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1 Introduction

Six-dimensional superconformal field theories (SCFTs) are interesting in various aspects.

In the context of M-theory, these SCFTs arise as a worldvolume theory of M5-branes in

the near horizon limit. The correspondence between a six-dimensional N = (2, 0) SCFT

and M-theory on AdS7×S4 is one of the examples given in the AdS/CFT correspondence

originally proposed in [1]. This AdS7/CFT6 correspondence has been explored in great

details both from the M-theory point of view and the effective N = 4 SO(5) gauged

supergravity in seven dimensions.

In this paper, we are interested in the half-maximal N = (1, 0) SCFTs in six dimen-

sions. It has been shown in [2] that N = (1, 0) field theory possesses a non-trivial fixed

point, and recently many N = (1, 0) SCFTs have been classified in [3, 4] and [5]. The holo-

graphic study of this N = (1, 0) theory has mainly been investigated by orbifolding the

AdS7 × S4 geometry of eleven-dimensional supergravity, see for example [6–8]. Recently,

many new AdS7 geometries from massive type IIA string theory have been found in [9],

and the dual SCFTs of these AdS7 vacua have been studied in [10].

We are particularly interested in studying N = (1, 0) SCFTs within the framework of

seven-dimensional gauged supergravity. These SCFTs should be dual to AdS7 solutions of
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N = 2 gauged supergravity in seven dimensions [11]. Pure N = 2 gauged supergravity with

SU(2) gauge group admits both supersymmetric and non-supersymmetric AdS7 vacua [12].

The two vacua can be interpreted as a supersymmetric and a non-supersymmetric CFT,

respectively. A domain wall solution interpolating between these vacua has been studied

in [13]. This solution describes a non-supersymmetric deformation of the UV N = (1, 0)

SCFT to another non-supersymmetric CFT in the IR.

When coupled to vector multiplets, the N = 2 gauged supergravity with many possible

gauge groups can be obtained [14–16]. Although the resulting matter-coupled theory can

support only a half-supersymmetric domain wall vacuum, supersymmetric AdS7 vacua are

possible if a topological mass term for the 3-form field, dual to the 2-form field in the

gravity multiplet, is introduced. These supersymmetric AdS7 critical points with SO(4)

and SO(3) symmetries together with analytic RG flows interpolating between them have

been studied in [17] in the case of SO(4) gauge group. And recently, AdS7 vacua including

compactifications to AdS5 of non-compact gauge groups have been explored in [18]. The

latter type of solutions generally describe twisted compactifications of N = (1, 0) six-

dimensional field theories to four dimensions.

In this paper, we are interested in holographic description of twisted compactifications

of N = (1, 0) SCFTs on two-manifolds Σ2 = (S2, H2) and three-manifold Σ3 = (S3, H3).

The corresponding gravity solutions will take the form of AdS5×Σ2 and AdS4×Σ3, respec-

tively. The dual field theories will be SCFTs in four or three dimensions. Gravity solutions

interpolating between above mentioned AdS7 vacua and these AdS5 or AdS4 geometries

will describe RG flows from N = (1, 0) SCFTs to lower dimensional SCFTs. Previously,

this type of solutions has mainly been studied within the framework of the maximal N = 4

gauged supergravity. The solutions provide gravity duals of twisted compactifications of

the N = (2, 0) SCFTs. A number of these AdS5 solutions together with the uplift to

eleven-dimensional supergravity by using the reduction ansatz given in [19] and [20] have

been studied previously in [21–24]. In addition, compactifications of N = (1, 0) SCFT has

recently been explored from the point of view of massive type IIA theory in [25].

We will give another new solution to this class from N = 2 SO(4) gauged supergravity.

It has been pointed out in [22] that the AdS5 × S2 solution preserving SO(2) × SO(2)

symmetry and N = 2 supersymmetry in five dimensions, eight supercharges, cannot be

obtained from pure minimal N = 2 gauged supergravity. We will show that this solution

is a solution of N = 2 SO(4) gauged supergravity obtained from coupling pure N = 2

gauged supergravity to three vector multiplets. We will additionally give new AdS5 ×H2

solutions which are different from those given in [22] and [23] in the sense that the two SU(2)

gauge couplings are different, and the residual symmetry is only the diagonal subgroup of

SO(2)×SO(2). This case is not a truncation of the N = 4 SO(5) gauged supergravity, and

the embedding of these solutions in higher dimensions are presently unknown. We will also

study holographic RG flow solutions interpolating between AdS7 vacua and these AdS5

fixed points. The solutions describe deformations of N = (1, 0) SCFTs in six dimensions

to the IR N = 1 SCFT in four dimensions.

On AdS4 solutions from seven-dimensional gauged supergravity, a class of AdS4 ×H3

and AdS4 × S3 solutions have been obtained in [26]. A number of extensive studies of
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these solutions in terms of wrapped M5-branes on various supersymmetric cycles in special

holonomy manifolds have been given in [27–29]. In particular, the solution studied in [29]

has been obtained from the maximal gauged supergravity and preserves N = 2 supercon-

formal symmetry in three dimensions. In this work, we will look for AdS4 solutions in the

N = 2 SO(4) gauged supergravity preserving only four supercharges. The corresponding

solutions should then correspond to some N = 1 SCFTs in three dimensions. We will show

that there exist AdS4 × S3 and AdS4 × H3 solutions in this SO(4) gauged supergravity

with four supercharges when the two SU(2) gauge couplings are different. For equal SU(2)

gauge couplings, only AdS4 ×H3 solutions exist and can be uplifted to eleven dimensions

using the reduction ansatz given in [30].

The paper is organized as follow. In section 2, relevant information on N = 2 SO(4)

gauged supergravity in seven dimensions and supersymmetric AdS7 critical points are

reviewed. AdS5 × S2 and AdS5 ×H2 solutions together with holographic RG flows from

AdS7 critical points to these AdS5 fixed points will be given in section 3. We present

AdS4×S3 and AdS4×H3 solutions in section 4 and give the embedding of some AdS5×Σ2

and AdS4×Σ3 solutions in eleven dimensions in section 5. We finally give some comments

and conclusions in section 6.

2 Seven-dimensional N = 2 SO(4) gauged supergravity and AdS7 criti-

cal points

In this section, we give a description of the SO(4) N = 2 gauged supergravity in seven

dimensions and the associated supersymmetric AdS7 critical points. These critical points

preserve N = 2 supersymmetry in seven dimensions and correspond to six-dimensional

N = (1, 0) SCFTs. All of the notations used throughout the paper are the same as those

in [16] and [17].

2.1 SO(4) gauged supergravity

The SO(4) N = 2 gauged supergravity in seven dimensions is constructed by gauging the

half-maximal N = 2 supergravity coupled to three vector multiplets. The supergravity

multiplet (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ) consists of the graviton, two gravitini, three vectors, two

spin-1
2 fields, a two-form field and the dilaton. We will use the convention that curved

and flat space-time indices are denoted by µ, ν, . . . and m,n, . . ., respectively. Each vector

multiplet (Aµ, λ
A, φi) contains a vector field, two gauginos and three scalars. The bosonic

field content of the matter coupled supergravity then consists of the graviton, six vectors

and ten scalars parametrized by the R+×SO(3, 3)/SO(3)×SO(3) ∼ R+×SL(4,R)/SO(4)

coset manifold. In the following, we will consider the supergravity theory in which the

two-form field Bµν is dualized to a three-form field Cµνρ. The latter admits a topological

mass term, so the resulting gauged supergravity admits an AdS7 vacuum.

