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1 Introduction

Since its discovery, the fractional quantum Hall (FQH) effect [1, 2] has been subjected
to intense study and proven a fruitful playground for new concepts in both condensed
matter and high energy physics. Beyond its quantized Hall conductance, FQH states
exhibit a number of interesting features including anyonic excitations [3, 4], edge states [5]
and are prime examples of topological phases of matter [6]. Beginning with the Laughlin
wavefunction [2], it has been attacked with numerous approaches including Chern-Simons
field theory [7, 8] and the composite-fermion approach [9].

This paper follows previous work [10, 11] with a focus on spacetime symmetries. This
approach has allowed one to derive a number of new results, including a relationship be-
tween the Hall conductivity at finite wave numbers and the shift [10], sum rules involving
the spectral densities of the stress tensor components [12], and a relationship between the



density-curvature response and the chiral central charge [13]. These and related results
have also been obtained independently using other methods [14-16].

The approach was developed further in ref. [17]. In the approach we will follow here,
a FQH system is put on a curved spatial manifold whose metric may change with time.
The microscopic theory is found to exhibit a coordinate invariance which can be inter-
preted as diffeomorphisms of a geometric structure called a Newton-Cartan spacetime.
The FQH system thus is viewed as living in a 241 dimensional Newton-Cartan geometry.
This structure was initially proposed by Cartan as a geometric description of Newtonian
gravity [18-21] and is in fact the natural coordinate invariant setting for non-relativistic
physics in general. A Newton-Cartan covariant formulation of non-relativistic superfluids
was developed in ref. [22]. Our approach differs significantly from the latter in particular
by the introduction of torsion and, in principle, can be applied generally to fluids of any
type, although gapped quantum Hall states will be the focus of our attention here.

One of the most important features of the FQH problem is the presence of a large
magnetic field separating the Landau levels, reducing the problem, in its most essential
limit, to that of interacting particles confined to the lowest Landau level (LLL). The LLL
limit can also be realized by taking the massless limit of a non-relativistic theory. From
the point of view of the symmetries of a Newton-Cartan space, this massless limit is a
regular limit. This important feature allows one to directly attack the LLL limit of the
FQH problem. In this paper, we construct the hydrodynamic theory describing a finite-
temperature FQH fluid in the LLL. (At finite temperature, the FQH plateaux will be
smeared out, but for convenience we will continue to call any interacting systems of particles
confined to the LLL a “FQH fluid.”)

Hydrodynamics is an effective theory describing the long distance physics of a system
that is in local thermodynamic equilibrium. In the standard hydrodynamic theory we then
have as variables a locally defined temperature 7" and chemical potential u, as well as a fluid
velocity v’ that vary slowly in space and time. Their dynamics is given by conservation
laws supplemented by constitutive relations expanded to some chosen order in derivatives.
This construction of the hydrodynamic theory is simplest in relativistic physics, where
covariance is manifest in the equations of motion

V=0, VT = F"j, (1.1)

and simple to implement in the constitutive relations, which are the most general expres-
sions for j# and T"" in terms of the fluid degrees of freedom T, u, and u* (the time-like
four-velocity normalized so that u,u* = 1). One merely writes down all possible terms
that have the correct index structure and may be obtained from T', p, v* and F), only
through contraction and differentiation; although the second law of thermodynamics puts
extra constraints on this expansion.

In non-relativistic physics, we have three conservation laws: those of particle number,
momentum and energy (which are independent in this context)

Bojne + Didne = 0, (1.2a)
808?10 + 8i5;£1c = inia (12b)
maoijc + 6jTé€ = FiojncO + Fijanj' (1.2¢)



We would like the most general constitutive relations for ji., i , and T}, The Galilean
invariance of the equations is then imposed as an additional constraint.

Newton-Cartan geometry greatly simplifies the process of writing down the conserva-
tion laws and the constitutive relations. Currents that transform covariantly under diffeo-
morphism can be defined and covariant Ward identities derived ref. [17]. (In contrast, the

energy current . and stress Tyz are not spacetime covariant; the “nc”’

s in egs. (1.2) are
to distinguish the standard currents from the covariant ones we will be using throughout.)
That a Newton-Cartan geometry naturally includes a source for the energy current has
been noted in ref. [23] and used to study energy transport in a recent paper [24].

Our paper is organized as follows. In section 2 we briefly recap the results of ref. [17].
The derivative expansion and entropy current analysis then proceed entirely along the lines
of the relativistic case. Section 3 obtains the most general constitutive relations and derives
results of the massless limit. We find the FQH system is constrained to be force-free, which
has powerful implications on the dynamics. In particular, all first order charge transport
is determined by thermodynamics.

Section 4 contains the entropy current analysis, completing the program outlined
above. We find that what are in principle four independent parity odd response coeffi-
cients (on the basis of symmetries) are determined by only two: and energy magnetization
Mg and the Righi-Leduc (or thermal Hall) coefficient cgr. In all, on trivial Newton-Cartan
backgrounds (i.e., in flat metric and zero field coupled to the energy density) we have

0
nc

. ij (T S
Jhe = €7 (E (Ej = ) — EajTJrajM) )

0 _ —
]nc - n7 € - 67

etp

é‘fm = ZTaiT + € < (Ej — 8ju) — Maj,u — TCRLajT + 8JME> ,

T = (p—(0) 6 — no'l —ij5". (1.3)

Here T is the temperature, u the chemical potential and E;, B the external electric and
magnetic fields. p, n, €, s and M are identified with the internal pressure, number density,
energy density, entropy density and magnetization density while {, n and 7 are the usual
bulk, shear and Hall viscosities and Y7 the thermal conductivity. All are arbitrary func-
tions of the thermodynamic variables T', u and B except for constraints from the usual
thermodynamic identities and several positivity conditions

¢,m>0, Y7 <0. (1.4)

The system is dissipationless if and only if all inequalities are saturated. Kubo formulas for
all coefficients may be found in sections 5 (where they are presented in the Newton-Cartan
formalism used throughout this paper) and 6.4 (where they are given in standard form).

