. We demonstrate that the propagator of

the linearized ghost-free theory in any number of spacetime dimensions is directly related

to the heat kernel in this space. Using the heat kernel approach we obtain solutions for the

gravitational field of a point mass in D-dimensional spacetime. We demonstrate that these

solutions are always regular at the position of the source. In 4D spacetime the obtained

solution coincides with the result presented in [7, 15].

In the second part of the paper we study solutions of the ghost-free gravity for ultra-

relativistic sources. We first obtain ghost-free analogues of gyraton solutions [27–29] in the

ghost-free gravity. For this purpose we boost the obtained ghost-free solution for a point

mass, and by taking the Penrose limit, we found a solution for a D-dimensional spinless

“photon”. We demonstrate that the corresponding metric is similar to the metric of a

spinless gyraton. The main difference is that a solution of (D−2)-dimensional flat Laplace

equation for a point charge, that enters the gyraton metric, is modified. Namely, the

function of the transverse variables becomes a solution of (D−2) ghost-free modification of

the corresponding Laplace operator. Using this result we obtain spinless gyraton solutions

of the ghost-free gravity in D-dimensional spacetime and demonstrate that their transverse

singularities are regularized.

Finally, we study a spherical gravitational collapse of null fluid in the framework of the

ghost-free gravity. As earlier, we restrict ourselves by working in the linearized approxima-

tion. Since a solution of the ghost-free equations for the dynamical problem seems to be

complicated, we used the following trick based on the results, obtained earlier in this paper.

We used a fact that in the linearized theory a superposition of any solutions is again a so-

lution. To obtain the gravitational field for a collapsing spherical thin null, we “construct”

it as a superposition of the gyraton metrics for a spherically symmetric distribution of the

gyraton sources moving along a null cone, representing the shell. Such gyratons intersect

at a single point of the spacetime, which is an apex of the null cone. In the adopted lin-

earized approximation the gyratons, forming the thin shell, cross this point simultaneously

without interaction, so that after passing the apex point they form an expanding spherical

null shell. The gravitational field for such null shells is obtained by averaging of the single

gyraton metric over homogeneous spherical distribution of the gyratons. We demonstrated

that by using this approach one correctly reproduces the stress-energy tensor for both,

collapsing and expanding thin null shells. We checked that the obtained solution in the

linearized Einstein gravity correctly reproduces the expected result. Namely, the gravita-

tional field inside both, collapsing and expanding shells vanishes, while outside of them it is

time independent. The latter field is nothing but a linearized version of the Schwarzschild
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metric with mass M . After this, we obtained a similar solution for the ghost-free gravity.

To study its properties we calculated the Kretschmann scalar for it and demonstrated that

its singularity at r = 0 is smoothened, but still is present.

The model of an infinitely thin null shell is certainly an idealization. One can expect

that in a consistent theory the non-locality cannot be a property of the gravitational field

only, but similar non-locality must be present in the description of matter and other fields.

For this reason a “physical” collapsing shell must have natural finite thickness, which may

regularize the curvature singularity of the thin shell. In order to check this assumption, we

study a case of the thick null shell collapse. In the linearized theory a corresponding solution

is obtained by a superposition of the thin-shell solutions, that is by averaging these solutions

with different positions of their apexes at r = 0. As a result, we construct a solution for

a thick null shell with an arbitrary distribution of the collapsing mass M = M(v) at the

spatial infinity. We considered in detail a special model, where the mass M(v) is a linear

function of the advanced time v = t+ r, such that Ṁ vanishes for the moments v < −b/2
and v > b/2, and remains constant inside this interval. We demonstrated, that in the

linearized Einstein gravity the solution is a superposition of two linearized Vaidya metrics,

for the incoming and outgoing null fluid fluxes. The corresponding Kretschmann scalar is

R2 = 252Ṁ2

r4
, where Ṁ = M/b. It is singular at r = 0.

