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ABSTRACT: We discuss the problem of regularizing correlators in conformal field theories.
The only way to do it in coordinate space is to interpret them as distributions. Unfortu-
nately except for the simplest cases we do not have tabulated mathematical results. The
way out we pursue here is to go to momentum space and use Feynman diagram techniques
and their regularization methods. We focus on the energy-momentum tensor correlators
and, to gain insight, we compute and regularize 2-point functions in 2d with various tech-
niques both in coordinate space and in momentum space, obtaining the same results. Then
we do the same for 2-point functions in 4d. Finally we turn to 3-point function in 4d, and
concentrate on the parity-odd part. We derive in particular the regularized trace and diver-
gence of the energy-momentum tensor in a chiral fermion model. We discuss the problems
related to the parity-odd trace anomaly.
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1 Introduction

In recent years CF'T in 4d has been receiving an increasing attention. The reason is well-
known, it is due in part to being one of the poles in the AdS/CFT correspondence, in part
to the new applications to strongly correlated systems and in part to the increasing interest
in applying the standard model of elementary particles to very high energy problems and its
coupling to gravity. In turn this has spurred a lot of interest and activity in the theoretical
aspects of conformal symmetry and conformal field theories. Recent reviews on the latter
are [1, 2], older references relevant to the content of this paper are [3, 4]. One of the most
striking recently obtained results is the derivation of the general structures of conformal
covariant correlators and OPE’s of any kind of tensor fields in coordinate space, [5-11].
The analysis of 3-point functions of conserved currents and the energy-momentum tensor
was also considered in momentum space, [12-14].

The above mentioned correlators in coordinate space are in general unregulated expres-
sions, in that they have singularities at coincident points. For convenience we call them
bare. The natural way to regularize them is provided by distribution theory. This is clear
in theory, in practice it is not so simple because, except for the simplest cases, one has to do
with formidable expressions. In the coordinate representation a rather natural technique is
provided by the so-called differential regularization, [15-17]. However this technique does
not seem to be in general algorithmic (see below) and a good deal of guesswork is needed
in order to obtain sensible expressions.

Regularizing correlators is not simply a procedure (legitimately) required by mathe-
matics. Singularities in correlators usually contain useful information. For instance in cor-
relators of currents or energy-momentum tensors singularities provide information about
the coupling to gauge potentials and to gravity, respectively. This is the case of anomalies,
which are a typical result of regularization processes, though independent of them. Regu-
larized correlators are also necessary in the Callan-Symanzik equation, [18]. In summary,
regularizing conformal correlators is the next necessary step after deriving their (unregu-
lated or “bare”) expressions.

As was said above, however, the process of regularizing higher order correlators in
coordinate space representation with differential regularization does not seem to be al-
gorithmic. For definiteness we concentrate here on the 2- and 3-point functions of the
energy-momentum tensor. We show that we have a definite rule to regularize the 2-point
correlators in coordinate space by means of differential regularization, but when we come
to the 3-point function there is a discontinuity which does not allow us to extend the rule
valid for the 2-point one. To understand the origin of the problem we resort to a model,
the model of a free chiral fermion, in momentum representation. Using one-loop Feyn-
man diagrams we can determine completely the 3-point correlator of the e.m. tensor and
regularize it with standard dimensional regularization techniques. The idea is to Fourier
anti-transform it in order to shed light on the regularization in the coordinate represen-
tation. For two reasons we concentrate on the parity-odd part, although the extension to
the parity-even part is straightforward. The first reason is the presence of the Levi-Civita
tensor which limits the number of terms to a more manageable amount, while preserving
all the general features of the problem.



The second reason is more important: the appearance of the Pontryagin density in
the trace anomaly of this model. This parity-odd anomaly has been recalculated explicitly
in [22] after the first appearance in [19, 20|, with different methods. If one uses Feynman
diagram techniques the basic evaluation is that of the triangle diagram. Now, it has been
proved recently (this is one of the general results mentioned above) that the parity-odd part
of the 3-point function of the energy-momentum tensor in the coordinate representation
vanishes identically, [7, 8]. Therefore it would seem that there is a contradiction with the
existence of a parity-odd part in the trace of the e.m. tensor. Although this argument
is rather naive and forgetful of the subtleties of quantum field theory, it seems to be
widespread. Therefore we think it is worth clarifying it. We show below that in fact there is
no contradiction: a vanishing parity-odd “bare” 3-point function of the energy-momentum
tensor must in fact coexist with a nonvanishing parity-odd part of the trace anomaly.

The paper is organized as follows. In the next three sections we thoroughly analyse
the 2d case. The reason is that, although the results are known, in 2d many problems
that will appear in higher dimensions are already present and can be fully solved. So
2d is a useful playground for the rest of the paper. In section 2 and 3 we consider the
problem of regularizing the 2-point function of e.m. tensors in 2d using the techniques of
differential regularization (for the various techniques used, see [25-27]). In section 4 we
analyze the 2-point function of the e.m. tensor using Feynman diagrams techniques. In
section 5 we compute the 2-point function of e.m. tensors in 4d both using differential
regularization and Feynman diagrams. In section 6 we review a general no-go argument
concerning parity-odd contributions in the 3-point function of e.m. tensors, we explicitly
compute the parity-odd part of the correlator of three e.m. tensors in the chiral fermion
model in 4d in coordinate representation and show that it identically vanishes. We repeat
the last computation using Feynman diagrams and regularize it, and show how it gives
rise to the parity-odd trace anomaly. We show that irreducible Lorentz components of
the correlators, in particular those containing the trace and the traceless part of the e.m.
tensor, must be regularized separately. We also discuss the connection of the anomaly
with the e.m. conservation. We show that in general regularization breaks covariance
and counterterms must be subtracted in order to recover it. In section 7 we discuss the
prejudices on the existence of the Pontryagin anomaly.

