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1 Introduction

Run I of the LHC has brought the discovery [1, 2] of a scalar particle, so far consistent

with the Higgs boson predicted by the Standard Model (SM) [3], and it has given the first

evidence of the Brout-Englert-Higgs mechanism [4, 5] in particle physics. The increased

energy and luminosity that will be achieved in Run II at the LHC will allow us to pin down

the properties and in particular the strength and form of the interactions of such a boson

with all other SM particles. To this aim a vast campaign of measurements of rates and

distributions in various production and decay channels is being planned.

Among such processes is the associated production of a Higgs boson together with a

vector boson V , either aW± or a Z, also known as Higgs-strahlung, i.e., at the leading order

in QCD, the Drell-Yan production of an off-shell vector boson qq̄ → V ∗ with its subsequent

decay V ∗ → V H. While suppressed in the SM with respect to the leading gluon-gluon

and vector boson fusion channels, V H production is of phenomenological interest mostly

because the presence of the vector boson (and possibly of leptons coming from its decay)

in the final state can help to access the large yet challenging H → bb̄ decay mode. For

instance, Higgs-strahlung has been the dominant Higgs search mode at the Tevatron [6]. At

the LHC, the ATLAS [7] and the CMS [8] collaborations have investigated V H production,

with the Higgs boson decaying to a b−quark pair, both reporting small excesses above the

background only hypothesis. Searches for Higgs decaying to W+W− [9, 10] and to invisible

states [11, 12] have also been performed by both ATLAS and CMS.

On the theory side, predictions for ZH production are known at NNLO in QCD and

at NLO electroweak in EW theory. The NNLO QCD cross section includes the Drell-

Yan type terms of O(g4α2
s) first computed in [13, 14]. In addition to Higgs-strahlung,
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it has been noted that contributions from quark-anti-quark initiated diagrams where the

Higgs is emitted from a top quark loop arise at the same order. These diagrams inter-

fere with the LO and NLO Drell-Yan amplitudes and have been computed in [15], where

they were found to contribute to the inclusive NNLO cross section at the percent level.

Implementations of the NNLO QCD calculations are publicly available in vh@nnlo [16]

and HVNNLO [17]. Fully differential NLO QCD and EW results can be obtained with

the program HAWK [18, 19], while event generation accurate at NLO in QCD (inclusively

and for higher jet-multiplicitites), can be nowadays obtained (automatically or semiauto-

matically) in several frameworks, i.e., MadGraph aMC@NLO [20] / POWHEG [21] +

Pythia 8 [22] /Herwig++[23] and OpenLoops [24]+Sherpa [25].

At NNLO, a purely virtual gluon fusion contribution emerges, through the gg → ZH

amplitude squared, which at the LHC can be enhanced by the large gluon-gluon luminosity

at small Bjorken x. Its contribution to the total cross section has been known for a long

time [26, 27] and it has been included in the implementations of the NNLO calculations [16,

17]. The gluon fusion component is separately gauge invariant, IR and UV finite and

accounts for about 10% of the total NNLO cross section at 14TeV. Being essentially a

leading-order contribution, gg → ZH introduces a rather strong scale dependence to the

NNLO result, which in turn is known quite precisely. In order to reduce the associated

theoretical uncertainty, recently, NLO corrections for the gluon fusion contribution have

been estimated by computing them in the infinite top-quark mass limit [28]. The NLO

corrections to this process, O(α3
s), while formally part of the N3LO ZH cross section,

are expected to be large, similarly to other gluon fusion processes such as Higgs single

or pair production. The computation of the approximate NLO corrections in the infinite

top mass limit has confirmed this expectation. The NLO computation in the infinite

top mass limit reduces the scale uncertainty by a factor of two, yet the size of the finite

top-quark mass effects remains unknown: the exact NLO result requires two-loop multi-

scale amplitudes whose analytic form is beyond the current advances in the multi-loop

technology. In an effort to further reduce the theoretical uncertainties in this process, a soft

gluon resummation for the gluon-gluon contribution has been performed in [29] promoting

the previous results to NLO+NLL accuracy. We should note here that in contrast with

single Higgs production, where the infinite top-quark mass limit provides a good description

of the process, and allows the computation of higher order corrections, here, similarly to

(yet with even less control than) Higgs pair production, the much higher scales involved

make the effective field-theory approach unreliable, especially so at the differential level.

In addition to the SM production mechanism and characteristics, interesting features

can be expected from Higgs production in association with a Z boson in beyond the SM

scenarios. The Two-Higgs-Doublet-Model (2HDM) is an attractive framework in which

Higgs-strahlung can lead to interesting features. First the range of channels is richer: in

addition to the production of the light (125GeV) Higgs boson in association with a Z boson

(Zh0), Z associated production of the heavy scalar (ZH0) and pseudoscalar boson (ZA0)

are also possible [30]. Experimental searches are already underway to look for signals of

these processes, especially in the case where the cross-sections can be enhanced by the

resonant production of an intermediate scalar (H0 or A0) with subsequent decays into
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Z and a lighter scalar. In particular, CMS has searched for signals of the decay of the

pseudoscalar A0 into a Zh0 pair [31] and that of the heavy scalar H0 into a ZA0 pair [32]

and the results have been used to set constraints on the 2HDM parameter space.

So far considerable effort has been devoted to provide accurate total rates in this

channel for both the SM and the 2HDM, but accuracy and precision in the differential dis-

tributions is also of vital importance. This need becomes more important for experimental

analyses which make use of exclusive observables, in order to tame the typically very large

QCD backgrounds. Moving in that direction, it has been noted in the literature [30, 33] that

the gluon induced component can play an important role. The gluon fusion Higgs pT distri-

bution peaks at higher values than the corresponding Drell-Yan one, and therefore its rel-

ative contribution becomes more important in boosted Higgs searches, which are preferred

experimentally to reduce the backgrounds. The prospects of such searches have improved

recently due to progress in jet substructure techniques, after the seminal suggestion in [34].

The aim of this work is to contribute to the understanding of gluon induced ZH

production and to improve the predictions for the differential distributions. We consider

the 2 → 2 and 2 → 3 matrix elements entering the gluon fusion contribution to Z Higgs-

strahlung. We first review the main features of the 2 → 2 ones and then examine the

importance of the 2 → 3 contributions. Given the lack of an exact and fully differential

NLO computation for this process, we provide a better description of the kinematics for

this component by combining the 2 → 2 and 2 → 3 matrix elements in a merged sample,

matched to a Parton Shower (PS). This provides a fully exclusive control at the hadron

level. A similar approach has been followed for other loop induced processes, such as single

Higgs production [35], Higgs pair production [36, 37] and gauge boson production in gluon

fusion [38]. In general, this method provides a better description of the kinematics, yet as

the formal accuracy for total rates remains at LO, it is often combined with a normalisation

obtained from higher-order computations, when available.