In the linearized ghost-free gravity the corresponding solution is modified. The main

new feature is, that the metric is regular at r = 0. As a result, its Kretschmann scalar

R2 = 32Ṁ2

3s2
is finite at r = 0. We also calculated the invariant (∇r)2 and demonstrated for

the collapse of a thick null shell of the small mass M the apparent horizon is not formed.

This result can be interpreted as follows: in the ghost-free gravity there exists a mass gap

for the black hole formation in the gravitational collapse. This result is similar to the

result obtained in [3] for the null shell collapse in the theory gravity with quadratic in the

curvature corrections. Recently it was demonstrated that the mass gap for mini black hole

formation is a common property not only of the ghost-free gravity, but also of a wide class

of higher derivative theories of gravity [33]. These theories contain a mass scale parameter

µ, which plays the role of the ultra-violet cut-off. As a result, if the mass M of a collapsing

object obeys the relation Mµ . 1, an apparent horizon is not formed. The presence of

such a scale parameter, differs these theories from the classical Einstein gravity, where

the mass gap is absent and the black-holes of arbitrary small mass can be formed. A well

known consequence of this is Choptuik [34] type universal scaling properties of near-critical

solutions.

Let us make a few general remarks concerning solutions of the ghost-free gravity equa-

tions. The heat kernels, which we used to construct solutions for a static source, are well

defined in the space with the Euclidean metric. The reason is that the Laplace operator

is non-positive definite. However this property is not valid for the box operator. In this

paper we used the method based on the gyraton solutions to overcome this problem for

a special case of the null shell collapse. It would be interesting to investigate solutions

of the linearized ghost-free gravity with the form-factor a = exp(−�/µ2) for arbitrary

moving sources, say, for the emission of the gravitational waves in such a theory, and the

back-reaction of this radiation on the accelerated objects. Another proposed option is to
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modify this form-factor, and instead of � to consider higher powers of this operator in

the exponent. A simplest example is a = exp(α�2). It will be interesting to study such

modifications.

In the present paper we study solutions of the linearized equations of the ghost free

theory. Let us emphasize, that this is sufficient for demonstration of the existence of the

mass gap for mini black hole formation in the adopted model. The reason is that if such a

solution for small mass M is regular and the corresponding perturbation of the flat metric

is uniformly small, then one can expect that the higher order corrections to this solution

can be neglected. A natural question is what happens in the collapse of large mass M ,

that is when Mµ � 1. It would be highly interesting to analyze solutions of the ghost-

free gravity in this regime [15, 16]. It is natural to assume that curvature remains finite

inside the black holes and the limiting curvature conjecture is satisfied [35–37]. These was

a lot of discussions of non-singular models of black holes. One of the option is that the

apparent horizon is closed [3] (see also [38–40] and references therein). Another option is a

new universe formation inside a black hole [41, 42]. This option was also widely discussed

in the literature. One may hope that proposed ghost free modifications of the Einstein

gravity, which are ultraviolet complete and asymptotically free, would allow one to answer

intriguing questions concerting the structure of the black hole interior.
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A Useful geometric relations

In order to find this coordinate transformation let us introduce a couple of new useful unit

vectors. The first one is a vector k which is orthogonal to n and is directed from the

gyraton trajectory to the Z-axis (see figure 2). It can be written as a linear combination

k = kZeZ + knn . (A.1)

Using relation (n, eZ) = cosα one finds

k =
1

sinα
(eZ − cosαn) . (A.2)

The second unit vector p is orthogonal to both n and k. It can be written as

p = [n× k] =
1

sinα
[n× eZ ] . (A.3)

Hence this vector is orthogonal to eZ and lies in the X − Y -plane. It is easy to check that

p = sinβ eX − cosβ eY . (A.4)
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Figure 2. Relation between the Cartesian and the gyraton based coordinates.

Consider a point P , which has the Cartesian coordinates (X,Y, Z), so that the vector

P connecting the origin point O with P is

P = XeX + Y eY + ZeZ . (A.5)

The same vector can be written in the gyraton’s frame as follows (ζ⊥ = (ζk, ζp))

P = ξn+ ζkk + ζpp . (A.6)

By comparing (A.5) and (A.6) and using relations (4.2), (A.2) and (A.4) one finds

X = cosβ (ξ sinα− ζk cosα) + ζp sinβ ,

Y = sinβ (ξ sinα− ζk cosα)− ζp cosβ , (A.7)

Z = ξ cosα+ ζk sinα .

