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Abstract: We consider the fate of a small classical object, a “stick”, as it falls through

the horizon of a large black hole (BH). Classically, the equivalence principle dictates that

the stick is affected by small tidal forces, and Hawking’s quantum-mechanical model of BH

evaporation makes essentially the same prediction. If, on the other hand, the BH horizon

is surrounded by a “firewall”, the stick will be consumed as it falls through. We have

recently extended Hawking’s model by taking into account the quantum fluctuations of the

geometry and the classical back-reaction of the emitted particles. Here, we calculate the

strain exerted on the falling stick for our model. The strain depends on the near-horizon

state of the Hawking pairs. We find that, after the Page time when the state of the pairs

deviates significantly from maximal entanglement (as required by unitarity), the induced

strain in our semiclassical model is still parametrically small. This is because the number

of the disentangled pairs is parametrically smaller than the BH entropy. A firewall does,

however, appear if the number of disentangled pairs near the horizon is of order of the BH

entropy, as implicitly assumed in previous discussions in the literature.
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1 Introduction

What would be the fate of a small classical object as it falls through the horizon of a large

black hole (BH)? Given that the BH is large enough, classical relativity predicts that the

object will only suffer a small tidal force. As Hawking’s quantum-mechanical model of

BH evaporation makes essentially the same prediction [1–3], this was long thought to be

a settled matter. Nonetheless, the table has since been turned on account of the recent

“firewall” proposal, which suggests that the object will rather be obliterated due to inter-

actions with high-energy quanta [4]. Also see [5–10] for earlier, related discussions, [11–14]

for important clarifications and [15–46] for what is just a sampling of the firewall literature.

We have recently developed a new semiclassical model of BH evaporation and would

now like to find out what our model predicts for the fate of a falling object. We have

so far studied the model both from the perspective of the emitted Hawking radiation as

observed from outside the BH [47–50] and from the perspective of pair production near

the BH horizon [51–53]. The premise has been to extend Hawking’s original models —

respectively, the collapsing matter shell [1, 2] and the eternal BH [3] — in a way that

incorporates the quantum fluctuations of the background geometry and the back-reaction

effects of the produced pairs.
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The main idea of our semiclassical model is that one has to treat the BH as a quantum

state [54] rather than a fixed classical geometry. This induces corrections that are non-

perturbative from the perspective of an effective theory of quantum fields on a fixed curved

background but, yet, can significantly alter the outcomes. The analysis is carried out by

introducing a Gaussian wavefunction for the horizon of the (incipient) BH, as motivated

in [54–57], and reevaluating all relevant quantities as expectation values. In effect, we

take into account that the BH is of finite size and monotonically decaying throughout

the process.

Here, we are mostly interested in the pair-production point of view. As discussed

previously in [51, 52], we have realized a picture in which the produced pairs remain in

the near-horizon zone a parametrically short time in comparison to the Page time [58, 59]

(i.e., the midpoint of evaporation in units of entropy). After this briefer interval of time

— which we have called the coherence time tcoh — the negative-energy modes should be

viewed as having been subsumed by the BH interior and their positive-energy partners,

as having transitioned to the external Hawking radiation. Then, as a consequence of this

continual depletion of modes from the near-horizon zone, the number of pairs in this region

is of the order of the square root of the BH entropy.

This last outcome should, in a qualitative sense, really be regarded as generic. After all,

given any model for which the BH mass is finite and decreasing in time due to the emission

of particles, the number of pairs in the near-horizon region should be parametrically smaller

than the BH entropy. For instance, by the Page time, about half of the particles that will

ever be emitted by the BH have already moved far away from the horizon and transitioned

into “real” Hawking particles. Clearly, then, the number of pairs in the zone cannot be

any larger than the remaining number of would-be Hawking particles that are still waiting

to be emitted.

We will show that this estimate for the number of pairs implies that they induce a

parametrically small force on free-falling objects crossing the horizon. This is in direct

contrast to the aforementioned firewall proposal.

The basic idea underlying the firewall proposal is as follows: the standard properties

of quantum mechanics, such as unitary evolution and the strong subadditivity of entropy,

prohibit the positive-energy modes in the zone from being concurrently entangled with both

their negative-energy partners and the older, outgoing Hawking particles. The former is

necessary to ensure that the horizon is free of drama, while the latter is needed for the

eventual purification of the radiation. This conclusion is indeed correct and requires the

produced pairs in our model to deviate significantly from maximal entanglement at times

later than the Page time [53]. However, this observation by itself does not determine the

number of disentangled pairs near the horizon and, hence, the amount of excitation in the

near-horizon region above the Hartle-Hawking vacuum.

