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ric Standard Model where, beyond the phases from the soft lagrangian, CP-violation could
enter the Higgs sector directly at tree-level through complex parameters in the superpoten-
tial. We develop a series of Fortran subroutines, cast within the public tool NMSSMTools
and allowing for a phenomenological analysis of the CP-violating NMSSM. This new tool
performs the computation of the masses and couplings of the various new physics states
in this model: leading corrections to the sparticle masses are included; the precision for
the Higgs masses and couplings reaches the full one-loop and leading two-loop order. The
two-body Higgs and top decays are also attended. We use the public tools HiggsBounds
and HiggsSignals to test the Higgs sector. Additional subroutines check the viability of
the sparticle spectrum in view of LEP-limits and constrain the phases of the model via a
confrontation to the experimentally measured Electric Dipole Moments. These tools will
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consequences of CP-violation for the NMSSM Higgs sector.
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1 Introduction

After the discovery of a signal at a mass of about 125 GeV in the LHC Higgs searches [1, 2],

the question of the identification of the associated state(s) and the underlying physics re-

mains open. While the general properties are consistent so far with those expected for the

Higgs boson of the Standard Model (SM), a wide range of alternatives could equally well

fit the experimental data. In particular, softly-broken supersymmetric (SUSY) extensions

of the SM [3] count among the appealing options to solve the Hierarchy Problem [4-8]

and allow for a smooth transition to higher energy physics (e.g. Grand Unification, neu-

trino physics or weakly-coupled dark matter). The scarceness of evidence for new physics

effects in precision physics or direct searches should also be weighed by the considera-

tions that SUSY-inspired models offer a SM-like decoupling regime, but also that complex



mechanisms in the Higgs or SUSY sectors — see e.g. [9] — may account for this relative
invisibility thus far.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM), a singlet-extension
of the simplest viable SUSY-inspired extension of the SM [10], has raised renewed interest
ever since the Higgs discovery, notably due to its properties in the Higgs sector, e.g. allowing
for an uplift of the mass of the SM-like Higgs related to F-terms or to the mixing of this state
with a lighter singlet [11-18]. The original motivation for this singlet extension rests with
the ‘p-problem’ of the MSSM [19], which can be solved elegantly if this p-term is generated
dynamically, via a singlet vacuum expectation value (v.e.v.) [20-22]. Correspondingly, the
Z.3-conserving version of the NMSSM — allowing only cubic terms in the superpotential
— is the most studied form of this model, while more general singlet couplings can be
justified by higher-energy considerations — see e.g. [23, 24]. Another usual feature in
SUSY extensions of the SM is R-parity, which both constrains the possibility of baryon-
number violation and provides a stable SUSY particle, hence a dark-matter candidate.

A troubling fact rests with the observation that several NMSSM parameters — espe-
cially in the Higgs sector — can take complex values, hence lead to CP-violation beyond
that in the quark sector. On the one hand, CP-violation is known as a cosmological neces-
sity for baryogenesis. On the other, it receives severe limits at the phenomenological level,
from the non-observation of Electric Dipole Moments (EDM’s; see e.g. [25]). In this paper,
we aim at presenting a tool which allows to study the NMSSM with complex parameters
within the framework of the public code NMSSMTools [26-30]. In a first step, we will focus
on the Zs-conserving version although we plan on a generalization to tadpole and quadratic
couplings of the singlet in the future.

The current version of NMSSMTools allows to perform several operations in connec-
tion with the spectrum of the CP-conserving NMSSM: in particular, it computes radiative
corrections to the Higgs and SUSY spectrum, calculates the widths of Higgs decays or
confronts the NMSSM parameter space to theoretical — e.g. vacuum stability — or phe-
nomenological — e.g. Higgs searches, B-physics — limits. Several other tools aiming at
the calculation of radiative corrections to the NMSSM spectrum have been developed in
the past few years, e.g. NMSSMCALC [31, 32] or SoftSUSY [33, 34]. The latter focuses on the
CP-conserving NMSSM, while NMSSMCALC allows for CP-violation but specializes in correc-
tions to the Higgs spectrum. Multi-purpose programs can also be used in connection to the
(complex) NMSSM and allow for a number of similar manipulations, provided the imple-
mentation of a model-file as input: this applies to SPHENO [35-38] or FlexibleSUSY [39, 40]
— which are usually coupled to SARAH [41-44] to produce their input file. The Higgs-sector
of the complex NMSSM and its phenomenology have been previously considered in several
earlier works [45-63].

Our goal consists in generalizing NMSSMTools to the CP-violating case. While this task
remains far from complete, the tools which we present here already allow for numerous
operations: radiative corrections to the SUSY and the Higgs masses are implemented — so
far, only the leading double-log corrections (beyond the full one-loop) are taken into account
at two-loop order in the Higgs spectrum — ; Higgs and top two-body decays are computed;
phenomenological limits from LEP SUSY searches or Higgs physics are tested — the latter



via an interface with the public tools HiggsBounds [64-68] and HiggsSignals [69]; —
finally we designed a subroutine to estimate the EDM’s. All these routines should become
available on the NMSSMTools website [26-30] in the near future. This paper is intended
to serve as a presentation of the calculations implemented in our tool, as well as a short
illustration of its uses. In the following section, we will detail the characteristics of the
model under study, the underlying assumptions and the tree-level spectrum. The third
section will present the chain of subroutines that we designed and the operations which
they carry out. Finally, we will consider phenomenological consequences and compare some
of our results to the predictions of existing tools, before we conclude.

2 Model, phase-counting and tree-level

In this section, we present the details of the model under consideration, our notations as
well as the spectrum at tree-level.

2.1 The CP-violating NMSSM

The NMSSM is a supersymmetry-inspired extension of the SM with soft SUSY-breaking
terms. It differs from the minimal supersymmetric extension of the SM, the MSSM, in
that it includes, in addition to the two Higgs SU(2)-doublet superfields H, and H, with
opposite hypercharge +1, a supplemental gauge-singlet chiral superfield S. While the
couplings of this singlet may take a more complex form in the general case, we will be
considering only the R-parity and Zs-conserving NMSSM here, which is characterized by
the following superpotential and SUSY-breaking terms:

W =\ SH, - [y + ge’%S’B — Hy - QLY U8 + Hy - QL[Ya) DS + Hy - LY. E

—Loo = — My ®M1bb — Mae'M2 000 — Mae'®™s o q + h.c.
+ iy, [Hul? + mi, [ Hal? + m3|S]? + QrimdlQ) + U m#]UR
+ Dyl mb] D%, + Li[m3 LY, + B3 [m) Efy
+ AAye'®A\ SH, - Hy + gA,.;ewAn S8 — Hy - Qr[YuAuUS
+ Hy QL[YaAd DS + Hy - Li[YoAJES + hec.

The ‘matter’ (super)fields' @y, Ug, D%, L, E should be understood as summed over gen-
erations and the parameters within brackets should correspondingly be seen as (complex)
matrices. ‘-’ denotes the usual SU(2);, product. b, @, and §, stand for the U(1)y, SU(2)y,
and SU(3). gauginos, respectively. In the following ¢’, g and gg will denote the correspond-
ing gauge couplings and ag = g% /4mw. While the Z3-conserving NMSSM offers the simplest
solution to the u-problem of the MSSM, the inclusion of Zs-violating terms can be justified
from higher-energy considerations [23, 24] and turns up as a phenomenological necessity in
view of the domain-wall problem. Our restriction to the Zs-conserving lagrangian follows

'We will omit the " distinguishing the superfields from their scalar component, from now on.



considerations of simplicity and our work shall be extended to the Zs-violating case in the
near future: we discuss in appendix F how this can be easily achieved.

The minimization of the scalar potential will generate Higgs vacuum expectation values
(v.e.v.’s) so that we may write the Higgs (super)fields in terms of their (real and positive)
v.e.v.’S S, Uy, Vg, and their charged and neutral components:

0 0 H+ hg—l—zag
S — s (S T hs+ws> H, = ¢“u ( h%erO) Hy = ' <”d =5 (2.3)
2 Uy, + Ut H7
V2 u V2 d

The three ‘dynamical’ phases ¢5, ¢, and ¢4 add to the ‘static’ phases appearing in the

lagrangian density (egs. (2.1), (2.2)). From now on, we will make the following replacements
in our notations (which amounts to a redefinition of the Higgs fields):

0 0 Ht h9+1af
S<—<s+hs:}2m8) Hu<—< +h%+w0> Hd<—<vd+Hﬁ
U u u —_
“ V2 d
O\ Px = OA + Os + Gy + Pa [Yu] — [Yu]ewu [YuAu] — [YuAu]el¢u
O — O = Ok + 305 [Yd] — [Yd]el¢>d [YdAd] — [YdAd] e'%d
Ga, — P1=da, + s+ Gu+dg [Ye] + [Ye]e'™ [YoAe] < [YeAc]e
A, < P2 = da, + 305 (2.4)

The Yukawa matrices may be written in terms of (real and positive) matrices Y, Yy,
Y., diagonal in flavour space, using unitary transformations:

Y] = X}V, X} Ya] = X{V X3 [Y.] = X;Y. X5, (2.5)

Redefining the quark and lepton (super)fields accordingly,

xuf
Qp (g}%) L Up — XplUg; D« X8TDG: Ly« LpXe, Ef « X5'ES
LAL

(2.6)
and introducing the Cabibbo-Kobayashi-Maskawa (CKM) matrix Vogv = XETXg, the
superpotential of eq. (2.1) now reads:

U ULV,
W—)\eZWSHu'Hd—i—ge’SDNSS—Hu-(D VLT )YngJer-( LDCKM> YD+ Hy- LY. ES
LYckM L
(2.7)

Finally, we make the following assumptions to ensure minimal flavour violation in the

sfermion sector:

o Xzf[mé]Xg ~ XgT[mé]Xg = mé, where mé is a diagonal (and, without loss of

Y

generality, real) matrix in flavour space. The approximation ‘~’ only holds for a
matrix proportional to the identity, in the strict sense, but is viable, considering that
the CKM matrix is hierarchical. Note that we will assume degeneracy for the first

two generations of sfermions.



o XpImp]Xp' = my, XEmpIXE' = mb, X7 [mi]X] = m}, XgImp] X5 = mi, are

assumed diagonal.

o X'V, A X = VoA ewau, XTTV4AXET = YyAge4a and X5V A XSG =
Y. A.e"P4e are also treated as diagonal in flavour-space.

Consequently, the soft SUSY-breaking lagrangian of eq. (2.2) reduces to:

Lo = — M1 PM1bh — Moe'®M2 o0 — M3e" 3 §oGa + h.c. (2.8)
+md (VUL + D} DL ) +mi UG U + mb, D5 Df
+m} (N[N + ELEp) + mb B B
+mYy [ Hyl? +m3y, [Hal? + m3|S|> + [NAxe' SH, - Hy + gAHesz?’ + h.c.]
- Y, A, ¥4 H, - QLUE + YdAde“DAd H,;- QLD% + Y, A H, - LLE}C% + h.c.
Egs. (2.7) and (2.8) fully characterize the model that we will be considering from now
on — note that the three latter terms of eq. (2.7) as well as the second and fourth lines
of eq. (2.8) are still implicitly summed over fermion generations. All the phases have been
explicited and reduce, at this level, to four phases in the Higgs sector — ¢x, ©x, ©1, ¥2;
we will see that the minimization conditions further constrain these, as could be expected
from the ‘dynamical’ nature of some phases —, three gaugino phases — ¢, darn, P
—, three sfermion phases per generation — ¢4,, p4,, 4., — and the CKM phase finally.
Given that we will neglect the Yukawa couplings of the first two generations, only the
sfermion phases of the third generation will intervene in practice.
2.2 The tree-level Higgs sector
The Higgs potential collects terms from the soft lagrangian (eq. (2.8)), F-terms from the
superpotential (eq. (2.7)) and D-terms from the gauge interactions. We obtain:
Vir =m% [Hul? +m3 [ Hal® +m3|S|> + \Ay [9' SH, - Hy+ h.c] + gAR (€253 4 h.c]
A2 (ISP (|Hul? + [Hal?) + [Hy - Ha?] + 5 [el(‘“"p”)S*QHu Hy+ h.c.} + K2|8[4

g%+ g 2 g?
+ I 2 - )+ P (2.9)

The neutral part reduces to:
Vo :m%[u|H3\2 + m%{d\Hg|2 +m3|S|? — AAy [e“mSHgHg + h.c.
+ gAH (2253 4 h.c] + Kk2|S|* + N2 [|S[2 (|HO)? + | HYJ?) + |HO)?|HY)?)

g/2 4 g2

2
S5 (| — |HYP) (2:10)

— kA [e“@r%)s*?ﬂgﬂg n h.c.} v



At tree level, the Higgs v.e.v.’s are assumed to minimize this potential. A conse-
quence is the cancellation of first derivatives with respect to the neutral Higgs fields at the
minimum, which provides us with the minimization conditions:

2 Vg 20, o 9+ o 2

mi, = As[Axcos 1 + ks cos(pr — i) o A°(s™ 4+ vg) — T(% — vg)
u

N A I

v
m%[d = As [A) cos p1 + ks cos(pr — @r)] U—Z — N (s® 4+ 02) + 1 (v —v3)

m¥% = A[Ay cos 1 + 2ks cos(pr — @n)] % — k8[Ag cos g + 2ks] — A2(v2 + v3)
Aysing = —kssin(py — k) (2.11)
A
Ay singo = - [A)sin o1 — 2kssin(py — @) U:gd = —3)\Uusvd sin(ox — @)

Here we see that the four phases of the Higgs sector are not independent but that, on
the contrary, the minimization conditions relate ¢ and @2 to p) — @k, the latter being
the one and only ‘observable’ phase in the Higgs sector. Note that ) and ¢, intervene
independently in other parts of the spectrum however. We will make an explicit use of
the minimization conditions of eq. (2.11) in the following lines, replacing m%lu, m%[d, m%,
Ay sin ) and Ay sin g by their expressions in terms of the v.e.v.’s.

The terms of eq. (2.9), bilinear in the charged Higgs fields, define the 2 x 2 (hermitian)
mass-matrix of the charged-Higgs states:

Ht

(M) = D s cosor + nscos(in = ] = (¥ = £ ) v ( 1) (2.12)
[ —sinf cos 8 0 0 —sin B cos 3
~ \ cosf sinf 0 m%[i cos 3 sinpf

As 2 v
mi. = { [A) cos 1 + ks cos(pr — @r)] — ()\2—9>}(v5+v¢2{); tanf = —
Uy Vg 2 Vg

which determines the charged Goldstone boson G* = —sin 8 HF 4 cos 8 H C:lt and the phys-
ical charged Higgs state H* = cos 8 H + sin 3 Hdi.

Similarly, the terms bilinear in the neutral Higgs fields provide the 6 x 6 (symmetric)
. . . 2 1 9%V,0 . .
mass-matrix of the neutral Higgs: (M3, >i]. =3 <W<%§-)/\/§>’ with the notation ( )
meaning that fields are frozen to their v.e.v.’s. In the base (hY,h3, k2, ad,al, a?), these
entries read:
Vg g/2 4 92 9

<M12qo>11 = \s [A/\ cos 1 + KS cos(<p/\ — (Pn)] ; + 5 v2
U

(M), = —As[Ay cos 1 + rs cos(pr — pu)] +2 (/\2 — 4> v,V

v 2y 2
<./\/l§10>22 = As[A)cos 1 + ks cos(pn — k)] vfu + %Uﬁ
d



<M2 o>13 = — g [Ax cos @1 + 2ks cos(pr — k)] + 2X\2suy,

<./\/l >23 — vy [Ay cos g1 + 2k5 cos(@x — or)] + 202504
Vq

<MH0>33 = ks [A, cos g + 4ks] + AA) cos @1“? (2.13)
(M), = (MF0),, =0
(Mio)ys = (Mio)gs =0

<MH0>16 = —3Aksvgsin(py — ¢x) <M%{D>26 = —3AKsvy sin(px — @)

(M) g, = Arsvgsin(px — @)
<M§{0>35 = AKksvy sin(@y — ©x)

v
<M%{o>44 = As [A) cos p1 + ks cos(pn — vx)] 2

u

<M12qo>45 = As[A)cosp1 + ks cos(py — ¢x)]

(M) = As [Ax cos 1 + ks cos(or — ¢r)] Z—Z
<M >46 Avg [Ax cos p1 — 2k cos(pr — pr)]
<MH0>56 = vy [A cos p1 — 265 cos(py — vx)]

<M2HO>66 = —3KsA cos pa + )\Uu—svd [A) cos 1 + 4rs cos(or — ¢r)]

As in the charged case, the neutral Goldstone boson can be singled out via a S-angle
rotation G° = — sin 8 a2 +cos 3 ag. The remaining 5x 5 symmetric block spanning the space

(RS, A9, hY, a® = cos B al +sin B aY, a?) may be diagonalized via an orthogonal matrix X H,

<M§IO> = X" Tdiag(m2o,i = 1,...,5) X" (2.14)
which defines the mass eigenstates:

SO=XH RO + XH RO+ XH 0+ XH00+ XHa0 = XERO + XERO 4+ X2h0+ X1 a0+ XLa?

(2.15)
We will use the second notation which allows more clarity in the identification of the
components. Additionally, we define Xilu =cos 3 X, ! and Xy I =sinp X!

Note that the positivity of the squared Higgs-masses is a stability condition of the
vacuum. Remember also that, at 0™ order in the electroweak v.e.v.’s, one can isolate the
CP-even and CP-odd sectors and diagonalize their doublet subspaces via rotations of angle
—[/p (the singlet states are then unmixed), which disentangles the ‘light’ (then fully mass-

less) ‘SM-like” doublet states frorn the ‘heavy’ states with approximate squared-mass Mi =

As [Ay cos o1 + ks cos(px — px)] 2% (degenerate at this order with the charged state).

Vy Vg



2.3 The supersymmetric spectrum at tree-level

The whole tree-level spectrum will be treated with further details in appendix B. Here we
simply summarize, for the sake of notations, the basic ingredients concerning the treatment
of masses and mixings of SUSY particles.

i) Gluinos. The gluinos are the fermionic partners of the gluons and, as such, form a color
octet. Their bilinear terms originate in the soft lagrangian: —L,. 2 — M5e*M3 GaGa- The
mass states Gq, with mass Mj (which we assume positive), then relate to the eigenstates
of the SUSY vector superfield g, as G, = —1e2%M3§,. The phase shift then affects the
couplings of the gluinos to coloured matter.

ii) Charginos. The charginos are composed of the charged components of the elec-
troweak gauginos and higgsinos. Their bilinear terms originate from both supersymmetry-
conserving and violating terms and may be cast into the following form:

1 T 0 M —+ T ~— 7= ~ 7
inaixc <<MX+—>< 6‘ >>Xc+h.c.; X¢ = (—wv—, hy, =0t k)

Mye'¥M2 o, T
v A6W9>=<MX+> (2.16)

My = (

We may diagonalize <Mx*+> with the help of two unitary matrices U and V: <MX—+> =
U Tdiag(mxli,mXQi)V. The mass eigenvalues may be assumed real and positive without
any loss of generality and the mass eigenstates (i = 1,2) relate to the gauge ones as:

X:_ =V (—le)+) + ‘/7;2il+ = iw(_“b—’_) + ‘/;uﬁq—i_a

Xi_ = il(—ﬂbi) + Ulgh; = in(—wf) + Uzdh; (217)
iii) Neutralinos. The neutralinos are combinations of the neutral components of

the electroweak gauginos and higgsinos. Their bilinear terms, resulting from both
supersymmetry-conserving and violating terms, form a Majorana mass matrix:

1 - e
Vyo 3 5;& (M) xn +hee;  x& = (—ib, —a0®, S, h, BY)

! /

My e 0 %vu —%vd 0
0 Mae're —%o 0
(Myo) = \%Uu —%vu 0 —Ae¥rs =Ny | = (Mo >T (2.18)
—\%vd %vd —Ae'Prs 0 —e'Pruy,
0 0 —Ae"Pryy — ey, 2ke¥rs

<MX0> being symmetric, it can be diagonalized by a single unitary matrix N according to:
<Mx°> =N Tdiag(mxg,z’ =1,...,5)N. Without loss of generality the eigenvalues m o can
be chosen real and positive (remember that N is complex) and the mass eigenstates relate
to the gauge ones in the following fashion:

X = Ni(=b) + Nig(—1i®) + Nizh + NiyhS + Nish?
= Nip(—1b) + Niw(—210°) + NihQ + Nighl + Nish? (2.19)



iv) Sfermions. The scalar partners of the SM fermions receive hermitian mass matrices.
Due to our assumptions with respect to flavour violation, the three generations decouple.
We keep a generic notation although only the Yukawa couplings of the third generation
(u=1t,d="b,e=7) will be treated as non-vanishing in practice:

D
Vi3 (UL UE) (M) ( > I D%) (M3) (DCLT)
R
E
+ NI (MR N+ (BLL ES) (M) (ECLT> (2.20)
R

<M2 > _ m2Q + YUQU?L + i (% - 92> (U?L - 'Ug) [A 6_1(‘0‘4”1} — )\GZ(PASUd]

v Yu [AueupAufU — )\e_zQO)\Svd] mU Y2 2 _ %( 2 Ud)

mé + Y2 + ( +g ) (v2 —v2) Yy [Ade WAdpg — Ae'Prsv, ])

i) -

Yy [Age' P Aavg — Ne A suy) m% + Yiv2 + ?(’UZ —v3)
2
g°+ g
(M) =mi — = (v; = v)
() = (T YR+ T - Y, [A d — Ae'Prsu,]
B Y. [Aeew“‘e Vg — )\6 Hox SUu] Y2 2 (Uz - U?l)

Each mass matrix <M%> — F=U,D,N,E — can be diagonalized via a special-unitary

matrix X¥', according to:

<./\/l%> = XxF Tdiag(m%l,m%g)X F_ The positivity of the squared masses m%l is a stability

condition of the vacuum. The mass eigenstates are then defined as: F; = X lFLF T +X S%F f;.
This completes this short presentation of the tree-level spectrum. More details are

presented in appendix B, together with the Higgs couplings.