This merging-matching approach makes use of the fact that while tree level fixed-

order amplitudes describe reliably the region of hard and well separated jets, the parton

shower provides a better description of the soft and collinear regions. Combining the

two requires of course a consistent treatment to avoid double-counting, which is achieved

by various merging algorithms. Methods that are widely used for tree level merging are

CKKW [39, 40], CKKW-L [41, 42] (and their later improvements [43, 44]), and MLM [45].

More recently new methods have been developed to perform the merging at NLO, see for

example FxFx [46] and UNLOPS [47], yet not directly applicable to 2 → 2 loop-induced

processes at the Born level yet, mainly due the absence of analytic results for the two-loop

2 → 2 matrix elements.

In this work we study gluon induced Higgs-strahlung at the LHC, presenting the first

merged-matched results for gg → Zφ, with φ being a generic scalar, by employing the 0

and 1-jet matrix elements for the SM and the 2HDM. This paper is organised as follows.

In section 2, we discuss the process within the SM, first by reviewing the important fea-

tures coming from the gg → ZH matrix elements. We also consider the behaviour of the

2 → 3 matrix elements, which we then combine with the 2 → 2 ones. We describe our

methodology, and present results both at the parton level and after merging and matching
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Figure 1. Representative Feynman diagrams for ZH production in gluon fusion in the SM.

to a parton shower. In section 3, we explore the results of various 2HDM scenarios using

the same calculation setup. We draw our conclusions in the final section.

2 Gluon induced ZH production in the SM

Representative Feynman diagrams contributing to the gg → ZH process in the SM are

shown in figure 1. Massive fermions, t and b−quarks, run in the box, while all flavours run

in the triangle. The contribution of the two light generations to the triangle vanishes as

required by the anomaly cancellation. In practice, it is only the axial vector part of the

heavy-quark-Z coupling that contributes to the amplitude. The amplitude for this process

was first computed in [26, 27].

In what follows, we will first review the main features of the 2 → 2 process for gluon

induced ZH production before discussing the implications of the 2 → 3 one. A sample

of the relevant diagrams contributing to ZHj is shown in figure 2. In addition to the gg

initial state amplitudes, the qg and qq̄ channels also open up, when an additional jet is

allowed. The gg → ZHg amplitudes were used in [48] to calculate the gg part of the ZHj

cross-section at the LHC for various jet transverse momentum cuts. In what follows, we

will consider these along with the qg and qq̄ diagrams to discuss the behaviour of the 2 → 3

amplitudes and subsequently to obtain a merged sample of 0 and 1-jet multiplicitities.

2.1 Calculation setup

In this work, we employ the MadGraph5 aMC@NLO framework [20]. The one-loop

amplitudes squared for ZH and ZHj can be obtained with the help of MadLoop [49],

which computes one-loop matrix elements using the OPP integrand-reduction method [50]

(as implemented in CutTools [51]). A reweighting procedure is then employed to over-

come the present limitations concerning event generation for loop-induced processes.1 A

reweighting method has been employed already for a series of processes within the Mad-

Graph5 aMC@NLO framework [35, 53, 54] both at LO and NLO accuracy. This pro-

cedure involves generating events through the implementation of a tree-level effective field

theory (EFT), in this case obtained by taking the limit of infinite top-quark mass with all

other quarks being massless. In practice, a UFOmodel [55, 56] including the effective theory

interactions is imported in the simulation framework. After event generation, event weights

obtained from the tree-level EFT amplitudes are modified by the ratio of the full one-loop

1Automated event generation for loop-induced processes is currently being finalised [52].
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Figure 2. Representative Feynman diagrams for gluon induced ZHj production in the SM.

amplitude over the EFT ones, i.e., r = |M2
Loop|/|M2

EFT |, where |M2
Loop| represents the

numerical amplitude as obtained from MadLoop. In our case, reweighting proves to be ef-

ficient in terms of the computational speed, as the loop amplitudes have to be calculated for

significantly fewer phase-space points than what would be needed to integrate them directly.

Moreover, the fact that the EFT leads to distributions that are in general harder in the tails,

ensures that no significant degradation of the statistical accuracy occurs with the reweight-

ing. This is the case as the EFT unweighted events efficiently populate regions that are then

simply suppressed by reducing the event weights based on the exact loop matrix elements.

2.2 Parton level results

Before proceeding to the technical setup and presenting results of the merging-matching,

we consider the salient aspects as observed at the parton level. The findings of this study

will reveal some previously unnoticed features of gg → ZH and will act as a motivation to

employ a merging-matching procedure in the following section.

In our computation the heavy quark masses are set to: mt =173GeV and

mb =4.75GeV, while the Higgs mass to mH =125GeV and the heavy quark Yukawas

are given by yq/
√
2 = mq/v. We note here that finite width effects in the propagators of

the loops can be taken consistently into account within MadGraph5 aMC@NLO via the

implementation of the complex mass scheme [57, 58]. The effect of a non-zero top width

is shown in figure 3, where the matrix element squared for gg → ZH, for 900 scattering,

is shown as a function of the invariant mass of the ZH system. The correction is most

important at the tt̄ threshold, where it reaches 20%. Finally, when integrated over all

centre-of-mass energies and scattering angles, we find the top-quark width to modify the

gg → ZH cross-section by ∼2% at 14TeV, an effect similar to that observed for single and
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ŝ [GeV]

R
at
io

1000900800700600500400300

1.05

1

0.95

0.9

0.85

0.8

Figure 3. Top width effect on the matrix element squared for gg → ZH. Results for Γt=0 and

1.5GeV are shown along with their ratio.

double Higgs production in [59] and [54], respectively. For the rest of the results presented

in this work the width of the top quark is set to zero.

An interesting aspect of the gg → ZH matrix element is its angular dependence. While

in figure 3 we have fixed the scattering angle to 900, in figure 4, we show the dependence of

the amplitude squared on the centre-of-mass scattering angle, for various values of ŝ. The

matrix element starts with no angular dependence at low energies, but varies significantly

with the angle at high energies. This angular dependence of the matrix element implies

that at high energies, very forward or backward scattering is favoured over 900 scattering.