We have previously studied the plight of an in-falling shell of matter (quantum or

classical) as it passes through the horizon [52]. Our findings revealed that the shell “sees”1

excitations of the vacuum that are parametrically suppressed relative to the Planckian

1More accurately, what an external observer perceives the shell to see.
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energy scales that are normally attributed to a firewall. However, this analysis was limited

in the following three ways: first, our calculation was based simply on estimating the

magnitude of the energy density near the horizon. What really is needed would be a

physical result that can be directly compared to the situation when no excited modes

are present. Second, we would like to re-express the situation as much as possible from

the direct perspective of the falling object. This is a non-trivial extension because our

framework — just like Hawking’s — is formulated from the perspective of an external,

stationary observer. Third, we had not yet accounted for the possibility of strong deviations

from maximal entanglement and the resulting properties of the state of the matter fields

in the near-horizon zone. As it turns out, we only need some limited information about

the near-horizon state and do not need to know the state of the interior of the BH.

1.1 A thought experiment and its outcome

We are proposing a thought experiment that consists of dropping a cylindrical “stick”

radially towards the BH horizon and asking how its journey is influenced by the disentangled

modes within the near-horizon region. We can calculate the total number of pairs in

this region and the degree of disentanglement amongst them. These inputs enable us to

determine the curvature that is induced by the disentangled modes and then, by way of the

geodesic deviation equation, the corresponding force on the stick in terms of a dimensionless

parameter, the mechanical strain. Then we can discuss whether the induced strain can be

used to detect the position of the horizon and to what extent, if at all, the falling stick is

consumed as it falls through this surface.

The current approach allows us to discuss the geodesic deviation equation from the

perspective of the falling stick. Hence, there is no longer any need to speculate as to

what is the precise definition of the firewall, which remains elusive. We can compare the

gravitational force delivered by the disentangled modes to that delivered by the background

Riemann curvature and discuss the implications. This can be done for Hawking’s model,

for our semiclassical model and for the Page model [58, 59] as implicitly interpreted in the

context of the firewall discussions. As for the force induced by additional interactions, such

as those of electromagnetism, it is likely to be subdominant, but this issue should probably

be considered in more detail.

We find that the exerted force is proportional to the number of disentangled modes

in the vicinity of the horizon and to the amount of disentanglement. After the Page time,

the amount of disentanglement per mode is of order unity and, consequently, the force

is proportional to the number of Hawking pairs in the near-horizon region. We find for

our model that the force delivered by the modes is parametrically larger than that of the

background. On the other hand, the strain on the stick is still parametrically small — it

is suppressed by the ratio of the length of the stick to the BH radius. This smallness can

be attributed, once again, to the bounded number of pairs in the near-horizon region.

In the Page model [58, 59], as implicitly interpreted in the firewall discussions, the

number of pairs becomes of order of the BH entropy at the Page time and the degree

of disentanglement per mode grows to order unity by the same time [11]. As a result,

the force on the stick becomes Planckian, inducing a parametrically large strain which is
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so large that the stick indeed breaks up. So that, in this case, we find a phenomenon

whose outcome leads to a disintegration of the stick and could certainly be interpreted as

a “firewall”. In the Hawking model, on the other hand, the modes are always maximally

entangled up to small corrections, and so their impact on the stick is much smaller than

that of the background curvature.

In summary, the arguments for a firewall in [4] are basically substantiated by our

results, since the near-horizon state has to be different than that which is predicted by

an effective theory of fields on a fixed BH background. But, at least for our semiclassical

model, the degree of deviation from the standard vacuum is much smaller than claimed.

1.2 Comparison with a previous analysis

The current treatment was motivated in part by that of Itzhaki [5], which can be viewed as

the first realization of what only later was dubbed a BH firewall. Itzhaki posed the following

question: what is the effect of a gravitational shock wave due to an outgoing Hawking mode

on an ingoing test particle? This was computed and the answer was summed over all such

shock waves that the test particle encounters on its way to the horizon. Itzhaki found

that the net effect is to displace the particle so far from its original (null) trajectory that

it never even has the opportunity to cross the horizon — the BH had already evaporated

before the particle ever got there.

This is a remarkable finding and obviously a much different one than ours. But we

believe that there is no contradiction. Itzhaki’s conclusion is based on the exponential

squeezing of the modes in the vicinity of the horizon; in other words, the exponentially

large near-horizon redshift in Hawking’s model. The result is that, before the test particle

ever reaches the horizon, it crosses the path of all the emitted Hawking particles.