The SO(4) gauged supergravity is obtained by gauging the SO(4) ∼ SO(3) × SO(3)

subgroup of the global symmetry group SO(3, 3). One of the SO(3) in the gauge group

SO(3)× SO(3) is the SO(3)R ∼ USp(2)R ∼ SU(2)R R-symmetry. All spinor fields, includ-

ing the supersymmetry parameter εA, are symplectic-Majorana spinors transforming as
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doublets of the SU(2)R R-symmetry. From now on, the SU(2)R douplet indices A,B = 1, 2

will not be shown explicitly. The SU(2)R triplets are labeled by indices i, j = 1, 2, 3 while

indices r, s = 1, 2, 3 are the triplet indices of the other SO(3) in SO(3)R × SO(3).

The 9 scalar fields in the SO(3, 3)/SO(3)× SO(3) coset are parametrized by the coset

representative L = (L i
I , L

r
I ) which transforms under the global SO(3, 3) and the local

composite SO(3) × SO(3) by left and right multiplications, respectively. The inverse of L

is denoted by L−1 = (LIi, L
I
r) satisfying the relations LIi = ηIJLJi and LIr = ηIJLJr.

The bosonic Lagrangian of the N = 2 gauged supergravity is given by

e−1L =
1

2
R− 1

4
eσaIJF

I
µνF

Jµν − 1

48
e−2σHµνρσH

µνρσ − 5

8
∂µσ∂

µσ − 1

2
P irµ P

µ
ir

− 1

144
√

2
e−1εµ1...µ7Hµ1...µ4ωµ5...µ7 +

1

36
he−1εµ1...µ7Hµ1...µ4Cµ5...µ7 − V (2.1)

where the scalar potential and the Chern-Simons term are given by

V =
1

4
e−σ

(
CirCir −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3σ
2 C, (2.2)

ωµνρ = 3ηIJF
I
[µνA

J
ρ] − f

K
IJ AIµ ∧AJν ∧AρK (2.3)

with the gauge field strength defined by F Iµν = 2∂[µA
I
ν] + f I

JK AJµA
K
ν . The structure

constants f K
IJ of the gauge group include the gauge coupling associated to each simple

factor in a general gauge group G0 ⊂ SO(3, 3).

We are mainly interested in supersymmetric solutions. Therefore, the supersymmetry

transformations of fermions are necessary. However, we will not consider bosonic solu-

tions with the three-form field turned on. We will accordingly set Cµνρ = 0 throughout.

The fermionic supersymmetry transformations, with all fermions and the three-form field

vanishing, are given by

δψµ = 2Dµε−
√

2

30
e−

σ
2Cγµε−

i

20
e
σ
2 F iρσσ

i (3γµγ
ρσ − 5γρσγµ) ε− 4

5
he2σγµε, (2.4)

δχ = −1

2
γµ∂µσε−

i

10
e
σ
2 F iµνσ

iγµνε+

√
2

30
e−

σ
2Cε− 16

5
e2σhε, (2.5)

δλr = −iγµP irµ σiε−
1

2
e
σ
2 F rµνγ

µνε− i√
2
e−

σ
2Cirσiε . (2.6)

Various quantities appearing in the Lagrangian and supersymmetry transformations

are defined by the following relations

Dµε = ∂µε+
1

4
ωmnµ γmn +

i

4
σiεijkQµjk,

P irµ = LIr
(
δKI ∂µ + f K

IJ AJµ

)
LiK , Qijµ =LIj

(
δKI ∂µ + f K

IJ AJµ

)
LiK ,

Cir =
1√
2
f K
IJ LIjL

J
kLKrε

ijk, C =− 1√
2
f K
IJ LIiL

J
jLKkε

ijk,

Crsi = f K
IJ LIrL

J
sLKi, aIJ =Li ILiJ + LrILrJ ,

F iµν = L i
I F

I , F rµν = L r
I F

I (2.7)
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where γm are space-time gamma matrices satisfying {γm, γn} = 2ηmn with ηmn =

diag(−1, 1, 1, 1, 1, 1, 1).

2.2 Supersymmetric AdS7 critical points

We will now briefly review supersymmetric AdS7 critical points found in [17]. There are

two critical points preserving the full N = 2 supersymmetry in seven dimensions. The two

critical points however have different symmetries namely one critical point, at which all

scalars vanishing, preserves the full SO(4) gauge symmetry while the other is only invariant

under the diagonal subgroup SO(3)diag ⊂ SO(3)× SO(3).

For SO(3)× SO(3) gauge group, the gauge structure constants can be written as [16]

fIJK = (g1εijk,−g2εrst). (2.8)

Before discussing the detail of the two critical points, we give an explicit parametriza-

tion of the SO(3, 3)/SO(3)×SO(3) coset as follow. With the 36 basis elements of a general

6× 6 matrix

(eIJ)KL = δIKδJL, I, J, . . . = 1, . . . , 6 (2.9)

the generators of the composite SO(3) × SO(3) symmetry are given by

SO(3)R : J
(1)
ij = eji − eij , i, j = 1, 2, 3,

SO(3) : J (2)
rs = es+3,r+3 − er+3,s+3, r, s = 1, 2, 3 . (2.10)

The non-compact generators corresponding to 9 scalars take the form of

Y ir = ei,r+3 + er+3,i . (2.11)

Accordingly, the coset representative can be obtained by an exponentiation of the ap-

propriate Y ir generators. Y ir generators and the 9 scalars transform as (3,3) under the

SO(3)× SO(3) local symmetry.

The supersymmetric AdS7 critical points preserve at least SO(3) symmetry. Therefore,

we will consider only the coset representative invariant under SO(3) symmetry. The dilaton

σ is an SO(3)× SO(3) singlet. From the 9 scalars in SO(3, 3)/SO(3)× SO(3), there is one

SO(3)diag singlet from the decomposition 3 × 3 → 1 + 3 + 5. The singlet corresponds to

the non-compact generator

Ys = Y 11 + Y 22 + Y 33 . (2.12)

The coset representative is then given by

L = eφYs . (2.13)

The scalar potential for the dilaton σ and the SO(3)diag singlet scalar φ can be straight-

forwardly computed. Its explicit form reads [17]

V =
1

32
e−σ

[
(g2

1 + g2
2) (cosh(6φ)− 9 cosh(2φ)) + 8g1g2 sinh3(2φ)

+8
[
g2

2 − g2
1 + 64h2e5σ + 32e

5σ
2 h
(
g1 cosh2 φ+ g2 sinh3 φ

)]]
. (2.14)
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There are two supersymmetric AdS7 vacua given by

SO(4)− critical point : σ = φ = 0, V0 = −240h2, (2.15)

SO(3)− critical point : σ = −1

5
ln

[
g2

2 − 256h2

g2
2

]
,

φ =
1

2
ln

[
g2 + 16h

g2 − 16h

]
, V0 = − 240g

8
5
2 h

2

(g2
2 − 256h2)

4
5

(2.16)

where we have chosen g1 = −16h in order to make the SO(4) critical point occurs at σ = 0.

This is achieved by shifting σ. The value of the cosmological constant has been denoted

by V0.