This behaviour originates from the interplay between the triangle and the box diagrams,

and their respective angular behaviour. As we will also discuss later, box and triangle

interfere destructively, with the triangle contribution dominating at low energies. The

cancellation becomes nearly exact at high energies, mostly leaving a remainder from the

box contribution that is strongly dependent on the scattering angle.

We now proceed to discuss results for the LHC. For these, parton distribution functions

(PDFs) are evaluated using the MSTW2008LO set [60] and the central renormalisation

and factorisation scales are set to the invariant mass of the ZH system: µ0 = µ0
R = µ0

F =

mZH . MadGraph5 aMC@NLO allows the automatic computation of the scale and PDF

uncertainties by a reweighting procedure [61]. In our results, scale variations are obtained

by varying the scales in the range of µ0/2 < µR,F < 2µ0.

Table 1 summarises results for the gg → ZH cross section and the “loop-induced” ZHj

contribution, originating from the square of the amplitudes shown in figure 2. For reference

we also include the total pp → ZH cross section at NNLO obtained with vh@nnlo [16].

The NNLO cross section includes the gg → ZH result of the first row, for which excellent

agreement has been found between our computation and the result of vh@nnlo. We note

that the results shown in the second row of table 1 for ZHj are obtained using the loop

amplitudes shown in figure 2. These qg and qq̄ amplitudes can interfere with the Drell-Yan

– 6 –
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ŝ = 300 GeV

M
a
d
G
ra
p
h
5
a
M
C
@
N
L
O

gg → ZH

θ∗ [rad]

ππ/2

π/2
π/3
π/4
π/6

θ∗ = 0
2mt

gg → ZH
-

.

√
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Figure 4. Matrix element squared for gg → ZH as a function of the centre-of-mass energy for

different values of scattering angles (left) and as a function of the centre-of-mass scattering angle

for various values of
√
ŝ (right).

type real emission amplitudes. This interference contribution to the cross section has been

computed in [15] and found to be at the per-mille level. In our computation we use these

amplitudes squared, i.e., at O(α3
s). It is clear that at this order, other qg loop-induced

contributions can enter squared, for example, the set of diagrams where the Z couples to a

light quark and the H to a top-quark loop. We have not included these diagrams here, as

we consider them of a different origin, but we have checked that their amplitude squared

contribution to the cross section is small, below the femtobarn level, and therefore at least

one order of magnitude smaller than those in figure 2. The interference of this type of

diagrams with the Drell-Yan amplitude was computed in [15] and also found to be small.

Given that the ZHj amplitude is divergent in the limit of a collinear or soft jet, we

apply a cut on the pT of the jet to obtain finite results. We have set this cut to 30GeV

in table 1. The 2 → 3 contribution comes mainly from the gg initiated diagrams, with qg

giving about 20% of the ZHj cross section. The ZHj contribution is not as suppressed as

expected from the extra power of αs, leading to results comparable in size to the gg → ZH

cross section. Of course these results are extremely sensitive to the chosen cut for the

transverse momentum of the additional parton, as the cross section diverges in the IR

limit. Such a problem would not arise in the case of a NLO computation matched to a

parton shower, for example with the MC@NLO method [62], in which all divergences are

regularised and cancelled for inclusive observables.

The results in table 1 also demonstrate the problem of large scale uncertainties for the

LO gg cross section, that contribute significantly to the total NNLO scale uncertainty. The

problem persists also for the loop-induced ZHj contribution. A significant reduction of

these intrinsic QCD uncertainties can only be achieved by a complete NLO computation,

as discussed in [28].

In addition to the total cross-section results presented in table 1, interesting observa-

tions can be made by studying the differential distributions for the gluon fusion process.

We start by presenting distributions for the invariant mass of the ZH system and the

transverse momentum of the Higgs in figure 5 for the LHC at 14TeV. These distributions

– 7 –
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Contribution [fb]
√
s = 8TeV

√
s = 13TeV

√
s = 14TeV

gg → ZH 17.8 +34%
−24%

59.9 +30%
−21%

71.6 +29%
−21%

pp → ZHj (pjT > 30GeV) 12.4 +52%
−32%

49.0 +44%
−32%

58.4 +47%
−31%

pp → ZH (NNLO) 387 +2.2%
−1.6%

795 +3.2%
−2.0%

886 +3.2%
−2.3%

Table 1. Cross sections (in fb) for ZH associated production at the LHC at
√
s = 8, 13 and 14TeV.

The uncertainties (in percent) refer to scale variations. No cuts are applied to final state particles

apart from the jet pT cut in the second row (pjT > 30GeV) and no Higgs or Z branching ratios are

included. The ZHj contribution shown here is obtained from the loop diagrams shown in figure 2,

while the NNLO results are obtained with vh@nnlo [16].
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Figure 5. Invariant ZH mass and pHT distributions for ZH production at
√
s = 14TeV. The gluon

fusion contribution is decomposed into the triangle and box contribution. For completeness we also

plot the Drell-Yan type contributions at NLO obtained with MadGraph5 aMC@NLO.
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have been shown elsewhere in the literature, for example in [33], yet we consider them

here again for completeness. In addition to the gluon fusion results, we also include the

NLO Drell-Yan like distributions obtained automatically with MadGraph5 aMC@NLO.

We note here that differential NNLO results for the Drell-Yan like contribution can be

provided by the code HVNNLO. As is evident from [17], the NNLO computation leads

to an overall 20% decrease of the Drell-Yan component but not to any significant shape

difference compared to the corresponding NLO one.

The first observation regards the clear presence of the 2mt threshold, at which the

gluon fusion amplitude acquires an absorptive part, related to the on-shell gg → tt̄ ,

tt̄ → ZH scattering, leading to a characteristic rise in the invariant mass distribution. It

is evident from figure 5 that the gluon fusion component leads to distributions of funda-

mentally different shape from the Drell-Yan ones and therefore it should be considered in

all relevant studies, in particular in the boosted region of pHT > 100GeV, where its relative

importance increases.