We, however, view this infinite redshift as an approximation of treating the background

geometry as a strictly classical entity [57] (which is tantamount to assuming an infinitely

massive BH) and the test particle as strictly point like. In our framework, the quantum

fluctuations of the BH regulate this would-be infinite redshift. In fact, as will be shown,

the redshift is a “red herring” — the piling-up of modes near the horizon is mitigated by

the continual depletion of incipient Hawking particles from the near-horizon zone, insofar

as the redshift has been suitably regulated.

As we will also be discussed later, our proposal for the energy density of the disentan-

gled modes is parametrically larger than in Itzhaki’s model but, in spite of this difference,

the induced gravitational interactions on a finite object are still small.

Contents. The rest of the paper is organized as follows: the next section contains a

brief explanation of our semiclassical model of BH evaporation. Then, in section 3, we use

a novel physical argument to affirm our previous description of the pair-produced modes

in [51]; namely, that the would-be Hawking particles “escape” from the near-horizon region

after an interval of order tcoh, which is parametrically shorter than the BH lifetime. The

quantitative analysis of the induced strain is found in section 4, where we give a detailed

account of the plight of the stick. Section 5 contains a brief summary.
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2 The semiclassical model

In the following, fundamental constants, besides the Planck length lP =
√
~G, are usu-

ally set to unity except when needed for clarity. We are mostly interested in parametric

dependence and so typically neglect numerical factors.

We assume, for concreteness, a four-dimensional Schwarzschild BH with metric ds2 =

−F (r)dudv + r2dΩ2, where F (r) = 1 − RS/r and RS = 2l2PM is the Schwarzschild ra-

dius. Also, u, v are the retarded and advanced null coordinates, u, v = t ∓ r∗, such that

r∗ =
∫

dr
F (r) is the Tortoise coordinate. The BH entropy is SBH =

πR2
S

l2P
and the BH is

semiclassical, SBH � 1.

We use N to denote either the cumulative number of particles emitted from the BH

or the cumulative number of pairs produced (these are parametrically the same number)

and Npairs to denote the number of pairs in the near-horizon zone at some given time.

Our semiclassical model is similar in many respects to the Hawking model of BH

evaporation. However, there is a significant difference: the BH is treated as a quantum

state and its quantum fluctuations are not neglected. In practice, we achieve this goal by

assigning the (incipient) BH a Gaussian wavefunction [54, 56, 57]

ΨBH(R) = N−1/2e
− π

2l2P
(R−RS)2

, (2.1)

where R parametrizes the fluctuating position of the quantum horizon and N is a normal-

ization constant. We then calculate quantum expectation values rather than work directly

with the classical metric. For an observable Ô, this means calculating

〈ΨBH|Ô|ΨBH〉 = 4π

∞∫
0

dR R2O(R)Ψ2
BH(R) . (2.2)

The small parameter in our model is the “classicality” parameter, CBH = 1/SBH. What

is essentially the same parameter also appears in [60–64]. Technically, it is introduced

by the width of ΨBH. The fact that the classicality parameter does not vanish — it is

rather small but finite — can result in modifications to physical quantities. The differences

are most pronounced for quantities that are either vanishing or divergent in the classical

limit CBH = 0.

In anticipation of the upcoming sections, we list here several relevant results:

〈ΨBH|F 2|ΨBH〉 ≡ lim
r→RS

〈ΨBH|
(
r −R
R

)2

|ΨBH〉 ' S−1
BH , (2.3)

〈ΨBH|F−2|ΨBH〉 ≡ lim
r→RS

〈ΨBH|
(

R

r −R

)2

|ΨBH〉 ' SBH , (2.4)

〈ΨBH|F−4|ΨBH〉 ≡ lim
r→RS

〈ΨBH|
(

R

r −R

)4

|ΨBH〉 ' S2
BH , (2.5)

where the latter two follow from the use of∫
dx

1

x2n
e−SBHx

2 ' Γ

(
−n+ 1

2

)
SnBH . (2.6)
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An important time scale that accounts for the difference between an infinitely massive

BH and one with a finite but large mass is the so-called coherence time. This time scale

is typically Ncoh '
√
SBH (which reads in Schwarzschild units as tcoh '

R2
S
lP

) and has a

dual meaning: first, from the perspective of the external radiation, Ncoh is the scale of

temporal extent for the matter correlations. This comes about because wavefunctions for

the BH at different times are orthogonal when this time difference exceeds the coherence

scale. Second, from the perspective of the produced pairs, Ncoh is the time that a mode

stays in the near-horizon zone; after which, the negative-energy modes are subsumed by

the interior matter and the positive-energy modes escape to become Hawking particles. It

is latter meaning that is significant to the current work and will be substantiated in the

section to follow.