The two critical points correspond to N = (1, 0) SCFTs in six dimensions with SO(4)

and SO(3) symmetries, respectively. An RG flow solution interpolating between these

two critical points has already been studied in [17]. In the next sections, we will study

supersymmetric RG flows from these SCFTs to other SCFTs in four and three dimensions

providing holographic descriptions of twisted compactifications of these N = (1, 0) SCFTs.

3 Flows to N = 1 SCFTs in four dimensions

In this section, we look for solutions of the form AdS5×S2 or AdS5×H2 in which S2 and

H2 are a two-sphere and a two-dimensional hyperbolic space, respectively.

In the case of S2, we take the seven-dimensional metric to be

ds2
7 = e2F (r)dx2

1,3 + dr2 + e2G(r)(dθ2 + sin2 dφ2) (3.1)

with dx2
1,3 being the flat metric on the four-dimensional spacetime. By using the vielbein

eµ̂ = eFdxµ, er̂ = dr,

eθ̂ = eGdθ, eφ̂ = eG sin θdφ, (3.2)

we can compute the following spin connections

ωφ̂
θ̂

= e−G cot θeφ̂, ωφ̂r̂ = G′eφ̂,

ωθ̂r̂ = G′eθ̂, ωµ̂r̂ = F ′eµ̂ . (3.3)

where ′ denotes the r-derivative. Hatted indices are tangent space indices.

In the case of H2, we take the matric to be

ds2
7 = e2F (r)dx2

1,3 + dr2 +
e2G(r)

y2
(dx2 + dy2). (3.4)

With the vielbein

eµ̂ = eFdxµ, er̂ = dr,

ex̂ =
eG

y
dx, eŷ =

eG

y
dy, (3.5)
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the spin connections are found to be

ωx̂r̂ = G′ex̂, ωŷr̂ = G′eŷ,

ωµ̂r̂ = F ′eµ̂, ωx̂ŷ = −e−G(r)ex̂ . (3.6)

3.1 AdS5 solutions with SO(2) × SO(2) symmetry

We now construct the BPS equations from the supersymmetry transformations of fermions.

We first consider the S2 case. In order to preserve supersymmetry, we make a twist by

turning on the SO(2)× SO(2) ⊂ SO(4) gauge fields, among the six gauge fields AI ,

A3 = a cos θdφ and A6 = b cos θdφ (3.7)

such that the spin connections on S2 is cancelled by these gauge connections. The Killing

spinor corresponding to the unbroken supersymmetry is then a constant spinor on S2.

We begin with the solutions preserving the full SO(2)×SO(2) residual gauge symmetry

generated by J
(1)
12 and J

(2)
12 . Scalars which are singlet under SO(2)× SO(2) are the dilaton

and the scalar corresponding to the SO(3, 3) non-compact generators Y 33. We will denote

this scalar by Φ. By considering the variation of the gravitino along S2 directions, we find

that the cancellation between the spin and gauge connections imposes the twist condition

ag1 = 1 . (3.8)

Using the projection conditions

γrε = ε, and iσ3γ θ̂φ̂ε = ε, (3.9)

we find the following BPS equations

Φ′ =
1

2
e−

σ
2
−Φ−2G

[
e2Gg1(e2Φ − 1)− aeσ(e2Φ − 1)− beσ(e2Φ + 1)

]
, (3.10)

σ′ =
1

5
e−

σ
2
−Φ−2G

[
eσ
[
a− b+ (a+ b)e2Φ

]
− e2G

(
g1 + g1e

2Φ + 32he
5σ
2

+Φ
)]
, (3.11)

G′ = − 1

10
e−

σ
2
−Φ−2G

[
4eσ

[
a− b+ (a+ b)e2Φ

]
+ e2G

(
g1 + g1e

2Φ − 8he
5σ
2

+Φ
)]
, (3.12)

F ′ =
1

10
e−

σ
2
−Φ−2G

[
eσ
[
a− b+ (a+ b)e2Φ

]
− e2G

(
g1 + g1e

2Φ − 8he
5σ
2

+Φ
)]
. (3.13)

In the H2 case, we choose the gauge fields to be

A3 =
a

y
dx and A6 =

b

y
dx (3.14)

which can be verified that the spin connection ωx̂ŷ in (3.6) is cancelled by virtue of the

twist condition (3.8) and the projection conditions

γrε = ε and iσ3γx̂ŷε = ε . (3.15)

By an analogous computation, we find a similar set of BPS equations as in (3.10), (3.11),

(3.12) and (3.13) with (a, b) replaced by (−a,−b).
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At large r, solutions to the above BPS equations should approach the SO(4) AdS7

critical point with Φ ∼ σ ∼ 0 and F ∼ G ∼ r. This is the UV (1, 0) SCFT. As r → −∞,

we look for the solution of the form AdS5 × S2 or AdS5 ×H2 such that φ′ = σ′ = G′ = 0

and F ′ = constant. We find that there is an AdS5 solution given by

Φ =
1

2
ln

[
b±
√

4a2 − 3b2

2(a+ b)

]
,

σ =
1

5
ln

[
g2

1b
2(b±

√
4a2 − 3b2)

32(a+ b)h2(3b− 2a±
√

4a2 − 3b2)

]
,

G =
1

10
ln

[
b2(a+ b)4(b±

√
4a2 − 3b2)(2a− 3b∓

√
4a2 − 3b2)3

32g3
1h

2(2a+ b∓
√

4a2 − 3b2)5

]
,

LAdS5 =

[
(a+ b)2(2a− 3b±

√
4a2 − 3b2)4

b4g4
1h(b∓

√
4a2 − 3b2)2

] 1
5

. (3.16)

This solution is given for Σ2 = S2. The solution in the H2 case is given similarly by flipping

the signs of a and b.

It should be noted that, in this fixed point solution with SO(2)×SO(2) symmetry, the

coupling g2 does not appear. The solution can then be taken as a solution of the gauged

supergravity with g2 = g1. Therefore, the solution can be uplifted to eleven dimensions by

using the reduction ansatz in [30]. This will be done in section 5. The uplifted solution

is however not new since similar solutions have been found previously in [22, 23], and

supergravity solutions interpolating between AdS7 and AdS5×S2 or AdS5×H2 have also

been investigated. The solutions have an interpretation in terms of RG flows from the UV

SCFT in six dimensions to four-dimensional SCFTs with SO(2) × SO(2) symmetry.

Note also that, in this case, it is not possible to find an RG flow from the SO(3) AdS7

point to any of these four-dimensional SCFTs since this AdS7 critical point is not accessible

from the BPS equations given above.

3.2 AdS5 solutions with SO(2) symmetry

We now consider AdS5 solutions with SO(2) symmetry. We will study two possibilities

namely the SO(2)diag ⊂ SO(2)× SO(2) ⊂ SO(3)× SO(3) and SO(2)R ⊂ SO(3)R.

3.2.1 Flows with SO(2)diag symmetry

We begin with the SO(2)diag symmetry generated by J
(1)
12 + J

(2)
12 . Among the 9 scalars

in SO(3, 3)/SO(3) × SO(3), there are three singlets under SO(2)diag corresponding to the

following decomposition of SO(3) × SO(3) representations under SO(2)diag

3× 3 = (2 + 1)× (2 + 1) = 1 + 1 + 2 + 2 + 2 + 1 . (3.17)

The three singlets correspond to the non-compact generators

Y 11 + Y 22, Y 33, Y 12 − Y 21 . (3.18)
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The coset representative describing these singlets can be written as

L = eΦ1(Y 11+Y 22)eΦ2Y 33
eΦ3(Y 12−Y 21) . (3.19)

Since we have not found any AdS5 × S2 solution, we will give only the result for the

H2 case. The SO(2)diag gauge field can be obtained from the SO(2) × SO(2) gauge fields

in (3.7) with the condition that

bg2 = ag1 . (3.20)

As in the previous case, the twist imposes the condition g1a = 1 which in the present case

also implies g2b = 1.