In the plots, we decompose the gluon fusion result into the triangle and box compo-

nents. The two interfere destructively over the whole range of centre-of-mass energies, with

the cancellation between the two being nearly exact at high energies. Such a cancellation is

due to unitarity: while each of the two diagrams grows with energy the cancellation leads

to a well-behaved amplitude at high energies. We stress here that this behaviour of the

amplitude is not present in the infinite top mass limit. In this limit, the amplitude for the

box diagram vanishes and therefore only the triangle contributes to the amplitude, giving

a rather bad approximation of the one-loop amplitude at high energies. In addition, we

note that this is a process highly sensitive to the relative phase between the HZZ and Htt̄

couplings. To demonstrate this, in figure 5 we show the result obtained by changing the

relative sign between the top Yukawa and the HZZ coupling. In pair with other processes

where such unitarity cancellations take place, such as H → γγ or pp → tHj [63–65], flip-

ping the sign results in an increase in the gluon fusion induced contribution by a factor of

five, and much harder distributions as the interference between triangle and box becomes

constructive, see figure 5. We conclude that, given the difference in the shape as well as

the size of the cross section above 2mt, the ZH invariant mass or transverse momentum

of the Higgs or the Z could also be used to bound the relative phase between the Higgs

couplings to fermions and to vector bosons.

The difference in the pT shape between the Drell-Yan and gluon fusion production

persists also in the distribution of the lepton pT coming from the Z decay. Besides, an-

other interesting aspect of the gluon fusion process is that it leads to different angular

distributions for the resulting leptons compared to the Drell-Yan component [66]. This is

evident from studying the normalised distributions of the angle θ∗l , shown in figure 6. The

angle θ∗l is defined in the Z rest frame, as the angle between the lepton and the Z flight

direction as observed in the lab frame. In the plot, we use the NLO Drell-Yan result, and

plot the distributions with and without a cut of 100GeV on the pT of the Z. The shape

of the distribution without any cut, is significantly different, with the tree-level ZH giving

a flat distribution while the gluon-fusion one peaks at 900. The shape becomes similar for

pZT > 100GeV, while a 200GeV cut (not shown here) completely eliminates the difference.

– 9 –
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Figure 6. Normalised distributions of the lepton angle θ∗l for gluon fusion and Drell-Yan like ZH

production at
√
s = 14TeV. Results for an imposed cut of 100GeV on the pT of the Z are shown

in dashed lines.

Process f0 (%) fL (%) fR (%)

gg → ZH 82.2 8.9 8.9

gg → ZH, pZT > 100GeV 86.3 6.9 6.8

qq̄ → ZH 35.6 32.4 32.0

qq̄ → ZH, pZT > 100GeV 62.6 18.8 18.6

Table 2. Polarisation fractions for the gluon fusion and NLO Drell-Yan production mode of ZH

at 14TeV with and without a cut on the Z pT .

This behaviour is related to the polarisation of the Z which differs between the two pro-

duction modes. This can be quantified by examining the relevant polarisation fractions in

table 2, as these are defined in [67]. The fact that the Z in gg → ZH is predominantly

longitudinal leads to the central peak, while the small difference between fL and fR leads

to a very mild asymmetry for qq̄. Setting a 100GeV cut on the Z pT changes these values

in agreement with the equivalence theorem, i.e., by increasing the longitudinal polarisation

fraction. For completeness, we also mention here that the main background for this process,

Z + b-jets leads to predominantly left-handed Z bosons [67, 68] and therefore to different

angular distributions, that could be potentially used as an additional discriminating handle

to distinguish signal and background.

Further to the gg → ZH results that we have discussed above, interesting conclusions

can be drawn by studying the loop-induced ZHj distributions. We have seen in table 1

that these contributions are not negligible and their relative importance increases with the

centre of mass energy. A complete NLO computation for gg → ZH would be fully inclusive

in these contributions but as such a computation is not available yet, we aim to draw some

conclusions by studying them independently. For such a study a minimum cut has to be set
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Figure 7. Invariant ZH mass and pHT distributions for loop-induced ZH and ZHj production at√
s = 14TeV. The results for the ZHj distributions are shown for various jet pT cuts: 30, 50 and

100GeV and again concern only the loop diagrams of figure 2.

on the transverse momentum of the additional jet to avoid the divergent soft and collinear

limit. We compare the distributions of the invariant mass of ZH and the pHT to those from

2 → 2 amplitudes by varying the pT cut set on the additional jet in figure 7.

The ZH invariant mass distribution shows that for all values of the jet pT cut the

bulk of the cross-section remains close to the 2mt threshold. The characteristic threshold

behaviour due to the absorptive part of the amplitude remains visible for all cuts. At high

invariant masses, we find that the amplitudes with an extra parton fall more slowly and

overtake the 2 → 2 process.

In contrast to the invariant mass distribution where no extreme modification of the

shape takes place, the pHT distribution is very much affected. First, we note that the

threshold corresponding to mZH ∼ 2mt is now not visible in the pT distributions for ZHj.

The second and more striking observation is that above 300GeV the 2 → 3 process leads

to a much harder pT spectrum compared to the 2 → 2 one. Moreover, for pHT values above
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400GeV all three distributions for ZHj coincide. The fact that in this region the result is

insensitive to the jet pT cut implies that hard jet emissions are dominating. This occurs

because by allowing the emission of a parton new kinematic configurations open up. In

this high pT region, the kinematic configuration in which a soft jet is emitted and the Z

and H basically recoil against each other is not the most favourable one. Instead, the

configuration in which a hard jet recoils against the H, with the Z remaining rather soft

becomes the preferred one. We have explicitly confirmed this behaviour by setting a high

cut on the pT of the Higgs, and studying the corresponding jet and Z transverse momentum

distributions. A clear preference for the configurations where the jet is hard and the Z

is rather soft is found when sufficiently far from the IR divergence. The behaviour of

the 2 → 3 amplitudes at high pT can be traced back to the presence of t−channel gluon

diagram such as the gg → ZHg one shown in the top right of figure 2, which becomes

dominant in this region. The same behaviour is displayed by the qg → ZHq contributions,

when these are considered separately, as they include diagrams of the same type as shown

in the second row of figure 2.

In conclusion, we have found that, especially for the transverse momentum distribution

of the Higgs, the emission of an additional jet can dramatically modify the shape, due

to new allowed kinematic configurations. This effect might prove important in studies

involving highly boosted Higgs as discussed for example in [33]. The 2 → 3 matrix elements

are important and therefore need to be taken into account for accurate simulations. To

combine the two in a consistent way and therefore provide a more realistic picture of the

differential distributions, we will resort to merging and matching to a parton shower. In

the following section we will discuss how this method allows us to provide more accurate

predictions for the distributions.