This is the bare necessity that a reader needs to know about our model for BH evap-

oration. Our earlier, cited papers can be consulted for more comprehensive discussions.

3 The Hawking modes near the horizon

Here, we will reconsider the pair-production picture of BH evaporation. Many of the

aspects are common to the Hawking and semiclassical models. We will emphasize these

aspects as well as the differences as they turn up in the discussion.

If quantities are averaged over sufficiently long time periods, it should be clear that the

average number of produced pairs must match the average number of emitted particles.

On average, a Hawking particle is emitted once every Schwarzschild time t ∼ RS , and so

pairs are produced at the same rate. Then, since RS � tcoh = RS
RS
lP

, we can treat both

processes as acting continuously when looking at intervals of coherence time.

In this way, the process of BH evaporation entails the continuous production of pairs

and the continuous absorption of negative-energy modes. Meanwhile, positive-energy

modes are transitioning into the outgoing Hawking radiation as their subsumed negative-

energy partners are being absorbed into the interior matter, continually reducing the BH

mass. All of these rates are determined, on average, by the BH’s thermal rate of emission.

Let us begin the analysis from the perspective of a local, free-falling observer. We

are interested only in the massless modes with low angular momenta, which eventually

do escape from the near-horizon zone. These are the modes that are constrained by the

arguments of strong subadditivity while the rest are in their vacuum states. Each of the

massless modes will have a momentum of magnitude E, where E ∼ 1/RS , as RS sets the

size of the wavelength. It then follows, from momentum conservation and from Hawking’s

realization that the positive- and negative-energy partners are created (respectively) just

outside and just inside of the horizon, that their momenta are initially of the form

~p = cosαEŶ + sinαEÛ , (3.1)

~q = − cosαEŶ − sinαEÛ , (3.2)

for the positive- and negative-energy mode respectively. Here, Ŷ defines a direction along

or on the horizon surface (it could be lightlike or spacelike), Û is the lightlike Kruskal

direction off the horizon and we are using the conventions that U increases towards large

values of r and 0 ≤ α ≤ π.

– 6 –
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The unit vector Ŷ is a linear combination of the unit vectors θ̂, φ̂ and the null Kruskal

direction along the horizon V̂ . The exact form of this linear combination is not relevant

to the current considerations. In most cases, sinα, | cosα| are of order unity and will be

dropped for now on.

The above relations are from a local, free-falling perspective. A stationary observer

at large r still detects modes with energy E ∼ 1/RS but sees the momentum in the U

direction as being red-shifted according to

~p = EŶ + e−u/2RSEÛ , (3.3)

~q = −EŶ − e−u/2RSEÛ , (3.4)

where u is the retarded time coordinate and the redshift factors are meant to account for

both the energy and the velocity of the mode.

Now, given the standard classical geometry of Hawking’s model, u ' −2RS ln
(
r−RS
RS

)
,2

and then e−u/2RS ' r−RS
RS

→ 0 as r → RS . This makes it clear that, from a stationary-

observer’s viewpoint, the U component of the momentum ~PU vanishes and so the partners

are forever trapped on the horizon. This is consistent with Hawking’s description of the

pair-production process in [3], as there an eternal BH spacetime is assumed.

But our semiclassical model leads to a different result. The average 〈ΨBH|~pU |ΨBH〉 is

still exponentially small; however the quantum fluctuations of the BH itself will lead to a

small but finite variance [57]. Indeed, using the prescription (2.2) and the result (2.3), we

find that

〈ΨBH|~pU · ~pU |ΨBH〉 = E2〈ΨBH|F 2|ΨBH〉

=
E2

SBH
+O

[
S−2

BH

]
. (3.5)

Now, since the average value of ~pU is exponentially small and these modes are outgoing

so that ~pU positive by definition, we can use
√
〈|~pU · ~pU |〉 ' E

lp
RS

as an estimate for the

velocity of a mode in the direction orthogonal to the horizon,

vU =

√
〈|~pU · ~pU |〉
E

' lp
RS

. (3.6)

We can then quantify the time of escape by using the above estimate. It follows that the

time a Hawking mode takes to reach a distance RS away from the horizon is given by

tescape '
RS
vU
' RS

RS
lP

= tcoh . (3.7)

In effect, the normally divergent factor in the escape-time estimate has been replaced

by the large but finite factor RS/lP . To summarize, the effect of the quantum fluctuations

is to make the redshift finite — it takes the outgoing mode a finite time to escape the

near-horizon region.