To complete this introduction we present general formulas for the trace and divergence
of the e.m. tensor. The problem of regularizing the e.m. correlators is strictly connected
with (and clarified by) coupling the system to gravity.

1.1 General formulas for the trace and divergence of the e.m. tensor

In general let us couple the energy-momentum tensor of a theory to a classical external
source j,,,. The partition function in terms of j is

Z[j/»“/] — <O|T{ 6% fmeMV(x)juu(z)}’O> — e_iW[juu} (]_1)
,l:n

= > g [ L 9 0) QT Ty (1) - Ty, ()} ),
n=0 =1




where the symbol 7 denotes a time-ordered product. The generating functional of con-
nected Green functions is'!
© i+l

W =Y o / T s 344 () OIT{ Ty (1) - T () HO)er (1.2
n=1 i=1

We will denote the full one-loop e.m. tensor by

SWj]
To(x)) =2—~—— , 1.3
(T () 57 (2) | s (1.3)
where hy,, is the fluctuation, g, = nu +hyw +... and g = — h* + ... with respect
to the flat metric 77#1,.2 The fluctuation hy, is the field attached to the external legs in
the Feynman diagrams approach. We can reconstruct the full one-loop e.m. tensor as a

function of h,, by means of the formula

1 [e.9]
Tw(x)) =— dzy ... | de,hH*Y () .. hH (x)
(Tt = 3532 [ o [ dnanoss o
0

5 (1.4)
X Shiv (1) C Shinvn (xn) <<T/w(1')>> o .
For instance, to first and second order in h the trace is given by
sy (TE@)| =21 T T @D )Ho) (1.5)
and
sty 5 (TE@D| = =2 (09 =) + 60w - ) OIT (T3 ()T (2)10)
+2(0[T{T (2) T (y)Tap(2) }0), (1.6)
and the divergence by
pr(y)«v" Ty () o —2i (0| T{0" Ty () Txp(y) }10) (1.7)

Tt should be understood that (O] T {Tyu, (1) - - Ty (2n)}|0)e corresponds to the sum of all Feynman
diagrams of the theory with n external legs. Notice that this is in general different from the n-point
function of e.m. tensors computed by applying the Wick theorem, see for instance [12, 13, 21]. For
example (0|7{T. ()Tps(y)}|0)c corresponds to the sum of two terms calculated with the Wick theorem,
(Tuv (z) Tpo (y)) and (%). In terms of Feynman diagrams the first one corresponds to a bubble diagram
while the second corresponds to a tadpole, both with two external legs. These additional terms containing
functional derivatives of the e.m. tensors correspond in configuration space to contributions at coincident
points. In the computations that are considered in this paper, when regularized, they will not contribute.

2The factor 5 in (1.1) is motivated by the fact that when we expand the action

2TL
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the factor 6‘;5V = %TW. Another consequence of this fact will be that the presence of vertices with one
g=n

1TW in correlation functions.

graviton in Feynman diagrams will correspond to insertions of the operator 3



and

6h;i(y) 5ha(;(z) (V@) =
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respectively, where the delta functions are 4-dimensional and the round brackets indicate
symmetrization. These formulas are obtained understanding that gravity is minimally
coupled and that the background is flat. If there is a nontrivial background metric, say g,go,,),
then we must insert 1/g(© in the integral in the exponent of (1.1) and, for instance, (1.6)

would be replaced by

1 1) 1 )
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h=0
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and (1.8) by a much more complicated formula.

2 2-point function of e.m. tensors in 2d and trace anomaly

In this section we regularize the 2-point function of energy-momentum tensors in 2d using
the techniques of differential regularization and we derive the very well-known 2d trace
anomaly. The ambiguities implicit in the regularization procedure allow us to make mani-
fest the interplay between diffeomorphism and trace anomalies.

Let us consider the 2-point function (7}, (z) Tps (0)). This 2-point function in 2d (i.e.
the “bare” 2-point function) is very well-known and is given by?

c/2

(T (z) Tpo (0)) = 7t Lup (@) Luo () + Lup (%) Lo () — Mpunnpo) (2.1)
where
IMV (l.) = N — 21';;'1/ (2'2)

and c is the central charge of the theory. For z # 0 this 2-point function satisfies the Ward
identities

" (T () Ty (0)) = 0, (2.3)

(Tl (x) Tpe (0)) = 0. (2.4)

30ne way of deriving this expression is by using the embedding formalism, see [5], for example.



The result (2.1) is obtained using the symmetry properties of the indices, dimensional
analysis and egs. (2.3) and (2.4).

The 2-point function written above are UV singular for x — 0, hence this divergence
has to be dealt with for the correlator to be well-defined everywhere. In this context
the most convenient way to regularize this object is with the technique of differential
regularization. The recipe of differential regularization is: given a function f (z) that needs
to be regularized, find the most general function F' (x) such that DF (z) = f (x), where D
is some differential operator, and such that the Fourier transform of DF (x) is well-defined
(alternatively DF (z) has integrable singularities).

In our case we have two guiding principles: the Ward identities and dimensional anal-
ysis. Differential regularization tells that our 2-point function should be some differential

operator applied to a function, i.e.
<T/u/ (v) Lo (0)) = Do (f(x)), (2.5)
while conservation requires that the differential operator D, ,, be transverse, i.e.
0"Dyvps =+ = 0"Dpype = 0. (2.6)

The most general transverse operator with four derivatives, symmetric in p,v and in p,o
that one can write is

D/WPU = O[D/(J}/)pa + ﬁD,ELQI/)pO'7 (27)
where
ID/(L]I-/)pO' = 000,05 — (M 0p0o + Npe0u0y) O + Nyuwnpe00, (2.8)
1
D}(LQV)pU = auavapao - 5 (Tlupauag + nupauaa + nuaauap =+ nuaauap) 0
1
+ 5 (nupnua + nupnua) o. (29)

One important fact about these differential operators is that they may not be traceless.
Indeed, by taking the trace we find

mwpl) — prpR) — (8,0, — 1,e0) 0 (2.10)

n uvpo — 11 v po pOc — Npo . .