2.3 Merging different jet multiplicities: setup

Given the importance of the 2 → 3 contributions, we need to include them when studying

this process. One way to achieve this is a NLO computation matched to the parton shower,

but this is not available. As our aim is not to improve the accuracy of the total rate for

gg → HZ but to provide a better description of the shapes of the differential distributions,

we opt to consistently include the 2 → 3 matrix elements by employing the Matrix-Element-

Parton Shower (ME+PS) procedure. ME+PS schemes allow the consistent combination of

matrix elements with different jet multiplicities via their matching to a parton shower. In

our study we employ the kT -MLM scheme as implemented in MadGraph5 aMC@NLO.

Merged samples are then passed to Pythia 8 [22, 69] for PS.

The implementation of MLM merging in MadGraph5 aMC@NLO/Pythia 8 comes

in two variants: the traditional kT -MLM and the shower-kT schemes. The two give com-

parable results as discussed in [70]. In this study we will employ the shower-kT scheme.

While this scheme has been used for phenomenological studies with Pythia 6 in the

past, see for example [71], we employ the most recent implementation of the scheme in

MadGraph5 aMC@NLO combined with Pythia 8. For a detailed description of this

approach one can refer to [70], while here we only mention its main points.
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In the shower-kT scheme, matrix element events are generated with a minimum separa-

tion pTmin
, between parton and the initial state (iB), and Qcut between final-state partons

(ij), defined by the measure:

d2iB = p2Ti
> p2Tmin

, d2ij = min(p2Ti
, p2Tj

)∆R2
ij > Q2

cut, (2.1)

where ∆R2
ij = 2[cosh(ηi − ηj) − cos(φi − φj)] and pTi

, ηi and φi are the transverse

momentum, pseudorapidity and azimuthal angle of particle i. Short distance (parton

level) events are then passed to Pythia 8 which evolves them down using the pT -ordered

shower. In practice, for each event Pythia 8 records the scale of the hardest shower

emission: QPS
hardest. This scale is then used to accept or reject the event as follows:

for the low multiplicity events, the event is rejected if QPS
hardest > Qcut, while for the

highest multiplicity the event is rejected if QPS
hardest > QME

softest, with QME
softest being the scale

of the softest matrix-element parton in the event. The value of Qcut is selected on a

process-by-process basis to ensure that there is a smooth transition between the ME and

PS regimes. In practice, this is assessed by examining the differential jet rate distributions

which show if the transition is indeed smooth.

2.4 Merged sample results for ZH in gluon fusion

Using the setup described in the previous subsection for the merging and matching, we

present in this section our merged results for various observables. In our simulations we

keep the H and Z stable. For the merging performed here, the shower-kT scheme is used

with Qcut = pTmin
= 30GeV. We have checked that this choice leads to smooth differential

jet rate distributions, and therefore a smooth transition between the ME and PS regimes.

We start by presenting the results for the invariant mass of the ZH system and the pT
of the Higgs in figure 8, while pZH

T and pjT distributions are shown in figure 9. A comparison

is made between the gg → ZH sample showered with Pythia 8 and the merged 0 and 1-

jet matched sample, presented in combination with the uncertainties associated with scale

choices for both the factorisation/renormalisation scale of the hard process and the shower

starting scale. We set the central value for the renormalisation and factorisation scales to

mZH , as for the parton-level results. The shower starting scale in Pythia 8 can be set to ei-

ther the kinematical limit (pT =
√
ŝ
2 ), corresponding to what we refer to as “power”-shower

or the factorisation scale of each event (mZH in our case), i.e., “wimpy”-shower. Pythia 8

allows us, for the “wimpy”-shower case, to modify the shower starting scale in the range of

0.5µF < QPS < 2µF . This gives us the possibility to systematically study the dependence

of the results on the choice of the shower scale for both the merged and gg → ZH-only

samples, as shown by the blue bands in the plots. To study the systematic uncertain-

ties due to renormalisation and factorisation scale variations, we vary the scales between

0.5µ0 < µR,F < 2µ0, with µ0 = mZH . This variation is shown by the yellow bands in the

plots (with the central prediction being the “power”-shower result). In the results shown for

mZH and pHT in figure 8, we also include the parton-level results for comparison purposes.

First, we notice that not all distributions are sensitive to the procedure of merging-

matching. In particular, the invariant mass of the ZH system shows no shape variation.
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Figure 8. Invariant ZH mass and pHT distributions for gluon induced ZH production at
√
s =

14TeV. The left column shows the results obtained for the gg → ZH case, with different starting

scale for the shower: “wimpy” and “power” shower. The blue band shows the variation of the

shower scale for “wimpy” shower in the range 0.5µF < QPS < 2µF , while the yellow bands show

the uncertainty associated with a factor of two variation of the renormalisation and factorisation

scales with respect to their central value. The right column shows the same results for the merged

sample. The green curves in the left column correspond to the parton level results before passing

them through Pythia 8.

In this process, we only have initial state radiation and therefore significant changes in

the shape are not expected for an observable like mZH . Other observables, on the other

hand, are highly sensitive to the choice of shower parameters. The distributions for the

transverse momentum of the Higgs, pHT , but most importantly the transverse momentum

of the ZH system, pZH
T , and that of the hardest jet, pjT , which are trivially zero at parton-

level, depend strongly on the shower parameters. We first notice that the shower produces

a pHT distribution harder than the parton-level one for all shower scale choices. This is

related to the harder behaviour of the 2 → 3 distributions discussed earlier.

Another interesting observation to be made is related to the shape changes associated

with the shower scale choice. The “power”-shower leads to consistently harder distribu-

tions, while the “wimpy”-shower gives softer distributions. The different shower predictions

start to diverge in a region correlated with the invariant mass of the ZH system, as this

is the factorisation scale which is taken to be the starting scale of the “wimpy”-shower.

The shower scale uncertainty bands become wider at larger pT values. This is more evi-

dent in the second set of observables, pZH
T and pjT , for which the non-merged predictions

can vary by more than one order of magnitude between different shower scale options.

At high transverse momentum, the shower uncertainty becomes more important than the
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Figure 9. Transverse momentum of the ZH system and hardest jet pT distributions for ZH

production at
√
s = 14TeV. The setup is the same as in figure 8.

intrinsic QCD one associated to the factorisation and renormalisation scale choice for the

hard process. We note here that despite the fact that the factorisation and renormalisation

scale uncertainty is large, as evident from the yellow bands, it seems to mainly affect the

normalisation of the curves.