2The factor of 2 is because t ∼ −r∗ at the future horizon.
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The number of actively entangled pairs Npairs is then of the same order as the number

of pairs that are produced by the BH over a time period tcoh; i.e., Npairs ∼ Ncoh. As

commented upon earlier and detailed elsewhere [51, 52], this truncation in the number

of partnered modes — from order SBH to order Ncoh = S
1/2
BH — is a critical part of our

argument for resolving the aforementioned firewall problem.

Another important quantity that we would like to introduce is Ndis, the number of

active pairs times the degree of disentanglement per pair Ddis. This is a model-dependent

outcome, as it requires a specification of the state of the pairs or, at the very least, some

means of quantifying how much this state deviates from the Hartle-Hawking state of max-

imal entanglement. Let us first recall that, for our model, Npairs is bounded from above by

Ncoh =
√
SBH and so Ndis .

√
SBH.

In addition, we have recently [53] found a means for estimating Ddis in our framework.

By partitioning the system of Hawking modes into three subsystems — the already emitted

Hawking particles (or early radiation) A, the positive-energy modes in the zone (or late

radiation) B and their negative-energy partners C — we have evaluated the entanglement

between A and B.3 The condition of strong subadditivity of entropy then enforces a lower

bound on the the degree of disentanglement between a pair of modes in B and C. The

need for such a bound is quite natural, given that “monogamy of entanglement” is in play

and that any positive-energy mode in the zone must have some degree of entanglement

with subset A if the state of the radiation is to eventually purify. What the analysis in [53]

does is put this idea on a more quantitative level.

And so, taking this lower bound as an estimate for the degree of disentanglement per

pair, we have

Ddis '
NCBH − 1

1 +NCBH
. (3.8)

One can notice that Ddis depends solely on the product NCBH = N(t)/SBH(t), which

happens to be the effective perturbative parameter for our framework [47]. One can also

see that, after the Page time when NCBH ≥ 1, the amount of disentanglement is of order

unity, Ddis ∼ 1.

As a lower bound, this estimate is not useful at times before the Page time, for which

Ddis is negative. However, when the BH is still young, Ddis must be a parametrically

small number, as any model of BH evaporation should reduce to Hawking’s model plus

perturbatively small corrections at such early times. We will always be assuming that the

BH is older than the Page time, as this is the regime of interest as far as the prospects for

a firewall are concerned [4].

4 The fate of a falling stick

4.1 Setup of the thought experiment

We will next consider the consequences of our framework for a stick falling through the

horizon of a semiclassical BH. By stick, we mean a classical, cylindrical object of length `

3We used Renyi entropies for the analysis, with this choice justified in [53].
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Figure 1. Spacetime diagram showing the Hawking pairs near the BH horizon with the falling

stick away from the horizon.

and radius s, such that lP � s . `� RS . The local frame of the stick will be denoted by

T , X, Y and Z. It is assumed to be falling toward the horizon on a radial trajectory with

its long side aligned parallel to the direction of motion — decreasing r or, locally for the

stick, decreasing X. In figure 1, the falling stick is depicted in a space-time diagram.

Before proceeding, we need to make sure that the stick does not disintegrate due to

any tidal forces arising from the gravitational background. This requirement imposes a

constraint on the ratio `/RS ; i.e., the ratio of the size of the stick to the Schwarzschild

radius of the BH. This comes about because the stick will experience a relative longitu-

dinal acceleration between its ends, for which the magnitude near the horizon is given

by ∆a ∼ GM
R2

S

`
RS

.

To continue with this idea, let us assume that the stick is made of some elastic material;

then ∆a ∼ K
ρ ∆`, where ρ is the mass density of the stick and K is its bulk modulus. It

follows that, near the horizon, K
ρ ∆` ∼ GM

R2
S

(`/RS) or ∆`/` ∼ (ρ/K)(c2/R2
S). Here, we

have reinstated the speed of light c and used that RS = 2GM/c2. But (K/ρ) ∼ ω2
stick ∼

(csound/`)
2, and so the result is ∆`/` ∼ (c/csound)2(`/RS)2. Meaning that, if we insist upon

∆`/` < 1, then `/RS < csound/c. For known materials, this ratio is no larger than about

10−4. We can then conclude that, to avoid the breaking up of the stick, the ratio `/RS has

to be parametrically small.