Dimensional analysis tells us that the function f (z) in (2.5) can be at most a function of
log 22 since the Lh.s. of (2.5) scales like 1 /x4 and this scaling is already saturated by
the differential operator with four derivatives. Notice that we have introduced an arbitrary
mass scale p to make the argument of the log dimensionless. Let us write the most general
ansatz for (2.5):

<TMV (13) Tpa (0)> - D(l) |:Oé1 log N2x2 —+ a9 (log Iu,2x2)2 + .-
+D}p [Bl log 22 + B (log pi2a%)” + - } : (2.11)

nvpo



Now our task is to fix the coefficients «; and j; for (2.11) to match (2.1) for « # 0. As it
turns out we only need terms up to log? (otherwise one cannot avoid logarithmic terms for
x # 0) The matching gives us

c c
oL =—g; =B, ar=—[2= T
thus
c c 2
<Tl“/ (l’) TPU (0)> = _ﬂp/(}y)pa (IOg M2$2) - % (D;(Llu)pa - D;&?pa) (log M2$2) : (212)
Notice that 8y is absent in the final result. Indeed, the term with coefficient 37 is
— (Df},}m — D}fr)pa) (log ,u2:):2) (2.13)

and this term identically vanishes in 2d. If we take the trace of (2.12) we find that

€ v C
<Tﬁ (l’) Tpa (0)> = —@77“ D/(L]l-/)pd (10g M2$2) = @

These terms have support only at « = 0, for in 2d the d’Alembertian of a log is a delta

(0,05 — 1po D) Olog p?a?.

function, more precisely

Olog p?z? = 4n6* (x) . (2.14)
Therefore we find the anomalous Ward identity
T
<T[j () The (y)> = Cﬁ (0p05 — 1pe0) 52 (x —vy), (2.15)

If we consider our theory in the presence of a background metric g which is a perturbation of
flat spacetime, i.e. g, (¥) = Npo+hpo(y)+- -, €q. (2.15) gives rise to the lowest contribution
to the ‘full one-loop’ trace of the e.m. tensor, namely

™ v
<<T;lj>> = Cﬁ(auau - nuuD)h“ ) (2.16)
which coincides with the lowest contribution of the expansion in h of the Ricci scalar, i.e.
R = (0,0, — nu D)™ + O(h?). (2.17)

Covariance requires that the higher order corrections in h to the ‘full one-loop’ trace of
the e.m. tensor in the presence of a background metric g to be such that we recover the
covariant expression

(T = C%R. (2.18)

For a free chiral fermion ¢ = 1/472, vide section 4 or appendix A. We are authorized to use
the covariant expression (2.18) because the energy-momentum tensor is conserved (there
are no diffemorphism anomalies).

Using the above results it is easy to verify the Callan-Symanzik equation for the 2-
point function (2.12). The Callan-Symanzik differential operator reduces to the logarithmic
derivative with respect to u, because both beta functions and anomalous dimensions vanish
in the case we are considering. We get

0
s (T () T (0)) ~ (DL = D)) (10 %a?) =0 (2.19)

We see that requiring that the regularized correlator satisfies conservation at = 0 implies
the appearance of a trace anomaly. However this is not the end of the story, since there
are ambiguities in the regularization process we have so far disregarded.



2.1 Ambiguities

The ambiguity arises from the fact that we can add to (2.12) terms that have support only
in £ = 0. The most general modification of the parity-even part that would affect only its
expression for x = 0 is given by

Appe =  A1w0,05 + 1ps0,0,) Olog o’
+B (1p0y 0 + 11p0105 + Ne00p + Mue0,,0,) O log pla?
+C (MupNve + Muplue) OO0 log p?z®
+D1ywnpe D0 log 22 (2.20)

We remark that this term is in general neither conserved nor traceless

M Avpe = 4 ((A+2B)0,0,05 + (A + D)1pe0,0
+ (B + C) (w050 + 116,0,0)) 62 () (2.21)

Al =47 ((2A + 4B)0,05 + (A + 2C + 2D)npe0) 6@ (2) (2.22)

We notice that by imposing (2.21) to vanish imply that also (2.22) will vanish. We may
wonder whether using this ambiguity we can cancel the trace anomaly. This can certainly
be done by choosing 24+4B = —A—2C'—2D and adjusting the overall coefficient. But this
operation gives rise to a diffeomorphism anomaly. Its form is far from appealing and not
particularly illuminating, so we do not write it down (see however [23, 24]). In other words
the anomaly (2.18) is a non-trivial cocycle of the overall symmetry diffeomorphisms plus
Weyl transformations. As was discussed in [23, 24] it may take different forms, either as a
pure diffeomorphism anomaly or a pure trace anomaly. In general both components may be
nonvanishing. It is obvious that, in practice, it is more useful to preserve diffeomorphism
invariance, so that the cocycle takes the form (2.18).

3 Parity-odd terms in 2d

In this section we compute all possible “bare” parity-odd terms in the 2-point function of
the energy-momentum tensor in 2d. We follow three methods, the first two are general
while the third is based on a specific model. Needless to say all methods give the same
results up to ambiguities.

3.1 Using symmetries

The first method is very simple-minded, it consists in writing the most general expression
mfpda(m) linear in the antisymmetric tensor €, with the right dimensions which is symmet-
ric and traceless in u, v and p, o separately, is symmetric in the exchange (u,v) < (p, o),
and is conserved. The calculation is tedious but straightforward. The result is as follows.