Using the projection conditions (3.15), we find the following BPS equations

Φ′1 =
1

8
e−

σ
2
−2Φ1−Φ2(e4Φ1 − 1)

[
g1 − g2 + (g1 + g2)e2Φ2

]
, (3.21)

Φ′2 =
1

16g2
e−

σ
2
[

8g1a
[
g1 − g2 + (g1 + g2)eΦ2

]
+g2

[
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)

[
g2 − g1 + (g1 + g2)e2Φ2

]
+4(g1 − g2)eΦ2 − (g1 + g2)e−Φ2

]]
, (3.22)

Φ′3 =
1

8
e−

σ
2
−Φ2−2Φ3(e4Φ3 − 1)

[
g1 − g2 + (g1 + g2)e2Φ2

]
, (3.23)

σ′ =
1

40g2
e−

σ
2
−2Φ1−Φ2−2Φ3

[
8aeσ+2Φ1+2Φ3−2G

[
g1 − g2 − (g1 + g2)e2Φ2

]
−g2

[
g1(1 + e2Φ2)(1 + e4Φ1 + e4Φ3 + 4e2Φ1+2Φ3 + e4Φ1+4Φ3)

+g2(e2Φ2 − 1)(1 + e4Φ1 + e4Φ3 − 4e2Φ1+2Φ3 + e4Φ1+4Φ3)

+256he
5σ
2

+2Φ1+Φ2+2Φ3

]]
, (3.24)

G′ =
1

20
e−

σ
2

[
16he

5σ
2 − g1(eΦ2 + e−Φ2) + g2(eΦ2 − e−Φ2)

−1

4
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)[g1 − g2 + (g1 + g2)e2Φ2 ]

+
8a

g2
eσ−Φ2−2G[g2 − g1 + (g1 − g2)e2Φ2 ]

]
, (3.25)

F ′ =
1

20
e−

σ
2

[
16he

5σ
2 − g1(eΦ2 + e−Φ2) + g2(eΦ2 − e−Φ2)

−1

4
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)[g1 − g2 + (g1 + g2)e2Φ2 ]

−2a

g2
eσ−Φ2−2G[g2 − g1 + (g1 − g2)e2Φ2 ]

]
. (3.26)

In this case, there are a number of possible AdS5 fixed point solutions, and it is possible

to have a solution interpolating between the SO(3) AdS7 critical points and the AdS5 in

the IR. We will investigate each of them in the following discussion.

– 9 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
7

-4 -3 -2 -1

r

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

F2

(a) Φ2 solution.

-4 -3 -2 -1

r

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Σ

(b) σ solution.

-4 -2 2 4

r

5

10

15

20

25

30

G

(c) G solution.

Figure 1. RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with SO(2)diag symmetry for g1 = g2.

We first look at the AdS5 ×H2 critical point with g2 = g1 since this can be uplifted

to eleven dimensions. When g2 = g1, the fixed point solution exists only for Φ1 = Φ3 = 0,

and the corresponding solution is given by

Φ2 = −1

2
ln 2, σ =

1

5
ln 2,

G =
3

5
ln 2− 1

2
ln
[g1

a

]
, LAdS5 =

1

2
12
5 h

(3.27)

The AdS5 solution preserves eight supercharges corresponding to N = 1 superconformal

field theory in four dimensions with SO(2) symmetry. A flow solution interpolating between

this AdS5×H2 fixed point and the SO(4) AdS7 given in (2.15) for h = 1 is shown in figure 1.

It should be noted here that this fixed point can be obtained from the SO(2) × SO(2)

fixed points given in the previous section by setting the parameter b = a. It can be readily

verified that, for b = a, solution in (3.16) is valid only for the upper sign and Σ2 = H2.

The resulting solution is precisely that given in (3.27).

We now move to solutions with g2 6= g1. The solution given in (3.27) is a special case

of a more general solution, with Φ1 = Φ3 = 0 and g2 6= g1, which is given by

Φ2 =
1

2
ln

[
g1 ±

√
4g2

2 − 3g2
1

2(g1 + g2)

]
, Φ1 = Φ3 = 0,

σ =
1

5

[
1024h2(

√
g2

2 − 192h2 ∓ 8h)

(g2 − 16h)(g2 + 24h∓
√
g2

2 − 192h2)

]
,

G =
1

10
ln

[
a5(g2 − 16h)4(

√
g2

2 − 192h2 ∓ 8h)(g2 + 24h∓
√
g2

2 − 192h2)3

1024g5
2h

3(g2 − 8h∓
√
g2

2 − 192h2)5

]
,

LAdS5 =
1

2

[
(g2 − 16h)2(g2 + 24h∓

√
g2

2 − 192h2)4

2h9(8h∓
√
g2

2 − 192h2)

] 1
5

(3.28)

where we have used the relation g1 = −16h in the solutions for σ and G to simplify the

expressions. An example of the corresponding flow solutions from the UV N = (1, 0) SO(4)

SCFT to this critical point, with g2 = −2g1 and h = 1, is given in figure 2.

In all of the above solutions, it is not possible to have a flow from the SO(3) AdS7

critical point (2.16). To find this type of flows, we look for AdS5 fixed points with Φ3 = 0

– 10 –
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Figure 2. RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with SO(2)diag symmetry for g1 6= g2.

but Φ1 6= 0 and Φ2 6= 0. In this case, the AdS5 ×H2 solution is given by

Φ2 =
1

2
ln

[
g2 − g1

g2 + g1

]
, Φ1 = ±Φ2,

σ =
1

5
ln

[
g2

1g
2
2

144h2(g2
2 − g2

1)

]
, G =

1

2
ln

2
4
5 (3

3
5 )a(g2

2 − 256h2)
4
5

g
8
5
2 g1

 ,
LAdS5 =

3
4
5 (g2

2 − 256h2)
2
5

2
18
5 g

4
5
2 h

. (3.29)

Note that at the values of Φ1 and Φ2 are the same as the SO(3) AdS7 point. In

equation (2.16), we have

Φ1 = Φ2 =
1

2
ln

[
g2 − g1

g2 + g1

]
≡ Φ0 . (3.30)

Actually, there are two equivalent values of Φ1 namely either Φ1 = Φ0 or Φ1 = −Φ0.

The two choices are equivalent in the sense that they give rise to the same value of the

cosmological constant and the same scalar masses. The difference between the two is

the generators of SO(3) under which the SO(3) singlet scalar φ in (2.16) is invariant. For

Φ1 = Φ0, we have Φ1 = Φ2 which is invariant under the SO(3) generated by J
(1)
ij +J

(2)
ij . The

alternative value of Φ1 = −Φ0 gives Φ1 = −Φ2 which is invariant under SO(3) generators

J
(1)
12 + J

(2)
12 , J

(1)
13 − J

(2)
13 and J

(1)
23 − J

(2)
23 . This difference does not affect the result discussed

here since, in both cases, the residual SO(2)diag is still generated by J
(1)
12 + J

(2)
12 .