For this setup, the acceleration of the stick in the Y (or Z) direction can be determined

from the geodesic deviation equation for Einstein’s gravity. What we want to know, in par-

ticular, is the induced gravitational force which is delivered to the stick by the disentangled

Hawking modes near the horizon. This force will eventually be parametrized in terms of a

dimensionless scalar quantity, the deformation per unit length or the strain γ.

– 9 –
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Figure 2. Spacetime diagram showing the deformation of the stick induced by the disentangled

Hawking modes as it crosses the horizon.

Figure 3. The deformation of the stick induced by the disentangled Hawking modes across the

surface r = RS .

Let us pause to comment briefly on the physical picture. Far away from the horizon

— where the Hawking modes are dilute and their induced force is weak — the net force

exerted on the stick will be negligible. Near the horizon, the situation is different. The

effect of induced gravity is still relatively weak, but the part of the stick that is closer to the

– 10 –
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horizon will feel a stronger force than that which is farther. This is because the Hawking

modes become both denser in number and more energetic as the horizon is approached. It

is this gradient and the accompanying tidal force that could cause the stick to endure harm.

What we first need to know is the stress-energy tensor for the disentangled modes,

from which Einstein’s equation will give us the associated curvature and then the geodesic

deviation equation will yield the tidal force. Alternatively, one can deduce the induced

change to the metric by treating the Hawking modes as shock waves [5].

4.2 The stress-energy tensor of the disentangled modes

Knowledge of the stress tensor requires one to know about the number of disentangled

modes Ndis and the energy density of each of these. A detailed discussion about Ndis

will be deferred until later. We will determine the stress-energy tensor with respect to

an external (stationary) observer’s perspective, but the associated Riemann tensor will be

extracted from a manifestly scalar quantity. In this way, the remainder of the calculation

can proceed from the stick’s own point of view.

A simple dimensional analysis suggests that the energy density of a fully disentangled

mode is

ε ' 1

R4
SF

. (4.1)

This expression formally diverges near the horizon; however, the fluctuations of the back-

ground regulate the divergence in a similar manner to the way in which the stretched

horizon does. The reasoning for the estimate for ε is as follows: according to an external

observer, the modes are, up to red-shifting effects, delocalized over a spherical shell of

radius RS and width RS , while the energy scale of any given mode is set by the Hawking

temperature, 1/RS . Hence, the energy density per mode when the redshift is disregarded is

1/R4
S . The Tolman redshift introduces a factor of F (r) into the denominator, as both the

inverse of the energy scale and the width of the shell are suppressed by a factor of
√
F (r).

It then follows that

δTuu ∼ δTvv ∼
Ndis

R4
SF

(4.2)

describes the energy flux for the disentangled modes as far as an external observer is

concerned.

We also need to know the background stress tensor as would be measured by the

same external observer and, for this, employ the standard Schwarzschild result from [65].

Then, very near to the horizon, Tuu ∼ Tuv ∼ 0 whereas Tvv ∼ −1/R4
S . As each of these

is parametrically much smaller than the estimate in eq. (4.2) for any Ndis > lP /RS , the

background tensor can be disregarded in the subsequent analysis.

The estimate in eq. (4.2) can be compared to that of Itzhaki [5]. Working with Kruskal

coordinates (for which U ∼ −RSe−u/2RS and V ∼ RSev/2RS ), he proposed that TUU ∼
l2p
U2

and TV V ∼ 0 near the horizon. But, recalling that Tuu ∼ U2TUU and TV V ∼ Tvv, we see

that our proposal for Tuu and Tvv are both a factor of 1/F more divergent at the horizon

than their counterparts in [5], as well as those of the standard Hartle-Hawking and Unruh

states. This can be attributed to the disentangled modes for our picture being highly
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concentrated in the proximity of the horizon, as per the previous section. From our point

of the view, the modes further removed from the horizon have already “escaped”.

4.3 The curvature induced by the disentangled modes

4.3.1 Curvature from the stress-energy tensor

We next want to convert Equation (4.2) into a statement about curvature and, as already

stated, work with a scalar quantity. The simplest choice of scalar is

GabGab = l4PT
abTab ' l4P guvguvδTvvδTuu (4.3)

where Gab is the Einstein tensor. The equality on the left follows from Einstein’s

equation and the relation on the right follows from the disentangled modes being the

dominant source.

In our semiclassical framework, the expression on the far right should be regarded as

an expectation value with respect to the BH wavefunction; this being the context in which

the disentangled modes are revealed. What we are then calculating is the expectation value

of the scalar GabGab with respect to the same wavefunction, and so it is more appropriate

to write

〈ΨBH|GabGab|ΨBH〉 = l4P 〈ΨBH|guvguvδTvvδTuu|ΨBH〉

' N2
dis

l4P
R8
S

〈ΨBH|
1

F 4
|ΨBH〉

'
N2

dis

R4
S

, (4.4)

where the middle line follows from eq. (4.2) and the last line follows from taking the near-

horizon limit along with eq. (2.5).