Let us define

Tyvpe = % (Iﬂp(x)lw(a:) + Iw(x)lup(x) - 77W77pa) ) (3.1)



and

4
7;0Vdpdff($) = Z (EMAT/\VPU (l’) + EV/\THAPU (ZL') + Ep)\T;w)\cr (:U) + eaAT,uzsz (17)> . (3.2)

where ¢ is an undetermined constant. We assume (3.2) to represent (7}, ()75 (0))odd- It
satisfies all the desired properties (it is traceless and conserved). In order to make sure
that it is conformal covariant, we have to check that it is chirally split. To this end we
introduce the light-cone coordinates x4 = x° + 2!. It is not hard to verify that

(T4 4 (#)T--(0))oda = 0. (3.3)
3.2 The embedding formalism

The second method is the embedding formalism [5, 6], which consists in using the fact that
conformal covariance in d dimensions can be linearly realized in d+ 2. After constructing a
covariant expression in d 4+ 2 one projects to d dimensional Minkowski space. In particular
for d = 2 the method works as follows. We write the most general parity-odd contribution
to the 2-point function of a symmetric 2-tensor in 4d which, in addition, is transverse:

1 X1y’ ( XpYs
nBD —

(X-Y)?

(Tap (X)Tep (Y)>odd =

A< B D.
X v X-Y)+ < }+C’<—>

(3.4)
This term is symmetric on A, B and C, D and is transverse with respect to X4, Xp,

|:€AI cJ

Yeo and Yp. Our next step is to project this quantity to 2d. The projected correlator is
given by

OXA9XB gy oy P

<T,ul/ (':E) TpU (y)>0dd = 8.’1}'“‘ 6.’1}1/ ayp aya- <TAB (X) TCD (Y)>odd * (35)
We recall that
8XA A A a
o = 642z, + 6, = (0,2x,,,65,), A=+,—,a (3.6)

The contractions with the e-tensor give rise to a determinant, namely

0 1 0 1
Y/ = 2z, 1‘2 2y, y2 . (3.7)
5/‘1 zt 52 yJ

oxA
EAICT P}

X1 oy °®
H oyP

The translational invariance of the problem allows us to rewrite it in the form

(3.8)

For convenience, let us relabel z — y — x. This determinant is straightforward to compute
and it gives us

2z, :U2 0
52 T’ 5;

2 sa sc
xéuép

=— <2xu‘xi o5

) = — (2zy€apr®™ — z%ep) - (3.9)




Thus, the projected correlator is given by

xu.f

(Tyw (2) Tpo (0)) g = % [eap (53 -2 > (77110' - 296; U) + 1/} +p <+ 0. (3.10)

x2

In terms of I,,, (x) we have

(T;w () Tpo (0)>0dd = % [Eap (IS r) lo (z) + 1) (x) Lo (I))
teao (I;Y (@) Lup () + I} (%) Lp (33))} .

This correlator satisfies both tracelessness and conservation, as it can be verified by a direct
computation, but it is not symmetric under the exchange of u,v with p,o. Thus, our final

(3.11)

expression is (3.11) symmetrized in (u,v) <> (p,0):

<T;w (z) Tpo (0)>odd = o () L, (93))

I, (z

()
Lo (2))
I (55) Lp (z) ]

From (3.12) we notice a tensorial structure very similar to the parity-even part of the

(3.12)

5]
~— ~— ~

2-point function of 7}, namely

1

Tyvpo () = 1 Lup (%) Luo (2) + Lup () Lyo () — MuTpo) (3.13)

and it turns out that we may write (3.12) in terms of the partity-even part, i.e.

(T (2) Tpo (0)ggq = g(EQMTanU (@) + €ar T}, o (2) + €apTp, % (%) + €apT)u,* () -
(3.14)
This result looks different from (3.2) but it is not hard to show that, for x # 0, they are
proportional: ¢ = %e
Still another method to derive the same result is to use a free fermion model. This is

deferred to appendix A.

3.3 Differential regularization of the parity-odd part

The task of regularizing the parity-odd terms is very much simplified by the fact that we
are able to write them in terms of the parity-even part, see (3.14). We can therefore use
the same regularization as in section 2. Let us start by the regularization that preserves
diffeomorphisms for the parity-even part, eq. (2.12):

1 1 2,.2\2
Typo (z) = _ED/(“/)pU (logu x ) yr (D/(W)pa — DLJPU) (log,u x ) . (3.15)
Regularizing (3.14) with (3.15) leads to a trace anomaly

(TH (2) Tpo (0)), 4y = 2 1 © (60000 + €5ad™0,) 62 (z), (3.16)

~10 -



and a diffeomorphism anomaly
e

0" Ty (%) Toor (0))oaa = 5 €vad (1000 = p0s) 6% (). (3.17)

In the presence of a background metric g the anomalous Ward-Identities (3.16) and (3.17)
give rise to the following ‘full one-loop’ functions

(T (@) = 57 0a (97 Orgpm + 9 Dp0) (3.18)
(VT (@) = SreadR. (3.19)

The second is the well-known covariant form of the diffeomorphism anomaly. The consistent
form of the same anomaly is

(VT () ~ 00,041, (3.20)
We remark however that in 2d the two forms (3.19) and (3.20) collapse to the same form
to the lowest order, since

2€,00" (0008 — NapD) = €ua (010,05 — 130" 0 + (o <> )

We see that, in any case, the diffeomorphism anomaly is accompanied by the a trace

anomaly.

3.4 Ambiguities in the parity-odd part
We know that the regularization used above is not the ultimate one, because there are

ambiguities. They entail a modification of the parity-odd part given by

odd __ « a «
A = €aud vpo T €av A" o + €apA) o + €apA

oo (3.21)

pp
where the r.h.s. is written in terms of (2.20), which explicitly is
A = Al (9000 + €500%0p) + Npo (€40 00y + €4a0%0,)] Olog p%a?
+ B lepa (p0“0s + 10e0%0p) + €va (Mup0“ 05 + 1,60%0,) (3.22)
+€pa (Nep0“ 0y + N5, 0%0) + €50 (Npp0” 0y + 1p,0%0,,)] O log .,
The trace and the divergence of (3.22) are given by:
1" Appe = 87 (A + 2B) (€pa0 05 + €500%0,) 6% (1) , (3.23)

M Ayype = T (B0 + (A+ B)9,0,) €500%6% (2)
47 (BnyoDO + (A + B) 8,0,) €000°82 (z) (3.24)
+47 (Anpe0 + 2B,0y) €,60%6% (z) .