The advantage of the ME+PS procedure is then made obvious by noticing that the

shower scale uncertainty is almost completely eliminated in the merged predictions. For

all observables, the shower scale uncertainty bands remain well within the corresponding

renormalisation and factorisation scale uncertainty ones, even at high transverse momen-

tum. ME+PS predictions are therefore more accurate/precise and predictive than the

parton shower alone as they include the exact 2 → 3 matrix elements. These play an

important role in the phase space regions populated by highly boosted objects which is

often the case for LHC searches.

3 Zφ production in the 2HDM

In the previous section we discussed gluon induced ZH production in the SM, employing

the ME+PS merging method to improve the accuracy of the predictions for the differential

distributions at the LHC. In this section, we will follow a similar approach for a beyond the

SM scenario. The case we consider in this work is the 2HDM, as a minimal extension of the

SM [72]. The 2HDM extends the scalar sector of the SM by introducing a second SU(2)L
doublet Φ2, which leads to five physical Higgs bosons, i.e. in the case of CP conservation,

the light CP -even one, h0, a heavier CP -even one, H0, a CP -odd one, A0, and two charged

Higgs bosonsH±. Assuming no extra sources of CP -violation, seven input parameters fully
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characterise the model:

tanβ, sinα,mh0 ,mH0 ,mA0 ,mH± ,m2
12, (3.1)

with the convention 0 ≤ β − α < π (with 0 < β < π/2) fixing the sign of the Higgs

coupling to the gauge bosons to be the same as in the SM. Depending on the structure of

the Yukawa couplings, two main types of 2HDM setups can be considered: type I where

all fermions couple to just one of the Higgs doublets and type II, where up-quarks (down)

couple only to Φ2 (Φ1).

Various theoretical requirements such as stability, perturbativity and unitarity, impose

constraints on the 2HDM parameter space. At the same time, electroweak precision

measurements and recent LHC Higgs physics results further constrain the parameter

space, as discussed in more detail in [53]. Nevertheless, 2HDM scenarios that satisfy these

constraints and yet have a significantly different phenomenology than the SM exist and

have been studied extensively in the literature. These scenarios arise in the “decoupling”

limit [73], i.e., in the limit of cos(β − α) ≪ 1, which ensures that the masses of the

additional Higgs bosons lie well above the light-Higgs one. Even in this case, significant

shifts from the SM couplings are allowed, in particular in the tanβ ≫ 1 limit, known as

“delayed decoupling” [74]. Interestingly, the “decoupling” limit is not the only 2HDM

realisation which is consistent with all parameter space constraints. Scenarios with light

additional Higgs bosons are also allowed in the so-called “alignment limit” [73].

Some examples of viable 2HDM scenarios will be considered in this section to explore

possible 2HDM signatures in Higgs production in association with a Z boson. Interesting

features can arise in this process, not only because of possible deviations of the light Higgs

couplings from their SM values, but most importantly because of the presence of the heavier

states, H0 and A0, which can lead to resonant production of Zφ final states. Three neutral

combinations of final states are possible: Zh0, ZH0 and ZA0. These 2HDM processes have

already been discussed in [30]. Similarly to ZH production in the SM, the production of

the Zh0 and ZH0 final states can occur through Drell-Yan type diagrams, and in gluon-

gluon fusion. The Drell-Yan like cross sections can be obtained straightforwardly by the

appropriate rescaling of the SM cross-sections by the ratio of the gφZZ coupling over its

SM counterpart, but the situation for the gluon fusion case is more involved. This can be

inferred by considering the corresponding Feynman diagrams for the gluon fusion processes,

shown in figures 10 and 11. The possibility of resonant production depends on the masses of

A0 andH0, while interesting interference patterns can arise due to relative sign of the A0φZ

couplings. For completeness and to facilitate the discussion that follows, the dependence

of the relevant Yukawa couplings on the 2HDM parameters is shown in table 3, for type-I

and type-II setups, as rescalings of their SM counterparts. We note that the following

couplings are also relevant for these process (valid for both type-I and type-II setups):

ĝh
0

V V = sin(β − α), ĝH
0

V V = cos(β − α), ĝA
0

V V = 0, (3.2)

with ĝφV V being the rescaling of the φV V coupling compared to the HV V one in the SM,

while the A0φZ couplings are proportional to:

gA
0h0

Z = cos(β − α) and gA
0H0

Z = − sin(β − α). (3.3)
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Figure 10. Representative Feynman diagrams for ZH0/Zh0 production in gluon fusion in the

2HDM.
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Figure 11. Representative Feynman diagrams for ZA0 production in gluon fusion in the 2HDM.

Coupling type-I type-II

ĝh
0

u cosα/ sinβ cosα/ sinβ

ĝh
0

d cosα/ sinβ − sinα/ cosβ

ĝH
0

u sinα/ sinβ sinα/ sinβ

ĝH
0

d sinα/ sinβ cosα/ cosβ

ĝA
0

u cotβ cotβ

ĝA
0

d − cotβ tanβ

Table 3. Dependence of Yukawa couplings for up and down-type quarks on the 2HDM parameters

for type-I and type-II setups. The expressions in the table correspond to the ratio of the couplings

over the corresponding SM value.

We stress here that several studies have been presented in the literature in particular

for the A0Z process, mostly in the context of the MSSM [75–79]. In the case of the

MSSM, there are more constraints on the values of the Higgs couplings, while the 2HDM

allows more freedom that can lead to more striking signals. A particularly interesting

cosmologically motivated 2HDM scenario leading to a A0 → ZH0 signature at the LHC is

presented in [80], that finds very good prospects for discovery or exclusion even for the low-

luminosity LHC.We also mention that various 2HDM scenarios allow significantly enhanced

bottom Yukawas, and the Zφ states can be produced mainly through bb̄ annihilation.

This has been extensively discussed in the literature [78, 81, 82], and in relation with the

subtleties of the treatment of the bottom quarks [83]. In this work, we will be focussing

on the gluon fusion channel, presenting results for a series of 2HDM benchmarks.

3.1 Calculation setup

The calculation setup, regarding the reweighting and the ME+PS merging procedure, fol-

lows closely that described in the previous section for the SM. In this section we discuss

the details specific to the 2HDM implementation. The computation is performed within
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the MadGraph5 aMC@NLO framework [20], where MadLoop [49] is used for the com-

putation of the one-loop amplitudes. The 2HDM@NLO model obtained from the pack-

age NLOCT [84] is imported into MadGraph5 aMC@NLO for the computation of the

2HDM amplitudes. The model is based on the FeynRules [85] and UFO [55] frameworks.