One can now get a first hint about the fate of the falling stick by looking at various

possibilities for Ndis. Clearly, the largest possible value for Ndis is SBH. This assumes that

a finite fraction of all the modes that were ever emitted by the BH remain in the vicinity

of the horizon. In this case, we find from eq. (4.4) that 〈GabGab〉ΨBH
∼ 1

l4P
, and so it is

likely that the stick disintegrates before it reaches the horizon. But, for our semiclassical

model and for an old-enough BH, Ndis ∼ Npairs ∼
√
SBH, for which 〈GabGab〉ΨBH

∼ 1
R2

S l
2
P

.

Of course, if Ndis is of order unity, then 〈GabGab〉ΨBH
∼ 1

R4
S

, which cannot be distinguished

from the background curvature.

Let us next observe that, because of the Ricci scalar contribution in the Einstein tensor

Gab = Rab −
1
2Rg

a
b, all diagonal components of the (induced) Riemann tensor will be of

roughly the same magnitude; meaning that the diagonal components of Rab will scale with

Ndis/R
2
S . It can then be deduced that, in the stick’s own frame where the metric is regular,

the root-mean-square (RMS) value of the Ricci curvature is given by

RAB '
Ndis

R2
S

δAB , (4.5)

for A,B = {T,X, Y, Z}. One can immediately see that RAB vanishes for the Hawking

model (up to the implied background contribution) since Ndis = 0 must be true in this case.
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4.3.2 Curvature from the shock wave approximation

There is another way to quantify the effect of the disentangled modes acting on the stick.

This would be, following Itzhaki [5], to treat the modes as shock waves and estimate the

change in the metric and the curvature due to the waves crossing the stick. It is appropriate

to use Kruskal coordinates for this calculation if it is to be from the stick’s own perspective.

A shock wave of energy E ∼ 1/RS propagating outwards along the ray U = U0 will change

gUU by an amount δgUU ∼ GEδ(U − U0) ∼ l2P /RS δ(U − U0). The large Tolman blueshift

for the modes in our model can be incorporated by the estimate δ(U − U0) ∼ 1/U , with

U meant to be within a few Planck lengths from the horizon where U ∼ 0. Then the total

displacement will go as δgUU ∼ Ndisl
2
P /RSU (and a similar contribution to δgV V for the

inward-moving modes). It can be verified that the deformed metric induces a near-horizon

curvature of order

RVU ∼ −
1

RS

∂δgUU
∂U

∼ Ndis
l2P
R2
S

1

U2
, (4.6)

and similarly for RUV . Then, since U ∼ RSF , we may use eq. (2.4) to conclude that the

RMS value of the Ricci tensor is given by

RVU ∼
Ndis

R2
S

, (4.7)

which is in perfect agreement with the estimate from eq. (4.5).

4.4 The induced strain

Let us next recall the geodesic deviation equation and apply it to the current setup,

d2(∆x)A

dτ2
= RABCDVBV

C(∆x)D , (4.8)

where (∆x)D describes the spatial extent of stick — so that (∆x)X = `, (∆x)Y = (∆x)Z =

s — and V A is the velocity vector for the stick in terms of proper time τ .

Using that the velocity vector for the stick is V A = −βδAX for some β < 1, we have

d2(∆x)A

dτ2
= β2RAXXD(∆x)D

' β2 RAD(∆x)D
∣∣
A,D 6=X , (4.9)

where the second line follows from RAXBX being the same order as RAB.

Next, substituting eq. (4.5) for the Ricci tensor, we obtain

d2(∆x)A

dτ2
' β2 Ndis

R2
S

(∆x)A
∣∣∣∣
A 6=X

(4.10)

or, after integrating twice,
δ(∆Y )

∆Y
' (∆τ)2β2Ndis

R2
S

(4.11)

and similarly for Z. Here, δ(∆Y ) means the RMS deformation of the stick in the Y

direction, so that the magnitude of the left-hand side is the strain γ.
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At any given time, only a small (about Planck-sized) segment of the stick is exposed

to the potentially dangerous near-horizon modes. For this reason, it is appropriate to

start with the force acting on a segment of length ∆X ∼ ∆ with ∆ & lP . The induced

deformation on the stick is depicted in a spacetime diagram in figure 2 and at a fixed time

in figure 3.