Using these ambiguities we can recast the expressions (3.16) and (3.17) in the form

(Tl (1) Tpo (0)) g = (87 (A+2B) + 50 ) (cpudDy + a0, 8% (1), (3.25)

" (T (2) Ty (0)) qq = 47 (Bmup0 + (A + B) 9,0,) €500%0* (z)
+47 (BT + (A + B) 0,05) €006 () (3.26)
feY 16 _ 713 2
+€,a,0 ((47rA + 24) Npe D + (87rB 24) apﬁg) 0% ().
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If we impose that (3.25) is zero we find
e
A=—— — .
19 2B, (3.27)

which implies that (3.26) takes the form

€ (6%
0" (T (2) Tper (0)), 4q = 47 [Bnypm - (@ n B) ayap] €0ad*0% (z)

+dn [anm - (ﬁ + B) aya(,] €00 082 (z) (3.28)
— eyad® [(Z—; +878) o0 — (878 - %) 0,05 % (x).

The choice (3.27) allows us to eliminate the trace anomaly (3.18) but by doing so the
diffeo anomaly becomes (3.28), which will not imply a covariant expression for (7},,)) for
any choice of B. Thus, the most general regularization that one can write is given by the
equations (3.25) and (3.26). An important point of (3.26) is that there is no choice of A
and B for which it is zero, hence inevitably we will have a diffeomorphism anomaly, unless
the overall factor e = 0, which depends of course on the specific model.

4 The Feynman diagrams method in 2d

It is interesting and instructive to derive the results above using Feynman diagrams. There
is only one non-trivial contribution that comes from the bubble diagram with one incoming
and one outgoing line with momentum k& and an internal momentum p (see figure 1). The
pertinent Feynman rule is

P
i 1T+ 7
v =2 |+, + (4P, %] =5 (4.1)
pf
The relevant 2-point function is*
ko —ik(z—
T @Togf) = 4 [ Gze ™ DTy (1) (42)

with

2 14
T () = —6i4 / (57:;2‘51" (;(21) _ kmyp_lk(gp - k)wle;%> + { e ' } (43)

Taking the trace and regularizing by introducing extra components of the momentum
running around the loop, p = p+ € (£ = ly,...,ls12), we get

1 d? doy +/
‘.T“M/\p(k;) T 3 (27:;2 / (2m)° tr <p€ — 2 (QP +2f - 5])

M(Qp — k))\'Yp ! ‘27*)

- 12 —



Figure 1. The relevant Feynman diagram for the computation.

and the symmetrization A < p is understood from now on. Introducing, as usual, a
Feynman parametrization of the integral in (4.4) and using the results in appendix (C) one
finally gets for the even part

1

(Teven)" 0 (K) = 195 (mpk® + kak,y) (4.5)

which corresponds to the trace anomaly
) P— ( h+ 050 W) +0(h2). (4.6)

# 487 g
For the odd part we get instead
]' g (o

(‘J'Odd)u/l)\p (k) = —@ (6 pko'k)\ + (6 )\ko'kp) 9 (47)

which corresponds to the trace anomaly

1

(Th) = =—€°p 0,0\™ + O (h?). (4.8)

241

The trace anomaly (4.6) is not the expected covariant one. The only possible explanation
is that our regularization has broken diffeomorphism invariance. In order to check that we
have to compute the divergence of the energy-momentum tensor with the same method.
The relevant Feynman diagram contribution is (after regularization)

1 [ d%p [ d%
‘DI/AP(]{;) - 64/(27‘-)2/(277)6

+/ +/—k L+ %
tr (;2 — (2p — k) kM ’Yu(p?_k)Q_p(zp — k) —;7 (4.9)
+/ +/—k L+ %
+p€_€2(2p_k)l/%(f_k)2_€2(2p—k))ﬁp —;7 > ’

Explicit evaluation gives for the even part

1
Mok k?, (4.10)

Devcn =
( )V)\p (k) 967

4The factor of 4 in (4.2) is produced by the fact that the vertex (4.1) corresponds to the insertion of

%Tw, not simply Ty, in the correlator, as explained in the footnote in (1.1).
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which corresponds to the diffeomorphism anomaly
1
VA(Tw)) = 5-€"0,0n + O (h?). (4.11)

For the odd part we get instead
1

(®Odd)y)\p (k) = 1927 k? (Eap'r/u)\ - Eupkk) K+ {A < p}, (4.12)
which corresponds to the anomaly
VH(T)) = ———e7 (Br2n0u13 — 3,0, ) (4.13)
. 967 7 po TR

Using the lowest order Weyl transformation
Swhyw = 2w Ny, (4.14)
and diffeo transformation
Sty = Ol + Dt (4.15)
it is easy to prove that the consistency relations
dwHw =0, d¢Aw +0cAL, =0, deAe =0, (4.16)

hold, where
Ay =— / dz w(Th), and A¢= / d*x E'VH(T, ). (4.17)

For the even part A© it is possible to add a counterterm to the action and restore covari-
ance. The couterterm is

1 2
= Oh. 4.1
R / Pah (4.18)
After this operation the divergence of the e.m. tensor vanishes and the trace anomaly
becomes
1
AD AP +o,8= o [drw (aAaph*P - Dh> , (4.19)
™

which is the expected one (see above).

Similarly the parity-odd anomalies (4.7) and (4.13) satisfy the consistency rela-
tions (4.16). One can add an odd counterterm to eliminate the odd trace anomaly but
this is definitely a less interesting operation.