A recent analysis of 241 dimensional gapped phases derives the most general set of
transport coefficients for zero temperature nondissipative systems [25]. Equations (1.3)
generalize this to to an arbitrary hydrodynamic theory with nonzero temperature and
chemical potential (though they are assumed to be slowly varying and far below the gap)
giving us the dissipative viscosities and Righi-Leduc coefficient.



Finally, we present a set of generalized Stieda formulas that characterize the equi-
librium response to probing electric, magnetic and gravitational fields. A FQH fluid in
thermodynamic equilibrium has nonzero electric and energy currents,

inlC = Sij (O’?Ej + O'fleqajB + O'gquj),
elo = eV (KE; + kB9, B + K59G;), (1.5)
where
ol — on oBea — oM
H OB T,u7 H 0B T7u7
Gea _ s on M
" <8B>T,,u+u(8B T, ’
O0Mg B OMEg
eq [ YHE - M eq _ (YHE
“ ( O >T,B 7 " ( oB T,#7
" < or >MB+M< ow Jrp v (16)

the first of which may be recognized as the usual Stfeda formula [26]. Here G; = 0;® is
the external force exerted by a gravitational potential —®.

We give concluding remarks in section 7. The appendices contain additional con-
straints due to Weyl invariance and other materials of a technical character. In a com-
panion paper [27] we present an alternative derivation of some of the results of this paper
without the use of the Newton-Cartan formalism, compute the thermal Hall coefficient
in the high-temperature regime and discuss the question of particle-hole symmetry of the
hydrodynamic theory.

2 Ward identities

We begin with a brief recap of recent work on the Ward identities of non-relativistic sys-
tems. For details we refer the reader to ref. [17]. In this paper we derive covariant Ward
identities using the Newton-Cartan structure of non-relativistic theories [18-21]. In con-
sidering response to a perturbing gravitational scalar potential we will need a torsionful
version of this geometry (this has also been considered in ref. [28]). This involves a de-
generate metric ¢g"” that measures spatial distances. It’s degeneracy direction is spanned
by a one-form n, satisfying n A dn = 0 that provides an absolute notion of space through
it’s integral submanifolds. It’s convenient to also define an auxiliary “velocity” field v*
satisfying n,v* = 1 that allows one to invert the metric to a transverse projector

gung™ = B where By =0, = my0”. (2.1)
The connection V, is then uniquely specified by

vunu =0, V)\g/“’ =0, g)\[uvu]v/\ =0, (22)



and has torsion T* w = v (dn) uwv- The velocity field is unphysical and may be chosen in
whatever manner is convenient for a particular problem.

In ref. [17] we demonstrate that for systems constrained to the LLL, the Ward identities
following from gauge and diffeomorphism invariance in a nonrelativistic theory take the
covariant form

(Vi —=Gu) g =0, (2.3)
1

(Vi = Gp) et = =" + Guar'e” = ST, (2.4)

(V) — G,))TH = FH, ¥ — GH e’ (2.5)

Ward identities for Newton-Cartan diffeomorphisms have also been considered in refs. [29]
and [23]. The above is a covariant generalization of these equations to arbitrary back-
grounds, subjected to a LLL projection in the form of a massless limit. These identities
also assume a spinful fluid of spin s = 1.

Here j# and e are the particle and energy currents and T* a transverse symmetric
stress

T n, = 0. (2.6)

The stress is conserved except for the action of external forces. The first of these is exerted
by the familiar electromagnetic field strength F),,, = (dA),,, but there is also a torsional
field strength G, = (dn),, that couples to the energy current. Before the LLL projection
the equation for stress conservation contains terms involving the momentum current. These
however drop out upon taking the massless limit m — 0 and stress conservation becomes
the force balance (2.5).

The first equation expresses conservation of charge current while the second is the
work-energy equation. Here

Tuv = £vguy (27)

is the shear tensor. Although the Ward identities appear to depend on a choice of v#,
one can demonstrate that the implicit and explicit dependence cancel and they are in fact
invariant under v* redefinitions. Finally note in all cases the divergence operator takes
the form V, — G, where G, = T%,,, which is the correct form of the divergence on a
torsionful manifold.

In writing these formulas, we have chosen g-factor ¢ = 2 and spin s = 1 as we are
always free to do. The former is necessary for a regular massless limit, the later is a matter
of convenience. A given system may not satisfy these conditions, but in ref. [17] we present
a precise dictionary that allows one to translate our results to the general case.

2.1 Coordinate expressions

To aid in the interpretation of egs. (2.3)-(2.5) and comparison to the usual treatment of
non-relativistic fluid dynamics, we collect here a number of coordinate dependent expres-
sions for the above structure. Because we demand n A dn = 0, a Newton-Cartan geometry



admits a convenient set of coordinates called global time coordinates (GTC) in which

ny = (e*q’, 0) , (2.8)

for some scalar potential ®. It is instructive to have a few coordinate expressions for the
structure outlined above in GTC. In these coordinates we may generally parameterize the
metric and velocity vector as

00 1
g = (O gij> , ot =e® (UZ> : (2.9)

It’s then a matter of calculation to show that

02 —;j 0
v = 9 GH = . s

, (0 0 Ry
T <0 e® (vivj 4+ Vit — g”)) 7 VNU‘M = (VZ v 59 ]gij)’ (2.10)

V; being the standard spatial connection.

There is a unique volume element €, that is compatible with the connection,
Vo e =0, (2.11)
where we specialize to 2 + 1 dimensions from this point forward. If we define
Epw = EV”, (2.12)

then e*” plays the role of the spatial volume element. Again in GTC we have

v 00 _
&= (0 5ij> o2 = ge ®, (2.13)

1

where €7 is the antisymmetric tensor with e!? = N

In GTC the Ward identities then read

1 5 —® -0 o —®
—e " 0o(v/ge” " dne) € Vile " jre) =0,
7 (Vg ) ( )

1

\/gao(\@ggc) + Viene = Eijpe + Gighe — §Tfigzj,

Vancz‘j = ngEZ + 5ijjr];CB + (z’fgc5ij + Tz]) Gj. (2.14)

We see that G; = 9;® plays the role of an external gravitational field that couples to the
energy density so we may think of —® as the non-relativistic gravitational potential.