The proper time that it takes this segment to pass through the near-horizon zone is

then ∆τ ∼ ∆/β. Given these inputs, eq. (4.11) translates into

γ∆ ' Ndis
∆2

R2
S

. (4.12)

To estimate the total strain endured by the stick, we will assume the “worst-case

scenario”, in which the individual deformations add coherently. Then the total strain is

simply `/∆ & `/lP times the previous result,

γstick . Ndis
lP `

R2
S

. (4.13)

The actual strain will depend on the whether or not the stick oscillates, its speed of sound

and so forth. For instance, a more realistic estimate might rather be to add in quadrature

the strains on each part of the stick. Then the result would be the RMS value γstick ∼√
`
∆ (γ∆)2, but this (or any other) modification would only weaken the previous estimate.

4.5 The induced strain in different models

Let us start with the case which is implicitly based on our previous attempt [52] at quanti-

fying the effects of firewall. There, we incorrectly estimated the disentanglement per mode

Ddis as being equal to the product NcohCBH � 1. Then Ndis < 1 and the strain on the

stick is

γstick '
`lP
R2
S

� 1 [Ndis < 1] , (4.14)

which is vanishing in the classical limit. This outcome explains the underestimation in our

previous study.

Let us now consider what happens in our semiclassical model when the more accurate

estimate of Ddis in eq. (3.8) is utilized. Then, after the Page time, Ddis ' 1 and so

Ndis ∼ Npairs ∼
√
SBH ∼ RS

lP
. It follows that

γstick '
`

RS
� 1

[
Ndis ∼

√
SBH

]
. (4.15)

This is clearly a small number, but how small? As we have seen before, if this

experiment is to be conducted in a reasonable way, then this ratio is constrained by

`/RS < csound/c . 10−4. So that, in this case, despite the fact that the energy den-

sity is parametrically larger than 1/R4
S , the physical effect on the stick is still remarkably

small. In other words, the equivalence principle is preserved.

Finally, let us consider the Page model, as interpreted in the context of the firewall

problem and, in particular, after the Page time. The usual interpretation of the Page model
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is that the number of pairs near the horizon is limited only by the original BH entropy and

each of these has order one disentanglement [11]. Hence, Ndis ∼ SBH and one then obtains

γstick '
`

lP
� 1 [Ndis ∼ SBH] . (4.16)

Such a large strain indicates that the stick is obliterated on its journey through the near-

horizon region. This outcome can best be viewed as further evidence that, given the

assumptions of [4], a firewall is indeed an inevitable consequence.

5 Summary

Using a simple thought experiment, we have investigated how the fate of an in-falling clas-

sical object passing through the horizon depends on the state of the near-horizon Hawking

radiation. We verified that our semiclassical framework for BH evaporation and pair pro-

duction does not lead to a conflict with the equivalence principle of general relativity (while

being consistent with standard quantum theory [53]). In particular, it was shown that, as

long as the experiment of dropping an object through the near-horizon region can be safely

carried out, the disentangled Hawking modes will do nothing further to jeopardize the

serenity of the journey. This is true in spite of the disentanglement per mode being of

order unity, as required for information to escape from the BH, and can be attributed to

the Hawking pairs having an effective lifetime that is parametrically smaller than the Page

time. On the other hand, the Page model, as normally interpreted in the firewall literature,

does lead to a conflict with the equivalence principle, thus substantiating the arguments

of [4] and others.

Acknowledgments

We thank Sunny Itzhaki for many useful discussions and insights. The research of RB was

supported by the Israel Science Foundation grant no. 239/10. The research of AJMM

received support from an NRF Incentive Funding Grant 85353, an NRF Competitive

Programme Grant 93595 and Rhodes Research Discretionary Grants. AJMM thanks Ben

Gurion University for their hospitality during his visit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

[2] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199

[INSPIRE].

[3] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14

(1976) 2460 [INSPIRE].

– 15 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/248030a0
http://inspirehep.net/search?p=find+J+Nature,248,30
http://dx.doi.org/10.1007/BF02345020
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,43,199
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,2460


J
H
E
P
0
6
(
2
0
1
5
)
0
8
9

[4] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or

Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[5] N. Itzhaki, Is the black hole complementarity principle really necessary?, hep-th/9607028

[INSPIRE].

[6] S.D. Mathur, What Exactly is the Information Paradox?, Lect. Notes Phys. 769 (2009) 3

[arXiv:0803.2030] [INSPIRE].

[7] S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26

(2009) 224001 [arXiv:0909.1038] [INSPIRE].

[8] S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].
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