The results obtained in this section are well-known. The methods we have used to
derive them teach us important lessons. The first concerns dimensional regularization. If
not explicitly stated it is often understood in the literature that dimensional regularization
of Feynman diagrams leads to covariant results. We have seen explicitly that this is not
true, and a reconstruction of covariance with counterterms is inevitable. In view of the
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discussion on 3-points correlator of the e.m. tensor in section 6.4 we notice that the piece
of (4.4)

d? d°¢ / /- .
AT 0 =5 [ | (Wtr<7’+ i A - k>wp”27> (4.20)

contributes in an essential way to both even and odd anomalies. Without this piece the
result of the calculation would be inconsistent. It marks the difference between first reg-
ularizing and then taking the trace of the e.m. tensor or first taking the trace and then
regularizing. From the above it is obvious that the second procedure is the correct one. In
other words every irreducible Lorentz component of tensors must be regularized separately.
This is the second important lesson. We will return to this point also in the final section.

5 2-point correlator of e.m. tensors in 4d

In this section we are going to discuss the 2-point correlator of the e.m. tensors in 4d. The
expression in coordinate representation is well-known. We would like here to regularize it
with the differential regularization method, and, later on, compare it with the expression
obtained in momentum space with Feynman diagram techniques.

5.1 Differential regularization of the correlator

The unregulated 2-point function of e.m. tensors in arbitrary dimension d in coordinate
representation is given by

(Tyw (2) Tyo (0)) = ;/23 <IM> () Lo () + Lyp () Lo () — jnuvnpo) (5.1)
where
L (z) =y — 22257 (5.2)

2
x
As before, it can be regularized by writing down a differential operator which, acting on
an integrable function, generates it for z # 0. One possibility for d > 3 is the following®

c/2 1
<T/W (x) TPU (O)> - _2 (d — 2)2/d (d2 _ 1)D;(Lll)pa (xQd—4>
c/2 @ L
2d—27d@d+1) P <xzd—4> : (5.3)

®Notice that for d > 4, the function 1/22¢~* is indeed integrable, while we have a function which is log
divergent for d = 4 and linearly divergent for d = 3 and in both cases we need a regularization. In the spirit
of differential regularization, we may use the following identities

d=3: =S = 1\Z\log;/L23U2,
T 2

1 1_log p?a?
d=4: — =-—-0
x4 4 z2

where log p2z? and (log ,u2:v2) /x2 are integrable functions in the respective dimension.
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where

Dl(tlv)pa = 000,05 — (N 0p0o + Npe0u0y) O + Nyuwnpe 00, (5.4)
1
/D/(Eu)pa = auauapaa - 5 (nupauaa + nupauaa + nuaauap + nuaauap) i
1
+ 5 (anua + nupn,ua') o. (55)

Both these operators are conserved but not traceless:

77”'/7),(}1/),00 - = (d - 1) (apao - npUD) 4, (56)
W”VD;(Lzz)pa = - <8p80 - npUD) o, (5.7)

nonetheless (5.3) is both conserved and traceless. The expression (5.3) coincides with (5.1)
for x # 0, it is conserved and traceless.

There are, as usual, ambiguities in the definitions of the operators (5.4) and (5.5) for
x = 0. Particularly, in d = 4 we may consider the most general modification that one could
add to the expression (5.3), namely

Appo = [A0,0,0,0,0 + B (104005 + 0p0u0s + Muc0y0p + 1000,0,) O?
+C (N 0p0s + Mpo00y) 0%+ D (Mupve + MupTue) 0% + Enuvnfwmg] % (5.8)
Conservation of A requires
C=-A+2D, D=-B, E=A+2B. (5.9)
With these conditions the trace of A is

At = —47% (3A 4 4B) (1,00 — 8,0,) 06 (2) . (5.10)

wpo

This corresponds to the trivial anomaly OR, which can be subtracted away by adding
a local Weyl invariant counterterm to the action. The existence of a definition of our
differential operators which do not imply in the existence of this anomaly reflects the fact
that it is a trivial anomaly.

5.2 2-point correlator with Feynman diagrams

The computation is very similar to the one in 2d. Again, the only diagram that contributes
is the one of figure 1 and we have®

4 ~
(T (2) o (y)) = 4 / (§W§4eik(xy)7uy,\p(k) (5.11)
where
. 4 ”
Tunslb) =5 [t <;(2p - kmyp_lk@p ~ )t 275) ¥ { o } (5.12)

SFor the factor of 4 in (5.11), see the footnote in section 4.
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To evaluate it we use dimensional regularization. After introducing the Feynman
parameter x and shifting p as follows: p — p — (1 — 2)k, (5.12) writes’

5 B / / / d°C (2p+ (1 —22)k),(2p + (1 — 22)k)) (5.13)
k) = —35 )0 (P2 + z(1 — 2)k2 — 12)2 ‘
[ D+ (1 - :E)k) ( 'Ik) (na'unfp — NorNvp + NopTlvr — Z'60'1/7';)) - £277up}

After the integrations (first ¢, then p, then x) one finds®

T (k) = Dyuro (k) + Funp (k) + Lownp(k) (5.14)
where
~ 7

D) = = o7 155 [Bhukvaly + 482 (s + k)

1
— 6k? (kuk)\nup + kaAn,up + kukpnw\ + kukpn,u)\) (5.15)
— 4k nung + 6k (Muative + Nupnior)]
which is divergent for § — 0, but conserved and traceless,
~ i log k2
Lonpk) =— —— kukykak, 4k? (k,k, kxk,muw
Iz Ap( ) 32(471') 30 [8 AEp + ( wluMap T ARy )
(5.16)

— 6k° (kukAnup + kukanue + kpkpnox + kukpnu)\)
- 4]{:477111/7])\0 + 6k4 (nuknup + nupnu)\)]
which is also conserved and traceless, and
i 1 31
— —log4 kykykk
32(47)2 30 [8 ( og 4 + 450> uivEXTp