We shall also use the following inverse relations

ξ = sinα (cosβX + sinβY ) + cosαZ , (A.8)

ζk = − cosα (cosβX + sin βY ) + sinαZ , (A.9)

ζp = sinβ X − cosβ Y . (A.10)

Using these results it is easy to show that

dξ2 + dζ2⊥ = dX2 + dY 2 + dZ2 . (A.11)
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B Evaluating integrals

We assume that ζp takes the value yp and use relation (A.10) to find a corresponding value

of the angle β. By solving this equation one gets

sin(β±) =
ypX + Y Q±
X2 + Y 2

, (B.1)

cos(β±) =
−ypY +XQ±
X2 + Y 2

, (B.2)

Q± = ±
√
X2 + Y 2 − y2p . (B.3)

These relations show that for each value of yp there exist two different values of the angle

β, which we denoted by β±. Using (B.1) it is easy to check that

cosβ±X + sinβ±Y = Q± , (B.4)

and the relations (A.8) and (A.9) take the form

ξ = sinαQ± + cosαZ , (B.5)

ζk = − cosαQ± + sinαZ . (B.6)

Let us calculate the following integral

[. . .]yp =
1

2π

∫ 2π

0
dβ δ(yp − ζp) (. . .) . (B.7)

Using the relation (A.10) one gets

dζp = |∂βζp| dβ = Qdβ , Q = Q+ . (B.8)

Using this relation one rewrites (B.7) as an integral over ζp which can be easily taken with

the result

[. . .]yp =
1

2πQ

[
(. . .)+yp + (. . .)−yp

]
. (B.9)

The expression in the right-hand side is a sum of the contributions for two values of β±
corresponding to the same yp. The quantity ζp in each of these terms should be substituted

by yp. We use a similar trick as earlier to calculate an integral over the angle variable α.

First, we use the relation (A.9) with ζk = yk to find the angle α. One gets

sinα± =
ykZ +Q+

√
r2 − y2⊥

r2 − y2p
, (B.10)

cosα± =
−ykQ± ± Z

√
r2 − y2⊥

r2 − y2p
, (B.11)

r2 = X2 + Y 2 + Z2 , y2⊥ = y2p + y2k . (B.12)

One also has

ξ± = ±
√
r2 − y2⊥ . (B.13)
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In order to obtain this results one needs to solve quadratic equations, which have two

solutions. We single out a solution as follows. A line yk = yp = 0 coincides with the

gyraton’s trajectory and α and β are spherical angles of its direction. For yk = yp = 0

relations (B.10), (B.11) and (B.13) give

sinα± =

√
X2 + Y 2

r
, cosα± = ±Z

r
, ξ± = ±r . (B.14)

Namely these conditions (B.14) fix an ambiguity in the sign choice in the relations (B.10)

and (B.11). Let us notice also that (B.1) in the limit yk = yp = 0 takes the form

sin(β±) = ± Y√
X2 + Y 2

, cos(β±) = ± X√
X2 + Y 2

. (B.15)

By using (B.14) and (B.15) it is easy to see that two solutions (α+, β+) and (α−, β−)

describe two opposite points of a unit sphere. As we explained earlier these two solutions

describe two gyraton trajectories passing through the same space point (X,Y, Z).

Using relations (B.5) and (B.6) one gets

∂αζk = ξ , dζk = |ξ| dα =
√
r2 − y2⊥ dα . (B.16)

Let us denote

〈. . .〉y⊥ =
1

2

∫ π

0
dα sinα δ(yk − ζk) [. . .]yp , (B.17)

then one has

〈. . .〉y⊥ =
1

4πQ
√
r2 − y2⊥

[
sinα+(. . .)+ + sinα−(. . .)−

]
ζ⊥=y⊥

. (B.18)
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