3 A short walk-through the code

In this section, we shall describe the operations which are conducted throughout our sub-
routines from the perspective of the phenomenology of the CP-violating NMSSM.

3.1 Interface with NMSSMTools

Before coming to the actual computations of our code, let us remind the reader that we
embed it within the NMSSMTools package. We actually use the NMHDECAY routines to define
its input. In particular, we do not alter the running of parameters — such as the Yukawa,
gauge or soft couplings —, e.g. to the average scale of the squarks of third generation.
We simply use the corresponding quantities as calculated by NMHDECAY as our input and
introduce the complex phases at this level. This is justified as the renormalization group
equations (RGE’s) of the superpotential parameters leave the phases unaffected (at least up
to two-loop order). A short subroutine init_CPV.f defines this interface and stores all the
relevant quantities within commons of the code. The case of the parameters Ay and Ay is
somewhat more subtle: given that the phases ¢; and @9 are not free but, in our approach,



determined by the minimization conditions of the potential (see eq. (2.11)), we will only be
using the quantities Ay cosp; and A, cos o as degrees of freedom in practice. Therefore,
we identify the NMHDECAY input for Ay and A, as ours for Ay cos ¢ and A, cos 3. The one-
loop RGE’s are correspondingly corrected. The wave-function scaling factors for the Higgs
fields are also defined slightly differently from the original implementation in NMSSMTools,
as we shall describe in section 3.3.1.

Given our discussion in section 2, the following eight phases are added as new degrees

of freedom: PNy Prs ¢M1a ¢M2) ¢M3) DAy SOAba PA,-

3.2 Supersymmetric spectrum

The first actual operations which are carried out in connection to the CP-violating NMSSM
consist in the calculation of the masses of the supersymmetric matter content. Similarly to
the evaluation by NMSSMTools in the CP-conserving case, we take into account the leading
radiative corrections to the masses. In the following, we list the new subroutines and
provide relevant information concerning the calculations which are performed.

i) mcha_CPV.f. The purpose of this subroutine rests in diagonalizing the chargino mass
matrix (eq. (2.16)) according to (M, —+) = UTdiag(mX?,mxét)V. Similarly to the corre-
sponding implementation within NMSSMTools for the CP-conserving case, the entries of the
mass matrix receive one-loop radiative corrections which are calculated in the approxima-
tion where mass and gauge eigenstates coincide. The corresponding effects are presented in
section 4.2 of [70] — in the context the MSSM and still in the CP-conserving case. Small
modifications appear in the CP-violating NMSSM, as gaugino and higgsino scalar cou-
plings are rotated by phase factors of e **Mi/2 and e~%*»/2. Nevertheless, the factors of By
functions as well as the corrections involving gauge bosons are immune to this phase shift,
so that only the scalar interactions resulting in a By function — in the approximations
of [70], this reduces to the Higgs/higgsino loops — are affected. Another difference with
respect to ref. [70] originates from the presence of singlets and singlinos in the higgsino
self-energies. A summary of these corrections is explicited in appendix C.1.

The following steps are essentially identical to their counterparts in the tree-level case,
which is treated into details in appendix B.1.4: we define two special-unitary matrices
Up and Vj diagonalizing the hermitian matrices (M, —+) <./\/1X—+>Jr and <./\/l>(+>T (My—+)
respectively. UjJ <./\/le+> VOT is then a diagonal matrix with, in general, non-real entries.
We thus define the unitary matrices U and V via a phase-shift of Uy and Vj, where the
phase of the lightest state is absorbed in U while that of the heavier one is absorbed in V:
the resulting chargino masses are real and positive.

ii) mneu_CPV.f. The case of the neutralinos follows the same principles as that of the
charginos. The tree-level gaugino and higgsino masses are corrected in accordance with the
one-loop effects presented in appendix C.1. We then diagonalize the complex symmetric
neutralino mass matrix according to (M,o) = NTdiag(mX?,i = 1,...,5)N. For that

I
purpose, we consider the 10 x 10 real symmetric matrix < RIe 5) (<MX0>T </\/lxo>>,
—Im Re
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which can be diagonalized numerically by an orthogonal matrix Ny. We then extract
a special unitary matrix Ny so that NJ <MX0>NJ is diagonal. We finally absorb the
remaining phases in a phase-shift of Ny, which defines the real and positive neutralino
masses as well as the mixing matrix N. Details are provided in appendix B.1.4.

iii) msferm_CPV.f.  We now turn to the sfermion masses. The hermitian tree-level
mass matrices are diagonalized via special-unitary matrices X*', according to <M%> =
XF Tdi&g(mfm1 , m%b)X ¥ We remind the reader that the parameters entering the matrices,
e.g. the top and bottom Yukawa couplings, have been run to the average squark scale.
The Yukawa couplings of the first two generation are neglected, so that the corresponding
diagonalizing matrices are trivial. Details can be found in appendix B.1.3.

We then apply O(ag) corrections to the squark squared masses (consistently with what
was implemented in the original CP-conserving treatment in NMSSMTools). Gluons, gluinos
as well as the quartic sfermion D-term contribute to the sfermion self energy at this order.
CP-phases — here, ¢pr, and o4, — intervene in the gluino-sfermion couplings leading to
a By function. A summary is proposed in appendix C.2.

Finally, we check the positivity of the sfermion squared masses, a vacuum-stability
requirement.

iv) mgluino_CPV.f. mgluino_CPV.f computes the gluino mass, including the O(ag)
radiative corrections, which are obtained in a similar manner to the discussion in sec-
tion 4.1 of [70]. Relevant corrections include the gluon/gluino and the quark/squark loops.
Complex phases again enter the couplings of gluinos to squarks. Details are provided in
appendix C.3.

3.3 Higgs masses and radiative corrections

The following series of subroutines aim at computing the Higgs masses and mixing, includ-
ing full one-loop and leading two-loop corrections. Consistently with the original approach
in NMHDECAY, we will consider the effective Higgs potential at the average scale of the
squarks of the third generation — denoted as Q —, where the running parameters are thus
evaluated.

3.3.1 Wave-function renormalization

Momentum-dependent radiative corrections can be included in two fashions within the
effective potential evaluation: one may reject them to the end of the calculation, as ‘pole-
corrections’, or one may take them into account — at least partially — into the effective
lagrangian as corrections to the kinetic terms. The latter choice leads to wave-function
renormalization factors. While the two methods are formally equivalent, they lead to
slightly divergent results at the numerical level, as we will discuss later. Following the orig-
inal approach in NMHDECAY — presented e.g. in appendix C of [71] or appendix C of [10] —, we
decide to include the leading p? terms — where p stands for the external energy-momentum
of the Higgs self-energies —, originating in fermion or gauge effects, into the kinetic term of
the effective lagrangian. Nevertheless, since we aim at a full computation at one-loop, all
the missing momentum-dependent parts will be added as pole-corrections (see below).

- 11 -



In the general case, the modified Higgs kinetic terms involve a hermitian (non-
degenerate) matrix Zg(p?) as follows (here and below S; denotes any Higgs field; we work
in momentum space and omit the factor 1/2 which should appear if the considered field
is real):

ﬁi‘i:fn = ZPZ ZH(p2)}Z‘j SZ*SJ (3.1)
0.
The normal procedure then consists in rotating and scaling Zy via an invertible matrix
Oy in order to recover the identity — Zg(p?) = OL]IOH —, then considering the ‘new’ set
of fields with standard kinetic term S; = Op;;S;.

Yet, egs. (C.1) of [71] or (C.9-11) of [10] show that a clever choice of the corrections
included into Zpy can make this procedure particularly simple, as Zg would turn out to
be diagonal in the base of gauge-eigenstates. Restricting to neutral Higgs fields, one has
(with ds, 5, denoting the Kronecker symbol):

Zul;; = Zu, [5si,hg5sj,hg + 6S¢,a255j,a2:| + ZH, [6Si,h255j,h2 +05,,4905; a9
+Zs [5si,hg5sj,h2 + 5si,a25sj,a2} (3:2)
Indeed, considering the contributions of SM-fermions to Zy (N. = 3 is the colour factor;
while using the generic notations u, d, e, we will be considering only the third generation

fermions since we neglect the Yukawa couplings of the two first families), the deviations of
the diagonal scaling factors from unity read:?

V] erm 1
§SM £ ZHu — W {NCYUZBQ(}?, My, mu)}

1
5SM fermZHd — @ {NchQBo(p, ma, md) + }/'62Bo(p’ Me, me)} (33)
5SIVI fermZS — 0

Similarly, in the approximation where higgsinos and gauginos are simultaneously gauge
and mass eigenstates (u denotes the doublet higgsino mass; mg, the singlino mass):

B 1 fg” 39° 2
6 ’gZHu == B) 730(17; Ml,/,L)—i-*B(](p, MQ’M)_'_A Bo(p,,u,mg)
167 2 2
Iz, =M 2y, (3.4)

B 1
M Zs = 5 {\Bo(p, 11, 1) + K*Bo(p, ms, ms) }

The last source of corrections to Zp is the gauge sector — note that we will be working in
the Feynmann gauge. Yet, the corresponding contributions are not diagonal in the gauge
eigenbase, but rotated by an angle 5 (or —f, depending on the CP-eigenvalue) in the
doublet sector. Noticing however that tan 8 > 1 in practice, we may keep the sin? 5 term
in the wave-function scaling while rejecting the remaining sin 3 cos 8 and cos? 8 terms for

?We use the DR scheme. Loop functions are defined in appendix A.
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later treatment as pole-corrections. Then:

sin? ?+g
05 Zp, = — 1672 {QQBO(Z% My, My) + %Bo(p, Mz,MZ)}
6gaugeZHd — 0 (35)
§EEeZg =0

Note that this choice in the gauge sector differs from the default treatment by NMSSMTools
in the CP-conserving case (see eq. (C.9-10) of [10]), where, moreover, pole corrections from
the gauge sector are ignored.

Before setting Zp, g, 5 = 1+ [5SM form 1 5hig | geause Zm, H,S, one is confronted to
the remaining p?-dependence of these coefficients (via the loop functions Bp). In the
ideal case, p? would match the Higgs squared masses. This, however, is impractical since
several mass eigenvalues are present: keeping this p? dependence, hence working with
p?-dependent fields and mass-matrices, and setting this implicit dependence separately
to the corresponding Higgs squared mass after diagonalization of the mass matrix would
be possible, yet problematic in a numerical evaluation of the mass matrices. The choice
of [10] in the CP-conserving case rested in adding an artificial dependence of Zy, m, on
ln(Mf1 /m?) — M, standing for the mass of the heavy doublet, m; approximating the
SM-like Higgs mass —, so as to mimic the correct logarithmic dependence after rotation by
an angle —f( (approximating the tree-level diagonalizing rotation in the CP-even doublet
sector): however an explicit rotation by the angle —f shows that this purpose is missed
as only the light state receives the proper logarithmic factor; in the case of the heavy
doublet, the factor is wrong so that the result does not really improve on neglecting the
logarithms In(M?%/m?) altogether. Therefore, we settle for the choice which consists in
freezing the external momentum to a scale py = 125 GeV, allowing for a good precision in
the characteristics of the SM-like Higgs state — the most sensitive to radiative corrections.
Adequate corrections when the mass is far from this scale are rejected to the level of
pole-corrections. A final difference with [10] comes from the implementation of the loop
functions: we explicitly compute the full relevant By’s while [10] only included the leading
logarithmic terms in case of large mass hierarchies.

A summary of the wave-function scaling factors is provided in appendix D.1.

Consistently, the neutral higgs fields are rescaled as:

0 hy 0 hg 0 h 0 ay 0 a?l 0 al

hy < L hy+ : — L q) Y. g5 Y D a—
d ) s ) u ) d ’ S

V2, /ZH, VZs /Zu, \/ZH, Vs

(3.6)
so that all related quantities (e.g. the mass matrices) must be rescaled accordingly. In
particular the Higgs v.e.v.’s:

v (Q) =

Uy (I 5 _ S
i 7 (@) (3.7)

All these operations are carried out in the initialization subroutine init_CPV.f.

va(Q)

In the charged-sector, the p?-dependent terms are typically different from those ap-
pearing in the neutral case. However, to keep 5 as the relevant rotation angle in the charged
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sector together with the v.e.v. rescaling of eq. (3.7), we will use the same wave-function
scaling factors Zp, m,:
HE Hf
H:I: — U : Hi - d
Y 2, N7

and restore the appropriate dependence at the level of the pole-corrections.

(3.8)

3.3.2 Effective potential

After this discussion relative to the kinetic terms, let us turn to the Higgs potential. At
tree-level, it is given by eq. (2.9). Radiative corrections can be added to this picture
by considering diagrams with vanishing external momenta or, equivalently, the Coleman-
Weinberg formula for one-loop effects. In the DR scheme and the Landau gauge, the
effective Higgs potential reads:
1 i [ Mi 3

Vea (H) = Vi (H) + 0Ver (H);  Ver (H) = @Tr {C¢’M<I> [ln - 2] } (3.9)
where the trace applies to all fields ® of the model, with Cp depending on the Lorentz
properties of ® — respectively 1, 2, —2, —4, 3 for a real scalar, a complex scalar, a
Majorana fermion, a Dirac fermion and a gauge boson — and M?D is the bilinear (‘squared
mass’) matrix of the fields, where the dependence on Higgs fields has been kept.? Note
that the gauge or Z3 symmetries are still explicitly preserved by this potential (but not, in
general, by its minimization). On the other hand, it involves terms of dimension > 5, so
that expansions of the potential in the vicinity of its minimum will generically break the
symmetries in an explicit way:.

i) Minimization conditions and corrections to the mass matrices. The Higgs
V.e.V.’s vy, Vg, s — of eq. (3.7): remember that we are considering the potential at the
scale ) — are now supposed to minimize the full potential of eq. (3.9). Consequently, the
minimization conditions of eq. (2.11) (at tree-level) must be modified to account for the

radiative effects. This provides the so-called tadpole equations:*
Sm2 = _ <85Vﬂ”>
1 o8V,
omy, = - 3.10
Ha = "9, <ah2/ﬂ> (3.10)

57”25 = 1 <85Veﬁ">
2s \ 0h%/\/2
(4, sin o) = —— L < 06V, >:_ 1 < 08 Ver >
2Asvg \ 9al //2 2Asvy \ 0al/ V2

kS P2) = 22 9a0/v/2 5 7(9&2/\@

3In other words, one recovers the tree-level squared mass matrix <M2(I>> when replacing the Higgs fields

by their v.e.v.’s in M3.
4The notation (f) means that the function f of the Higgs fields is evaluated at the Higgs v.e.v.’s.
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Given that the parameters m%{u, m%ld, m%, Ay sing; and A, sin s have been replaced

by their tree-level values (eq. (2.11)) in the tree-level Higgs mass matrices (eq. (2.12)
and (2.13)), the shifts of eq. (3.10) must be included into the corrected mass matrices, in
addition to the bilinear terms. For the charged Higgs mass matrix, this amounts to:

%6V, 1 06V %6V, 1 OV,
5 M2 _ 79({ - eff. > 6 M2 — <Ef‘f< v eff.
(M) <8HJ@HJ 20, 9RO /v/2 (M) OHy, OH | * 2v4 0al /+/2

%6V, 1 OV, %6V, 1 96V

SIM2, Y, =( GO0 T eff~>5M2 = — N
Mz <aHd‘aHJ 2o agjva) M OHyOH[  2v40hl/V2
(3.11)

and for the neutral Higgs states:

1 0?0V
5<Mi10>12 2<8h0/\f8h /\f>

1/ 0%V 1 98V, 1 %5V,
5 M2 - eff. eff. 5 M2 :< eff. >
(Migo) 2<(8h2/\/§) vg ORY /\f> (M) 2\ 0h0 /v/20h9 //2

1 06V 1 96V
) M2 _ - eff. _ eff. >
< H0>11 2<(3h3/\/§)2 Uy 3h2/\/§

1 d%8V, 1/ 0%V 1 06V
) M2 - eff. 5 M2 :< eff. 4t eff. >
(Mi0) g3 = 2<6h2/f8h0/f> (MFr0)33 2\ (0h9/v2)2 s OnY/\/2
(3.12)
1/ 0%V 1 96V > 5 1 0?0V
§ (M3, = — M =
< >44 < aao/\f) Uu 3h2/\/§ < H0>45 2 aao/\faad/\[
1/ 0?6V 1 90V ) 1 < 0?0V.a >
§ (M3, = o (M =
< >55 < aao/\f) g 0RO /\f> < H0>46 2\ 9a0 /v/20a0/+/2
s 1 V. 2 1/ PV 1 Vs
& (Mip0)56= 2<3a2/ﬁ8a2/\/§ J <MH0>66 (0a2/V/2)2 s 0RY//2
1 8 5Veﬁ‘ 2 1 a 6Veff 1 8(S]/eff.
o = 5 o) ==
(Mipo 2<8h0/\[8a0/\[> Mk >1° 2<8h0/\[aad/\[ Vg 8a2/\/§>
M) =k < 0% Vour 1 9Ve. > S, = L Ve, 1 0Ver,
2\ 09 /v/20a°//2 5040 /\/2 272\ 9h9 /2000 /2 va 9al/V/2
1 8 (Sveg 2 1 8 6Veff Uy aévefﬁ
8 = J 0 N
M 2<6h2/f 20a/v/2 > Mire)26=5\ 51/ V20a V3 ~ w04 aaz/ﬂ>
(5<M2 > :1< ?6Vesr. _1 06V, > 5<M2 > :1 & Uy O Vesr.
H°7347 2\ 910 /+/20a0 /v2 5 9al /2 107352\ 0h9/v/20a%/v2  sv4 0al/\/2

%72 \0RY/V30a2/V2 s 0ad/VE T s 0af/V3

This concludes the presentation of the general formalism and we may now describe the
various contributions to the effective potential which are computed within our code.
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ii) mhiggstree_CPV.f. This subroutine simply defines the tree-level mass matrices at
the scale () according to egs. (2.12) and (2.13). However, the corrected Higgs masses are
not the only information that we want to extract from the effective potential: the Higgs-
to-Higgs couplings are also encoded within this formalism. Therefore, and for reasons that
will become clear when we implement the various radiative contributions to the potential,
we wish to match the full effective potential onto the following and simpler one:

. A
Ve = M2|S)? + ?S (45 53 + h.c.] + Vo(|S]?) (3.13)

+ (Mg + Np|SI”) [ Hul? + (M + XB|SI)| Hal*
+ [(Ayae"Aua S + \Y e §*2) H,, - Hy + h.c.]

A A
+ G S HA + s HuP|Hal? + Ml Ho - Hof?

A
+ ?56% (H, - Hy)? + (A6€'¢|Hy|> + A\7e'?7|Hy|?)H,, - Hy + h.c.

This is a subset of the most general singlet 4+ two doublet potential which one can write

> The gauge symmetry is observed. However the Zs-symmetry

up to dimension 4 terms.
only holds up to terms quadratic in the doublet fields and is explicitly broken by the terms
in the last line of eq. (3.13). This potential is meant as an expansion of eq. (3.9) in the
doublet fields and as we mentioned before, there is no reason why the Zs-symmetry should
hold in such an expansion. The characteristics of this potential are studied in appendix E

and matching the tree-level expression of eq. (2.9) is straightforward (see appendix E.1).

iii) mhiggsloop_sferm_CPV.f.  With this subroutine, we start adding radiative cor-
rections to the effective potential, here those arising from SM-fermion and sfermion loops.
These — particularly the contribution associated to the top — are known to convey the
dominant radiative effect and lead e.g. to a substancial shift of the squared-mass of the
SM-like Higgs boson.

The corresponding one-loop effects to the neutral Higgs mass matrix are particularly
easy to include in the Coleman-Weinberg formalism of eq. (3.9), since the bilinear terms
provide relatively simple matrices (refer to the appendices B.1.1 and B.1.3). The details
of the corrections are developed in the appendices D.2.1 and D.2.3. Note that we recover
egs. (C16-18) of [10] in the CP-conserving limit.

The situation is slightly more complex for the charged Higgs as well as for the Higgs-to-
Higgs couplings: we then decide to expand the potential in terms of the doublet fields, up
to quartic order H* and match the corresponding expansion onto the simplified potential
of eq. (3.13). This amounts to an expansion in v/Mgygy, where Mgygy here stands for any
sfermion mass. The sfermion contributions to the coefficients of eq. (3.13) are also provided
in appendix D.2.3. Note that this alternative approach allows for a numerical cross-check
with the corrections applied to the mass matrix of the neutral Higgs states with the method
described in the previous paragraph.