31
+2 (1 — 7+ log4r + 150) K2 (Bukamiup + Kok + kukonoa + kukonua)

f;ruw\p(k) ==

10 47

4

= Ay +4logdn — —— | 1

+k:<3 7+ 4 log 4 225)%% (5.17)
ey

—k §—6fy+6log47r (MuATvp + Nupor)

47
—]{)2 (4 4’}/ +4 log 4 + 450) (kukyn)\p + k)\kpn/u/)]

which is neither conserved nor traceless.
Let us consider first £. We recall the Fourier transform

4 2, k?Q
/d4xe —logu 232 = 222 <log2 — v —log M2) : (5.18)

Therefore, up to the term proportional to (log2 — ), by Fourier transforming (5.3) we
obtain precisely (5.16) with ¢ = 1/7%, in agreement with the results of [3, 4]. The term

"We use the mostly minus signature for the metric.
8To do integration properly we have to Wick rotate the momenta and, after integration rotate them
back to the Lorentzian signature. We understand this here.
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proportional to (log2 — ) is to be added to (5.17). Now the divergence of T contains three
independent terms proportional to kzk,,k)\kp, k4k:ymp and k4(k)\nyp + kpnua), respectively,
while the trace contains two independent terms proportional to kaz)\k’p and k4n>\p. On
the other hand the ambiguity (5.8) contains the same 5 independent terms with arbitrary
coefficients. Therefore it is always possible to set to zero both the divergence and the
trace of T by subtracting suitable counterterms. In the same way one can argue with the
divergent term D. This term deserves a comment: it is traceless and divergenceless, but
it is infinite, so it must be subtracted away along with the F term. Both F and D, the
Fourier anti-transforms of F and 23, are contact terms and they can be written in a compact
form as

(T () = A0D,0:0,0 (@) + B' (0,030} (x) + D0,03N(2) ) + €'t ()
+ D Phy, (z) + B <D@M8,,h(x) + nMVDG)\(?ph)‘p(a:D (5.19)
1

where h = h} and A’, B,C’, D', E' are numerical coefficients that contain also a part ~ 5.
The local term to be subtracted from the action is proportional to

Al
/ d'z (211#“8“8”@@}# + B'h"'00,0\h;)
/ D/
+ ?hDQh + 7hfwm%w + E’h’“’Dauayh) (5.20)

We can conclude that the (regularized) Feynman diagram approach to the 2-point corre-
lator is equivalent to regularizing the 2-point function calculated with the Wick theorem
approach. But we can draw also another, less pleasant, conclusion. Like in 2d, the Feyn-
man diagrams coupled to dimensional regularization may also produce unwelcome terms,
such as the D and F terms above, which must be subtracted away by hand.

Finally we notice that, once (5.20) has been subtracted away, not only the nonvanishing
trace and divergence of the em tensor disappear, but the full contact term (5.19) gets
canceled. Thus the regularized 2-point correlator of the e.m. tensor coincides with the
“bare” expression.

6 The 3-point correlator

The calculation of the 3-point correlator brings new elements into the game. First and
foremost new (nontrivial) anomalies, but also an enormous complexity as compared to the
2-point correlator. In this section we first show that generically at non-coincident points the
3-point function of e.m. tensors in 4d does not possess a parity-odd contribution due to the
permutation symmetry of the correlator. Then we compute the “bare” 3-point correlator by
means of the Wick theorem in the same specific chiral fermionic model considered above,
disregarding regularization. We find that, as expected, the parity-odd part identically
vanishes. Subsequently we compute the same amplitude using Feynman diagrams and
regularize it. It turns out that not only the parity-even but also the parity-odd trace of
the e.m. tensor is nonvanishing. We will explain this apparent paradox in section 7.
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6.1 No-go for parity-odd contributions

In this subsection we will review the fact that in four dimensions there are no parity-
odd “bare” contributions to the 3-point function of energy-momentum tensors, which has
already been emphasized in [7, 8].

A very powerful tool to analyse which tensorial structures can exist in a given cor-
relation function in a CFT is the embedding formalism as it was formulated in [6]. In
their language, to construct conformally covariant tensorial structures becomes a game of
putting together building blocks respecting the tensorial requirements of your correlator.
Particularly for the 3-point function of e.m. tensors we have seven building blocks. These
building blocks are written in terms of points P; of the six-dimensional embedding space
and lightlike polarization vectors Z;. Three of them depend on two points, namely

Hip = =2((Z1- Z2) (P1 - P2) — (Z1 - P2) (Z2- P21, (6.1)
Hys = =2[(Z2 - Z3) (P2~ P3) — (Z2 - Ps) (Z3 - )],
Hiz = =2((Z1 - Z3) (P - P3) — (Z1 - P3) (Z3 - P1)]. (6.3)

Four of them depend on three points, three being parity-even, namely

(Z1-P) (P1-P3) — (Z1- P3) (P )

. ) | (6.4)

vy~ B Py (PP = (2o ) (P o) (6.5)
P;- P

vy = (G BB = (e P (P 1) (6.6)

while the last one is parity-odd, being the only object that one may construct with an
epsilon tensor, i.e.

Oro3 = €(Z1,22,Z3, Py, P>, Ps3) . (6.7)

Our job now is to put together these objects to form a conformally covariant object
with the tensorial structure of the 3-point function of e.m. tensors. Particularly, the
objects that we will construct must present twice each polarization vector Z;, since each Z;
is associated with one index of the i-th e.m. tensor. Since we are interested on parity-odd
terms we will necessarily have the building block O123 which already takes care of one
factor of each Z;, thus it is clear that our only options are

T1 = O123V1 V2 V3, (6.8)
Ty = Oq23 (ViHaog + VoHis + V3Hya) .