3 Constitutive relations

In 2 4+ 1 dimensions there are four independent one-point Ward identities: current con-
servation, the work-energy equation and Newton’s second law. In the low energy, long
wavelength limit, we expect that the system admits a fluid description, that is, the remain-
ing degrees of freedom are also four-fold: two thermodynamic variables, which we take to
be the temperature T and chemical potential p, and the fluid velocity. The Ward identities
then suffice to determine the evolution of the system and serve as equations of motion.

However, in the massless limit we lose two of these degrees of freedom. The momentum
current drops out of the final Ward identity

(Vy, —G,)TH = F*,j¥ — GH, e, (3.1)

which now contains no time derivatives. What is typically a dynamical equation for the
momentum flow reduces to a force-free constraint: since the fluid is massless, it is obliged
to flow in such a manner that the applied forces cancel. We will use this in what follows
to solve for the charge flow. What remains is two equations of motion

(Vi =Gu)i" =0, (3.2)

1
(Vu—=Gp)et = —Fuot" + Gk’ — iT“VTW, (3.3)

that will determine 7" and p for all time given initial conditions.

Of course for these to say anything we need to specify constitutive relations, that is
TH et and j* in terms of the fluid degrees of freedom T, i, and the external fields. In the
long wavelength, low energy limit when the fluid description is assumed to hold, we can
assume that only low powers in the derivatives of these variables are important. In this
section, we present the most general constitutive relations consistent with non- relativistic
diffeomorphism covariance to first order in a derivative expansion.

Our derivative counting scheme for the background fields is as follows. The FQH
problem assumes a large, nonvanishing magnetic field, which we will take to vary slowly in
space and time. The fluid is also assumed to be moving in a nearly flat geometry and to
have only slightly departed from thermodynamic equilibrium; that is, F,,, ¢"”, T and p
are all O(0). By it’s definition (V,V, -V, V,)f = —T/\M,,V,\f, the torsion must already
be at O(1).

To organize the independent data appearing at each order we first note a few convenient
facts. To begin, any vector w* may be uniquely decomposed into a part parallel to v* and
perpendicular to n,

wh = avt + V¥, where n,bt = 0. (3.4)

A similar decomposition may be carried out for tensors of all types. In particular for (2,0)
tensors we have

" = avtv” + oHbH + Fo¥ + dM, (3.5)



for some spatial vectors b* and ¢ and a spatial tensor d"*”. As a result, we need only
consider scalars, transverse vectors, and transverse tensors in our classification. Since
transverse 2-tensors may be further decomposed into a trace, a symmetric traceless part
and an antisymmetric part (which we will not need), we are left in the end with scalars,
transverse vectors and transverse symmetric tensors. We further subdivide this classifica-
tion by evenness or oddness under parity.

3.1 Zeroth order
Let’s begin by analyzing the force-free constraint (3.1). To our order we have
F*, v =0. (3.6)

The charge current must be proportional to the unique zero eigenvector of F),,. We make
a “choice of frame” so that v* tracks this equilibrium charge current

1 1 )
vt = EEWAFV,\ =e® (EijEj> = gt = novt, (3.7)
B
where n will be some function of the zeroth order data
Data
Scalar T 1
Pseudoscalar B

Here B = %5WF uv is of course the magnetic field. Note that in this frame we have

Fu = Bepy,  Vu(Bok) =0. (3.8)

In the reference frame comoving with the charge, we expect that the equilibrium state
is invariant under spatial rotations. This implies that the energy current must coincide
with the charge current and the stress must be pure trace. Hence

et = evt, T = pgh", (3.9)

where € and p are again functions of T, u and B.

However, p, € and n are not entirely arbitrary being constrained by thermodynamics.
It can be shown from statistical considerations (see appendix A) that € is the energy
density and n number density of the fluid. The hydrodynamic pressure p is sometimes
called “internal pressure” and is related to the grand potential density (sometimes called
the “thermodynamic pressure”) pihm = Pehm (T, i1, B) by a Legendre transformation

P = pthm — BIBPthm- (3.10)

To simplify some of our formulae we prefer to work with the internal pressure p = p(T', , M)
which is naturally a function of T', u and the magnetization density M = Oppinm. We will
thus exchange B for M as the independent variable in what follows. The functions p, €
and n satisfy the thermodynamic identities

e+p=Ts+ pun— MB, de =Tds + pdn — MdB. (3.11)

Only one of these functions (say p) is independent. It is called the equation of state.



3.2 First order

We now seek the most general corrections to TH”, e# and j* to first order. Denote these as
gH = not + v#, et = evt + &, ™ = pgh¥ + h". (3.12)

The complete set of first order data is

Independent Data
Scalar © (v*V,T) (VHV )
Pseudoscalar -
Vector VHT VHu e, M GH
Pseudovector eV, T eV, u VHM e"qG,
Traceless Symmetric Tensor loud
Traceless Symmetric Pseudotensor otv

Here © = V,0* is the expansion and o/ = 7" — ©g"” the traceless shear. The “tilde”
operation is defined for symmetric two tensors as A = %(A“/\z-: A+ AY )‘5>\“). We do not
include the material derivative of all three thermodynamic variables since one may always
be eliminated by the constraint

Vu(Bv") =0 = vV, B = —B0. (3.13)

Not all of this data is independent on-shell and we may choose to eliminate some in
favor of the others by solving the equations of motion. In our case, there are two scalar
equations: the continuity equation and the work-energy equation. We use these to eliminate
the material derivatives of T" and p, as indicated by parentheses.