®Note however that we do not specify Vo(|S|?) further. If only terms of dimension < 4 are kept, then
the only choice would be Vo(|S|?) = K?|S|*.
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In addition to these one-loop effects, the subroutine mhiggsloop_sferm_CPV.f also
includes two-loop effects of order® O(Y;fbas, be) leading to a product of large logarithms
in the fermion sector: given that we are working at the average scale of squark masses, the
squarks are assumed to give subleading contributions. On the other hand, effects associated
to SM fermions and gauge bosons will not introduce any additional dependence on the new
physics phases. The corresponding effects are implemented in the approximations of [72] —
see also eq. (C.19) of [10], — i.e. only the contributions to the quartic doublet parameters A,
and \g of eq. (3.13) are included — note that contributions to M2 or M? leave the analysis
unaffected, while contributions to e.g. A,4 can be absorbed in a shift of the tree-level term
Ay, hence only drive a displacement in the parameter space. While these contributions
are of two-loop order, they may still affect the mass of the SM-like Higgs state by several
GeV, which is why we include them. Comparisons to more-elaborate two-loop calculations
show that this approximation works well numerically (at the GeV level). Two-loop effects
beyond this order have been considered in [73].

iv) mhiggsloop_inos_CPV.f.  The next subroutine implements the radiative effects
associated to charginos and neutralinos. Sticking to the Coleman-Weinberg approach,
we consider the 9 x 9 bilinear term associated with gauginos and higgsinos (refer to ap-
pendix B.1.4). Due to the large rank of this matrix, we exclusively employ the method
which consists in expanding the potential and matching it to the simplified version of
eq. (3.13). The corresponding results are collected in appendix D.2.4. Note that they differ
from e.g. eq. (C.22-24) of [10] where additional simplifying assumptions had been made.

v) mhiggsloop_gaugehiggs_CPV.f. The contributions of the electroweak gauge bosons
to the Higgs potential seem easy to include in the Landau gauge: see appendix D.2.2.
Yet the drawbacks of the Landau gauge are felt in the Higgs sector, where one then has to
handle massless Goldstone bosons. The associated infrared divergences are of course purely
spurious and disappear once confronted to momentum-dependent corrections, as already
noted in [74]. Still it remains a technical issue to manipulate with caution. Moreover,
the strategy consisting in diagonalizing the field-dependent bilinear matrices, which we
have been employing until here, becomes impractical, even in an expansion in terms of
the doublet fields, due to the large number of parameters and operators involved in the
Higgs bilinear terms. Instead, we decide to employ the concurrent strategy in Higgs-mass
calculations, which simply consists in a direct diagrammatic evaluation of the Higgs self-
energies and tadpoles generated by Higgs loops. Nevertheless, disentangling the Higgs and
gauge contributions in this approach proves quite artificial so that we will perform the
calculation simultaneously for both types of particles appearing in the loop.

Explicit expressions for the gauge and Higgs one-loop contributions to the Higgs self-
energies and tadpoles are summarized e.g. in [70] or [75, 76] (with different conventions
for the loop functions), in the context of the MSSM, and the NMSSM differs only in the
definition of the couplings and the presence of the singlet fields, hence leads to a for-
mally comparable result. We choose to work in the Feynmann gauge as it is then possible

The conventions O(Y%as, YyY,) or O(aupas, o) are also used in the literature.
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to set the external momentum to 0 without generating IR-divergent logarithms. Indeed,
we still aim at computing, not only the corrections to the Higgs masses, but also to the
Higgs-to-Higgs couplings. For this, we proceed in the following fashion: after the radiative
corrections to the Higgs mass matrices are evaluated at zero momentum, we subtract the
pure-gauge contribution in the Landau gauge (for which we already know the potential from
appendix D.2.2). The remaining ‘Higgs’ contributions to the mass matrices can then be
identified with those that a Zjs-conserving renormalizable potential would produce, allow-
ing for a reconstruction of the corrections to the Zs-conserving parameters of the potential:
this procedure is described for the CP-conserving case in [77] and is straightforwardly gen-
eralized to the CP-violating case. Of course, we then miss contributions to the Zs-violating
parameters (the last line of eq. (3.13)) but, as discussed in [77], these are subleading in the
leading-logarithmic approach.” Further details can be found in appendix D.2.5.

This completes the list of radiative contributions implemented in the effective potential.

3.3.3 Pole corrections

The operations described in the previous lines have provided us with mass matrices for the
Higgs states where radiative corrections from the potential (i.e. at zero external momen-
tum) have been included. We will now detail how we account for momentum-dependent
corrections. These calculations are conducted in the subroutine mhiggsloop_pole_CPV.f.

First, let us remind the reader that the radiative effects associated with non vanishing
external momentum have been partially encoded into the wave-function scaling factors of
paragraph 3.3.1. It is necessary to rescale the Higgs mass-matrices in order to account for
the re-scaling of the Higgs fields:

1 1
TR M), e
/ZHiZHj < Hi>z] < H0>’LJ /ZHiZHj

A p-angle rotation in the pseudoscalar and charged sector allows to rotate away the Gold-

<M§{i>ij = <M§{O>ij (3.14)

stone bosons, leaving us with a 5 x 5 symmetric mass matrix </\;I%IO> for the neutral
ij

sector and a DR squared-mass for the charged Higgs m2 DR DR <./\;l§{0> is now diagonalized

according to eq. (2.14), providing us with corrected DR squared-masses for the neutral

Higgs, m2 DR , and their rotation matrix X °.

We then apply pole corrections to the DR squared-masses in order to evaluate the pole
masses:

mge = m?gDR(l + Zaz XH02> [Hsoso(p = mZo) — Mgog0(p* = 0) (3.15)

mi. = m%@R (1—1—5ZHu cos? B + 6 Zy, sin’ B) — Mg+p- (P*=mis) — Mgy (p*= 0)]

While ideally the Higgs self energies Igogo(p?) and I+ - (p?) should be evaluated at

the pole masses, we approximate the latter by the DR masses. The full one-loop pole-

"Note that, while the parameters of the effective potential will then receive contributions which are valid
only at leading logarithmic order, this is not the case for the contributions to the Higgs masses since they
are obtained directly from the diagrammatic calculation.
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corrections are applied. Shifts of the wave-function scaling factors 07y, m, s are know
from eqs. (3.3)-(3.5). The shifts in the Higgs self energies are provided in appendix D.4.
This concludes our evaluation of the masses in the Higgs sector. We now wish to
comment briefly on the precision achieved in this calculation. For this, it is instructive
to consider the impact of the one-loop corrections with respect to the situation at tree-
level. For mostly-doublet states, the leading effect is driven by the top-quark loop and,

respectively to the tree-level mass my, can be quantified as ~ ]\iﬁ;ﬁ :;—5 In % Assuming
that @ = O(TeV), this amounts to a correction at the percent level for ” u = O(TeV), but
reaching a magnitude of ~ 100% for my = O(100 GeV): this accounts for the well-known
sensitivity of the SM-like Higgs mass to radiative corrections. Contributions at the two-loop
order will involve the strong coupling gg, or the top Yukawa coupling again, multiplying
logarithms of a similar magnitude, so that the typical effect would easily amount to ~ 30%
of the one-loop contribution. Now, considering that we have included the leading double-
logarithmic effects in the calculation, we can estimate a reduced uncertainty from higher
orders, say at the level of ~ 10% of the one-loop corrections. For a Higgs mass at ~
125 GeV, this still amounts to an uncertainty of several GeV. For a state at my = O(TeV),
this reduces to the permil level. The latter accuracy is treacherous however, as other sources
of uncertainty appear e.g. in the determination of the couplings or neglected electroweak
corrections entering the definition of the Higgs v.e.v.’s. In the outcome, one should not
expect a precision under O(1%) for the masses of the heavy doublet states. Corrections to
singlet states are typically smaller, since the associated couplings — A, Kk — are of order
< 0(0.5) and the hierarchies between Higgs bosons and higgsinos may not be as large as
those between SM fermions and sfermions. However, when the singlets mix significantly
with doublet states, they will correspondingly acquire part of the larger uncertainties on
doublet masses.

3.4 Couplings, decays and constraints

After the previous subroutines are run, one has a complete set of corrected masses and ro-
tation matrices at one’s disposal. The following move consists in confronting this spectrum
to physical processes.

3.4.1 Supersymmetric and Higgs couplings

The couplings of supersymmetric particles and Higgs bosons can result into some-
what lengthy expressions. We thus design two subroutines, susycoup_CPV.f and
higgscoup_CPV.f, in order to evaluate and store them within the code:

e The couplings of charginos/neutralinos to sfermions and SM fermions are imple-
mented according to the formulae of appendix B.3.1 and B.3.2 for the three genera-
tions (still neglecting the Yukawa couplings of the two first generations).

e The trilinear couplings of the Higgs bosons to sfermions are computed after the results
of appendix B.2.3.
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e The couplings of the Higgs bosons to charginos and neutralinos are also included as
presented in appendix B.2.4.

e Finally, we calculate corrected DR Higgs-to-Higgs couplings where radiative effects
from sfermions, charginos, neutralinos and Higgs bosons are obtained from the simpli-
fied effective potential of eq. (3.13): relevant formulae are provided in appendix E.4.
Corrections from fermionic and gauge loops are explicitly incorporated as given in
appendix D.2.1 and D.2.2. The Yukawa and gauge couplings employed here have
been run to the scale corresponding to the mass of the neutral Higgs state associated
with the first index in the coupling.

Note that the rescaling of Higgs fields in egs. (3.6) and (3.8) is also accounted for when
computing the couplings of Higgs bosons.

3.4.2 Higgs and top decays

We then adapt the existing NMSSMTools subroutines decay.f and tdecay.f — respectively
computing the Higgs and top two-body decays in the CP-conserving NMSSM — to the
CP-violating case.

The subroutine hidecay_CPV.f calculates the Higgs widths and the dominant branch-
ing ratios. The following decay channels are considered:

e decays into a pair of SM fermions: SY — ptu~, 7777, 5, cc, bb, tt; HY — pTy,,

TTU,, U3, uB, cs, 013, tB;
e decays into (on- and off-shell) gauge bosons: SY — WW, ZZ, vy, Zv, gg;
e decays into one Higgs and one gauge boson: Slo — ZSJO-, W*HF, HT — W+S]0-;
e Higgs-to-Higgs decays: SY — S?S,g, HTH—;
e supersymmetric decays: S? — X;FX/; X?X%» F;‘Fk; HT — ijg, F]*F,é

In the subroutine tdecay_CPV.f, we compute the following top decays: t — Wb,
H*b, Tx?. As in the original CP-conserving version, leading QCD corrections have been
taken into account.

3.4.3 Phenomenological tests

We finally propose several tools to confront the CP-violating NMSSM spectrum to exper-
imental constraints.

checkmin_CPV.f compares the value of the neutral effective potential at the elec-
troweak symmetry-breaking minimum with that at other points, e.g. for vanishing v.e.v.’s.
Loop effects from the SM fermions and gauge bosons are included explicitely in this evalua-
tion, while other radiative effects are encoded within the approximate potential of eq. (3.13).
We also vary the dynamical phases and check whether this generates a deeper minimum.
Finally, the minimization conditions of eq. (2.11) and (3.10) are calculated explicitly, which
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allows e.g. to test the naturalness of the squared masses m%{u ., of the potential: they should

remain of the order of the SUSY-breaking scale.
In constsusypart_CPV.f, we generalize to the CP-violating case LEP limits on su-
perparticle searches that were included in NMSSMTools for the CP-conserving case:

e test on chargino, slepton, gluino and squark masses;
e limits on T — bIN, T — ¢x°, B — by":
e constraint on the invisible Z-width and neutralino-pair production.

HBNMSSM_CPV.f converts our spectrum into input for HiggsBounds [64-68] and
HiggsSignals [69]. This allows to test the Higgs sector in view of LEP, TeVatron and
LHC results via a call to the subroutines included within these public tools — note that
NMSSMTools, HiggsBounds and HiggsSignals must be interfaced to make use of this sub-
routine. The chosen input mode is that employing effective couplings (see the documen-
tation in [64-68]). Additional widths and branching ratios are taken from the results in
hidecay_CPV.f and tdecay_CPV.f. In the following section, we will be using the current
versions HiggsBounds_4.2.0 and HiggsSignals_1.3.1, which incorporate all the exper-
imental results released till december 2014. The default uncertainty on the Higgs mass
precision is set to 3 GeV and modeled as a gaussian distribution. HiggsBounds delivers a
95% confidence level cut on the NMSSM parameter space relative to limits from unsuc-
cessful Higgs boson searches. HiggsSignals performs a y2-test of the Higgs properties
of a given spectrum based on the current experimental characteristics of the the signals
measured at ~ 125GeV. The default setting of version 1.3.1 includes 81 test-channels
based on the material released by the ATLAS, CMS, CDF and DO collaborations. The
output, the y?-value, provides a measure of the compatibility of the tested Higgs spectrum
with the observed signals. While the implementation within HiggsSignals accounts for
more involved effects, such as correlations among channels or uncertainties, the x? can be
grossly understood as the sum of squared deviations between theoretical predictions and
experimental measurements, normalized for each channel to the sum of squared theoretical
and experimental uncertainties for this channel: therefore, the smaller the 2, the more
compatible the Higgs spectrum proves in view of the measured Higgs signals. Statistical
interpretations in terms of P-values are possible, yet depend on the details of the chosen
tests or of the definition of the statitical ensembles: in our discussion, we will confine to
the thumb rule stating that y2-values of the order of the number of test-channels (81 here)
are regarded as competitive. The y2-value in the SM limit (~ 78 in practice) gives another
point of reference from which one may appreciate the quality of the fit of a particular Higgs
spectrum to the observed Higgs signals.

We also include an alternative set of tests for the Higgs sector, based on the original
subroutines of NMSSMTools. These collect:

e LEP Higgs CPV.f: LEP limits applying on neutral Higgs bosons produced in associ-
ation with Z’s — ete™ —Z*—5)Z — or in pairs — eTe™ = Z*—=5)S? — [78];
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e TeVatron_CHiggs_CPV.f: TeVatron limits applying on a charged Higgs boson pro-
duced in top decays [79-81];

e bottomonium_CPV.f: test for a light mostly CP-odd Higgs intervening in bottomo-
nium decays — based on [82];

e LHC_Higgs CPV.f: the inclusion of LHC limits on neutral or charged Higgs searches
as well as the confrontation to the signals at ~ 125 GeV — after [83] — are in progress.

Note that these routines will not be used in the next section, as we will employ the currently
more complete set of tests performed by HiggsBounds and HiggsSignals.

Finally, we design a subroutine EDM_CPV.f to estimate the electric dipole moments
of the electron, the thallium atom, the neutron and the mercury atom. We essentially
follow the summary in [84] — in the context of the MSSM; see also [85, 86] for previous
works in the NMSSM. The supersymmetric one-loop effects are mediated by charginos,
neutralinos or gluinos and sfermions. Moreover the two-loop diagrams of the Bar-Zee type
— involving a fermion or sfermion loop connected to the quark/electron line by a Higgs
and a photon propagator — are known to convey a sizable effect: these are particularly
sensitive to the phases appearing in the Higgs sector. Other contributions, mediated by
dimension 6 operators, are included as well. We estimate the associated uncertainties by
adding linearly a 10% error on effects involving no coloured particles and a 30% error on
contributions involving the coloured sector. Additional uncertainties associated to scale-
running or hadronic parameters are also incorporated.

4 A few applications

We shall now make use of the subroutines which we have just presented and study phe-
nomenological effects associated with the CP-violating NMSSM. This will be the opportu-
nity to test our tool and compare its predictions with existing results.

4.1 CP-conserving limit

Setting all the phases to zero, it is possible to consider the CP-conserving case: in particular
this allows to study how our results connect to the precision calculations implemented
within NMSSMTools. Given that the input is common, discrepancies directly give an insight
on the differences of treatment and the numerical magnitude of the corresponding effects.

i) Higgs spectrum. We shall first consider the Higgs masses. NMSSMTools provides
three levels of precision in the inclusion of the radiative corrections to the Zs-conserving
Higgs sector:

e ‘Precision 0’: the default one — essentially following the procedure described in
appendix C of [10] — confines to leading logarithmic order. Momentum-dependent
effects are taken into account only to the extent of wave-function renormalization
(where the implementation is slightly different from ours: remember the discussion
in section 3.3.1) and pole-corrections associated with the SM-fermion sector.
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e ‘Precision 1”: a full one-loop + leading two-loop (to order O(Y,} as)) implementation
without momentum-dependent effects.

e ‘Precision 2": a full one-loop + leading two-loop (to order O(Y,}as)) implementation
including momentum-dependent effects. It follows the work of [87].

Formally, our implementation — full one-loop including momentum-dependent corrections
+ leading two-loop double logarithms of order O(Yt‘}baS,Y&) — should fall somewhere
between these three procedures in terms of precision.

We first test our results in a region of the parameter space where x = 0.45, tan 8 = 8§,
teg = 125 GeV, My = 1TeV, A, = —288GeV, mz 5 =1TeV, mg 5 = 1.5TeV, mj 5 =
200 GeV, 2M; = My = M3/3 = 0.5TeV, Ay = —2TeV, Ay, = —1.5TeV and we scan over
A € [0,0.65]. The Higgs masses are displayed in figure 1 and 2: the results of NMSSMTools
for precision ‘0’ (greenish colors), ‘1’ (pink colors) and ‘2’ (bluish colors) are shown as
solid lines while our calculation corresponds to the dots (yellow to red tones). We observe
a significant variation of the masses corresponding to the mostly-singlet states while the
doublet masses are grossly constant with varying A. A typical NMSSM effect develops
when singlet masses are close to doublet masses, as significant mixing may appear. In
particular, when the singlet state is slightly lighter than the doublet one, the mixing tends
to uplift the mass of the mostly-doublet Higgs. This is what occurs in this example for the
CP-even sector in the upper range of A. In figure 1, we see that our results fit quite closely
the predictions of the procedure with precision 2, while larger discrepancies appear with
respect to precision 0, especially at large A.

Figure 2 allows for a closer comparison among Higgs masses. For the Higgs states with
mass close to ~ 125GeV (upper left-hand quadrant), we note a remarkable agreement
between our calculation and the masses obtained with the precision setting 2, while the
results obtained with precision 0 are about 2 GeV off: this fact should not make us forget
that the uncertainties affecting the Higgs mass computations (also in the setting of precision
2) are of the order of several GeV. However, it justifies the observation that the leading
two-loop effects are captured by the simpler inclusion of double logarithmic terms.

Concerning the heavy mass states, we observe in figure 2 — in the upper-right and
lower-left hand quadrants — that our results are intermediary between the calculations with
precision 0 and precision 2. However, we note that the leading difference with precision 2
originates in the implementation of the wave-function scaling factors. Indeed, if we set the
‘Z-factors’ to 1 and modify the pole-corrections accordingly, we observe that our result —
corresponding to the khaki dots in the lower-right-hand corner of figure 2 — then matches
that with precision 2 somewhat more closely (at the permil level). It is quite easy to
see how the discrepancy develops between these two procedures. For this, let us focus
on the CP-odd doublet state, where we will neglect the mixing with the singlet. In the
case where the wave-function scaling factors are set to 1, the squared mass of this state
is — schematically: the effect of potential and pole corrections are encoded as dP°"Pole —
obtained as (all the p>-dependent terms are treated as pole corrections):

mQA’no A

v2 + v?i
= As [Ax cos p1 + ks cos(pxn — px) + 7] 1;7“ (1 + 5p°1°> (4.1)
uld
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Figure 1. General aspect of the Higgs spectrum in the NMSSMTools procedures with precision 0
(upper left), precision 1 (upper right) and precision 2 (down left-hand) and in ours (dotted lines).
A €]0,0.65], k = 0.45, tan 8 = 8, ey = 125GeV, My = 1TeV, A, = —288GeV, myz 5 = 1TeV,
mg p = 1.5TeV, mj 5 = 200GeV, 2M; = My = M3/3 = 0.5TeV, A, = —2TeV, Ay, = —1.5TeV.
In the down right-hand plot, the singlet composition S% of the two lightest CP-even states is

displayed for precision 0 (green solid lines), precision 2 (blue solid lines) and for our calculation
(dotted lines).