Most importantly for our computation, it includes all the necessary UV counterterms and

R2 vertices for the MadLoop calculation. The model allows the computation of tree-level

and one-loop amplitudes within a completely general 2HDM setup. The 2HDM parameters

for the different benchmarks are imported into MadGraph5 aMC@NLO [20] using a pa-

rameter card, constructed with the help of an in-house modification of the public calculator

2HDMC [86], in the same way as in [53].

We stress again here that as described in [53] the 2HDM benchmarks to be used

here have been constructed in agreement with all up-to-date parameter space constraints,

which we have included through an interface of the public tools 2HDMC [86], Higgs-

Bounds [87, 88], SuperIso [89, 90] and HiggsSignals [91, 92] along with additional

routines of our own.

Three benchmarks will be employed to present the 2HDM results, with the correspond-

ing parameters shown in table 4. Benchmarks B1 and B2 have been constructed and used

already for our study of Higgs pair production in the 2HDM [53], they correspond to B1

and B4 in [53]. Benchmark B3 is a new one designed for this study. Here we briefly men-

tion the main features of each benchmark. For completeness we also show the couplings

relevant for gg → Zφ production in table 5, as rescalings of the SM couplings, similarly to

table 3 and eqs. (3.2)–(3.3).

• Benchmark B1: a type-II 2HDM scenario with moderately heavy Higgs masses.

Small tanβ and cos(β − α) values ensure that the couplings of the light Higgs boson

remain SM-like. The bottom Yukawa is slightly enhanced. This scenario allows a

resonant production of both the light and Heavy Higgs with a Z boson through

the decay of the pseudoscalar A0. The sign of the Zh0A0 coupling determines the

interference of the A0-mediated production with the SM-like diagrams.

• Benchmark B2: a type-I 2HDM scenario with a relatively light heavy Higgs H0 and

a significantly heavier pseudoscalar A0. Both light-Higgs top and bottom Yukawas are

enhanced by ∼ 10%. The negative sign of m2
12 protects the stability of the vacuum.

This scenario also allows the resonant production of both the light and Heavy Higgs

with a Z boson through the decay of the pseudoscalar A0.

• Benchmark B3: another type-II 2HDM scenario with a reversed mass hierarchy

between the heavy scalar H0 and the pseudoscalar A0. The small tanβ value allows

us not to over-suppress the ĝA0tt coupling, while the ĝA0bb is enhanced. Thanks to

the inverted mass hierarchy mh0 < mA0 < mH0 the resonant production of A0 with

a Z boson due to the heavy neutral Higgs decay becomes kinematically allowed.
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tanβ α/π mH0 mA0 mH± m2
12

B1 1.75 -0.1872 300 441 442 38300

B2 1.20 -0.1760 200 500 500 -60000

B3 1.70 -0.1757 350 250 350 12000

Table 4. Parameter choices for the different 2HDM benchmarks used in our study. All masses are

given in GeV. The lightest Higgs mass is fixed in all cases to mh0 = 125GeV.

ĝh0tt ĝh0bb ĝH0tt ĝH0bb ĝA0tt ĝA0bb gA0Zh0 gA0ZH0 ĝZZH0 ĝZZh0

B1 0.958 1.118 -0.639 1.677 0.571 1.75 -0.069 -0.998 -0.0689 0.998

B2 1.108 1.108 -0.684 -0.684 0.833 -0.833 0.141 -0.990 0.141 0.990

B3 0.987 1.034 -0.608 1.679 0.588 1.700 -0.020 -1.000 -0.020 1.000

Table 5. Normalised heavy-quark Yukawa couplings and Higgs Z couplings for the different 2HDM

benchmarks defined in table 3. Yukawa couplings are normalised to their SM counterparts as

discussed in the text, while for the A0ZH0 and A0ZH0 couplings we show the proportionality

constants of eq. (3.3).

gg → Zh0 gg → ZH0 gg → ZA0

B1 113 +30%
−21%

686 +30%
−22%

0.622 +32%
−23%

B2 85.8 +30.1%
−21%

1544 +30%
−22%

0.869 +34%
−23%

B3 167 +31%
−19%

0.891 +33%
−21%

1325 +28%
−21%

Table 6. Cross sections (in fb) for gluon induced Z Higgs associated production at the LHC at√
s = 14TeV for three 2HDM benchmarks. The uncertainties (in percent) refer to scale variations.

No cuts are applied to final state particles and no Higgs or Z branching ratios are included.

3.2 2HDM results

In this section we present our results for the three 2HDM benchmarks introduced in the

previous paragraph. We start by considering the total cross section for each process, which

is shown in table 6. The heavy quark masses are again set to 173 and 4.75GeV for top and

bottom quarks, and the light Higgs mass to 125GeV. The rest of the calculation details,

such as the scale and PDF choices follow closely those of the SM calculation. We note here

that where possible, we compared our results with the vh@nnlo version described in [30]

and found very good agreement between the two implementations.

Before moving to the discussion of some differential results, we first comment on the

results in table 6. First we notice that the cross-section for the Zh0 process can be signifi-

cantly enhanced. To be more precise, benchmark B3 leads to a cross section nearly twice

the SM prediction, benchmark B1 to a 60% enhancement, while B2 is gives a smaller ∼20%

increase. The main source of the increase in the cross-section is the presence of the resonant

decay A0 → Zh0, which is kinematically allowed in all three scenarios. The relative change

in the Zh0 cross section is strongly correlated with the mass of the pseudoscalar and the
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value of the A0Zh0 coupling. We remind ourselves that this coupling is proportional to

cos(β − α), i.e., it tends to zero in the alignment limit. For all scenarios considered here,

its value remains small as seen in table 5. Consequently, it is not possible for this process

to receive extremely large contributions from the resonance. This is in contrast with what

we have seen in light Higgs pair production where the resonant decay of the heavy Higgs

can lead to an enhancement of up to a factor of 60 for the gg → h0h0 cross section [53].

The most interesting feature of table 6, is the potential size of the cross section for the

ZH0 process. We find that this can exceed 1 pb when the pseudoscalar A0 is sufficiently

heavy to allow the resonant decay into the heavy Higgs and a Z. This has been noticed and

discussed recently in [80], as a signature for a cosmologically motivated 2HDM scenario. It

is remarkable that even if the production threshold lies significantly higher, this process can

lead to larger cross sections compared to the Zh0. This is possible as the relevant coupling,

ZH0A0, as shown in table 5, is not suppressed by the “SM-like” light Higgs constraints.