Before we continue, a few comments on fluid frames are due. Since we will be con-
sidering small departures from thermal equilibrium there is an inherent ambiguity at first
order in derivatives in how we define T" and p. This is a problem extensively discussed in
the literature on nonequilibrium fluids [30, 31]. We differ from the usual case only in that
we do not have any independent definition of a fluid velocity that would require additional
fixing. Hence we have a two parameter ambiguity which we choose to fix by going to the
Landau frame

nuvt =n, gt = 0. (3.14)

Note that we have 7*¥n,, = 0 for free since the stress is a transverse tensor.
The most general first order constitutive relations are then

v = xrVH*T + x, VP u+ xuVEM + xeG*

+x7e"' VT + Xue"' Vo + X"’V M + xge"' Gy, (3.15a)

& = S VIT + B, VA + Sy VEM + SaGH
+ StV T + 2, Vo + eV, M + Sge’ G, (3.15b)
T = —COg" — not — g, (3.15¢)

where a tilde denotes oddness under parity. We derive Kubo formulas for these coefficients
in section 5.



3.3 Force-free flows

As mentioned previously, we may use the force balance constraint to completely solve for
the charge current

VHp = Be"v, + (e + p)G* —
- s - n - €+p
_ — -1 = . 3.16
XT B’ Xu B’ XM ) XG B ( )

All charge transport coefficients are thus determined by the equation of state. Also note
that all longitudinal responses are zero. This is because the Lorentz force must cancel forces
from pressure gradients and the magnetic field always produces a force perpendicular to
the current; hence the current must be perpendicular to pressure gradients.

4 Entropy current analysis

The constitutive relations (3.15) subject to the restrictions (3.16) are the most general
possible that are consistent with the equations of motion and constraint. However, it is still
possible to generate flows that violate the second law of thermodynamics. For example, it
is well known that a negative shear viscosity allows one to remove entropy from an isolated
system and so we should have n > 0 [32]. To derive all such restrictions, we perform
an entropy current analysis along the lines of ref. [30]. Lacking a spacetime picture of
non-relativistic physics, previous analyses were restricted to the Lorentzian case and in
particular did not include an independent energy current. Our results reproduce theirs for
those coefficients that we have in common as well as derive new results for energy transport.
The canonical entropy current is

I 1
st = svtt — TV‘“ + ffu, (4.1)

but out of equilibrium we should in principle once again expand in first order data

st = st

can + C“’ (42)

where

CH = CoOU! + (rVHT + (,V u + (u VI M + oGP
+ Cre"'V, T+ Cue' Vo + Cue" Vo, M + Cae™ G (4.3)

Now we impose the second law. For non-negative entropy production between all spatial
slices, we must have

(Vu—Gp)st >0. (4.4)
Using the equations of motion in the form
vV n +n0 = =V " + Gt (4.5a)

1 1
VIV e+ (e +p)O = =V, — 5@71' - 50“”77#1, +2G &1, (4.5b)

,10,



one may check that the divergence of the canonical entropy current is a quadratic form in
first order data

1 1 1
(Vu—Gp)shy, = —V“V“(ﬁ) - ﬁGQWWW — — " — ﬁf“(V“T —-TG,), (4.6)

T 2T

and so the only genuine second order data in (4.4) is
V}LCM‘Qia = C@qu#(“) + CTVQT + CHVQ,U + ng2M + CG'V,LLGM7 (47)

where we have used the Newton-Cartan identities G, = 0 and "V ,G), = 0. Since
each term may be independently varied to have either sign, all coefficients appearing in
this equation must be zero.

The remaining first order data is then

1 1 L1
(V) —Gp)s" = fc@Q + 551w + GG
1 1 1 1-
+ = (zr- fzg) GV T + =S, G "V + S0 GI M
T N\
- (3TCG +(r — TET - ﬁEG + %XG)éf“ GV, T
e T . 1 ,
— (OuCotGum 5= 7:%a ) " GuVun—(Onilo+Car— 7 Tar ) GV M

1 1 1 -
— @SV TVIT = SV TV = s SV, TV M

- ~ 1 _ B 1 -~
+ (aTCu - a,uCT + TXT + %X}J - ﬁzu> 5MVV,uTvVM

= 1
+ <6TCM — OmCr + %XM - ﬁEM)EWVuTVVM

~ 1
+ (9uCar = s = xar ViV, M
> 0.

(4.8)

Note that by 9, we mean the partial derivative with respect to the chemical potential, not
a spatial derivative. For clarity we will always use V,, for the spatial derivative when there
is the possibility of confusion.

The V,TVFT, GFV,T and G,G* terms need not be separately constrained. We
obtain a less stringent condition by setting Y, = —%Eg, in which case they arrange into
a perfect square

1

~ 350 (VuT = TG,)(V'T — TG*). (4.9)

We note in passing that in thermal equilibrium there can be no entropy production.
This implies

VAT = TG, (4.10)

or 0;T = T9;® in coordinates. The physics of this clear: —® is the source that couples
to the energy density and plays the role of a Newtonian gravitational potential. Heat will

— 11 —



tend to flow from regions of higher —® to lower —®. Equilibrium is reached once the
temperature profile is such that (4.10) is satisfied. This result is also follows from the
treatment of equilibrium statistical mechanics in appendix A. In general relativity this is
known as the Tolman- Ehrenfest effect which states that the redshifted temperature T'|[¢|]|
is constant in thermal equilibrium for £ a timelike killing field [33]. In the non-relativistic
case we have T'n,&" = const.

From (4.8) we immediately obtain the expected signs of the parity even viscosities and
thermal conductivity

The remaining terms place new restrictions on the energy and entropy coefficients

~ 8;LC£\4 - aMgu %XM
Y =Xum =0, OmCr = Orlu | = — =S+ Axu |
OrCu — Oulr %iu - %XT - %Xﬂ
3T§G —(r+ %iT +~%§~3@ — F2XG
Ouic | = —Cu+ 735, + #Xa . (412
omla —Cv+ F5M

We seek the most general solution to these constraints. Begin by eliminating the
entropy coeflicients by taking the curl of the third equation and plugging in the second

On G%M — M (%E“> %(Xy + Omxa)
3M(%ET —8T(%EM) = i —%@M +0uXa) + £ (xar + Omxa)
BT(%iM — 8M<%ET> 72 (Zu+9u86) — 7 (X7 +9rXa) — 42 (Xu + 0uXc)

(4.13)

Since the left hand side is the curl of a vector, the right hand side is divergenceless and
it appears as if we might obtain another constraint. However one may check that this is
automatically satisfied by virtue of the constraints (3.16) and the thermodynamic identi-
ties (3.11).