In the approach where the wave-function scaling factors are taken into account at the level
of the kinetic terms, the Z-factors intervene in the calculation at several steps: first, for the
scaling of the v.e.v.’s, which transforms the tree-level mass-matrix in the CP-odd doublet
sector to:

s KS \/ Dy v 1
Z, v
Ay cos g1 + cos(pxn — ¢ )] fa "u (4.2)
A VZg " 1 /§Zd %

—94 —



my, (GeV) my, (GeV) Precision 0
130 | | 1010
|
[
!
1281 | [
o |
|‘ | hy precision 0 Ltoooy -
|
126 \
II \ S
| \__~
\
1I
124+ \ 9980
hl precision 0 \.Q'::"".
122 precision 2 — ' an
h ision 2 )
1 precision 980 | |‘
120} | Hir
|
a; hy
118 . . . . \ . , - . , , , . . ,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0‘7?" 9‘00‘0 0.1 0.2 0.3 0.4 0.5 0.6 0 T?L
my, (GeV) Precision 2 my, (GeV) Precision 2
1010+ 1010
II. II.
i il
I\ 1 1
1000} 4\ —— 1000 \\
\ - h3
| %2 |
- _ Without
990r ‘ s90r ‘ Wave-function
H* -
‘ _ ‘ scaling
With
‘ ‘Wave-function ‘
980 ‘ scaling 980}
a] hz
970 . . . ‘ . . ‘ - . . . . ‘ . ‘
! 0.0 01 0.2 0.3 0.4 0.5 0.6 0‘7?“ 9‘00.0 0.1 0.2 0.3 0.4 0.5 0.6 0 ??\'

Figure 2. Details on the Higgs masses of figure 1. On the upper left-hand quadrant, we show the
Higgs masses close to ~ 125 GeV for precision 0 (green lines), precision 2 (blue lines) and for our
implementations (red dots). The plot on the upper right-hand side compares our results (dots) for
the ‘heavy’ masses with those of precision 0 (green lines). The same exercise is carried out in the
lower left-hand corner for precision 2 (blue lines). In the lower right-hand quadrant, we alter our
implementation of the Higgs mass corrections so that all p?-dependent terms are taken into account
as pole-corrections only (so that the wave-scaling factors are set to 1): the results are displayed as
khaki dots and compared to the masses obtained in the procedure of precision 2.

The scaling effect on the potential corrections can be neglected as being of higher order.
Then comes the scaling of the mass-matrix:

As Ay cos 1 + —2 cos( )+ ot w L (4.3)
T | P1T —F== Px— ¥ N .
VZ4sZH,%H, Vs " 1oy

— 95—



so that we can extract the DR squared mass for the physical state via a [S-angle rotation.
Finally, the Z-factors have to be subtracted from the pole corrections, since they have been
accounted for elsewhere. This provides:

AS ks
9 ot
m = —— | A, cosyp; + — cos - + 07
als Zs7m, 2, [ AL s oo T ) }
2 2
XS] 467 4 cos? B(Zpg, — 1) + sin® B(Zm, — 1)| (4.4)

Expanding the Z-factors as Z. = 1+ 0Z., we see that egs. (4.1) and (4.4) differ by a factor
1 - 5% + @(5Z H, — 0Zp,). This explains the mismatch, reaching the order of one-
loop effects, that is O(1%) here. In particular, the steeper apparent slope with varying
A, in figure 2 is largely driven by the Zg factor. In principle, the approach including the
wave-function scaling factors is the most refined among the two methods, hence should
be prefered. On the other hand, our choice of setting the Z-factors at a low-value of the
external momentum, ppy = 125 GeV, is not optimized for heavy states. In any case, a
1% effect should not be taken too seriously in view of the various additional sources of
uncertainty (parametric errors, running, etc.).

We then consider a second example with A = 0.7, Kk = 0.1, tan 8 = 2, g ~ 2.33 M4 +
20.45GeV, My € [0.3,3] TeV, A, = =50GeV, mj 5 = 0.5TeV, my 5 = 1.5TeV, mj . =
110 GeV, 2M; = My = 150 GeV, My = 1.5TeV Ay, = —0.1 TeV. The results are displayed
in figure 3. This region of the parameter space highlights another effect in the NMSSM
Higgs sector, namely the large contribution of F-terms to the mass of the SM-like state
for large A and low tan 3. Indeed, the low value of tan 3, the low mass of the squarks
of third generation and the moderate trilinear soft terms would result in a Higgs mass
below Mz in the MSSM, making this regime incompatible with LEP limits and the LHC
measurement. In the NMSSM however, we observe that the mass of the SM-like state
remains above 120 GeV: this is a consequence of the specific tree-level contributions to
the Higgs mass matrices, associated with A. Comparison of our results with the masses
obtained with NMSSMTools for precision settings 0 and 2 again show that our calculation
is typically closer to precision 2, although the differences are larger than in the previous
scan (about 1 GeV for the two light CP-even states, as can be observed on the plot on the
lower left-hand corner). We also display the output of HiggsBounds and HiggsSignals for
our results (plot on the lower right-hand side): HiggsBounds exclusions apply e.g. in the
presence of very light Higgs-states with non-vanishing doublet composition. The x? test of
HiggsSignals provides values down to ~ 75 — for comparison, we obtain ~ 78 in the SM
limit — when a light doublet is present close to ~ 125 GeV.

ii) Higgsino and gaugino masses. Our implementation of the chargino, neutralino
and gluino masses should prove very similar to the original subroutines within NMSSMTools
in the CP-conserving limit. Nevertheless, small technical differences should be noted:

e we take into account the Higgs-higgsino-singlino couplings which had been neglected
in NMSSMTools: this results in additional corrections to the higgsino and singlino
masses;
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Figure 3. Higgs spectrum for A = 0.7, kK = 0.1, tan 8 = 2, M4 ~ 2.33 pteg + 20.45GeV, My €

[0.3,3] TeV, A,, = —50GeV, mz 5 = 0.5TeV, mg 5 = 1.5TeV, mj = 110GeV, 2M; = M, =
150 GeV, M3 =1.5TeV A, » = —0.1 TeV. Comparison of our results (dots) with precision 0 (upper
left-hand plot), precision 2 (upper right-hand plot). Focus on the masses close to 125 GeV (bottom
left-hand plot). Finally, results obtained with HiggsBounds and HiggsSignals.

e similarly, bino and winos are not assumed degenerate in the calculation of loop cor-

rections to the higgsino masses;

e all masses are chosen real and positive: this is possible since the diagonalizing matrices
are complex. The convention in NMSSMTools consisted in keeping these matrices real,

so that some masses could take negative values.

We consider the following region in the NMSSM parameter space: A = 0.55, k = 0.45,
tan f = 12, p.g € [100,1500] GeV, M4 = 1TeV, A,, = —300GeV, myp g =1TeV, mg 5 =
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Figure 4. Higgsino/gaugino spectrum for A = 0.55, k = 0.45, tan 8 = 12, p.s € [100, 1500] GeV,
MA = 1TeV, A,{ = —300 GeV, mfié = 1TeV, mU,D =15 TeV, mi,E = 2OOGeV, 2M1 = M2 =
M3/3 = 0.5TeV, Aipr = —1.5TeV. Comparison of our results (dots) with the implementation
within NMSSMTools (solid lines; note that we actually display the absolute values of the masses).
The plot below shows the ratio between our results for neutralino masses and those delivered by
NMSSMTools.

1.5TeV, mj = 200GeV, 2M; = My = M3/3 = 0.5TeV, A;p» = —1.5TeV. The masses
of the higgs{nos and gauginos are shown in figure 4. The scan over u.s drives a significant
variation of the higgsino masses, while the gaugino masses remain essentially constant.
Once again, the masses obtained with the original routine of NMSSMTools are depicted
with a solid line, whereas our results appear as dots: the general features are identical.
More quantitatively, the main deviation reaches ~ 3% at the level of the neutralino masses:
it originates from the corrections to the singlino mass, which were neglected in NMSSMTools.

For the rest of the spectrum, e.g. the sfermion masses, our calculation reduces, in the
CP-conserving limit, to the original implementation within NMSSMTools. Therefore, we
will not push the comparison in this limit any further.
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4.2 CP-violating case

CP-violation could induce several phenomenological effects at colliders. The most imme-
diate one would be the measurement of EDM’s. The absence of any hint in corresponding
searches thus places stringent limits on new-physics phases. Note however that, at one
loop order, these effects are essentially driven by the gaugino phases. In other words,
new-physics phases associated to the Higgs sector or the third generation sfermions enter
the EDM’s at the two-loop level only and are thus more loosely constrained. CP-violation
could also intervene in rare flavour decays and oscillations, which are consistent so far with
the SM-interpretation (where only the CKM phase is present): such effects have not been
included in our study yet and we will not discuss them here.

i) CP-violating effects in the NMSSM Higgs spectrum. CP-violation could enter
the Higgs sector at tree-level, via a non-vanishing phase @) — ¢, or at the loop-level, e.g.
via the phases associated to the sfermions of third generation. As a first consequence,
the neutral Higgs states would become scalar /pseudoscalar admixtures, which affects their
couplings to SM particles: for doublet states, the pseudoscalar component does not couple
to a ZZ or WHTW ™ pair, so that the corresponding decay channels, as compared to the
fermionic decays, are suppressed/enhanced with respect to the case of pure CP-even/
CP-odd eigenstates. Other effects can be measured in the fermionic channels, provided,
however, that the fermion masses are sufficiently large. Therefore the presence of CP-
violation in the Higgs sector could be tested in precision analyses of the Higgs properties
— for the observed or hypothetical new states. Note however that doublet Higgs states
are typically shielded from CP-violating mixing — consider e.g. the zero-entries in the
tree-level mass-matrix of eq. (2.13) —, so that only a very high degree of precision in the
measurement of the branching ratios would be likely to detect the tiny — radiatively-
generated — pseudoscalar component of a mostly CP-even state. Moreover, the current
limits on Higgs searches tend to favour a sizable mass-hierarchy between the SM-like Higgs
state and the approximately degenerate ‘heavy-doublet’ states. This makes the presence of
a pseudoscalar doublet component within the observed Higgs state unlikely, as the mixing
of this state with the ‘heavy-doublet’ pseudoscalar would be suppressed in proportion to the
large mass gap. Another test would involve the two ‘heavy-doublet’ neutral states, which
are generically close in mass, so that their mixing could be significant. Yet, the detection of
CP-violation there will still require high-precision experiments (and the discovery of these
states), due to a typically reduced production cross-section — with respect to a SM Higgs
boson at the same mass; this is related to the mostly Hg-nature of these states — as well
as the opening of many less-controlled decays (e.g. towards new-physics states).

In the NMSSM, another type of CP-violating mixing is allowed: a mostly CP-odd
singlet may mix with the doublet CP-even states — provided A and k are large and ) —
is non-vanishing — and this effect could be fairly important if these states are close in
mass. In the following, we focus on the SM-like Higgs state at ~ 125 GeV. Such a scenario
is studied in figure 5 for A = 0.68, k = 0.1, tan 8 = 2, s = 635GeV, My = 1.5TeV,
mTB% = 0.5TeV, mUDE =15 TeV, 2M1 = MQ = M3/3 = 0.5TeV, At,b,r = —0.1TeV.
CP:violation is induced through variations of ¢,: note that this strategy is the safest in view
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of the EDM’s, as non-vanishing ¢, produces direct CP-violation in the doublet higgsino
sector (as well as in the sfermion sector). In the first column of figure 5, A, = —100 GeV,
and the mostly CP-odd state is relatively far in mass (~ 250 GeV): correspondingly, the
mixing with the SM-like state does not reach 1%. The latter state has a somewhat low
mass of ~ 121 GeV which translates into a mediocre fit to the LHC-observed signals, hence
a high y%-value with HiggsSignals. In the second column, we take A, = 0GeV, so that
the CP-odd singlet is close in mass to the SM-like state: at ¢, = 0, the singlet has a mass
of about ~ 115 GeV. Consequently, a significant mixing develops between the two light
states as soon as ¢, # 0, the effect reaching the level of 30 to 40%. A consequence is the
uplift in mass of the heavier SM-like state so that the associated signal gives an improved
fit with the LHC data. The column on the right is obtained for A,, = 10 GeV: the CP-odd
singlet is then somewhat lighter (~ 100 GeV), so that the mixing effect at non-vanishing
 remains milder than in the previous case, yet generates an uplift of the mass of the
SM-like state as well. It is to be noted that the mostly CP-odd singlet acquires a CP-even
doublet component which reaches O(10%) (at the level of the squared mixing angles): the
latter would generate a signal at the O(10%)-level as compared to a SM-like state at the
same mass — indeed, the production cross-section at colliders is essentially mediated by
the doublet components. For a state with mass ~ 100 GeV, the corresponding signal could
be consistent with the LEP ~ 2.3 0 excess in Higgs searches with a bb final state [78], even
though the state is dominantly CP-odd.

Note that the two effects that we highlighted — uplift of the mass of the SM-like state
via its mixing with the singlet and presence of a ‘miniature’ Higgs boson under 125 GeV
— are well-known in the CP-conserving NMSSM [11-18], provided the auxiliary singlet is
CP-even. CP-violation extends this possibility to CP-odd singlets. Further consequences
appear on figure 6 at the level of the branching fractions of the Higgs states — we display
their values for the bb, cé and v~ final states —: similarly to the case where the SM-like
Higgs boson mixes with a CP-even singlet, the proportions among doublet components hg
and hg may fluctuate, displacing the branching ratios. However, the main effect in figure 6
concerns the rates of the lighter singlet state which become dominated by CP-even-like
channels — for fermionic final states, rates differ at the radiative level depending on the
CP property,® — while the fluctuations of the branching fractions of the mostly CP-even
doublet are dominated by the variations of the associated Higgs mass.

Disentangling this scenario — where a light mostly CP-odd singlet mixes with the
SM-like Higgs boson — from the CP-conserving one — where the light singlet-like state is
genuinely CP-even — is likely to prove very difficult. The reason rests with the observation
that the singlets do not lend specific properties to the SM-like Higgs state — they simply
reduce its total width and might alter its branching ratios at the percent level. Moreover
their decays are essentially mediated by the doublet component which they acquire in the
mixing, i.e. a CP-even one in both cases. Typical singlet decays — towards hypothetically
lighter singlet states or singlinos — would not necessarily help to discriminate among
CP-even and CP-odd mixing and would be problematic in terms of compatibility with the

8There is also some difference at tree-level, but the corresponding effect is very small for light fermions.
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Figure 5. Characteristics of the light Higgs states for A = 0.68, k = 0.1, tan 8 = 2, p.g = 635 GeV,
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second lightest are shown in green. Finally, the lower series of plots shows how the points compare
to phenomenological limits: the violet mark indicates that the points are excluded by the test in
HiggsBounds while the brown mark stands for tensions with the EDM’s. The y2-test of the Higgs
data is obtained with HiggsSignals and corresponds to the red curve.
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measured Higgs signals. Indeed, the standard rates would then be suppressed in proportion
of the magnitude of the unconventional decays. While deviations of the rates of the observed
Higgs state from the standard ones might be interpreted via such a mixing effect — should
such deviations be detected at the LHC or a future linear collider —, it is questionable
anyway whether the light singlet could be detected — possibly in Higgs-pair production:
see e.g. [88] in the CP-even case.

At the outcome of this discussion, we see that, while the CP-violating effects involving
singlets in the Higgs sector may be larger than in the pure doublet case, they are also more
difficult to trace and could be mistaken for CP-conserving phenomena. For this reason,
it is essential that CP-violation be tested in processes where the CP-properties are well-
controlled, which brings us back to EDM’s or rare flavour transitions. Spectral effects in
the Higgs sector are unlikely to allow for discrimination with the CP-conserving case.

ii) Comparison of the Higgs mass predictions with the existing literature. We
will now compare some of our results with existing analyses in the literature, where CP-
violation has been considered. Note that, contrarily to the comparison with the calculations
in the CP-conserving NMSSMTools, one should not expect much more than a qualitative
agreement. Indeed, the choice of disparate procedures in different tools, e.g. concerning
the definition of the input — such as the choice of running Yukawa couplings or that of A,
versus Ay cos o —, are known to lead to sizable deviations, already in the CP-conserving
case. The level of precision in radiative corrections is also to be considered.

NMSSMCALC [31, 32] is a public tool computing the Higgs spectrum and decays in the
Z.3-conserving but possibly CP-violating NMSSM. The chosen approach is that of a dia-
grammatic calculation. The level of precision has recently been extended to include the
dominant two-loop corrections [89].

First, we focus on the results of [89] dealing with CP-violating effects, i.e. essentially
figure 6 and the surrounding text in that paper. If we blindly input the parameters given
in section 4.1 of this reference into our framework,” the spectrum — not unexpectedly
and already with the CP-conserving NMSSSMTools — turns out to be slightly different
from the quoted one: in particular, the mostly CP-even and mostly CP-odd singlet states
appear with masses ~ 108 GeV and ~ 113 GeV respectively. Yet, this discrepancy can be
absorbed within a small shift of A, cos py: using the value 203 GeV, we then recover states
at ~ 103 and ~ 128 GeV so that the Higgs spectrum then largely coincides with the one
provided in [89].

In any case, this manipulation has little effect on the properties of the mostly hQ-state,
close to 125 GeV. Scanning over the phases ¢4,, ¢, — a scan over ¢, in the notations
of [89] would correspond to a scan over ), keeping ¢, = @), in ours, so that CP-violation
does not enter the Higgs sector at tree-level — and ¢,z,, we obtain the plots of figure 7.
On the upper part, we observe that the general dependence of the ‘SM-like’ Higgs mass
on @4, and ¢, is largely reminiscent in shape and magnitude of that observed in figure 6
of [89]. In these two cases, CP-violation enters the Higgs sector via radiative corrections,

9Note that this addresses the DR-parameters in the reference, since the parameters within NMSSMTools
are regarded as DR.
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color coding follows that of figure 6 of [89]: green for a scan over ¢, =@ =¢,, red for a scan over p 4,
and blue for a scan over ¢z,. When the blue curve does not appear, the reason is that associated
values are negligibly small. Note that several estimates are employed for the neutron EDM.

where the leading effect is generated by the sfermion corrections. On the other hand, the

mass obtained with our code is independent from ¢y,, while such a dependence already

appears at one-loop in [89]. Note that one does not expect gluino corrections to the Higgs

mass at one-loop order and it is thus not surprising that our implementation does not show
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Figure 8. Masses and CP-even composition (Xﬁ’0 2+ Xgo 24 Xgo 2) for the three lightest Higgs
states in the scenario of section 4.1.1 of [94].

any variation with ¢ps,. The corresponding effect in [89] is explained there as an artifact of
the top-Yukawa DR counterterm-fixing of higher order. Note also that the corresponding
fluctuations, at the GeV level, are small compared to the uncertainty that one naively
expects for the Higgs mass (a few GeV).

In addition, we show the values of the EDM’s that we obtain in these scans. These have
been normalized to the experimental upper bounds: ~ 1-1072% e cm for the electron [90]
— estimate from thorium monoxide experiment, — ~ 1.3 - 10724 ¢ cm for the Thallium
atom [91], ~ 3.1-1072 e cm for the Mercury EDM [92] and ~ 3 -1072% ¢ cm for the
neutron [93]. Note that only the central values are displayed, without error bands. The
color code is the same as in figure 6 of [89], i.e. green for the scan on ¢, red for that on
@4, and blue for the one over ¢,z (when the curve does not appear in the plot, this is
because the corresponding values are negligibly small). We see that the scan over ¢, may

generate tensions with the EDM’s — mostly the electron EDM — when ¢, is not trivial.

We now turn to the one-loop analysis proposed in [94]. We first consider the scenario
presented in section 4.1.1 of this reference, where CP-violation intervenes in the Higgs sector
at tree-level via the phase p,. Again, a qualitatively close spectrum can be recovered with
little alteration of the input proposed in the reference and our results are displayed in
figure 8: while small differences appear, both the Higgs masses and the composition of the
states agree reasonably well with those of [94]. The major source of deviation is associated
to the use of different input — A, in NMSSMCALC instead of A, cos o in our case —, so that
the comparison makes limited sense when ¢ becomes large (i.e. for ¢, ~ 7/8). In the
regime considered here, the CP-even and CP-odd singlet states are close in mass to the
SM-like Higgs boson, so that the non-vanishing ¢, generates a substantial mixing of these
three states.
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Ref. [94] then considers the case where CP-violation is absent in the tree-level Higgs
sector, but radiatively generated via phases in the supersymmetric spectrum. In the first
case (section 4.1.2), the ‘active’ phase is ¢y but the condition ¢, = @, ensures that no CP-
violation enters the Higgs potential at tree-level — we will recycle the previous notation
@y for this scenario. In the second case, only the phase ¢4, is non-trivial. We display
our results in figure 9 and observe that they capture the effects depicted in figure 5 and
figure 7 of [94].

Our code is thus able to reproduce the main qualitative features that were observed
in the CP-violating case by NMSSMCALC analyses. We stress that a more quantitative study
would have limited interest, as the divergent treatment of the input already generates
discrepancies between the CP-conserving NMSSMTools and NMSSMCALC.

5 Conclusions

We have presented a series of Fortran tools extending NMSSMTools to the CP-violating case.
Radiative corrections to the supersymmetric and Higgs masses are computed at one-loop
order. Dominant two-loop effects to the Higgs masses are also included in the double-log
approximation. Additionally, Higgs couplings and decays, as well as top two-body decays
and EDM’s are implemented and allow for phenomenological tests of the spectra. We
have shown that our code compares competitively with existing results, both in the CP-
conserving and CP-violating cases. The new tools will be made publicly available on the
NMSSMTools website [26-30] in the near future.