The flow from SO(3) N = (1, 0) SCFT would be driven only by the dilaton σ which

has different values at the SO(3) AdS7 and the AdS5 fixed points. This is expected since at

SO(3) AdS7 critical point only σ corresponds to relevant operators, see the scalar masses

in [17].

We now consider RG flows from N = (1, 0) SCFTs in six dimensions to four-

dimensional SCFTs identified with the critical point (3.29). In order to give some explicit

examples, we choose particular values of the two couplings g1 and g2. In the following
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solutions, we will set g2 = −2g1 and h = 1. With these, the IR AdS5 ×H2 is given by

Φ1 = Φ2 =
1

2
ln 3 ≈ 0.5493, σ =

1

5
ln

[
64

27

]
≈ 0.1726,

G =
1

10
ln

[
37

244

]
≈ −2.2808 . (3.31)

The SO(4) UV point (2.15) is given by

Φ1 = Φ2 = σ = 0 (3.32)

while the SO(3) AdS7 point (2.16) occurs at

σ =
1

5
ln

4

3
≈ 0.0575, Φ2 = Φ1 =

1

2
ln 3 ≈ 0.5493 . (3.33)

We have chosen Φ1 = Φ2 at the IR fixed points for definiteness.

There exist an RG flow from the SO(4) N = (1, 0) SCFT in the UV to the N = 1 four-

dimensional SCFT in the IR as shown in figure 3. With a particular boundary condition,

we can find an RG flow from the SO(4) AdS7 to the SO(3) AdS7 critical points and then

to the AdS5 critical point as shown in figure 4. This solution is similar to the flow from

SO(6) AdS5 to Khavaev-Pilch-Warner (KPW) AdS5 critical point and continue to a two-

dimensional N = (2, 0) SCFT in [31].

3.2.2 Flows with SO(2)R symmetry

We then move on and briefly look at the SO(2)R symmetry. There are three singlet scalars

from the SO(3, 3)/SO(3) × SO(3) coset. These scalars will be denoted by Φ1, Φ2 and Φ3

corresponding to the non-compact generators Y31, Y32 and Y33, respectively.

In this case, the gauge field corresponding the SO(2)R generator is given by

A3 = a cos θdφ . (3.34)

By using the same procedure, we find that, in order to have a fixed point, all of the

Φi’s must vanish, and only AdS5 ×H2 solutions exist. The solution again preserves eight

supercharges corresponding to N = 1 superconformal symmetry in four dimensions. The

fixed point solution is given by

σ =
2

5
ln

4

3
, G =

1

5
ln

4

3
− 1

2
ln
g1

3a
, F =

16h

9
2
5

r (3.35)

There exist RG flows from the SO(4) N = (1, 0) SCFT to these four-dimensional

SCFTs. The BPS equations describing theses flows are given by

σ′ =
2

5
e−

σ
2

(
aeσ−2G − g1 − 16he

5σ
2

)
, (3.36)

G′ =
1

5
e−

σ
2

(
4he

5σ
2 − g1 − 4aeσ−2G

)
, (3.37)

F ′ =
1

5
e−

σ
2

(
4he

5σ
2 − g1 + aeσ−2G

)
. (3.38)

Examples of the solutions with some values of the parameter a are shown in figure 5. This

critical point is also a solution of pure N = 2 gauged supergravity studied in [21].
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Figure 3. An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with SO(2)diag symmetry.

4 Flows to N = 1 SCFTs in three dimensions

In this section, we look for AdS4 vacua of the form AdS4 × S3 or AdS4 × H3 with S3

and H3 being a three-sphere and a three-dimensional hyperbolic space, respectively. These

solutions will correspond to some SCFTs in three dimensions. In order to identify these

AdS4 vacua with the IR fixed points of the six-dimensional SCFTs corresponding to both

of the AdS7 vacua given in (2.15) and (2.16), we consider the scalars which are singlets

under SO(3)diag subgroup of the full SO(4) gauge group. The relevant scalar from the

SO(3, 3)/SO(3) × SO(3) coset is the one corresponding to the generator (2.12) with the

coset representative given in (2.13).

In the S3 case, we will take the metric ansatz to be

ds2
7 = e2Fdx2

1,2 + dr2 + e2G
[
dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

]
. (4.1)

From the above metric, we find the spin connections

ωµ̂r̂ = F ′eµ̂, ωψ̂r̂ = G′eψ̂, ωθ̂r̂ = G′eθ̂,

ωφ̂r̂ = G′eφ̂, ωφ̂
θ̂

= e−G
cot θ

sinψ
eφ̂,

ωφ̂
ψ̂

= e−G cotψeφ̂, ωθ̂
ψ̂

= e−G cotψeθ̂ (4.2)
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Figure 4. An RG flow from SO(4) N = (1, 0) SCFT to SO(3) N = (1, 0) SCFT in six dimensions

and then to N = 1 four-dimensional SCFT with SO(2)diag symmetry.
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Figure 5. RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with SO(2)R symmetry for a = 1, 5, 10 (red, green, blue).
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which accordingly suggest to turn on the following SO(3)diag gauge fields

A1 =
g2

g1
A4 = a cosψdθ,

A2 =
g2

g1
A5 = a cos θdφ,

A3 =
g2

g1
A6 = a cosψ sin θdφ . (4.3)

Note that at the beginning, the parameter a of each gauge field needs not be equal. How-

ever, the twist condition

ag1 = 1 (4.4)

requires that all of the parameters in front of Ai must be equal. The corresponding field

strengths are, after using (4.4),

F 1 = −ae−2Geψ̂ ∧ eθ̂,
F 2 = −ae−2Geθ̂ ∧ eφ̂,
F 3 = −ae−2Geψ̂ ∧ eφ̂ . (4.5)

To set up the BPS equations, we impose the projection conditions

γrε = ε, iσ1γθ̂ψ̂ε = ε, iσ2γφ̂θ̂ε = ε, iσ3γφ̂ψ̂ε = ε . (4.6)

For the H3 case, we take the metric to be

ds2
7 = e2Fdx2

1,2 + dr2 +
e2G

y2
(dx2 + dy2 + dz2) (4.7)

with the spin connections given by

ωẑr̂ = G′eẑ, ωŷr̂ = G′eŷ, ωx̂r̂ = G′ex̂,

ωx̂ŷ = − e−Gex̂, ωẑŷ = − e−Geẑ, ωµ̂r̂ = F ′eµ̂ . (4.8)

We then turn on the following gauge fields, to cancel the above spin connections on H3,

A1 =
a

y
dx, A2 = 0, A3 =

a

y
dz (4.9)

with Ai+3 = g1

g2
Ai, i = 1, 2, 3. These gauge fields then become SO(3)diag gauge fields.

We will also impose the projection conditions

γrε = ε, iσ1γx̂ŷε = −ε, iσ2γx̂ẑε = −ε, iσ3γẑŷε = −ε . (4.10)

The twist condition is still given by (4.4).