We may simplify the partial differential equation (4.13) by a substitution that isolates
the energy response’s dependence on the equation of state and ¢

Sr= gt BT g 5, = DT g2 sy =T,
aMg]W - aMglu 0
= Omgr —Orgm | = |0 |- (4.14)
aTgu - ,ugT 0

We see that since (g7, §u, gur) is curl free, it must be the gradient of some function

gr = aT§7 gu = auga M = 8M§ (415)

— 12 —



Summary

This completes the entropy current analysis. For convenience, we collect our results in
this section. FQH fluids may be generally viewed as massless fluids in a Newton-Cartan
geometry. For the special values g = 2, s = 1 of the parity breaking parameters we have
the following constitutive relations:

The charge-current response is purely transverse

g =nvt + X'V, T 4+ Xue"' Vo + xue"' Vo M + xge Gy, (4.16)

where all coefficients are determined in terms of thermodynamics

S - n . €+ p
il - _ =1 = . 4.1
B7 Xu 37 XM 3 XG B ( 7)

XT = —

EijEj

Since v* = e®(1, =5*), we have a pure Hall conductivity oy = e®

n
E.
The energy-current takes the form

et = et + X (VT —TG') + SretV, T+ £,e" Vo + e’ Vo, M + Sget” G, (4.18)
There is one longitudinal response, the thermal conductivity
Y <0. (4.19)

The remaining four coefficients are all transverse and depend only on the equation of state
and two arbitrary functions X and § of T, p and M

- 1~ _ pTsH+pun

Yr=—=X 720 —— 4.20
T pHG T Oy T (4.20a)

~ T

Y= T2aug - % , Yy = T28M§. (4.20b)

Using (4.12) we find the entropy current is determined by ¢ and C~G

st = st 4 Cref VT + (et Vop + Cue Vo M + {get’ G, (4.21)
where
(r =Torg — 0rle + MT—]\f , (4.22a)
Cu = TG — 0uCa — % , (4.22b)
(v = TG — Oule- (4.22¢)

Finally, the stress is determined by the internal pressure and three viscosities
™ = pgh" — (Og"" — not’ — natv. (4.23)
The bulk and shear viscosities must be non-negative
¢=0, n=0, (4.24)

whereas the Hall viscosity 7 is unconstrained. In a Weyl invariant theory, the bulk vis-
cosity must vanish. The complete set of restrictions imposed by Weyl on the coefficients
considered above are given in appendix B.
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5 Kubo formulas

Fractional quantum Hall transport is determined by p, (, n, 7, X7, Y and §, some of
which are subject to positivity constraints, but are otherwise arbitrary functions of 1", u
and M. In this section we provide Kubo formula’s for these functions. For concreteness,
perturb around a flat background

u 00 0 O 1
ny = (1 0), g = (0 5ij> ) Fu = (0 5ijB> ) vt = <0> ) (5.1)

with wavevector k,. The wavevector may be decomposed into temporal and transverse
parts k, = wn, + q,. We will be considering response in both the “rapid” (¢* — 0) and
“slow” (w — 0) cases. The two-point functions of interest are

6 {e"(x))
on,(0)

ngy(w) — M GHAP () = M (5.2)

Gee'(w) = 5A,(0) 5T, (0)

Explicitly, these are

62/ (a) = (otoh ) = i6(a) (o), ") (5.3)
615 (a) = (50 ) + i0(a) (@), 7 O (5.30)
GrM () = <i§:((§))> + 50" ([T (@), TV(0)] ). (5.3¢)

The contact terms in these equations do not contribute to the imaginary parts of the re-
spective Green’s functions in momentum space, which will appear later in Kubo’s formulas.

In this section we prefer to take all coefficients as functions of T, u and B rather
than 7', p and M as it is less awkward to deal with electromagnetic perturbations. It’s a
straightforward matter to translate the 7', u, M dependence of equations (4.16) and (4.18)
to T, u, B by plugging in M (T, pu, B) = Oppthm (T, 1, B) and use of the chain rule.

5.1 Viscosities

The viscosities have already been discussed at length in the literature [14, 30], but we
rederive their Kubo formulas in our language for completeness. Our treatment is partic-
ularly close to that of ref. [30]. Consider a rapid metric perturbation dhy,. Using the
definition (2.7) of the shear, we find

0T" = (OrpdT + Oupdp + Oppd B — (6O)g""
— PSR — iwnII* 5 ,6h™ — iwﬁﬁ“VApéhAp. (5.4)
0T and dp may of course be solved for using the linearized equations of motion but we

will not need to do so here. II*”), and " V/\ , are the even and odd symmetric traceless
projectors

AP — gu(/\gp)l/ _ %gwg/\p’ AP — (gu(/\gp)v + gV(/\gp)u)_ (5.5)

N =
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They are traceless in the first and second pairs of indices, have cross traces
m,, =2, 1", =0 (5.6)
and satisfy the algebra
I oo lIo7, =TI, Tl =10, - I 00 = -1, (5.7)

Using these identities and the symmetry properties IT#A? = TI*HY and TIHA =
—II1 it is then straightforward to verify that

. . H,uy)\pG“V’)\p(w)
n=- (}IE)I%) Im o , (5.8a)
1,1, GH¥ 0 ()
j = — lim —42 8b

Here and further, whenever we write lim,,_,9, we assume that spatial momentum is put
to zero (¢ = 0) before the limit is taken. Vice versa, when we write lim, o we implicitly
assume that the frequency has been put to zero (w = 0) befor the limit is taken.