We also highlighted a scenario made possible by CP-violation, where the SM-like Higgs
would mix with a mostly CP-odd singlet state. The consequences on the Higgs phenomenol-
ogy are similar to the CP-conserving mixing with a light CP-even singlet so that both
scenarii should prove difficult to discriminate, unless genuine CP-violating effects — e.g.
in EDM’s or flavour physics — are discovered simultaneously.
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Finally, we would like to close this discussion with some details concerning the future
developments which we plan to consider. First, an extension of our tools including Zs-
violating terms should raise little difficulty. Then, flavour constraints are relevant in the
CP-violating NMSSM and we intend to design phenomenological tests accordingly. Fi-
nally, the dominant two-loop corrections to the Higgs masses will be calculated in a more
quantitative way.
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A Reference functions
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We only consider the finite part of the loop integrals:
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0
Finally, we borrow some of the notations of [75, 76]:

BFF(p,TfLM) = (p2 - m2 - MQ)BO(p7m7M) - AO(m) - AO(M)
Bgy (p,m, M) = —(2p* + 2m* — M?)By(p, m, M) + Ag(m) — 249(M) (Feynmann gauge)
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B The tree-level masses and couplings

This appendix provides the reader with a detailed presentation of the tree-level spectrum
and couplings of the CP-violating, minimal-flavour-violating, R-parity and Zj3 conserving

NMSSM.

B.1 Tree-level masses

Here we derive the tree-level bilinear terms of the lagrangian. For a later application to
the Higgs couplings as well as to the loop-corrections in the Coleman-Weinberg effective
potential, we will try to keep a full dependence in the Higgs scalar fields S, H,, = (H,, HS)T
and H; = (Hg, Hd_)T. To evaluate the masses, one of course simply needs to replace these
fields by their v.e.v.’s.

B.1.1 SM fermions

The Higgs-fermion potential reads:

Vi = —(Hd Ve —Hour)You§+(Hydr — Hy upVokm) Yads+ (Hier, — Hy vp)Yee§y+h.c.
(B.1)

Focussing on the third generation (and neglecting off-diagonal CKM elements), we may
cast under matrix form:

ur
_ ué VL
st = (ﬂL,u%,dL,d%)qu df + (vp,en,eR)Mps | er (B.2)
_ éc
ds, R
0 Y, HO* 0 -—-Y,HT
Y, H° tou Y,H: % ’ 0 0 -YHf
M = P i ;o Mp = 0 0 Y, HY

a 0 -YiH; 0  Y,HY

-Y.H; Y.H%* 0
~Y,H; 0  Y,H)* 0 a d

from which we derive the squared-mass matrices:

Mis = MI, M5 =

YA HO*+Y Hy Hy 0 ~YPHY HF Y HYH S 0
0 Y2(|Ho*+Hi Hy) 0 ~Y,Y,(HOH} + HH)
~Y2H{H; —Y?HY Hy 0 YR HYP+Y2HH 0
0 ~YiYo(Hy " Hy +Hg " H) 0 V(| HP+HT HY)
(B.3)
Y?HH; -Y?HJH] 0
Mis = MizMps = | -Y2HS*H;  Y2|HS? 0 (B.4)
0 0 Y2(|HY? + HfHY)

Replacing the Higgs fields by their v.e.v.’s, one obtains diagonal matrices <M33> and

(MZ%), with the usual relations: m7 = Y2v2, mi = Y203, m2 =0, m2 = Y2v3.
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B.1.2 Electroweak gauge bosons

From the Higgs kinetic terms, one obtains the Higgs-gauge potential (where we omit the
derivative Higgs couplings):

1 B -
Vo= [g’QBMB“ + W, - W“] (|Hu >+ |Hyl?) + %BMW“ ' (Hl?Hu—@?Hd) (B.5)

After the fields are rotated to the mass-states,

A, = 793“ + g’VVﬁ’ /A —_g/BH + ngf’ O WE = 7W’i il ZWIE (B.6)
K /9/2 + g2 K /912 T 42 ’ K V2
we derive:
1 0O O
Ve =5 (Au, Zu) (0 gz+g/2) (IHJP? + |Hg|?) (B.7)
2

99'(g°=¢?)  (9°—g")
9*+g”  2(9°+9")

g, o)
+ 9 49 % 9500 (HJHU_—FH;HJ)

%)

2
T %(;HSP +|HY)? + HfHy + HEH )W, W

/

99

4+ a7
\/i /92+g/2

This leads to the usual gauge-boson masses: Mf =0, M3, = %(vfﬂ—vﬁ), MZ= @(vﬁ—i—vﬁ).

(gA" —g'2") (W) (Hy Hy — Hy"Hy) + W, (H Hy* — HyH]))]

B.1.3 Sfermions

The Higgs-sfermion potential originates from soft, F' and D terms:

Vi =mdQiQr + mPUL UG+ mbh DY DG +m3 LY Ly, + my, B B, (B.8)
+ (HOU, — H} DLV ) YaAue$4uUs, + (HDy, — Hy Up Vo) YaAae'#4a DS,
+ (HYE;, — Hy Np)Y.Ace'4e E§, + h.c.

2
+ |V Vorm H U — YaHIDG |
2

+ ‘(HJDLVCTKM - HSUL)Yu

+ [V HOUS, — YaH Vi DS

+ |(HYDL, — HyULVexa)Ya|” + [(HYEL — Hy NL)Ye|* + |YoHy E[* + |Y H) B

+ NS HF — UpVexmYaD§ — NLY.Eg|” + A2 SH) — DY D% — ELY. Ef|

2
4 ‘)\ewxsﬂg - ULYUUE‘Q + ‘AewASHJ _ DLVCTKMYuU}Cz

12 2
L9

1 4 2
3 HZHu - Hng + gQTLQL - gUlc%TUI% + ngD% - LTLLL + 2E16'%TEJC'?

2 2
n % ]H;?Hu +HTH + QL 7QL + LE7LL‘
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The bilinear sfermion terms can be cast under matrix form:

Ur, N
21 ct 2 21 L
M2 M U M5 M
Vi3 (UL UR, DL DR)| 0¥ T\0V || 0 |+ (NLEL ER) (o0 BN || By
DU D L ETN E Eet
Dgf R
(B.9)
with the matrix blocks:
ity (8 YIS + 5 (55 = 07) (P = [HGP) Yo [AueT 1000 HE” = At S ] (B.10)
Yo [Aue' 4w Hy — e P2 S*H | m + Y2 HO? — <2 (|HO)? — [HYP?)
12
(Ve Yi Vi Hi Hy + % (% + 92) (H}H; — Hf H]) 0
0 Y2H H, — < (H}H; — Hf H; )
2 —1 * 7
e, _ (e YR+ (55 07) (HOP — [HYP) Ya[Ase™ 90 HY =Xt SH]) 1)
D= , .
Ya[Aac'#aHY = NS HYT] mb + YIHIP + %5 (1HOP — | HI)
. <V£KMY3VCKMHJH; + (% - o) (i - HEH) 0 )
2
0 YiHFH; + % (HfH, —HIH})
Moy = (B.12)
Ve YZHOH, =YV HY Hy + % Vi (HOH, +H Hy ) =V Yu [Aue 40 H, +Xe"> SH; |
~Yy [Age’?4a Hy + Xe XS Hy | Vi ~YaViun Yo (HSH, + HO HY)
2 2 ) 2
M =mi — S (1P - (1) + Y2 Hy + =y - HE ) (B.13)
12 2 —1 * 7
M2 [ mE A YOG + = ((HLP = [HAl?) Yo [Ace™ A HY” — Ae™2 SHY (B.14)
E = wa, 170y —wpx @ 770 % 2 2177012 | ¢'% 012 _ 7702 :
Ye [Aee cHd Ae S Hu } mE+Ye |Hd‘ + 2 (‘Hu‘ |Hd| )
0 Y2HHy + %2 (Hi H, — H{ HY)
My = (— (Yﬁ - %) HY Hy + CHOH, —Y, [Ace'$ae Hy + Ae‘”’*S*Hu_]) (B.15)

Moving to the v.e.v.’s, the matrices become block diagonal — each block being associ-
ated to a given electric charge of the sfermion fields. Under our Minimal Flavour Violation
hypothesis the various generations also decouple so that we are left with 2 x 2 (hermitian)
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mass-matrices <M%> Those can be diagonalized via unitary matrices X, according to:

2\ _ vFio 2 9 \yF. F_ cosfp  —sinfpetr
(ME) = X" Tdiag(mi, , mp,) X = (sinepe“” cos O

2 _

(M) + (Mg = (M), — (ME)y,) +4(ME)?,
(MY + (MY, + 1 (MB), — (MB),0)° + 4 (MY,

01— arctan [<wp>u<M%>22+¢<<M%>u<M%>QQ>2+4<M%>;]

D=

2

mF2 —

D=

2/(MZ) | (B.16)

Yr = arg[<./\/l%:>12]

The mass-states are given by F; = XiFLF T+ XZ%F]%* (where, in our notation 1 <» L and
2 < R).
B.1.4 Charginos and neutralinos
The gaugino-higgsino-Higgs potential may also be cast under matrix form:
. 0 MX—+ ./\/leo
Vy = oX M- 0 Myso | X+ hee;
Myo- Mo+ Mo

XT = (_Z’IIJ_7 il(;v _Zw+7 Bxa _ng _“I)B iLO il‘?l? ;LS)

s Moy

M2€Z¢]MQ gHO* T
M= ( gHO* rewng ) = M- (B-17)

0 0 0gH; 0 .
Mo = — S Hf —9HTO0 0 M\'Hf = M-

v2id T2
0 0 gH,0 0 .
Micro = <\9/§H; SH, 0 0 Aelwﬂd) = Mios
MyeMi 0 GSH* — S HY 0
/0 Mpe'®¥e — S H)* S HY® 0 :
Mo = %/HS* —GH 0 —Ae"AS =\ HY | = Mo
—GHy HG =A™ S 0 —Ae"PXH)
0 0 —Ae HY — X" HY 2ke¥xS

i) Charginos. The 2 x 2 chargino mass-matrix may be diagonalized via two unitary
matrices U and V: <MX—+> = UTdiag(mXi[, mxg)V. To determine My, M U and V,
we consider the hermitian matrices:

<Mi+> = </\/lx—+>T (My—+) = VTdiag(mili,miéc)V

<Mi—> = <Mx‘+> </\/lx‘+>T = UTdiag(mi%,mfé)U*
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which provide:

mio= () () () () ) (e
m2, =4 (M) (

(&
% (a1 <Mi+>22)2+4<Mi+>l
0 - '<Mi+ ) << 3 > ) )

= arctan
>

().

(v )~y (o) —(ve) Vwa(ae ) ]

a(m2_) |

12

(

0y = arctan

U= farg[</-\/lif >12]

U= U () costly  —sinfye*v ) V= 1 0 costly  —sinfy eV
V0 1) \sinfye v  cosfy ’ “\0 e | \sinfye v cosfy

The choice of phases ¢y, ¢y is a priori arbitrary. We decide to determine them by the
requirement that m, and M, obtained in the matrix product U* <MX—+> VT, are real
and positive. The associated mass-states are then:

X = Vi (™) + Vight = Vi (—0™) + Vi bl ;
X = Uﬂ(—zw’) + Uigilg = U,'w(—mj)f) + Uidﬁg

ii) Neutralinos. The 5 x 5 neutralino mass-matrix is symmetric, hence is diagonalizable
via a single unitary matrix NV:
(Myp)=N leag(m 0,i=1,. .,B)N. As before, we first consider the hermitian matrix

<Mio> = <./\/lxo>T (Myo) = N]Ldiag(mi?,i =1,....,5)N

Re 1
This hermitian matrix — or equivalently the 10 x 10 symmetric matrix ( Ie én ) <./\/li0>
—Im Re

— may be diagonalized numerically, providing us with mig,i = 1,...,5 and a diag-

onalization matrix Ny. We define N = diag(ewxg,i = 1,...,5)Ny, where the phases
cpxg,i = 1,...,5 are determined by the requirement that the masses m ?,i =1,...,5
obtained from the matrix product N* <Mx°> NT are real and positive. The neutralino
mass-states are then defined as:

XO = Nil(—lb) =+ Nig(—zﬁ)g) + ngilg + Nz4}~12 + Nz5}~lg
= Nip(—1b) + Niw(—10%) + Nih® + Nighl + Nysh!
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B.1.5 Gluinos

The gluons of course remain massless. Concerning their supersymmetric partners, the

gluino bilinear terms read:
Vg = _M361¢M3 GaGa + h.c.

so that we define the mass states G, = —1e3%Ms Ja, With mass Ms.

B.1.6 Higgs sector
The tree-level Higgs potential is given in eq. (2.9).

(B.18)

i) Minimization conditions. First derivatives of the potential must vanish at the min-

imum, which provides:

1 oy r 12 2
(oo =0 =y, + (62 4 o) + T o =) o,

— As [Axcos p1 + Kkscos(pn — k)] vd
r 2 2 T
=0= m%{d—i—/\Q(sQ—i—vi)—g Ig (v2 —v3)| va

— As[A) cos p1 + ks cos(pn — pr)] vy
—0= [qu + rs(Ay cos p2) 4 265 + N2 (v2 + U?l)] 8
—-\ [A)\ cos @1 + 2ks cos(py — 90;4)] VyUd

=0 =As[A)sin 1 + kssin(px — ¢x)] v4

=0 =MAs[Aysin 1 + kssin(p — k)] vy

8VHO . . 2 :
=0=MA[A)siny; — 2kssin — W) Vyvg — KS“ AL sin
<8ag/\/§> [Ax ¥$1 (ox — ¥x)] d ®2

So that one can express certain parameters in terms of the v.e.v.’s:

9 Ud YN A
miy;, = As[Ay cos o1 + ks cos(pr — ¢x)] Pl A (s”+vp) — 1 (v —v3)
u
a g2+ g2

m%{d = s [Ay cos 1 + ks cos(py — ¢r)] oy N (s% 4+ 02) + 1 (v2 —v3)

Ud

m% = \[Ay cos 1 + 265 cos(pr — @x)] UUT — k8( Ay cos p2) + 265 — N2 (v2 + v3)

Ayxsinpy = —rssin(py — ¢x)
Uy Vg Uy Vg

A
Agsinpg = — [Axsingr — 2kssin(x — ¢x)] —5 = =3\
K s

. sin(px — @)
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ii) Charged Higgs. The 2 x 2 charged-Higgs bilinear terms read:

_ H
Vs = (H, , Hy )M <H1> (B.19)
d
g/2+92
Mipe|yy = miy, + NISP + 5= (H,[* - [Hg|*)

4
g/2 4 92

2
+ TIHP + N H H;y + [2H H; — H{ H;]

2
= As[Ax cos 1 + ks cos(pr — px)] z—d - <)\2 - g2> v+ NHH,

u

g/2+92 B i
+=——=[2HH, — HfH]]
201012 2 9% +g? 02 02 2 2 g2 02 2
+ A5(]S] _S)+T(|Hu| — [Hy] —Uu+vd)+§(|Hd| —vg)
2, 2
g°+g
Migs |3 = mig, + NISI* = === (IHul” — [HgP")

g/2 + 92

2
+ %yH}j\Q FO2HFHT + [2HfHy — H H]]

2
= As[A) cos 1 + ks cos(pr — ¢x)] Qo (AQ - 92> v2 + NH, H,
Ud
12 2
+ & ey -
sna2 o 9PFG° 012 02 2 2 9% 012 2
+ A%(|S] _S)_T(|Hu| — |Hg] —Uu+vd)+§(|Hu| —Uy)

2
Mipe]ip = A [Axe‘“PlS* + ne‘z(m“f’ﬂ)sﬂ - ()\2 - 92> HOH)
2 2
2 9~ tg _ 9 |*
* (A ‘4> HiHy = Mily,
2 2 2
= As [A)\COSQO:[ +l€SCOS(g0)\ — @H)] _ <)\2 _ -g2> Vg + ()\2 . !]1—9) H;LHd_

+ X [Ax cos 1 (S —s) + K cos(py — ©0x)(S?—5%) — 1k sin(py — pr)(S? — s5™)]

)\2 g2 HOHO
- Y (HyHg — vuva)

Obviously,

2 Ya ]
<M§{i> = {)\s [Ax cos @1 + ks cos(pr — ¢r)] — (/\2 B 92) vuvd} (”1“ vu)

[ —sinf cos 8 0 0 —sin B cos 8
~ \ cosfB sinf 0 m%{i cos 3 sinpf
2

As v
mi. = { [A) cos 1 + ks cos(pr — @r)] — </\2—g>}(v5+v621)5 tanf = —
Uy Vg 2 Vg

(B.20)
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with the Goldstone boson G* = —sin BH.F 4 cos ﬂHC:lt and the charged Higgs state H+ =
cos BHF + sin BHjE. We will denote the corresponding rotation matrix as follows:

xC — —sinf cos 3\ =gt pgt=pt
“\ cosB sinf )’ == 2

iii) Neutral Higgs. The symmetric 6 x 6 bilinear Higgs matrix M%,O =

lazviHo.._OOOOOO]- . .
[2 95 /3/308, V2’ Sij = hy, hyg, by, ay, ag, ag| includes the following elements:

12 2
+
Mol = mify, + N (P + |H?) + L (2Re(HY)? + [HIP — |H]P)
g2 — ¢

2 2
+ . _
+ - HY H,

T HHY

v /2+ 2 /2_|_ 2
=\s [A,\cosgol—knscos(cp,\—cp,i)]v—d%—g 5 J vg—kg g
u

g2 — g2

4
g/2 4 92

HIH; + MN(|S)? — s* + |[HJ]> — v3)

+ (2Re(Hy)? + [Hy|* — [Hg|* = 3v; + v7)

2 ) q*2 s 9*+9° 0 0
J\/lHo‘12 = —ARe [A)\e“"ls—l— ke (Pr—en) g ] +2 <)\ - 4> Re(H,)Re(H,)

5 g/2 +92
= —As[A)cos 1 + kscos(pr — pr)] +2 [ A — 1 VuVd

g
— <A2 — Q)Re(Hde)
— A[Ay cos p1Re(S — s) + K cos(py — ©x)Re(S? — 5?)
+ K sin(py — ox)Im(S)Re(25 + s)]
2 2 2
+2 ()\2 - 919> (Re(H)Re(HY) — vyvg) — (/\2 - %)Re(Hde—)
g2 + g2
M%io‘m:m%d'i')‘Q(’SP"”HS‘Q)"‘ 4 (

gzz +92H+H_ B 9/2 _ 92
4 d~d 4

2Re(Hg)” — |Hy|* + |Hg|)

—+

HfH,

v /2+ 2 /2+ 2
:)\s[A,\cosgol—l—/ﬁscos(cpA—@H)]Ul+g 29 u§+g 49
d

4orr—
Hd Hd

g2 — g?

4
g/2 4 92
—

Hif Hy + N(|S? = 8% + [Hy|* = y)

u

+ 2Re(Hg)* + |Hg|* — |Hyl* = 307 + vy)
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M?{o‘m = —ARe [(A,\e“"1 + ZReZ(W_‘p")S*)Hg} + 2X®Re(S)Re(H?)
= —ug [Ay cos 1 + 2k5 cos(px — @r)] + 2\ 250,
— X [A) cos p1Re(HY — vg) + 2k cos(py — ¢r)Re(S*HY — sv,)
+ rsin(p — ¢x) (Im(H)Re(s — 25) + 2Im(S)Re(HY))]
+2)% (Re(S)Re(HY) — svy,)
M?{o‘% = —ARe [(A,\e“"1 + ZReZ(W_‘p")S*)HS} + 2\%Re(S)Re(HY)
= — vy [A) cos o1 + 2rs cos(py — 0r)] + 2X%s0g
— X [A) cos p1Re(HY — vy,) + 2k cos(px — px)Re(S*Hy — svy,)
+ wsin(p — ¢x) (Im(HJ)Re(s — 25) + 2Im(S)Re(H,))]
+2)\% (Re(S)Re(HY) — svq)
Mipo]ss = m& + 26A.Re(e'729) + 267 [2Re(S)? + [S|°] + N (|HJ* + |Hg|?)
— 2)\kRe [eZ(W*WHSHQ}
+ X2 [H Hy + Hy Hy ] +2\kRe |/ A |
= ks [Ay cos g + 4ks] + AA) cos golw + X\ [HfH, + Hf H] ]
s
+ 2XkRe [el(wr%)ﬂjﬂd_} +25 [ Ay, cos paRe(S —s)+£ (2Re(S)?+]5]*—357)
+ N [|HY? + [HY)? —v2 —vj] — 2)\/<,|:COS (ox — wx)Re(HYHY — v,04)

i)

Uy Uq

= sin (o — ) (Re(H)Im(HE) + Im(H{)Re(HY) + 3

9/2 4 92

M|, = Re(H)Im(HY)

22
M%Io‘ﬂ = —ARe [z (A,\e“"lS’ + /ﬁe’(‘“_%)S*Qﬂ +2 <)\2 _ 9 Ig ) Im(H2)Re(HY)
2 g9’
— <)\ — 2> Im(H,f H;)
= M [(Ax cos g1 — 2k cos(px — ¢r)Re(S)) Im(S) + ksin(py — ©r)Re(S? — s9)]

/2 2 2
42 ()\2 - 919> Im(H)Re(HJ) — (\* — L) m(H; H)

My, = —ARe [z (A,\ewl + 2/{6’(““_%)5*) Hg] + 2)2Re(S)Im(HY)
— Asvasin(pr — ¢x) + A| Ay cos prTm(HY)
+ 26 cos(p — ¢i) (Re(S)Im(Hg) — Im(S)Re(Hy))
+ rsin(py — e )Re((25* — s)HY — svd)} + 2X%Im(HY)Re(S)
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g/2 4 92
4

Mol gy = mig, +X(ISP + [Hal") + (2 (H)* + [H|* — [Hyl?)