Despite the fact that the prospects for discovery depend strongly on the resulting decay

products of the heavy Higgs, it is worth noting that even in the scenarios where H0 decays

predominantly into bb̄, the current experimental searches for ZH set a cut on the invariant

mass of the bb̄ pair close to the light Higgs mass and would therefore miss this signal.

Finally, we note that the ZA0 production cross section remains very small in the scenarios

where the A0 is heavier than H0, but can reach the picobarn level in a scenario such as

benchmark B3, as a result of the inverted mass hierarchy.

Further interesting information on these processes can be extracted from the differential

distributions. For brevity we present only those for the invariant mass of the system and the

transverse momentum of the Higgs, but our setup is fully differential and any distribution

can be plotted. We show these in figure 12, for the cases in which the cross section is not

negligible. The results shown here are obtained with merged samples of 0 and 1-jet matched

to Pythia 8 for parton shower, in the same setup as that described in section 2 for the SM.

For the Zh0 final state we also show the SM prediction for comparison. Resonance

peaks arise in all scenarios for Zh0, each time located at the mass of the pseudoscalar A0.

The sharpness of the peak varies with the mass of A0, as heavier A0 have larger widths going

from 0.01GeV for B3, to 7GeV for B1 and 35GeV in B2. We also notice various interesting

interference patterns, clearly visible for benchmarks B1 and B2. The A0-mediated diagram

interferes with the SM-like amplitude, with the interference switching sign at
√
ŝ = mA0 .

Comparing scenarios B1 and B2, we see that the Zh0A0 couplings have opposite signs and

therefore in one case the dip appears right before the resonance peak, and in the other right

after. More subtle features are also visible in the plots away from the resonance peaks.

These features can always be traced back to the 2HDM parameters and the value of the rel-

evant couplings as shown in table 5. One such example is the fact that the B2 mZh0 curve

lies a bit lower than the SM one in the region below 350GeV, which can be linked to the en-

hanced top Yukawa leading to a bigger box contribution. The box is in turn interfering de-

structively with the triangle leading to a smaller total amplitude for the gg → Zh0 process.

For the ZH0 process, only the two benchmarks that give measurable cross sections are

shown. The plots shown for this process are dominated by the resonant decay of A0. This

is more obvious in the B1 curve as the resonant peak is closer to the threshold. Scenario B2
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Figure 12. Differential distributions for gluon induced Zh0, ZH0 and ZA0 production at
√
s =

14TeV for the three 2HDM benchmarks and comparison with the SM. Left: invariant mass of the

Zφ system. Right: transverse momentum of the Higgs.

receives some non-negligible off-peak contributions from the Z triangle and box diagrams,

which in this case interfere constructively, as the H0 top Yukawa sign is flipped. For B1

both the top Yukawa and ZZH0 couplings signs are flipped, therefore the interference

between triangle and box is destructive, and the result in the tails away from the resonant

peaks, is suppressed compared to B2.

The situation is less complicated for ZA0 for which in B3 a resonance very close to

the mZ + mA0 threshold dominates the plots, while the cross sections for B1 and B2

are extremely suppressed as no resonant decay is kinematically allowed. Moreover the

production of a rather heavy ZA0 pair probes the gluon luminosity at large partonic x

values and is therefore suppressed.

4 Conclusions

Investigating the nature of the Higgs boson discovered at the LHC is a challenging task.

While the results of the measurements undertaken so far show that the 125GeV scalar

agrees well with the SM prediction, there is still room for deviations from the SM and
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possibly an extended Higgs sector to be discovered at the LHC. The exploration of various

Higgs production processes is of vital importance to exclude or confirm a non-minimal

Higgs sector.

An important process yet to be precisely measured at the LHC is the associated pro-

duction of a Higgs with a Z boson. In addition to the Drell-Yan type contributions, this

process acquires a gluon fusion component at NNLO, which proves to be of particular im-

portance in the boosted regime. In this work, we have reviewed the main features of the

gg → ZH process, both at the matrix-element and cross-section level. We have examined

the behaviour and the relative importance of the 2 → 2 and 2 → 3 matrix elements for the

gluon induced component. We have found that in the high pT regions the 2 → 3 matrix

elements behave in a different way from the 2 → 2 ones and therefore have to be taken

into account to provide accurate predictions for the differential distributions. To achieve

this, we have combined the two in a consistent way, by merging different jet multiplicity

samples and matching them to a parton shower.

Our results have been obtained within the MadGraph5 aMC@NLO framework with

the help of Pythia 8 for the parton shower. The ME+PS approach provides a more ac-

curate description of the process compared to the parton shower alone. In particular, it

significantly reduces the uncertainty associated with the shower scale choice. For observ-

ables such as the transverse momentum of radiated jets in the hard region, the prediction of

the parton shower alone can be misleading as here the results are extremely sensitive to the

shower parameters. We find that in the merged predictions this sensitivity is almost com-

pletely eliminated, with the shower uncertainty remaining well within the intrinsic QCD

uncertainty due to the renormalisation and factorisation scale variations.

The reduction of the uncertainties associated with the SM prediction and especially the

accurate description of differential distributions is crucial for searches for beyond the SM

scenarios. One scenario that the LHC aims to explore is the 2HDM. In this paper, we have

also provided predictions for the gluon fusion component of the Zφ associated production

in the 2HDM. Following the same setup as in the SM, we have presented our predictions

for three representative 2HDM benchmarks. We have considered all three neutral Higgs

bosons, presenting results for the cross sections and the differential distributions.

In the production of the light Higgs in association with a Z, large enhancements can

be achieved compared to the SM prediction if the resonant decay of the pseudoscalar A0

is kinematically allowed. Moreover, interference patterns arise between the additional dia-

grams and the SM-like ones, leading to interesting features in the differential distributions.

The resonant production of a H0Z pair also becomes important as the H0ZA0 coupling

is not suppressed, leading to large cross sections for gg → ZH0 if the pseudoscalar A0

is heavier than H0. Finally in scenarios where the pseudoscalar A0 is lighter than the

heavy Higgs, gg → H0 → ZA0 production is allowed and leads to large cross sections in

still-to-be-excluded scenarios.
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