To get at the bulk viscosity, use 60 = %z’wg/“’ 0hy, and take the trace and imaginary
part of (5.4)

H, v
¢ = — lim Im M )
w—0 2w

(5.9)

5.2 Thermal conductivities

Before deriving the remaining Kubo formulas, we would like to make some comments on
the relation X7 = —%EG obtained from the entropy current analysis and rederive it from
an alternative point of view that highlights the underlying physics. The Einstein relation
identifies the conductivity and dissipation o = —x,, of any charged fluid where

j,-:JEi~|—XM8m+~- . (5.10)

These seemingly unrelated coefficients are connected by the following physical considera-
tion. Apply a static but spatially varying electric potential  Ag. Charges will flow, but
give the system time to relax and the current will again vanish. The chemical potential will
adjust to match the profile of the electric potential o = §Ay. Consistency then demands
that o = —x,.

Y= —%EG follows along similar lines. In the presence of the gravitational potential
—&, energy will flow from regions of large potential to small potential until equilibrium is
reached. From appendix A we have for a static background

Bz/cn, uzT/CA, (5.11)

where c is the time circle passing through the fluid element under consideration. Now add a
time independent perturbation dn, = —d®n, and the temperature and chemical potential
adjust by

0T =T, op = puéd. (5.12)
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Altogether we have
5e" = (€ + TOre + pd,ue)dov* +ig"(TE7 + Xq)0® + i(TEy + puX,)e" q,0®.  (5.13)
We now impose consistency with the linearized equation of motion
V,0et = —* (TS + Bg)d® = 0, (5.14)

which gives the gravitational Einstein relation Y7 = —%E(;.

Luttinger first used the gravitational Einstein relation to obtain a Kubo formula for
Y7 [34]. We perform a derivation in our language for completeness. Take a rapid transverse
perturbation dn, such that v*én, = 0,

e = (OpedT + Ouedp) v + iwSgont + iwSge dn,, (5.15)
where we have used "k, = 0. Upon application of projectors we have

PP G (w) = iw(Sagh” + Sae)

L 1 9,0, GE" (W) & o cwGEY (W)
— Y=o lmingTmEr—, Ne = lim

(5.16)

Finally, we derive a Kubo formula for the function g. Under a slow perturbation
on, = —o6®n, we have

0T =ToD, o = pod, 0G! = ighd®, ot = §duH. (5.17)
The energy current varies as

0e" = (€ + TAre + pd,e)dov* + i(TSr + p¥, + Xa)e q,00. (5.18)
Plugging in the explicit form of Y7 and f]“, we obtain

Torg + g = lim St "CE (@ (5.19)
g+ pdug = lim S .

This only determines g up to a function f(%). We can fix this ambiguity by response
to a slow electric potential perturbation 0 A, = dagn,. We then have

0T =0, o = dag, ot = ée’“’qyéao, (5.20)
del' = (Opeop) vt +i (f}# + %) " q,0a0 (5.21)
giving
. |79
2 - g T ZE;,U/q#ng (q)nA
70,9 5= ;1_1}(1) " . (5.22)

Recall here that derivatives are taken at constant B rather than at constant M. The Kubo
formulas for X and g completely determine the parity odd energy transport.
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6 Physical interpretation

To compare with physical results, we first need deal with two issues. First, the covariant
currents e* and T have implicit dependence on v* that must be removed. This can be
done by instead considering the noncovariant currents defined by

1 .. .
68 = / dBxy/ge”?® <2ngagij 42,00 +£.0C; + j{jC(SAM> : (6.1)

In ref. [17] we demonstrate that these noncovariant currents are simply
ghe = g", e, = e %0, e = e Pl 4 Ty, TH =T1% (6.2)

nc

(these relations are greatly simplified by our use of the massless limit and selection of
s =1). The only change from the above is in the energy current, which we defer discussion
of until later. Written out explicitly, we have

Joe = €"n, (6.3)
0 ij (T - S - -

Jhe = €< (L (By = 0,(e7 ) = 50,(e7 ) + 9" aD)) (6.4)
Ty = (p—(©) g7 —no'l — 5", (6.5)

The second issue is that to perform the LLL projection we have taken the g-factor to
be g = 2 (and the spin to be s = 1 though this is not essential). To compare to standard
expressions used in literature we need to transform back to the values commonly assumed,
g = s = 0. The result turns out to be rather trivial, in the end giving us back (6.3) with
shifted transport coefficients, but it is worth demonstrating how this comes about. In the
process we find simple formulas that demonstrate how to recover the physical transport
coefficients from those calculated in the massless limit. The general procedure for how to
do this is explained in ref. [17] and we merely outline the results here.

Note that to simplify the resulting formulas we assume that E; is O(1) in derivatives. In
the above, the electric field was potentially large; however, since it’s variations are assumed
to be small, a frame where FE; is small everywhere may always be obtained. In such a frame
a large number of terms are higher order and neglected. Indeed we have already used this
in (6.2) to neglect terms that involve the mass which we are otherwise restoring.

The g = s = 0 currents are then

joo = e™n, (6.62)
i i (Mg g (o BN _ 55 e (g
Jne =€ € (B <Ej % <e <M+2m>>> B s T) +9 (e (M 2m))>’
(6.6b)
» B » » 1 »
T = (p TR C9> 9" —no*l — (ﬁ + n> . (6.6¢)
2m 2

This has a simple interpretation and with a little physical insight we could have guessed
the form given here. Recall from ref. [17] that redefining g involves a shift to the electric
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potential

_ 1
AT = A — %e_q)B (6.7)

This also shifts the ground state energy of the system and so the chemical potential changes

B
9=2 _ , . — 6.8
p v (6.8)
p9=2 is the chemical potential that appears in (6.6b).