2 2 2 _ 2
g-+g - 9 -9 _
+ = HiH, - H H,
2 2 2 _ 2
= s [A) cos o1 + ks cos(pr — ¥x)] :—d + %H;Hu_ - %H&"HJ
u

g/2 +92
SIS 5 LB — o)+ L ot (HO 4 O Y o+ )
2 — w1 1(Pr—Pr) C* 2 s 97 +4? 0 0
Mipolys = —ARe |1 Are™'S + re 52)| 2 (02 = £ ) Re(H)Im(H9)
> 9
- (A — 2) Im(H, H)
= A [(A) cos 1 — 2k cos(px — pr)Re(S)) Im(S) + rsin(py — r)Re(S? — s9)]
2 9/2 + 92 0 0 2 i + 77—
+2 (02 = £ | Re(H)Im(HY) — (\* — ) lm(H,f Hy )

12 2
g -ty
Mipolyy = = Re(Hg)Im(Hy)

M?{o‘% = —)ARe [1 (A/\e“pl + 2/@61(‘”_50*‘)5*) HS] + 2\*Re(S)Im(HY)
= Aksvysin(y — pr) + A [A,\ cos 1 Im(HY)
+ 2% cos(p — ) (Re(S)Im(H) — Tm(S)Re(HO))
+ wsin(py — o )Re((28* — s)HY — svu)} + 2X%Im(HY)Re(S)

g/2 —|—92
M?{o‘% = ARe [AAe’WS + kelPr—9r) G 2} +2 <)\2 - 4) Im(HY)Im(HY)

+ ()\2 — 92> Re(H; H)
2 ud

= As [A) cos 1 + ks cos(px — ¢x)] + A[Ax cos p1Re(S — s)
+ kcos(py — wx)Re(S? — 5?) + ksin(py — vx)Im(S)Re(2S + s)]

g/2 +92 92 B
+2 <A2 - 4> Im(H2)Im(HY) — <>\2 -5 Re(H, H))

g/2 JrgQ
M55 = miy, + N(1S1? + [H|?) + 1 (2Im(Hg)? — [Hy|? + |Hg|?)

2 2 2 _ 2
9+ e P9
+ Sy~ S H T,

2 2 2 _ 2
:)\S[A,\cosgol—i-/iscos((p,\—(p,.;)]i—u+g Ig HJHJ—Q 4g HIH;

d

201q2 _ 2 o 2y, 97+ 0y2 02 02 2., .2

+ XIS =87+ [Hy P = vg) + = (2Im(Hy)" + [Hy|" — [H,|* = 3vg + vy)
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M?{o‘w = —ARe [z (A,\e“"1 — 2/{6’(‘“_%)5*) Hg] + 2X%Im(S)Re(H?)
= —3\ksvgsin(px — @x) + A[Ay cos o1 Im(HY)
+ 2k cos(y — ¢r) (Im(S)Re(HY) — Re(S)Im(HY))

— ksin(px — pr)Re((25* + s)HY — 3svq)] + 2A*Im(S)Re(HY)
M%o‘% = —ARe [1 (A/\ew1 - 2/{6’(‘”_%)5*) HS] + 2X%Im(S)Re(HY)
= —3\ksvy sin(py — ¢x) + A[A) cos o1 Im(HY)
+ 2k cos(py — ¢r) (Im(S)Re(HY) — Re(S)Im(HY))
— ksin(px — px)Re((25* + s)HY — 3svy)] + 2A°Im(S)Re(HY)

Mipo| s = 26 ARe [1€%925] + 45>Re(S)Tm(S) + 2AxRe [ze“w-%)HSHg}

— 2X\kRe [ze’(‘“_‘p”)H{j‘Hd—}
Re(5)

= 4KV Ug sin(@y — @r) + 2 6 sin(py — k) {3 VU — Re(HSHg) — 21)“114
— 2K [A, cos p2 — 2kRe(S)] Im(S)
— 2Xk cos(px — i) [Im(HY)Re(HY) + Re(H)Im(HY)]

— 2)XkRe [ze’wr%)Hin_}

M| ,5 = ARe [(A,\e“"l - zmewrms*)ﬂg] + 202Im(S)Im(HY)
= Mg [Ax cos p1 — 2k5 cos(px — ¢x)]
+ A [Ay cos ©1Re(HY — vg) — 2k cos(pr — @x)Re(S*HY — svq)
+ ksin(py — ¢x) (Im(H))Re(2S + s) — 2Im(S)Re(HY))] + 2A*Im(S)Im(HY)
M. = —ARe [(A,\ewl — 2ke®3 =20 §*) HO| 4 2%Im(S)Im(HY)
= Avy [A) cos g1 — 25 cos(p — @)
+ X [Ay cos ©1Re(H? — vy,) — 26 cos(px — pr)Re(S*HY — sv,)
+ wsin(py — ¢x) (Im(H)Re(2S + s) — 2Im(S)Re(H,))] + 2A*Im(S)Im(HY)
Mipolgs = mé — 26AxRe(e?S) — 267 [2Im(S)? + |S?] + N(|HJ)? + [HJ?)
+ 2\kRe [elm—%)HgHg’} + A2 [HfHy + HFH7] — 2\6Re [e“%—wﬂjﬂd
= —3ksAy cos pa + )\% [A) cos 1 + 4krs cos(or — ¢r)]
+ N2 [Hf Hy + HI Hy| = 2\kRe |/ 7 H |
— 2k A, cos paRe(S—s) + 2k7 (21m(S)2+|S|2—82) + A2 [\H3|2+|Hg|2—vi—v§]
+ 2)\/<;[cos (ox — @u)Re(HOHY — vyvq)

Uy Udq

— sin (g — ¢n) (Re(Hg)Im(Hg) + Im(H)Re(H?) + 3 Im(S)) ]

S
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As for the case of the charged Higgs, the Goldstone boson GV = —sin Bal + cos Bag
can be separated from the doublet CP-odd state a’ = cos fal + sin ﬁag by a rotation of

angle 8. The remaining (symmetric) 5 X 5 sub-matrix of massive states </\;l%10> may be

diagonalized (numerically) through an orthogonal matrix X ’.

</\?l§,0> = X T diag(m?y,i =1,...,5) X" (B.21)
The corresponding mass-states are then:
SO = XHnS + XH B+ XH nd+ X[ a®+ X2 0 = XERO+ XERG+ X R0+ X a® + X} al

iv) Charged-neutral Higgs terms. For completeness we indicate the bilinear terms

mixing charged and neutral Higgs states (note that MQ‘S_SO = MQ‘*S+SO):

1 r gZ 3 . g/2 _|_92 B
M| o = 7 —(\% = 5 H; HY* + H, Re(H?)
1T g2 B g’2 _ gz B
2 _ = | _\2_ T Ox 0
M \H;hg = 7| (\* = 5) Hy H, 5~ Hu Re(Hy)
L 2 7 — * — -
M2 = ik (A,\e P14 opeler—en) g ) Hy + 2A2Re(S)Hu}
1 r g2 - 9/2 o g2 3
MQ‘H;hg - V2 ~(\* — ?)Hu Hy — Hy Re(H,)
M?| - _f(V — 9—2)H—H0 + ey 92H*Re(H°)
H;th - \/5 I 92 u *tu 2 d d
17 _
M2y = ik (AAe*W v zmeﬂ(%"r@fﬁs) Hy + 2)\2Re(S)H, ]
1 r 92 3 . 9/2 4 92 3
M2‘H;ra3 v uA? — E)Hd Hy* + H, Tm(H})
1 r 92 3 g/2 _ 92 _
2 _ 2 J 0x 0
M ’H;ag =% _z()\ o) Hy H, H,; Tm(HY)
1 -
M2 00 = 75 <A,\e“"1 - znewr%)s*) Hy + 2A21m(S)H;]
1 9>\ 9° =g
MQ\H;ag =% - S, HY — 5 Ha Im(H?)
1 r 2 g/2 4 92
2 e 2 J — 170 — 0
Mypay = 75 | O = I HL A+ = Hy ()
Lr —1 —1 — — -
M2|H;ag = 7 _—2/\ (A)\e P14 ke P s”“)S) H, + ZAQIm(S)Hd}

B.2 Tree-level Higgs couplings

Having presented the spectrum and our conventions, we may now turn to the Higgs cou-
plings.
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B.2.1 Higgs-SM fermions

Employing the Dirac-fermion notation, the Higgs couplings to SM fermions may be cast in

the following form (with the usual left- and right-handed projectors Pp, gr):

_ ST ST STf S f *
Viof [gLff P+ g3l PR] Fs; gl = <9L ff)

: s SFY.
with the (non-vanishing) values of ¢/’ :
S0uu Yy R I Htud
g, = 7 [Xz-u + sz] g7, = —Y, cosf3
5%d Y4 R I H—du -
g, = E [Xid+ZXid] g1, = —Y,sinf
S0& Y. -e .
ar’ = 7% [Xi@ + inId] gl ® = _Y,sin g

B.2.2 Higgs-gauge

The situation is unchanged with respect to the CP-conserving case:

Va3 go)V SVEVY 4 g VY SS'VEVY 4 g5V (80,8 — §'0,8) V*

12 2

S0zz g 9
2 = G 7 (VaXE + v, XE)
50507 VI?+ 92 1 R T R~ I vR I vR
2g (2] = Z# [deX]d - quX]u - X’ided + XZquu
2
SOW W= g R R
Guv = guVﬁ(vdXz‘d + vuXiy)
Otw-— g
g = L [(xE - ax) XSG - (XE 4 0x]) XS]
V2
_ /
it - s,
N
2
AW g9 C C
2l W — 22 [ XC _ 9, X!
g 2(92+g’2) [ U< qu zd]
-~ 2 2
S S e Y
N
/2
miow- _ 99" o sc
% =g e el
HIH vy 2g%g"
29w 7 :guvméij
T a0 )
v 24 g’2+92 v
HYH- 77 2 _ ¢%)?
20 7 = gw%%‘
2(9" + 9?)
595077 g%+ g
490 7 = guuT(XﬁXﬁz + Xi}ng% + Xz‘IdeId + Xi[quIu
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Hf H WHw = g*
Guv = gul/?(gzy
Spsywrw= 9 Ry RyR [ 1 I I
SPHF W=y 9uw9°g R I\ yC R I\yC
29, = VoY) (XG0 +1X[,) X5, — (X — X5 X54]
SYHIW=Z 99”9 R I\ yvC R I\ yC
290’ = —m [(Xie +0X3,) X5, — (Xig — 1 X5 XG4]
B.2.3 Higgs-sfermions
The Higgs-sfermion vertices read:
VF 3 gSF*F/SF*F/+gSS/F*F’5S/F*F/ (B24)

. 1 12 *
P 3 V20X g (B ) (X E—oaxD) X ()

2
V2 [ViuX— L i —axp)] X ()
Y,

4t [Aue’LSOAu (Xilfj—i-ZXiIu)—/\eﬂW (S(Xﬁ—zX{d)—i—vd(Xg—zX{s))] X,?R (X}i)*

V2
Y *
7% [Aye™au (XE o XxD) -2 (s(XE4aX L) voa(XE+x D)) XFL (X[7)
. 1 12 *
QS?Dle =2 [devdX£+4 <93 +92> (UuXiﬁ_UdXz%)] XkDL (Xl?z)
12
V2 [yd%dxif;#%@uXﬁ—vdXﬁ)} Xir (Xig)
Y *
+7d§ [Age’ e (X G +1X ) —Ae ™" (s(X[E—1X[,) +ou(XE—X]))] X[ (XT7)
Y,
+7d§ [Age™?4a (X=X ) =™ (s(X [+ X],) +ou(XE+0X )] X7 (X[R)
SOELE 2 wr, 9°+9 R RY| vE (yE\*
gor B =/2 [Ye vaXig+—— (UuXiu_UdXid):| Xir, (Xi1)
2
g *
V3 | V2ol G o Xl | X ()
Y,
2 [t (XX ) =A™ (X=X ) o (X X)) ] X (X))
Y *
o A (XX =A™ (s(X LX) o (X)) X (XG)
0 pT* \/i
gSININL — e (97 +9%) [vuXE —vaX ]
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2 2
GTHULD ggM{ [<y2_92) vuxg+<yd2_ ¢ ) deg] XU, (xP)°

+ YV Yy [ XG+va XS] XEp (X12)°

Kz

1Y, [Aue4u XS+ Ase P XG) XEp (X))

+ Yy [Age P4 XS+ Ase X X5 (XB)” }

:<gH*Dl*Uk>*
1N ]2 Y oux G- Lo xC| (XE) 4V, [Ae o3 XG4 Ase XE] (XE)"
g = e Ty |VdRia T 5 Vu in | (XGL) +Ye [Ace™?2e X+ Ase" X, | (XiR)
_ (gH*El*NL)*
s0s0uru, _L1v2 (v RyR I xI 17g% RyR I I
gtk :i Y, (X’LUXJU—I—XZU/XJU)_'_Z ?_g (quXju+quXju
L1
- Xl | Kby (cf) + 5|2 (e
2
g *
- I XX~ XX XX | X ()
YA %
VX o (X (KX (XX ()] X ()
YA X
= e (XX (X +1.X50) + (XS H1X5) (Xig+0X00) ] X5z (XiR)
$0500:0r _ 1[0 i vryr vl iy L (97 2\ (xRyE L vl v
g =g vy ( ided+Xided)+Z e (X XG0+ X0 X
« 1
- Xl | b (<) + 5 |v2 (e xtixdy
2
g *
+ SRR XX, - XU Xl | X ()
YiA *
Y g [ (X )+ (R =X EE - X)) X ()

Yo\
+ %em [(XE+x D) (XE+oX])+(XE+ox] ) (X E+aX])] X, (x5)

wr ju wr ju

. 1 12+ 2
118 Ly (Xt s (X

* 1
RvR vl vIiy| vE (vE RvR , vI v
— XiiXjo—XiaXja) | Xiz (Xi1) + 3 |:Y;2 (Xid X+ XiaXjq)

2

g *
+ R XX, - XX Xl | X ()

YA *
TR (O X)X+ (XX (X - ) X (X

Y\ .
+ %ew (XX ) (X e X )+ (X X ) (X X)) X (XTR)
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0 GO AT* 1
gP NN = — (g7 40) (XX - XX
SOHTU; D VCUI%M 2 9%\ ve (v I 2 9\ ve R I U (yvD)*
g7 == A Yu=73 X (X —1X5,) + Yi—5 Xia(Xji+1X5q) | Xir (XiZ)
+ YL Yy [ XS (XX )+ XX X)) Xig (x2)
+Y e X GXE X)X (XB) +Yare > XSG (X B+ X 1) XY, (Xl%)*}
_ (gH—S?Dg*Uk>*
SOHT N* 1 92 92 *
go LR = 7 { [<Y62—2> X%(XﬁHde)—QXJ%(XE—’LX{U)} (Xi)

oA X (Xl (X)) = (oSN ) 5

HH; U, 1(g"? *
I RV PXGX G (4o ) (XEXE- XX X (xE)

U U\*
wr ju 3 wr ju XkR (XZR)

2
n [YUQXC x§ -4 (xOx5 -x5XxS)

HYH-D*D 1 912 *
gt Hy DiDr {YﬂvggM 2)6;1)92}Z <3—g2> (ngﬁ—xgxgl)] xh (xR)

g/2 "
+ [VEXGXGH T (XEXG - XX | b ()

HYH EfE 9?9 (OO OOl vE (yvEY*
v = 4 [Xiquu_Xided] Xir, (XIL)

<t ju

12
+ [YGQX%XJQPL%(XCXC —ngﬁl)] XE (X))

+ 77— A7k 1
gH,L- Hj NLNL :}/;2XszXﬁi+Z
B.2.4 Higgs-charginos/neutralinos

(9" +¢%) [XOX5, - XX 5]

As for the Higgs-fermion couplings:

SOt 1 * Yk x Y7* * Y*
g M = [o(X = X) Ui Vis + 9(Xi — 1X ) Ui Vi + Ae (X + 01X ) U Vi

gy N =— {f (X — X)) (Ni NG + NN, — (X5 — X)) (N Ni + NigNiig)|
NG [(Xz‘]ji —1X],) (Ng Nis + NN — (X — 1 X)) (NG, N + NlZNI:d)]

+ Ae'PA [(Xfft + ZXiIu) (NisNig + NjsNig) + (Xﬁ + ZXiId) (NisNp, + NigNE,)
HXF 40 X)) (NE NG + NN
+re s (X 41 X]) [INGNG + NENE]S

/

H X0 9 wcC « c 1 « c «
gt T =~ ﬁXidNI:bUZQ +9Xia | NeaUp — ENEwUn + A" X NE U
H;F 967L gl C arx 1/% C * * 1 * * C ATk Y/%
g :ﬁxiuNkb 12+ 9 X | N Vin + ﬁNkw 12 ) +APAXGNEVS
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B.2.5 Higgs-to-Higgs couplings

From the tree-level potential of eq. (2.10), one may derive the trilinear and quartic Higgs

couplings:
sosos0 1 [g”+ g°
g7 \/5{ T |: (H;S;guu +H;4jl?uu H;S;%dd H:‘j]?dd>
g <Hls;gdd n Hg;ﬂidd Hfjguu H;‘;guu)]

+ )\2 |:S (HZszuu H;‘;isuu HS sdd_‘_Hézdd) +uy (HS udd"'H;;]gdd —I—HS uss +H£;:SS)

+vy (Higuu + Hfjlguu + HZSJgss + Hﬁgss)]

— My cos oy [T — Tifpd — s — o]

— Nscos(ion — ) s (I3 + QR+ Mg — )

+ vg (TI558 — TI15 4 21075 5

+ vy, (Hfjgss Hf}gss + 21‘[;32‘15) } + A COS (o [ng‘gs — 31_[;3,‘385]

+ 2/4328 [HSZSS + HA sss]

ijk
+ Aksin(ox = i) |5 (T + TG e — 3115 o 3110
g (I — omIEges — i)
+ vy (Hijgss o 2H51§d3 H@Iﬂgss) Uy Uq (31—15533 Hzljskss) ] }

where:
(HS)a’Jb’C =XAXAXPE A XEXEX XX EXE - XEXEXE+ XEXEXE + XFXEX]
(HA)“;’; =XB (XL x{ + XX+ X B (Xhxl o+ XExh)+ X E (X xT+xLx))
(HP)“”C—XI (XEXE+XEXE)+ X, (XEXE+XEXE) + X, (XEXE+XEXR)
),

1,5,k
(1!

a,b,c

e =Xia Xy X e+ X X X+ X X o Xy X X X+ X Xy X+ X, X [0 X

+ - 1 /2+ 2 2 _ 12
S {[w xfi+ o+ 51 vdXid} X§XE,

_ g/2 R 912 +92
5 vu X, + 5

[QA%XR degg} X X6

+ [/\ (Ay cos 1 + 2rs cos(px — vr)) XE + 3Akssin(py — o) XK

()\2 — ) v X2+ vdX;;'i)]

X Xkd+X Xku)
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+1 |:)\I€S sin(px — @) X2 + X (Ay cos p1 — 2ks cos(py — o)) XA

+<)\2—g2>(’UXI+’UX~I ]
9 u<qd d zu)

< (X5X5— X59X6) }

50598959 1 {9/2 + g [Hs wuuw | TpSdddd _ grpSuudd  [yPuvuu | TP dddd _ opP uudd

g/ 4 ] ijkl ijkl ijkl ijkl ijkl ijkl
Suu Puu SddPdd SuuPdd S dd Puu
+2H’L]k2l + 2H’L]k‘l — 21_.[ — 21_.[,” Ll

2 S uudd S uuss S ddss P uudd P uuss P ddss
+ A {Hz]kl + szkl + Hz]kl + H'ijl + Hz]kl + Hz]kl

_’_Hlﬁ;%luPdd_’_HZS;g?lPuu st;zluPss_f_HZSJ’g;iPss H’iZ?Puu+Hf]Z?Pdd:|
— 2 cos(ipr — i) [TT537 + TIEgpvd — IS5 el — it s
AL e ed o P U}

+ 2K Sin(gpA — 9014) [ngsupd HszzsdPu _ H?j%lp ssd H?jglpssu

- 2HZSngdSPS + QHZslPsud}

S ssss P ssss S ssPss
[Hzgk:l + 10 + 21055 ] }

where:
S bed P abed I I I
i = D XolaXauXateXana: W5 = 2 XawaXopnXoweXona
oESy o€Sy
[[SabPed _ R [[SaPbed _ R I
57 = Y XoaXonXoweXowa: T = D XoloaXoimXoweXowa
ocESy oESy
[[SabePd _ I
58T =Y XX o XX o
0 Q0 7+ U§S4
SYSY H H~
gt [XﬁXﬁH‘Xz]quIu XEXT — XX [a] (XXl — X(aXia)