In both cases, the last projector in (4.6) and (4.10) is not independent from the second

and the third ones, so the fixed point solution will preserve four supercharges corresponding

to N = 1 superconformal symmetry in three dimensions.
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With all of the above conditions, we find the following BPS equations, for the H3 case,

φ′ = − 1

8g2
e−

σ
2
−3φ−2G

[
e2G(e4φ − 1)g2 − 4aeσ+2φ

] [
g1 − g2 + (g1 + g2)e2φ

]
, (4.11)

σ′ = − 1

20
e−

σ
2
−3φ−2G

[
12a

g2
eσ+2φ

[
(e2φ − 1)g1 + (1 + e2φ)g2

]
+e2Gg2

[
g2(e2φ − 1)3 + g1(e2φ + 1)3 + 128he

5σ
2

+3φ
] ]
, (4.12)

G′ =
1

40
e−

σ
2
−3φ−2G

[
28a

g2
eσ+2φ

[
(e2φ − 1)g1 + (1 + e2φ)g2

]
−e2Gg2

[
g2(e2φ − 1)3 + g1(e2φ + 1)3 − 32he

5σ
2

+3φ
] ]
, (4.13)

F ′ = − 1

40
e−

σ
2
−3φ−2G

[
12a

g2
eσ+2φ

[
(e2φ − 1)g1 + (1 + e2φ)g2

]
+e2Gg2

[
g2(e2φ − 1)3 + g1(e2φ + 1)3 − 32he

5σ
2

+3φ
] ]
. (4.14)

The corresponding equations for the S3 case are similar with a replaced by −a.

We now look for a fixed point solution at which G′ = φ′ = σ′ = 0 and F ′ = constant.

For g2 = g1, only AdS4 ×H3 solutions exist and are given by

φ =
1

4
ln 2, σ =

3

10
ln 2,

G =
1

10
ln

[
64a5

g3
1h

2

]
, LAdS5 =

1

2
13
5 h

. (4.15)

This solution can be uplifted to eleven dimensions using the ansatz of [30].

When g2 6= g1, we also find AdS4 ×H3 solutions

φ =
1

2
ln

[
g2 − g1

g2 + g1

]
, σ =

1

5
ln

[
g2

1g
2
2

100h2(g2
2 − g2

1)

]
,

G =
1

2
ln

[
5a(g2

2 − g2
1)

g1g2
2

]
+

1

5
ln

[
−g1g2

10h
√
g2

2 − g2
1

]
,

LAdS4 =
1

2
6
5h

[
25h2(g2

2 − g2
1)

g2
1g

2
2

] 2
5

. (4.16)

This solution can be connected to both AdS7 critical points in (2.15) and (2.16) by some

RG flows.

In this g2 6= g1 case, there can be both AdS4 × S3 and AdS4 × H3 solutions. The

solution however takes a more complicated form depending on the values of g1 and g2. The

AdS4 ×H3 and AdS4 × S3 solutions are given respectively by

G =
1

2
ln

[
4aeσ+2φ0

g2(e4φ0 − 1)

]
, (4.17)

σ =
2

5
ln

[
e−3φ0

[
g2(1− e6φ0)− g1(e6φ0 + 1)

]
32h

]
(4.18)
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and

G =
1

2
ln

[
4aeσ+2φ0

g2(1− e4φ0)

]
, (4.19)

σ =
2

5
ln

[
e−3φ0

[
g2(1− e6φ0)− g1(e6φ0 + 1)

]
32h

]
. (4.20)

In both cases, the scalar φ0 is a solution to the equation

g1(1− 2e2φ0 − 2e4φ0 + e6φ0)− g2(1 + 2e2φ0 − 2e4φ0 − e6φ0) = 0 . (4.21)

The explicit form of φ0 can be obtained but will not be given here due to its complexity.

There are many possible solutions for φ0 depending on the values of g1, g2 and a. An

example of AdS4 × S3 solutions is, for g2 = 1
2g1, given by

φ = −0.9158, σ = 0.5493, G = 0.4116 +
1

2
ln

[
a

g1

]
. (4.22)

One of the AdS4 ×H3 solutions is, for g2 = 1
2g1, given by

φ = 0.2706, σ = 0.2351, G = 1.0936 +
1

2
ln

[
a

g1

]
. (4.23)

Numerical solutions for RG flows from the UV N = (1, 0) SCFTs in six dimensions

to these three-dimensional N = 1 SCFTs can be found in the same way as those given in

the previous section. And, with suitable boundary conditions, the flow from SO(4) AdS7

point to the SO(3) AdS7 point and then to AdS4×S3 or AdS4×H3 in the case of g2 6= g1

should be similarly obtained. We will however not give these solutions here.

5 Uplifting the solutions to eleven dimensions

In this section, we will uplift some of the AdS5 and AdS4 solutions found in the previous

sections to eleven dimensions using a reduction ansatz given in [30]. Only solutions with

equal SU(2) gauge couplings, g2 = g1, can be uplifted by this ansatz. Therefore, we will

consider only this case in the remaining of this section.

The reduction ansatz given in [30] is naturally written in terms of SL(4,R)/SO(4)

scalar manifold rather than the SO(3, 3)/SO(3) × SO(3) we have considered throughout

the previous sections. It is then useful to change the parametrization of scalars from

the SO(3, 3)/SO(3) × SO(3) to SL(4,R)/SO(4) cosets. For convenience, we will repeat

the supersymmetry transformations of fermions with the three-form field and fermions
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vanishing

δψµ = Dµε−
1

20
gXT̃γµε−

1

20
X−4γµε

+
1

40
√

2
X−1

(
γ νρ
µ − 8δνµγ

ρ
)

ΓRSF
RS
νρ ε, (5.1)

δχ = −X−1γµ∂µXε−
2

5
gX−4ε+

1

10
gXT̃ − 1

20
√

2
X−1γµνΓRSF

RS
µν ε, (5.2)

δλ̂R = −1

2
γµΓSPµRSε−

1

8
gXT̃ΓRε+

1

2
gXT̃RSΓSε

− 1

8
√

2
X−1γµνΓS

(
FRSµν +

1

2
εRSTUF

TU
µν

)
ε (5.3)

where

PRS = (V−1)α(R

(
δβαd+ gA β

(1)α

)
V T
β δS)T ,

QRS = (V−1)α[R

(
δβαd+ gA β

(1)α

)
V T
β δS]T ,

Dε = dε+
1

4
ωabγ

ab +
1

4
QRSΓRS

T̃RS = (V−1) α
R (V−1) β

S δαβ , T̃ = T̃RSδ
RS . (5.4)

In the above equations, VRα denotes the SL(4,R)/SO(4) coset representative.

For the explicit form of the eleven-dimensional metric and the four-form field including

the notations used in the above equations, we refer the reader to [30]. We now consider

the AdS5 and AdS4 solutions separately.