Similarly, setting g = 2 alters the intrinsic magnetic moment of the fluid: each particle
carries an excess magnetic dipole moment of ﬁ The g = 2 and physical magnetizations
are then related by

_ n
MI9=2 =M+ —, 6.9
+5, (6.9)
accounting for the final term in (6.6b) and the shift to the internal pressure in (6.6¢) since
P = ptaom — M B. Finally, setting s = 1 overestimates the intrinsic angular momentum per
particle by 1, giving the observed shift in the Hall viscosity. In the end, the constitutive
relations simply revert to the form (6.3) where we are using the g = s = 0 values of u, M,

d 7.
" ’7I7‘he non-covariant currents then satisfy equations of motion [17]
\;ge@@o(ﬁe_¢ Joe) +€*Vile %) =0, (6.10a)
() + Ve ) = Bl — 5Tk (6.10b)
£ao (Vamii.) +e*Vi(e ™ Thei’) = jEi + €ijji B + €5,V ®. (6.10c)

V9
6.1 The charge current

Now consider the current response to the electric field E, the gravitational field G = V&
and gradients of T,  and B

jue = (oHE + 05 VT + 04,V + 0BV B + 0§G) x . (6.11)
We find a Hall conductance
oH = eq’%. (6.12)

This equation is can be obtained trivially by going to the coordinate system moving with
the velocity (E x z)/B, in which the electric field vanishes.
The Hall diffusivity is

oM
ot = () _n (6.13)
ow)rp B
which using Maxwell’s relations can be written as
on n
wo_ (20 _ .14
oH <8B>T ., B (6.14)
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From this equation it is easy to argue the existence of Hall plateaus when the chemical
potential lies in a gap. In the 7" — 0 limit, small variations in the chemical potential cannot
induce electron transport and so Jﬁf{ = 0. Equation (6.14) then immediately implies

n=vB = o =V, (6.15)

where we have taken ® = 0 and v is some constant (which we of course know to be the
filling fraction). (We are working in units where e = h = 1.)
Similarly we also find

0s S oM
T B G
Ae(2) 5 =(B) et
0B . B OB ), B
so in particular 05 is simply the magnetic susceptibility.
6.2 The energy current
We now turn to energy transport. A redefinition
~ .M
So = % (Ts+ un) + T2cpp — 2Mp,  §= Tf , (6.17)

will aid in the physical interpretation of the formulas that follow. Including the 7% v; shift
to the covariant energy current we have

nc B
+ 370" (e 7). (6.18)

gl =gl (e—i—p (E; — Oj(e_q)u)) — M3j(e”®u) — Terpdi(e”*T) + ecb@j(e_Qq)ME)>

The g = 0 values of the energy density €, energy magnetization Mg, and Righi-Leduc
coefficient cry, that are used in this formula are related to the g = 2 values by

e=e""2 4 %, Mp = M§? + M;WjB, crp = ¢l + ‘?’2/75 (6.19)
Defining thermal conductivities
enc = VT + k°G + (kgE + k5 VT + 6,V + k5 VB + k5 G) x 2 (6.20)
we have
K=X7 k® = —T%r KH:GEP
/{7}} = ® (OrMp — Tcryr) I{'MH = ® (G#ME - W)
KB = e ®opMp kG =e? (T2CRL —2Mpg + %(Ts + ,Lm)) . (6.21)



6.3 Streda formulas

One notable feature about the formulas (6.4) and (6.18) is the charge and energy currents
that persist in thermal equilibrium. We now turn to these, deriving a set of Streda-like
formulas for two dimensional fluids. First note from the definitions of the temperature and
chemical potential in appendix A that in thermal equilibrium we have d;u = e®E; + uG;
and 0;T = T'G; where GG; = 0;P is the gravitational field exerted by the potential —®. The
equilibrium currents are then

Gl =€Ye®0;(e”* M) eh, =V (=Moj(e %) + e®9;(e** Mpg)) . (6.22)

nc
Expressing these in terms of the externally applied fields F;, B and G; we have

Jie =" (e?9,ME; + 05M0;B + (TOr M + ud, M — M)G;)
ehe =€9((0,Mg — M)Ej + e *0pMg0;B + ¢~ *(T0r Mg + 0,Mp — 2Mg)G;). (6.23)

nc

Defining equilibrium responses by
jflc = €ij (U??Ej + O_[l_%[eqajB + O'gquj), (6,24)

and using some Maxwell relations, we have

0?}1 — <8n> 7 Ufleq — (8]\4) ,
0B T 0B T
Geq __ & 8771 _
O —T(aB)T’“+M<aB>T7# M, (6.25)

where we have set ® = 0 in these formulas. The first is the well-known Stfeda formula [26].
The following two are Streda-like formulas for currents induced by inhomogeneities in B
and external gravitational forces.

Similarly working with the energy current
gh =gl (K?Ej + ngqajB + Iigquj), (6.26)

nc

we find that all equilibrium currents are determined by the magnetization M and energy

M M
K?}l — OJ — ]\47 Klgeq - aJ )
on B 0B T

Geq 8AIE 8]\4E
=T —— — —2Mpg. .2
=1 (50), o (D), 20 20

5

magnetization Mpg.

A similar collection of Stfeda formulas was recently presented in ref. [24]; however they do
not agree with ours.

Finally, we note that these Stieda formulas in no way depend on the LLL projection
that has been implicit throughout this paper. Indeed, they follow only from knowledge
of the equilibrium persistent currents (6.23), which may be derived on entirely general
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grounds. Assuming a static background and dynamic equilibrium, current conservation
implies that ji_ is the curl of a function which we identify as the magnetization density

Viit=0 — jie =€90;M, (6.28)

where we have taken & = 0. We can then retrieve the energy current by demanding a
static energy density doe’, = 0

VZ‘E;C = ,]IZIC - VZ‘E;C = —Vz‘(Mé‘ijEj), (6.29)
where we have used that YV, E; = —B = 0. We then similarly obtain

E;C = Ei‘j( — MEj + @ME) (6.30)
for some function Mg, reproducing (6.23). This equilibrium current is also found in ref. [35].
Were we to carry this out for nonzero ®, we would again obtain the correct result, but
the normalization of M and Mp with factors of e~® has to be determined from other
considerations.

6.4 Noncovariant Kubo formulas

For the reader’s convenience, we restate here the Kubo formulas found above in terms
of the energy magnetization Mg and thermal Hall coefficient cry, without the use of the
Newton-Cartan formalism. They are expressed in terms of two-point correlators of the
non- covariant currents

1) = (S — () (). 0.