+ZL [XRXR + XX 4+ XEXT + XX (X6 X+ XeXG)

u>ju iu Ju
+ )\2 XA+ XL (XGXE + X6X)

1 g*
-5 ()\2 - ) (XEXG+ X5XE — X[, Xy — X5 XT,] (X6XiG + XeXE5)

2 2
+5 ()\2 5 ) (XAX,+ XAX], + X XF + XX (X6, X0 — X0X0)
+ Ak [cos(pa — ¢n) (XEXSE = X[XT,) +sin(on — i) (XEXS, + XLXT)]
x (XFo Xig + X X5)

+ 1Ak [sin(tpA — ¥k) (XZ-IEX;'Z - X’iIsX;s) — cos(pr — ¥x) (Xz‘]EXsz + XiIsXJ?E’)}
x (X Xig — XiaXi2)
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B.3 Other couplings

B.3.1 Chargino-Sfermion-SM fermion

For each fermion/sfermion generation (with the convention of eq. (B.22)):

Uyxid 7 7 1 Uyxid ;
9.7 =YuXRVien — g X Ve 97 " =YX Ui
D’.‘Xi_u D 7 s D 7 s ﬁ’fxi_u D
g9, = YaX[RUiq — 9X Uy, gr’ " = YaX 1 Vi
Rt . At
g, " ==V, gp " =YelUia
E’.‘Xi_l/ DI D E*X;V
9’ = Y:@XjERUid - ngELin 9r’ =0
B.3.2 Neutralino-Sfermion-SM fermion
For each fermion/sfermion generation:
07 x{u O _ L (9 s \x0 Ui 0 0
91 = —YuXjpNj, — 2\ 3 +gNi ) XTL 9g T = =YuX [ Niw + 2V201 X5 Ny
D;X?d D arx 1 g, * * D D;X?d D \/5 1yD
9L = —YaXjrNjy — ﬁ g vib T 9Niw | Xj1 9g = =Yg X7 Nig — 39 XjrNuw
N*X?I/ * N*X?u
9gr, \ﬁ(g/ z’b_gN;;u) 9r =0
E;X?e E * / * * E E;X?e E / E
97" = —YeXjpNig + NG (¢'Niy+9Ni) XJ7 g5’ = —Ye X[ Nia — V29 X3 Niy

B.3.3 Chargino and neutralino gauge couplings

Using the notation:
— Vil Vil V*il V7/ * V*V Vﬁl *
Vi3 VufAy* {gLff P +gpl! PR] flsogl T = (gLff) cogn = (ngf) (B.25)

the chargino and neutralino gauge couplings may be written:

/ /

ng; X5 99 ng; X 99
L - R Y ey
V9 + 97 V9 +9g?
Z)Z;XJ'F * 1 *
ar, 7= Vi 92 + 9,2 (‘/iw‘/jw + imuv;u — S%V(Sij>
gr = V9P+g” <inij +5ViaUja — S%vfsij)
Z0% V92 + g . . Z0% V92 + g . .
9" = 9 (NialNjg — NiwlNjy,) R = 9 (NiwNjy, — NiaNig)
WoRIxG 1 . . W 1 . .
9r, T =y <\/§Niuv;u Nz‘w‘%) g =9 (ﬁUidNid + inNiw)
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C Radiative corrections to the supersymmetric spectrum

C.1 Electroweak gauginos and higgsinos

We follow the approach of [70] and consider the loops involving sfermions/fermions, higgsi-
nos or gauginos/Higgs and gauge bosons in the self energies of the gauginos and higgsinos,
under the assumption that the gauge eigenstates are approximately mass states. Taking
the complex phases ¢y, and ¢, . into account, we find the following corrections to the
gaugino and higgsino masses:

AMY_ g {11B1(M1,0, Mg,) + 9By (M1,0, My,) + By (M, i, M)
M, ) 16x2 1(M1,0, Mg, 1(M1, 0, M, 1L, [ 224
+ By (M, p, MZ)—FML sin 23 cos(éar, +x) [Bo(Mi, pu, Ma)—Bo (M, o, Mz)] }
AM, g°
My, )~ 16nm 2{9Bl(Mz,0 Mg, )+3B1(M2,0, Mr,)+B1(Ma, 1, M)+ B1(Ma, 1, Mz)

+ MLQ sin 283 cos(¢ar, + @) [Bo(Ma, pt, Ma) — Bo(Ma, p, Mz)]

+ 4B (Mo, M2, Myy) — 8By(Ma, Mo, MW)}

A 3
SR = {0+ YR Bu(,0, May) + Y2 Bi (1,0, M) + Y2 B (s, 1, M) }
W 327
12
" 64r2
My .
+ = sin2B cos(an, + o) [Bo(u M, My) = Bolw, My, My)] }
2
" 64r2
M .
+ = Esin 2B eos(9ns, + ) [Bo(ps Ma, Ma) = Bols, Ma, M) }
)\2
3272
ms
L sin 28 cos(pa — &) [Bo(u, ms, Ma) — Bo(p, ms, Mz)] }

{231(% s Mz) — 4Bo(p, p, Mz) + By(p, My, Ma) + Bi(p, My, Mz)

{2‘81(#7/‘, MZ) - 4B0(1UJ7,U’3 MZ) + Bl(:u’ M2a MA) + Bl(lu’7 MQ, MZ)

{ B1(p1,ms, M) + B (11, ms, My)

Amg A2
< m~s> = 8 Q{Bl(m&uvMA)+B1(m5’M’MZ)}
’{/2

871'2 {Bl(m87m57mh0) + Bl(m57 msz,m 0)

— Bo(ms, ms, myg ) + Bo(M1,m§7mag)}
We took over the notations of [70] to designate the approximate masses of the particles in
the loops; note that p = As stands for the doublet higgsino mass, mz = 2ks for the singlino
one and MRY 0 for the singlet (pseudo)scalar masses.
C.2 Sfermions

O(ag) corrections to the squark masses are generated by gluon/squark and gluino/quark
loops. Another source are squark self-couplings, as these receive a contribution from the
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SU(3). D-term. We use the following expressions to correct the squark squared masses mX:

5
sy == 5=y [ 0.1 =280y 0|
2 _ ~ - ~
Q Q@ Q x@x2
- 1X5, X = X5pXGR [Ao(mg)
j=1

QL iL

+4 [m%Bl (mg, mg, mq) — Ao(mg)

—m§(1+2

my —1¢ Q Q* N -
nge(e M3XQLXQR)> BO(mQammmq)} }

We recover the results of [95] in the CP-conserving limit.

C.3 Gluino

We follow [70] to include the O(«ag) corrections to the gluino mass: these involve the gluon
/gluino and the quark/squark loops. The latter depend on squark and gluino phases via
the quark/squark/gluino couplings. We obtain:

Amg Qs
( m;) - 47r{6 [B1(mg, mg, 0) = 2Bo(mg, mg, 0)]

m _ ) o
+ Z [Bl(mg,mq,m@) + m? Re(e Z¢M3XiQLXg% )Bo(mg,mq,méi)} }
gi=1,2 g

Note that the one-loop corrections to the NMSSM spectrum have also been presented

in [96].

D Radiative corrections to the Higgs spectrum

D.1 Wave-function renormalization

We summarize the discussion of section 3.3.1. Remember that pp = 125 GeV replaces the
external momentum.

/2 3 2
Zh, =1+ 16 {NchBo(uH,mu,mu) + %Bo(uH,Mbu) + %Bo(uH,Mz,u)
12 2
+ N2 Bo(pm, i, ms) — sin? B | g* Bo (g, M, M) + 5 BO(,UH7MZaMZ)] }
Zy, =1+ 62 {NchQBO(NHamdamd> + Y2 Bo(pm, me, me)
9/2 392 2
+ 730(/”{, My, p) + 7BO(I~LH7 My, ) + X Bo (o, p, ms) (D.1)
1
Zg =1+ 52 {NBo(psr, s, 11) + £°Bo(prr, ms, ms) }
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D.2 One-loop contributions to the effective potential
D.2.1 SM-fermions

The squared-bilinear matrices of the fermions of third generation have been provided in
egs. (B.3), (B.4). One observes that they split into (at-most) 2 x 2 blocks corresponding
to the left-handed quark fields, the right-handed ones, the left-handed leptons and the
right-handed one. The following eigenvalues can be derived:

Lt ]
mi, (H) = 3 KZIHu!2+1@2!Hd\2+\/Yt4|Hu!4+124!Hd\4+21€2%2 (1Hu|*|Hal* —2|Hy - Hal?)
= mi, (H)
T
miL(H)—§ VP | Hul*+ Y| Hal® \/Y4|H [+ Yy Hal* +2YY) (| Houl?| Ha|* 2| Hy - Hal?)
= mj, (H)
2 (H)=0

m
L
2, (H) = Y2|Hyl> = m?, (H)

One can then deduce the following (non-vanishing) contributions to the Higgs mass
matrices (with N, = 3 the number of colors):

2 _ Ud 4 2
5<MHi>11 _Qfa 5<M >11 _7 ln Qz
2 2
2 v 4,2 L 40, M
5<MHi>22:Qf?Z 5<M >22 }/b dln Q2 _@YTvdanig
§ (MFe )y = Qp =6 (MFs),, Qf = — 155V Yy vwvaFi(mi, my)
We also note the following contributions to the trilinear Higgs couplings:
SOSOSO Nc 4 Yt2’U2 2 S\ Us Uy Y2U2 2 Sy d,d,d
0g”t 7 BN {Yi Uy [ln Qzu T3 (I°); ;% +Y¥p'va |In QQ 4 + 3 (11%); 5k
Y202 d,dd
A\ WU,u 4 b Vd A\ 4G,
+Y v In Q2 (H )ijge +Yovaln Q2 (I )”k}
Yivg Y20i 2] oddd Y203 4\ ddd
oG 3] e G ey
- —N, Y202
6 SOH+H {YQXR |:Y4'U4< Y2UdSin2B+Y2Ud In b “d
8\/>7T2 (Y2’L)2 Y2 2)2 b“id|+b Yd ( b t ) QQ
+ vau sin 3 cos ﬂ)

Y'tQUQ
+ Y (vadsm B+thd) <1HQQU1>

Y2 2 Y242
— 2Y2Yv 03 <Ythu sin 3 cos <3 In z;;d —1In 2;;“)

Vil o1
+ (Y2vgsin? B+ Y2vg cos? B) ( bQ;}d — 2) )}
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Y22
+Y2AXE [Y}f‘vg (Y20, + Y20, cos® B) <1n 222d — 1)

Y2 2
+ Yl ((vau cos? B+ YiPv,) In 2212)“ + Y2vg sin 8 cos B)

Y242 Y242
— 2V V20202 <Y})2vd sin 3 cos <3 In 2;2]“ —In z;;d)
Yiur 1
+ (Y20, cos? B + Yy v, sin? 3) <1n 2;2)" — 2) )] }
YivgX ﬁ sin? 3 Y202

n
8+v/272 Q?

D.2.2 Electroweak gauge bosons

Using eq. (B.7), we obtain the following contribution to the effective potential (where we
have performed an expansion in terms of the charged-Higgs fields):

3 [(9*+g%)? o[ (92 +¢*)(|H)? + |HJ?) 3
G 02 012 d
4 2 012 012
g 02 o2 | 97 H, " +[Hg|?) 3
(o g R D) 2
(97 + g%)? _ _
o [ S 4 3P (1 )

_9g?g? (|HOPHF Hy + |HORHFH + 2Re<H8*H3*HJH;>>}
12 2 H02 HO
[N i) )

2Q2
2 0|2 02

— - g“(|Hy|” + |H,

+g* (|HO? + [HYP?) (HfH, + HfHY) [ln ( “’2Q2’ dl )—1]

Lo |

One derives the following (non-vanishing) contributions to the mass-matrices:

3 (M), =9 5 (Mio),, = e
S (M%), = QGZ—Z 5 (Mo),, = Q63

O (M )iy = Q0 =0 (Mi )y 3 (Miyo)1y = Qavuva = 5 (Mip),,

Qg = —?;)g;f:vuvd [ln jgz% - 1} Qc = & 2¢* In ]g‘zv +(¢? +¢*)*In ]\C/QIQ%
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Similarly, one can derive the corrections to the trilinear Higgs couplings:

12 2\2 M2 M2
SOSOSO 3 { |:(g + g ) 1 — + g ln : :|
 64v/2n2 2 Q Q

o 0 oy o ]

d,d,d d,u, d,d,d d
o () () ) )

(9/2 + 92)2 + 294 3 S\ Uy, S
3(02 +02) v (H )zjk +3v5vg (H )
u

dg”

d,u,u
0,5,k

+ 303 (I1%) 7% b3 (Hs)j’j;f} }

dg

SOH+H— 3 (9 —9) M M2 R R

D.2.3 Sfermions

Considering the sfermion mass-matrices of egs. (B.10), (B.11), (B.12), (B.13), (B.14), (B.15)
and focussing on the neutral-Higgs dependence first, one obtains decoupling 2 x 2 blocks

— 1 x 1 in the case of the sneutrinos — so that eigenvalues may be expressed as m% =

m

i [TF(HO) + (—1)™, /R%(HO) , m = 1,2. Corresponding contributions to the neutral
Higgs mass-matrix thus read (we denote as Ejj;, the coeflicients coming from the tadpole
equations — see eq. (3.12)):

N 821’*~ 0Tz
S (M), = 0775~ Litaosi 7
m2 m2
" [m% <1n QF1 _ 1) _|_mi;2 <ln QFz — 1)]
9 2

1 ot ot i,
SO/\f@SO/\f Q4

L1/ ory ORZ, ORZ  oT; L mE,
— n
4\ 0589/v2 asO/f asﬂ/f 05%/v2 | m2 —mi T mL
1/ ORL  OR% 1 m% 4+ m?, 2
+s<aso V250 f>< T |t o i
/ / ]3‘ mﬁ'l mﬁ'g mﬁ'l F>
1 O*R2, E OR2, .
+ ~ ~
35’0/\f350/\f 35’0/\f (mF sz)
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with:

2 2 T e o AP 012

1(5 ?
7 = [y =i+ 5 (397 - o) (a2 - g
AV | AL HP? + XIS HG — 2A A Re(e ¢4t SHUHY)
2 2
+
Tp =md +md + 2V 2| HY? + S (| H? — | )
1/ ¢ ?
g = [y =ty + 3 (< — ) (o - 1)

YR [AJHY? + NISPIHI? — 20 A Re(e At o) SHOHY)

g/Q 4 g2

Ty =i+ + 232G+ L

(1Hu? = [Hg*)

1 2
R% = [m% —mp + 5 (229" + %) (1) - |H3|2)}

+AV2 [AZHP + 028 HO — 22 AcRe(e!Pac ) SHOHS)]

Additionally, the sneutrino mass reads: m?v =m?2 — WUHSP — |HYJ?).

To derive the corrections to the charged-Higgs masses and Higgs-to-Higgs
couplings, one is confronted to the task of diagonalizing the matrix-system of
egs. (B.10), (B.11), (B.12), (B.13), (B.14), (B.15). This can be performed perturbatively,

as an expansion in the Higgs-doublet fields, which amounts to a series in 2

Msusy
to a precision of order O (02) at the level of the masses, which means that we compute the

potential up to terms of H*-order (H standing for any Higgs-doublet field) and freeze sin-
glet fields to their v.e.v. s for terms of H*-order (they are kept explicitly for terms of lower

. We confine

order in the expansion). The ensuing corrections to the Higgs potential can be matched
onto eq. (3.13) and we may then use the results of section E.3, e.g. for the charged-Higgs
mass (eq. (E.2)) or the Higgs couplings. For squarks of each generation (note that we
neglect the Yukawa couplings of the two first families):

N, m2 2 2
§V0327T2{2m25 an—gf; +mg [lnggﬂer%[nrg?ﬂ}
2N /2 12 /2
ontz = e { (v2 4 2 ) Fotmiy + (v2 - ) Folod) + % Fam)

+ Y AL (mG, miy) + YN S|P Fa(my, m)

12

2N, 9" g 9
onti = { (v = %) Fotmiy) + G Fat) + (2 - ) Famd)

£ Y2XR|SEF (mym3) + Y;A3f1<mg,m§))}

2N,

5Aude“pAud :3271'2 A {YiAuel(LpAz"+<pA)fl (m2Qv m?]) + YdQAdel(LpAd +<'DA)]:1 (mZQ’ m2D)}
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0A3

0Ny, =

0Ag =

9N, g2 ¢ g 2 g2 2 mé
Yi+2v2i(2s -2 ) +2 2(Z-) | In—=
3271'{ + (12 i) \2) T\ ) |
2 2\ 2 2

2 9 g mp
+(Y_>1 o () m

1 /2
raviaz [vi e (% - )| Aty

/2
Lov2a? (yg _ 93) Fym?ym?) + YA AL Fy(md, m3)
2y2 21 g9 2 2 2
+ 2Y7A%[S| 1\3 g Fs(mp, mp)

+ 2Y; )\2|S\2—}'3(mQ,mD) +Y; )\4|S|4]:7(m?9,m2D)}
2N ) g’2 gz 9/2 2 g2 2 m2Q

g/2 m g/2 m2
’ () g+ (i) m gk

2
rov2isey (-4 +g2) F(miym)

12
+ 2Yf)\2|8\2%}'3(m€2,m%]) VAN S F (), m)
1 g/2
+2Y7A? [Yj -1 <3 + 92)] F3(mb, mg)

g/2
+ 2Yd2A§ (Yd2 — 6 ) .7'-3(mQ,mD) + YdA ./—"7(mQ,mD)}

2 2 2 2 2\ 2 2\ 2
Y2y2 - v2 v2(-9_ 19 Y 9(9 ) 4o(L) 11
wd (12+4) d(12+4 z) e\ )"

(2-9)0
u Q2
g/2

+ Y AN S f7(mQ,mu) + Yd4A?l>‘2|S‘2]:7(m?va2D)

+Y?
+ Y72
+ Y7}

+Y7?