5.1 Uplifting the AdS5 solutions

For AdS5 solutions, the seven-dimensional metric is given by (3.1) and (3.4). We will

restrict ourselves to AdS5 fixed points with SO(2)× SO(2) symmetry. The non-zero gauge

fields are Aαβ = (A12, A34) whose explicit form is given by

A12 = a cos θdφ and A34 = b cos θdφ . (5.5)

The U(1) × U(1) singlet scalar from SL(4,R)/SO(4) coset is parametrized by the coset

representative

VRα = diag(e
Φ
2 , e

Φ
2 , e−

Φ
2 , e−

Φ
2 ) (5.6)

from which the T̃RS = diag(e−Φ, e−Φ, eΦ, eΦ) follows. Note that the parameter a and b here

are different from those in section 3 since the gauge fields Ai and Ar correspond respectively

to the anti-self-dual and self-dual parts of the SO(4) gauge fields Aαβ .
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Using the above supersymmetry transformations and imposing the projection condi-

tions γr̂ε = ε and γ θ̂φ̂Γ12ε = ε, we obtain the BPS equations

X−1X ′ − 2

5
gX−4 +

1

5
gX(eΦ + e−Φ) +

1

5
√

2
X−1e−2G(aeΦ − be−Φ) = 0, (5.7)

−Φ′ − gX(eΦ − e−Φ) +
1√
2
X−1e−2G(aeΦ + be−Φ) = 0, (5.8)

F ′ − 1

5
gX(eΦ + e−Φ)− 1

10
gX−4 − 1

10
√

2
X−1e−2G(aeΦ − be−Φ) = 0, (5.9)

G′ − 1

5
gX(eΦ + e−Φ)− 1

10
gX−4 +

4

5
√

2
X−1e−2G(aeΦ − be−Φ) = 0 . (5.10)

In the above equations, we have used Γ34ε = −Γ12ε which follows from the condition

Γ1234ε = ε. The latter is part of the truncation from the maximal SO(5) gauged super-

gravity to the half-maximal SO(4) gauged supergravity studied in [30]. We have also used

the twist condition given by

g(a− b) + 1 = 0 . (5.11)

which comes from the requirement that the gauge connection cancels the spin connec-

tion. Note that this condition differs from (3.8) since the gauge fields are different. In

condition (3.8), the SU(2)R gauge fields are given by the AI with I = 1, 2, 3, and the

SO(2)R ⊂ SU(2)R gauge field has been chosen to be A3. On the other hand, the con-

dition (5.11) involves A12 − A34 corresponding to the SO(2)R subgroup of the SU(2)R
R-Symmetry for which the corresponding gauge fields are identified with the anti-self-dual

part of the SO(4) gauge fields Aαβ in the convention of [30].

For large r, the solution should approach X = 1, Φ = 0 and F ∼ G ∼ r giving AdS7

background with SO(4) symmetry. This corresponds to the UV N = (1, 0) SCFT in six

dimensions. In the IR with the boundary condition F ∼ r and G,Φ, σ ∼ constant, there is

a class of solutions given by

Φ =
1

2
ln

[
a+ b±

√
a2 + ab+ b2

a

]
,

G =
1

2
ln

 a
(
a+ 2b±

√
a2 + ab+ b2

)
√

2gX2
(
b±
√
a2 + ab+ b2

)
 ,

X10 =
a
(
a+ 2b±

√
a2 + ab+ b2

)2

4(a+ b)2
(
a+ b±

√
a2 + ab+ b2

) ,
LAdS5 =

a2
1
5

g

 a+ 2b±
√
a2 + ab+ b2

(a+ b)2
(
a+ b±

√
a2 + ab+ b2

)
 2

5

. (5.12)

This gives AdS5×S2 background preserving U(1)×U(1) symmetry and eight supercharges

since only the projector γ θ̂φ̂Γ12ε = ε is needed at the fixed point. Therefore, this solution

corresponds to N = 1 SCFT in four dimensions. This solution is the same as in [22] with
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the identification (m1,m2) → (−b, a) up to some field redefinitions. So, we conclude that

the AdS5×Σ2 solutions found in [22] is a solution of the N = 2 SO(4) gauged supergravity.

For the H2 case, the above analysis can be repeated in a similar manner. The resulting

BPS equations are, as expected, given by (5.7), (5.8), (5.9) and (5.10) with (a, b) replaced

by (−a,−b). It can also be verified that for both AdS5×S2 and AdS5×H2 solutions given

in (5.12), solutions with the positive sign are valid for g > 0 and a > 0 while solutions with

the negative sign are valid for g < 0 and a < 0.

It should also be noted that we can truncate the above BPS equations to those of

SO(2)R symmetry, generated by the anti-selfdual gauge field A12−A34, by setting b = −a.

Since the twist condition in this case becomes 2ga = −1 which implies that ga < 0, only the

AdS5×H2 exists. This precisely agrees with the result of section 3.2.2. The corresponding

solution is given by

X =

(
3

4

) 1
5

, G = −1

2
ln

[
− g

2
3
10 3

3
5a

]
, LAdS5 =

3
4
5

2
3
5 g
. (5.13)

The AdS5 ×H2 with SO(2)diag symmetry found in section 3.2.1 for g2 = g1 can also

be uplifted using the formulae given here by truncating the SO(2) × SO(2) symmetry to

SO(2)diag as remarked previously in section 3.2.1. The SO(2)diag corresponds to the gauge

field A12 since the A3 and A6, in section 3.2, are related to the anti-self-dual, 1
2(A12−A34),

and self-dual, 1
2(A12 + A34), fields, respectively. So, the SO(2)diag gauge field is given

by A12. As in section 3.2, only solutions with the upper sign in the solution (5.12) and

AdS5 ×H2 are possible. The result is given by

Φ =
1

2
ln 2, X10 =

1

8
, G =

1

2
ln

[
−a2

11
10

g

]
. (5.14)

This is consistent with the twist condition (5.11) which, for b = 0, becomes ga = −1.

We now move to the uplift of these AdS5 solutions. Both AdS5 × S2 and AdS5 ×
H2 solutions can be uplifted in a similar way. For definiteness, we will only give the

uplifted AdS5 × S2 solution. Using the reduction ansatz given in [30], we find the eleven-

dimensional metric

ds2
11 = ∆

1
3

[
e

2r
LAdS5 dx2

1,3 + dr2 + e2G0(dθ2 + sin2 θdφ2)

]
+

2

g
∆−

2
3X3

0

[
X0 cos2 ξ +X−4

0 sin2 ξ
(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)]
dξ2

+
1

2g2
∆−

2
3X−1

0 cos2 ξ
[
e−Φ0

[
cos2 ψdφ2 + sin2 ψ(dα− ag cos θdφ)2

]
+ eΦ0

[
cos2 ψdφ2 + sin2 ψ(dβ − bg cos θdφ)2

]]
− 1

2g2
∆−

2
3X−1

0 sin ξ sin(2ψ)
(
e−Φ0 − eΦ0

)
dξdψ (5.15)

where we have used the coordinates µα, satisfying µαµα = 1, as follow

µ1 = sinψ cosα, µ2 = sinψ sinα,

µ3 = cosψ cosβ, µ4 = cosψ sinβ . (5.16)
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The quantities X0, Φ0 and G0 are the values of the corresponding fields at the fixed

point (5.12). The quantity ∆ is defined by

∆ = X−4 sin2 ξ +XT̃αµ
αµβ cos2 ξ (5.17)

which, in the present case, gives

∆ = X0 cos2 ξ
(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)
+X−4

0 sin2 ξ . (5.18)

The 4-form field, at the fixed point, is given by

F̂(4) =
1

g3
U∆−2 cos3 ξdξ ∧ ε(3) +

a

g2
cos θ cos ξ

[
sin ξ cos ξ sinψ cosψX−4

0 dψ

cos2 ψ
(
X−4

0 sin2 ξ + eΦ0X2
0 cos2 ξ

)
dξ
]
∧ dβ ∧ dθ ∧ dφ

− b

g2
sin θ cos ξ

[
sin ξ cos ξ sinψ cosψX−4

0 dψ

−
(
X−4

0 sin2 ξ +X2
0 cos2 ξe−Φ0

)
sin2 ψdξ

]
∧ dα ∧ dθ ∧ dφ (5.19)

where

U = sin2 ξ
[
X−8

0 − 2X−3
0

(
eΦ0 + e−Φ0

)]
− cos2 ξ

[
2X2

0 +X−3
0

(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)]
. (5.20)

The uplifted solutions for some particular values of a and b have already been given in [23].