6A,(0
STE (x i g
G (1) = < 59:;50))> +300) (1T, THO)]). (031
These are
‘ L1 G (W) ) G (W) ‘ G." I (w)
— _ lim ImukY W) T LA C) — qim T 2R\
" oo 2w ’ n w0 21w ' ¢ uljlg%) TV
ieijq'G? i
Mg — M = Tim 21 22 0 T 4B, My, — 2M; = — lim "L (0) @),
q—0 q q—0 q
i 605G (w) 2 % €50 (w)

the correlators being evaluated on the trivial background g;; = ¢;;, ® = 0, E; = 0 and
0;B = 0.
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7 Conclusion

The proper coordinate invariant description of non-relativistic physics is that of a Newton-
Cartan geometry, which naturally includes a source n, for the energy current in addition
to those present for the stress and charge current. As discussed in recent work, with some
care, diffeomorphism covariant currents may then be defined and 1-point Ward identities
follow naturally as in the nonrelativistic case.

In a fluid dynamical description, the Ward identities become equations of motion once
constitutive relations have been supplied. We have given the most general constitutive
relations consistent with diffeomorphism covariance and derived their Kubo formulas. We
argue that a fractional quantum Hall fluid is distinguished as being a force-free fluid in 241
dimensions. The force-free condition immediately gives powerful constraints on fractional
quantum Hall transport, determining all charge transport in terms of thermodynamics.

A straightforward entropy current analysis was then performed. The expected re-
strictions on the signs of parity even viscosities and thermal conductivity are obtained, in
addition to new constraints on the transverse energy response. These four coefficients are
not independent but are instead determined by two free functions of 7', u and M: the ther-
mal Hall conductivity and energy magnetization. The derived constitutive relations imply
a set of formulas for the equilibrium response that generalize the well-known Stieda for-
mula. These new formulas characterize the system’s response to Newtonian gravitational
fields and inhomogeneous magnetic backgrounds.

It is our hope that the approach outlined here to non-relativistic fluids finds further
use. In this approach spacetime coordinate invariance is automatic, just as in the standard
treatment of relativistic fluids and computations are streamlined. Here we brought our
formalism to bear on FQH fluids, but it is sufficiently general to treat arbitrary fluids in
any dimension.
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A Magneto-thermodynamics

We make a few comments on thermodynamics in curved backgrounds and nonzero magnetic
fields to motivate the identifications of €, n and p in (3.7) and (3.9) as the thermodynamic
energy density, particle density and internal pressure, particularly the magnetization con-
tribution whose presence is not obvious. These issues are discussed at length in ref. [36]
in the case of free field theory, but we take a more general view, assuming only local
thermodynamic equilibrium and a local free energy. This is the zeroth order part of an
analysis along the lines of that found in ref. [37], from which we differ only in so far as our
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treatment is non- relativistic and includes a background magnetic field that gives rise to
the magnetization currents in question.

Consider the thermal partition function Z associated to some microscopic quantum
field theory and it’s corresponding effective action

W=-InZ (A.1)

We assume nothing about the detailed dynamics other than the existence of a gap so that
W is a local function of n,, ¢ and A,. Specialize to a time independent but curved
background geometry and gauge field whose spatial variations are small. We may then
assume after some time local thermodynamic equilibrium is reached and each fluid element
is characterized entirely by a temperature and a chemical potential

5:1m ;:KA, (A.2)

where ¢ is the time circle passing through that element. Note that 7" and @ may depend
on space.
To zeroth order in derivatives, we then have

W= / Bz /Ge  pm (T, 1, B, (A.3)

B being the only other covariant scalar that may be constructed at zeroth order. The de-
tailed form of pypm, will depend on the microscopic physics but will not be needed here. Had
we assumed spatial homogeneity, this would merely be the elementary relation 2 = pipmV
that connects thermodynamics with statistical physics (@ = TW is the grand potential).
Thus piwm is the grand potential density which, in the absence of the magnetic field, would
coincide with the pressure that appears in the stress. We define local energy, entropy,
particle and magnetization densities by

dpthm = sdT + ndu + MdB and € + pthm = T's + pun, (A.4)

which are merely the fundamental thermodynamic relations (3.11).
It’s now a simple matter to calculate the equilibrium j°, € and 7%. To clarify the ®
dependence, parameterize the time circle by some interval z° € (0, T%)) We then have

T =¢e®Ty, 1= e A. (A.5)
Varying Ag, ® and ¢% we find
0 = e®n, el = P, TY = (pgym — M B)g¥ (A.6)

The magnetization contribution to the internal pressure arises due to the magnetic flux
density’s metric dependence B = ﬁ(@lAg — 09A1).
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B Weyl invariance

In special cases the theory may exhibit Weyl invariance. This happens, for example, when
the interaction is a purely contact interaction [17]. In this case the functional form of the
transport coefficients considered above will be constrained. We derive these constraints in
this appendix.

A Weyl invariant theory is unchanged under the transformation

gy = e g, ®' = + 2a. (B.1)
Since we have Slg;;, ®] = S|g;;, ®'], varying the action we find

g barpuy e Ao p
T, = e, el =e*%e (B.2)

nc nc?

for a Weyl invariant theory. From the equilibrium definitions of the thermodynamic vari-
ables we also find

T = e*T, y = ey, B' = ¢**B. (B.3)
Let’s first turn to the stress tensor
T = (p —(0)g" —no? — 75", (B.4)
One may show from their definitions that the expansion and shear tensors transform as
Q' =e* (0 - 20"V, a), o' = etogl 6" = elogtd, (B.5)

To satisfy the scaling rule (B.2) the bulk viscosity must vanish: ¢ = 0 [38]. Furthermore,
the equation of state and viscosities must be homogeneous functions of the thermodynamic

variables

pthm(ATa >‘,U’a AB) = )\2pthm(T7 M, B)a
n()‘Tv A,U,, AB) = )\U(Ta M, B):
(AT, A, AB) = Ail(T, s, B). (B.6)
Similar restrictions arise for the energy current without complication. The thermal

conductivity, thermal Hall conductivity, and energy magnetization are also homogeneous

functions,

S (AT, A\, AB) = NS (T, 11, B),
CRL()‘Ta Ak, )‘B) = CRL(T7 Ky B)a
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