YiA,

YA

1 (5 + ) 215 - 4| Falmim)

12

VRIS + 2 (42 = 2IS)| Falmy )

g/2

1
1 (5 ) (a3 21sP)| Fatorymd)

12

[ g
vaNISI? + O (43 - A2|S|2)] F(my,m)

+2Y2Y? [AuAd cos (pa, —a,) — )\2|S|2} .7-"5(m2Q,m?],m2D)

Y2V [A2A3 4 NIS] = 240 ISP cos (o, — )] ol m%»}
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2N, 2 g2\, mg
0A4 :327r2{ - (Yu2 - 92) (Yd - ) In @ — Y2V P Fi(miy, mB)

+Y2 th MN|S|? — YQJL2 A2 | Fa(m¥,mb)
u u 2 d D) u 3 U "Q

2 2

vz |(v2- 5 ) ise - (v2 - %) 2] iy
—2Y2Y}? [AuAgcos(pa, —pa,) — )\2|S|2} .7-"5(m2Q, mi, mp)
+ Y ADN[SPFr(mey, miy) + Y AGN*| S|P Fr(my, mD,)

¥R [AZA 4 XISIY 24, A0S o, — )] Folmdmd m%>}

2N,
Os =5 5 N { VAP Ca o) Fr (i mfy) 4+ Y AGe™ P4t o) Fr(miy, mp) |
2N g/2 g2
y2A W(pa,+er) y2 2 2
ONg = 3o 2/\5’{ e +12 1 Fsz(miz,mg)

2
+ (2= 0) Falotym) + Y2 i)

/2 2 /2
+ YQAdel(‘PAd‘HP)\) l:( B _~_94> fS(mQD’mé)—i_gG]:3<mgg7mZD)+Yd2)\2|S|2f7(méam2D):|}

2N, 2 (pay+er) 9/2 g 2 2
= ¢ wpa, +ea
oAy 3972 Y. Aue [ ( 15 + 1 ) Fs(mir,mg)

12
+ %fg(mg, m2) + qu/\2|S2]-'7(m2Q,m%])}

2 2
+ YgAdel(@Ad‘HP/\) { (Yf _9 g> Fg(m%, mé) + (Yf - 96) fg(sz,sz)

+ Y7 AZ f7(mQ, mD)] }

For the sleptons:
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D.2.4 Charginos and neutralinos

To include the chargino and neutralino contributions to the effective Higgs potential, we
turn exclusively to the method that we have just presented in the case of the sfermions. In
other words, we diagonalize the matrix system of eq. (B.17) perturbatively, in an expansion
of doublet Higgs-fields and we match the ensuing potential to the form of eq. (3.13). One can
then work out the contributions to the Higgs mass-matrix and couplings. Note, however,
that instead of diagonalizing directly the 9 x 9 (squared) bilinear matrix of eq. (B.17), it
is easier to consider the dependence on neutral Higgs fields only (that is replacing charged
fields by 0), as the corresponding matrix then splits into various blocks. All the couplings
of eq. (3.13) can be identified from the neutral potential, with the exception of A3 4, which
only appear in terms of the sum A3 + A\4. It is a straightforward task, however, to compute
A4 in a second step, from the charged couplings of the full potential. Another remark
accompanies the observation that, as higgsino and singlino masses depend on the singlet
Higgs field, the coefficients in our matching procedure depend on the singlet fields as well
(those would correspond to operators of dimension > 4), which leads to additional (but
straightforward) terms, with respect to the results of section E.3. This S-dependence can
be neglected for terms of order H*, as keeping it would produce terms of higher order
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logarithmic order) by the coefficients A% and )\dp. We obtain:

in

For M? and Mf, the S-dependence is largely absorbed (at least at leading
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D.2.5 Higgs-to-Higgs contributions

Instead of diagonalizing the Higgs bilinear terms, we compute the Higgs self-energy (II)
and tadpole (T') diagrams mediated by gauge and Higgs particles in the Feynmann gauge.
We then set the external momentum to zero to determine the potential contributions to
the Higgs mass matrices and subtract the pure gauge effects in the Landau gauge — from
the results in appendix D.2.2. Finally we identify the corrections to the Zs-conserving
parameters of eq. (3.13).

i) Pure-gauge contributions to the Higgs self-energies and tadpoles. For external
neutral Higgs:

/2 2
Mg (?) = sz {5 |9 M Bolp, M, Myw) + £ M2 Bo(p. Mz, M)|
X [sin2 5X£Xﬁ + cos? ﬁXﬁXﬁl +sin Bcos BXEXE 4 XﬁXﬁ)}

1w jd
/2 2
2 (g2 Ao (Mu) + 52 Ao(My) | [ XEXE + XEXF+ X1 X1, + X1, x], |}
12 2
\ng = 1675 [QQAO(MW) + 54 AO(MZ)] [vu X} + va X ]
For an external charged Higgs (we consider only the physical state):
9 (¢ — ¢?)?
v 2 2
Wi g-(p7) = 6.2 {9 Ao(Mw) + 277 +92)A0(MZ)

ii) Higgs/gauge diagrams. The neutral self energy receives contributions from hybrid
Higgs (Goldstone)/vector diagrams:

/2 2

1 g +g
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3272
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+ 9*Bsv (p,mp=, Mw) [cos® B(XEXT, + X[, X[,) +sin® BXEXT + X[, XT )
+sinBeos BXEXT + XX — x] X1, - x[x])]

Hgg)/sg (pZ)
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5
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u

(XLXP —XEX], + XBX],— XLXR) (X! XR - XRX] + XEX],— X, X[ }

For the charged Higgs self-energy:

1 291292
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X [0052 BIXH2 4 X]2) +sin? B(XE? + X[ 2) — sin B cos B(X[T XE, — XéuX,gd)]

2 5
+ BSV(pamHiaMZ)—’—gQZBSV(pva]C;vMW)}
k=1

— 67 —



iii) Pure Higgs loops. The loops including only Higgs bosons (including the Goldstone
bosons, with mass My and My) read:

2
1 SOm;; SOH+Hm SOSOHE Hir
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5! 16v/2n2 {m_lg o 2 27 o(mss)

where the Higgs-to-Higgs couplings can be found in appendix B.2.5.

iv) Contributions to the Higgs mass-matrices. Since we are interested in the con-
tributions from the effective potential, we take the limit p? = 0, which simply induces the
replacement By (p, m, M) — —F;(m?, M?). The contribution to the mass matrices of the
Higgs states reads:

§ (M), = [Hg@%‘”s(o) — Eyjy, T;’g”] ;

2 V+SV4S 2 V+S i 2 V4SS
oM = [HHin (0) — cos ﬁTthr — sin ﬁTthr
where the coefficients E;j;, are the same as in appendix D.2.3, that is, they correspond to

the tadpole coefficients of eq. (3.12).

v) Reconstruction of the Higgs contributions to the potential. After subtracting
the pure gauge contributions from appendix D.2.2; one can reconstruct the Zs-conserving
parameters of the potential of eq. (3.13) induced by Higgs corrections. We start by rotating
away the neutral Goldstone boson, obtaining thus a 5 x 5 matrix for the Higgs corrections
to the neutral Higgs mass-matrix: ¢ <./\;l?qo> . We then employ the method that was

ij
outlined in [77]:

dAg cos pg = ! {5 <M12L10> +?SSIH2B[ < M; > 45 SSin265<M%{0>44”
Vo(|SI%) { 3 + 5<MH0>55 ;22 sin 2ﬁ5<M > 4} SI*
0Auqcospa,, = { <M > +gsjn2ﬁ5</\;l§{0>44}
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SN cos prr = — % {5 <M?{0>45 - 2158111 289 <M§{0>44}

s s (500, w206, )

—% {5<Mzo>13 -2 3 ),, - 2z (), ]
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S\ { <M 0> — cos 5(5<M >4}

g =— {5 <M > - sin255 <M%{0>44}

om0, ot 500

- {5<MH0>44 o)

D.3 Leading two-loop effects O(Y, tba(s), )
We follow [10, 72]:

3y 4 Q

My =— { {1692 + —¢% — 3sin® BY;? + 3 cos® ﬁY2] In? =

* 25674 ! K b m?
M3 Q°

+[3 cos® BY? + (3 cos? B + 1)Yb2] (l — In? ) }
m2
my

3y 2 : Q*
SAd :ﬁl;r‘i { {16932, — gg’Q + 3sin? BY;Q — 3cos? ﬁYbQ] In?
M3 Q*
+ [3sin? BY;2 + (3sin® B + 1)Y}] (1 —4 —n? )}
mg mg

Note that these leading effects are conveyed by the SM-fermion and gauge sector, as well as
the doublet Higgs sector, so that the new-physics phases do not intervene. The contribution

of sfermions or gauginos is merely reduced to the cutoff () in the logarithms.

D.4 Pole corrections

Here we compute the shifts in the Higgs self-energies, which then allow to evaluate the pole
corrections to the DR Higgs masses. We use the notation Af(p?) = f(p?) — £(0) for any

function f of the external momentum. We are still working in the Feynmann gauge.

i) Contributions from SM fermions.

Allgogo (p?) =1 2{N Y2 [(XRXR + XL X1 YABpp(p, mu, ma)

<t ju <t ju

m(XEXJ, = X1 X])ABo(p.ma, mu)|
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—de(X X X X]d)ABO(pamdamd)]
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VE[(XBXE 4 XLXL)ABrr(p.me.mo)
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ii) Contributions from gauginos and higgsinos.
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iii) Contributions exclusively from the electroweak gauge sector.
1T
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iv) Contributions from the gauge/Higgs diagrams.
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v) Contributions exclusively from the Higgs/Goldstone sector.

0pr+ 77— O+
Allgogo(p 167r2{ Z g5 Hm ity oS Hy HmABo(p,mHi mHi)
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SmHYH, SLHYH™ AR
g g o(p, miso, s M py+)
m=1,6

Allgs - (p°) = 167r2

The tree-level Higgs-to-Higgs couplings are given in appendix B.2.5.

vi) Contributions from the sfermions.

2
1 0
Allsgs) (7°) mﬂz{ > [NegS g0 Ao (g, )

m,n=1

0
+ Neg® PP gSiPaln ABo(p,mp, mp )

0 0 ON*N
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m=1

The Higgs sfermion couplings are given in appendix B.2.3.

E Simplified effective potential

In this appendix, we study the simplified effective Higgs potential of eq. (3.13), or more
precisely the following and slightly modified version:

~ A
Va=M2|S| + ?S [e945 5% + h.c.] + Vo(|S]) (E.1)
+(MZ+XBIS[?) [ Hy >+ (M7 + MBS Hal* + [ (Auge' vt S+ XY €9V §*2) H,, - Hy+h.c.]
A A
+ S [+ S Hal* + s HP|Hal® + M| H - Hal?

A5 g5 S 52

12

(H FHg)? + (Aee'? | Hy|* + A7e“"7|Hd|2)§Hu -Hy+ h.c.
S

This simplified potential is meant as an expansion of the effective potential — see eq. (3.9)
— up to quartic order in the doublet fields. It slightly differs from eq. (3.13) in that the
Z3-symmetry has been explicitly restored in the terms of the last line. Note that this way of
restoring the Zs-symmetry is just the simplest educated guess, while any additional factor
f(]S|?,83,5*3) could intervene. Therefore, the factors of S/s appearing in the last line
are just chosen as such because they will provide improved results numerically. Formally
however, the associated corrections will remain of subleading order in the expansion in the
doublet v.e.v.’s.
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E.1 Matching the tree-level Higgs potential

The tree-level Higgs potential (eq. (2.9)) matches straightforwardly on eq. (E.1):

/2 2
+
M2Z=m? M2 =m? Ao =2 49 Y
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2
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)\]F\)/[ — K/)\el(SoA 7SD’$)

E.2 Minimization conditions
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O(v*) terms have been neglected. (V) = a5 | 5oy
E.3 Higgs mass matrices
Charged Higgs in the base (H;5, HY):
2 Vd 2 v 2 2
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(E.2)
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Neutral Higgs in the base (h9, kY, k0, a3, al, a2); O(v*) terms are neglected.:

sy YWy

v
<M%{0>11 = [(Aud cospa,, + )\ys cos gDM) s — 3)\g cos @603 + A7 cos 9071)3] v—d + QAUUZ

u
<M%{0>12 =— [(Aud cospa,, + )\J‘gs cos (pM) s 4+ 3)\g cos gom;i + 37 cos <p7v52l]
+ 2[A3 + A4+ A5 cos 5] vy 04

<M%{0>22 = [(Aud cospa,, + MY s cos (pM) 5+ g oS Ygv2 — 3\7 cos @71}3] Z—Z + 2\qv3
<M%{o>13 =— [Aud cospa,, + 2)\%3 cos ppr + % (3)\6 CosS QDG’U,?L + A7 cos <p7v621

— 25 cos cp5vuvd)] Vg + 2APBsvy
<M%{o>23 =— [Aud cospa,, + 2)\11‘5[5 cos ppr + % ()\6 cos 9061/5 + 3\7 cos @71)(21

— 25 cos <p5fuuvd)] Uy + 2x\§lgsvd

VU
<M§{0>33 =sAgcospags + 25> <V6’> + A, q cos goAudu—d

Ud

. _ 2 _ Uy
<MH0> _Qoi ; <M >45 Qo ; <MH0>55 - QOU
Qo = ( ud COS A, , + )\p 5cos goM) 5 — 25 COS P50, Vg + Ag COS PgU2 + A7 COS g07vd
1
[ ud COS A, 2)\]\})/[8 cos pr+— ()\6 cos @61)5 + A7 cos @71}2 —2)\5 cos @5vuvd)] vy
s
M 1 2 2
Ayacospa,,—2Ap scos o+ . (/\6 COS PV, + A7 COS Y7V — 25 COS <p5vuvd) Uy

Uy Vd

<MH0>66 = —3sAgcospag + (Auacospa,, +4XY scos o)

<M >14 = (26 sin pguy, — A5 Sin 5v4) vg
<M >15 (26 sin pevy, — As Sin sv4) Uy

1
<M2 0>16 [ 3)\?345 sin ps + 5 (2)\6 sin gpgvi — A5 sin @5vuvd)] Vg

M2,
M

oy = (2A78in p70g — A5 sin p504) Vg

< o5 = = (2\7sin prvg — A5 sin psvy,) vy

1
<M 0)9g = { 3)\?345 sin ppr + — (2)\7 sin @77}3 — A5 sin 905%7)(1)] Uy,

)
)
)
(Mipo) gy =va [ M ssinonr — “TAg, sin s
(M)gs =vu [A ssin par — “As sin s
)

(M3,

16 —4>\P SiN Y pr VL Vyg
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E.4 Trilinear Higgs couplings

05515 = [0 ) 55 e [0 )
FOa ) [on () (A5 g () () )

1,5,k
+ A5 cos 5 [Uu <(HS)?jdkd_ (HA)?ydkd (HA)Z;:)

og (I5) = () =2 () |

Fassings o ()75~ (17) 1502 (1))

g () >ff: 2 (")) |

~Nacosips [vu (3 () () =2 (T14) 7 ) o (1150 ()50
Hgsin s [0, (3 (1 j;;+z (IP) e () ) g (7)1 () )]
W [vu(H Zl]dkd ddd)+ d(3(HS)udd (HA)udkd Q(HA)Z;?:)]
s sin 7 {vu( Pyr ”k)+ va (3 (HP)““+2(HP)f;k“Jr(H’)Zf}cd)}

— Ayqcos {(Hs)s " - (HA)§ u 4 (HA)I.L’.S’d— (HA)é " s]

N 4,9,k N 4,9,k
A cos o [2s ((1%)] 3 (T04) 7 () 4 (0) )
s,8,d s,8,d d,s,s S,8,u $,8,U U,8,8
o ()02 ()0 () 730 ) o (1052 () 50— (1))

(I

. s,u,d s,u,d u,s,d d,u,s
FAF s [s (3 (1)) 158 (7)1 (7)) () )
7%(0_[[)39373 HP qsq)

s N N
s,s,d s,8,d d,s,s $,8,U $,8,U U,S,8
— v, ((H’) +9 (HP)” i 7(Hp)i,j k) —vg ((Hf) +2 (HP)”JC 7(Hp)i,j,k ) }

A [s (<HS>“’““ (11450 ) o ((105) 17+ <HA>2‘;,:)}
# X [ ()70 () ) g () 7+ ()7

AS COS Yo 5,5,8 5,8,8
+ 3\/5 {(Hs)i,j,k_?)(HA)i,j,k}

2 ) 0 ) [ ]

0+ pr— 1

SV ﬁ{)\uvuXﬁXﬁXa + AvaX XS XE,

+ A3 [0u XFEXGXE + vacos® BXEXS X1
1

+ 3 [ — (A4 + A5 cos ps) (vuXﬁ + vde)
+ A5 sin s (0u Xy + vaXi,) | (X5 X5+ X50XE)
+ [A6 cos P60y X+ A7 cos <p7vdX£] (XC X5+ X kau)
+ [—)\6 COS g (vuXﬁ + vdXﬁ) + Ag sin wg (vuXid + vdXiIu)] XC Xku
+ [—)\7 COS @7 (vuXﬁ + vdXiﬁ) + A7 sin 7 (vuXiId + vdXiIu)} X Xkd
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n [ L X XE + A%X%X,%} sXE
1

+ 3 [(Augcospa,, +22\¥ s cos M) XE 43 \Mssin <pMXiIs] (X]%X]gl—i—Xj%X,gL)
v .

+ 3 [(/\4 — A5 COS ©35) (vuXiId + vdXiIu) — A5 sin ps (vuXﬁ + vdej)

+2 ()\6 sin g, X2 + A7 sin g07vdX£,)
+ (Aud CoS YA, —2)\¥8 cos goM) X{S—I—)\ys Sin@MXg] (X]-(;;X,?CZ—XJ%X,%) }

We omit the quartic couplings.

F Extension to Zgs-violating terms

A departure from the Zs-conserving NMSSM is motivated by cosmological considerations
(Domain-Wall problem). Turning to the most general singlet extension of the MSSM, the
solution to the u-problem becomes less obvious, as several dimensionful parameters now en-
ter the superpotential. However, this difficulty is lifted when these supersymmetric masses
appear as a by-product of the supersymmetry-breaking mechanism — see e.g. [23, 24].
This motivates the inclusion of Zg-violating terms. Here we discuss how our results can be
extended to this more general version of NMSSM.
Egs. (2.1) and (2.2) are supplemented with the following operators:

/
AW = pe'®nH, - Hy+ pe'F S + %ewﬂ’ 52 (F.1)
;2
—ALy = mgew:‘*’Hu - Hg+ £ge™¥5S + mTSe“Dm’S2 + h.c. (F.2)

However, without loss of generality, the u-term (for instance) can be set to 0 by means of
a shift of the superfield S and a re-definition of the other dimensionful parameters:

S §— %el(m—w) m3e'P? < mie¥? — pAyePrten—ex)  (F.3)
;2
e et — o FPH 1(uton—pn) mlszewm/ L 2%A561(4P2+¢u*90>\)
A 2 A

2 /
K
Epe"PF « Epe'fF + )\Mz e 20uten—20x) _ Mel(der%u/*w)
2
£ge"PS « £qe¥S + 'i)f; A et Coutea—20x) _ Hm’sgel(%+@m/*s&/\) _ Hm% el Pr—du)

This choice simplifies significantly the corrections to the Zs-conserving case and we thus use
this freedom in the rest of this appendix: g = 0. We then have five new complex parameters
with respect to the Zs-conserving NMSSM. Note that these only affect the singlino and the
Higgs sector so that most of what we derived in the context of the Zs-conserving NMSSM
remains valid.

The singlino mass-entry in the neutralino mass-matrix — eq. (2.18) — is changed to
p'e¥r’ +2ke"rs and this is the only modification in the gaugino/higgsino sector at the
order of our calculation. Concerning the neutralino loop corrections to the Higgs sector,
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our results of appendix D.2.4 can be extended to the Zs-violating case by the simple
substitutions: 2ke™" S — e +2ke"+ S and 4k2|S|? — p?+41' kRe [e’(‘p”_“"u’)S} +4k2|S|2.

The modifications in the Higgs sector are more substantial. The tree-level Higgs po-
tential of eq. (2.9) receives the following additions:

AVy = {m%e“p?’ +A (é‘FeZ(SOA_SOF) + M/el(sﬂx—@M’)S*)] (HJHd_ — HSHE}) + h.c.

;7 2
+ [556“"3 + é’FM’el(<PH/*§0F):| S + m25 e"Pm! 4 Ké'Fel(‘Pn_@F) 52
+rp P Pu) S|S12 4 hoe. 4 €2 4 ,u’2|5|2 (F.4)

Correspondingly, the Higgs mass-matrix elements of eq. (2.12) and (2.13) are modified as:

Am3. = AQ% AQ = mj cos p3 + Mg cos(px — @r) + Asp cos(py — ) (F.5)
A(Mipo)y, =805 A(Mip),=-A0 A (M), = A0
A(Mip)y, = D00 A (Mip); = AQ A (Mip)y; = A0

A <M%Io>13 = —Avgp cos(pr — o) A <M%Io>23 = —Avyp’ cos(ipr — o)
A <M12LIO>33 = —% [{5 cos g + Epp’ cos(pr — <pp)]

Uy Vq

+ 4 [3/@5 cos(px — pur) + A cos(px — S%’)}

S

A <M12LIO>46 = —Avgp cos(pr — o) A <M%{0>56 = —Avyp’ cos(pr — o)

1
A <M§{0>66 T (€5 cos s + Epp’ cos(pu — ¢F)]

Vy Vg

+ 4/ [—ms cos(px — Pu) + A cos(p — 80;/)]

S

-2 [m’SZ COS Py + 2kEF cOS(pr — WF)}

A<M%{0>14, 15,24, 25 0

A <M12L10>34 =— [m% sin 3 + Ap sin(py — gpF)] %
A <M%{0>35 =— [mg sin g3 + Ap sin(py — @F)} %“

. . . v,
A <M%{0>16 = — [m% sin Y3 + 2)\$M’ sln(gp)\ — gpu/) + X SIH(QDA — SDF)] ?d

: . . v
A <M12LI°>26 = — [mg sin @3 + 2Xsp sin(px — @) + Apsin(py — or)] ?u
A 2 2 . /7 . 72 . .

(Miro)s6 = S [Sssin g + Epp'sin(pw — @r)] +mis” sin py + 26€p sin(ex — )

Uy Vg . . .
+2 22 [m% sin 3 4+ Apsin(py — @r) + 2Xs i/ sin(px — ¢, )]
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Finally, the trilinear Higgs couplings of appendix B.2.5 receive the following changes:

SOH+H* 1 R
gt :\/5{ |:)\/_,L/ COS(SO)\ - SOIU,/)X’LS

+ (S udsin g+ Agr sinion — )] + 20 sinfin — 90 ) XL
< (XS X5+ X5XE) (F.6)
—1 {/\u’ cos(px — o) X[ + %[mg sin 3 + A§p sin(px — ¢r)] Xﬁ]
X (X5 X5 — X5aXk) }
gs?sgso _ 1 { — A cos(px — o) [Hssud [Asud | qpAuds | HAdus}

\/5 ijk ijk ijk ijk

+ I{MI COS((,O,{ ) [HSsss + H;;i:ss]

1 . .
— 3 (m3sin 3 + Al sin(p — ¢F)) [Hf;;?w S A VI VEE

VuUd
5 (B T

I sss

4 .
ijk ]:| _gl{'lu’/ Sln(@ —Pu )Hz]k

. Uy Uq
— 20 sin(pr — ) [T 208 11 —311f o

1 .
~ 5 (Slessings + sty = or)] 4 mi?sing ) [ - 5] |

Up to these modifications, the calculation of Higgs loop corrections to the Higgs masses
— see appendix D.2.5 (iii, iv) — remains valid. On the other hand, reconstructing the
contributions to the effective potential — i.e. the effective couplings — in the same fashion
as in the Zs-conserving case — see appendix D.2.5 (v) — becomes problematic: indeed,
no argument of symmetry allows to reduce the number of terms in the generic potential for
two Higgs doublets and a singlet and the latter contains too large a number of parameters
in view of the 16 independent mass entries. Refer to [77] for a discussion concerning the
generic Higgs potential. It is possible to use an expansion of the Higgs mass matrices in
terms of the doublet fields, however.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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