5.2 Uplifting the AdS4 solutions

We now consider the embedding of the AdS4 × H3 solution given in (4.15) in eleven di-

mensions. The SL(4,R)/SO(4) coset representative, invariant under SO(3)diag, is given by

VRα = (δabe
φ
2 , e−

3φ
2 ) (5.21)

which gives T̃RS = (δabe
−φ, e3φ). We have split the α index as follow α = (a, 4), a = 1, 2, 3.

To set up the associated BPS equations, we use the seven-dimensional metric (4.7) and

the following gauge fields

A12 =
a

y
dz, A31 = 0, A23 =

a

y
dx . (5.22)

The twist condition is given by ga = 1. We will also impose the projection conditions

Γ23γx̂ŷε = −ε, Γ13γẑx̂ε = −ε, Γ12γẑŷε = −ε, Γr̂ε = ε . (5.23)

With all of the above conditions, we obtain the following BPS equations

−φ′ + 1

2
gX(e−φ − e3φ) +

√
2aX−1eφ−2G = 0, (5.24)

−X−1X ′ − 2

5
gX−4 +

1

10
gX(3e−φ + e3φ) +

3

5
√

2
aX−1eφ−2G = 0, (5.25)

G′ − 1

10
gX(3e−φ + e3φ)− 1

10
gX−4 +

7

5
√

2
aX−1eφ−2G = 0, (5.26)

F ′ − 1

10
gX(3e−φ + e3φ)− 1

10
gX−4 − 3

5
√

2
aX−1eφ−2G = 0 . (5.27)
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These equations admit a fixed point solution

φ0 =
1

4
ln

11

3
, X20

0 =
11(33)

212
,

G0 =
1

10
ln

[
3(112)

2
√

2

]
− 1

2
ln
[g
a

]
, LAdS4 =

1

g

(
11(33)

27

) 1
5

. (5.28)

The parametrization of the µα coordinates can be chosen to be

µα = (cos Ψµ̂a, sin Ψ) (5.29)

with µ̂a satisfying µ̂aµ̂a = 1. The SO(3)diag symmetry corresponds to the gauge fields Aab.

In the following, we accordingly set A4a = 0 for a = 1, 2, 3 and find that

Dµa = cos ΨDµ̂a − sin Ψµ̂adΨ, Dµ4 = cos ΨdΨ (5.30)

where

Dµ̂a = dµ̂a + gAabµ̂b . (5.31)

With all these results, the eleven-dimensional metric is given by

ds2
11 = ∆

1
3

[
e

r
LAdS4 dx2

1,2 + dr2 +
e2G0

y2

[
dx2 + dy2 + dz2

]]
+

2

g2
∆−

2
3X3

0

[
X0 cos2 ξ +X−4

0 sin2 ξ
(

cos2 Ψeφ0 + sin2 Ψe−3φ0

)]
dξ2

+
1

2g2
∆−

2
3X−1

0 cos2 ξ
[
cos2 Ψeφ0Dµ̂aDµ̂a +

(
sin2 Ψeφ0 + cos2 Ψe−3φ0

)
dΨ2

]
− 1

g2
∆−

2
3X−1

0 sin ξ
(
e−3φ0 − eφ0

)
sin Ψ cos ΨdΨdξ . (5.32)

The S2 coordinates µ̂a can be parametrized by

µ̂1 = sinβ cosα, µ̂2 = sinβ sinα, µ̂3 = cosβ . (5.33)

The warped factor ∆ is given by

∆ = X2
0e
−φ0 cos2 ξ cos2 Ψ +X−4

0 sin2 ξ +X0e
3φ0 sin2 Ψ cos2 ξ . (5.34)

The four-form field on the AdS4 ×H3 background can be written as

F̂(4) =
1

g3
U cos3 ξ cos2 Ψdξ ∧ dΨ ∧ ε(2)

+
1

2g2
cos ξεabc

[
µ̂c
[
X−4

0 sin2 ξ(sin2 Ψ− cos2 Ψ)

+X2
0 (e3φ0 sin2 Ψ− e−φ0 cos2 Ψ)

]
dξ ∧ F ab ∧ dΨ

−
[
(X−4

0 sin2 ξ +X2
0 cos2 ξe3φ0) sin Ψ cos Ψdξ

+X−4
0 cos ξ sin ξ cos2 ΨdΨ

]
∧ F ab ∧Dµ̂c

]
(5.35)
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where

ε(2) =
1

2
εabcµ̂

aDµ̂b ∧Dµ̂c,

U = cos2 ξ
[
X2

0

[
e6φ0 sin2 Ψ− e−2φ0 cos2 Ψ− e2φ0(2 sin2 Ψ + 1)

]
−X−3

0 (e−φ0 cos2 Ψ + e3φ0 sin2 Ψ)
]

+ sin2 ξX−3
0 (X−5

0 − 3e−φ0 − e3φ0). (5.36)

6 Conclusions

We have studied AdS5 × Σ2 and AdS4 × Σ3 solutions of N = 2 gauged supergravity in

seven dimensions with SO(4) gauge group. We have found that there exist both AdS5 ×
S2 and AdS5 × H2 solutions with the gauge fields for SO(2) × SO(2) turned on. With

SO(2)R or SO(2)diag gauge fields, only AdS5 ×H2 solution is possible. This is consistent

with the results given in [21] and [23]. We recover AdS5 × S2 and AdS5 × H2 solutions

studied in [22] and [23] with SO(2) × SO(2) symmetry. In the case of equal SU(2) gauge

couplings, the solutions can be uplifted to eleven dimensions, and the uplifted solutions

have explicitly given.

We have also considered RG flow solutions interpolating between supersymmetric AdS7

critical points in the UV and these AdS5 solutions in the IR. In the case of SO(2)diag

symmetry, there exist flow solutions from SO(4) AdS7 critical point to AdS5 as well as

flows from SO(4) AdS7 to SO(3) AdS7 and then continue to AdS5 fixed points similar

to the flows from four-dimensional SCFTs to two-dimensional N = (2, 0) SCFTs studied

in [31]. Other results of this paper are a number of new AdS4×S3 and AdS4×H3 solutions

for unequal SU(2) gauge couplings. With equal SU(2) couplings, only AdS4×H3 geometry

is possible, and the resulting solutions can be uplifted to eleven dimensions.

The results obtained in this paper should be relevant in the holographic study of

N = (1, 0) SCFTs in six dimensions. These would also provide new AdS5 and AdS4

solutions, corresponding to new SCFTs in four and three dimensions, within the framework

of seven-dimensional gauged supergravity. The embedding of the solutions in the case of

unequal SU(2) gauge couplings (if possible) would be interesting to explore. It would also be

interesting to compare the AdS5 and AdS4 solutions obtained here and the solutions found

recently in [32, 33] in the context of massive type IIA theory. Finally, it is of particular

interest to find an interpretation of all these solutions in terms of wrapped M5-branes on

Σ2 and Σ3. Along this line, it would also be useful to find an implication of the AdS4

solutions in terms of the M2-brane worldvolume theories.
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