In the following we will show that both 77 and T5 are antisymmetric under the permu-
tation of 1 and 2 for example, which forbids them to be present in the 3-point function of
e.m. tensors. By inspection of the expressions (6.1)-(6.7) we see that under the exchange
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of 1 and 2 our building blocks change as follows:

Hy2 — Hio,
Hys — His,
Hiz — Hoas,
Vi — —Va,
Vo = =V,
Vs — Vs,

O123 — O123.

From these rules it is clear that both 77 and 75 are antisymmetric under the exchange of
1 and 2. Of course the same result holds for the exchanges 1 <+ 3 and 2 < 3.

6.2 The “bare” parity-odd 3-point correlator

Consider a free chiral fermion 17, in four dimensions which has the 2-point function?

P SN B O Gt ), -7
(Vo (@)L (v) = 5 o) Py, Pp=-——, (6.10)
and the e.m. tensor
1 (— “— —
Ty = 1 <¢L’yu Ov YL +p 1/) , where 9,=0,— 9, . (6.11)

Since we are dealing with a free theory we are able to compute the 3-point function of e.m.
tensors by applying the Wick theorem. Using the explicit form of the e.m. tensor (6.11)
we write

(T () Ty () Tas (2)) =5 < D B v (2) Dy B 1) Vi 93 wiL : <z>>

+ symmetrization. (6.12)

There are two ways to fully contract these fields, as shown in equatlon (6.12). Each of
the contractions is composed by a certain tensor with six indices f vachBe contracted with a
trace of six gamma matrices and a projector Pr, namely

fyaawctr('VW‘%V’%WCPL> and f! agb&tr (W’Y VoYY PL) (6.13)

where the upper index of f is 1 for the first way of contracting and 2 for the second way.
The ordering of the free indices in the trace are given by the two ways of performing the
full contraction. The functions f vachfe A€ composed by eight terms which are the eight
forms of distributing the derivatives in the right hand side of (6.12). We will show that in

9The factor of # in the propagator of a fermion in 4d is needed in order for its Fourier-transform to
give the usual propagator, namely %
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reality f) and f® are the same object. To see this we will only need to exchange a with
¢ in the expression for the second way of contracting, i.e.

2 1
Famnaett (3707 907 PL) = Flomactt (1770727 Pr ). (6.14)

Hence, the sum of the two ways of contracting will simplify to
1
£ s [tr(wv“vwbvwcPL) + tr <vwc'ya7b7pvaPL)} - (6.15)

It is possible to put the second trace in the form tr ('ypvavufycva'ybPL), which reduces our
final expression to

fyao_b/@,c [tr (Wuyavp'yb’yaycPL> 4+ tr <7p’y“’yu’ycva7bPL)} . (6.16)

The trace of six gamma matrices and a gamma five is given by

tr(7u7a7p7b7a7c75) =4 (nuafpbozc — Nup€abac + Mpa€ubac

(6.17)
FNacCpapb = MbcCpapa + nabe,uapc) .

As one can easily check, the trace (6.17) is antisymmetric under the exchange
(1 <> p,b <> ¢), thus the odd part of the correlation function is zero.
Now we will work out what are the functions f() and show the relation between f()

and £ mentioned above. From the first way of contracting we derive the expression

tr[vuay<7a8a(ac_1?J)2PL>7pa ( ab( ! e PL>%85( a(z_lgC)ZPL)h---, (6.18)

where the ellipsis stand for the seven other ways of organizing the derivatives 0,, 0, and
0. From (6.18) we see that we will have some expression that we call f (1) contracted with
tr ('yufya’yp'yb'ya'ycPL). The expression for f(I) can be read off from (6.18):

1 1 1 1
£ e = 0202 B — o 50} o7
" (z - <y - (=9 (y-2)"" " z—a)
1 1 1
—8?’(9:”89” oY 3 07 — 0307 07
v—y)’ l Te-a? - <z—x>2]
1 1 1
—0% ayay o 07 — o 0507
’ l R R r— ”@@21
1
— 00507 Loy — v oy 6.19
’ <z—x2l“<x— Ty -2 ( —y)”(y—z)zl (019
The second way of contracting give us the expression
tr[”y@('ya@ L P)’yé?( b9 L )78( €0 L Pﬂ%—
nYv a9 1L atp b 9 atp - 9ol1L )
(x - 2)° (z—y)° (y— )
(6.20)
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from where we may read off the expression for f():

1 1 1 1 1 1
@ = 0T 8207 8oV — 0508 040 ;0%
b S R O R (T e P e P N R
1 1 1 1 1
—079YY o D507 — 930" Of
<y—x>2l (@2 " (e—y)’ T (@—2) <z—y>21
0050 — zlﬁfaf; SV S ——— ]
(=) (x—2)" " (y-z) (@—2)" """ (y—u)
1 1 1 1 1
- vYa b V¢ — UgUp c . .
950208 5 |9¢ 5 0YY 5 — OYO; 50! . (6.21)
(x—2) (z—y) (y— =) (z—y)” (y—=)

It is now a straightforward exercise to check that if one exchanges a with ¢ in the expression
2 1 .
of fy(azrbﬂc one gets fy(azrbﬁc, ie.

f, ingﬁa = S;Z;bﬂc' (6.22)

We remind the reader that in this computation we have ignored coincident point singulari-
ties. The next task will be to take them into account, which will be done in momentu space.

6.3 Relevant Fourier transforms

In the next subsection, in order to compute the 3-point amplitude of the e.m. tensor,
with the Feynman diagram technique we will use (momentum space) Feynman diagrams.
Although essentially equivalent to the Wick theorem they lend themselves more naturally
to regularization. The two techniques are related by Fourier transform. Hereby we collect
a series of Fourier transforms of distributions that are used in our calculations. The source
is [28]. The notation is as follows

~ . 4 . ~
Fo@lt) = 6(0) = [atee™ow).  ole) = [ gze™atm

In particular

e 1 Am2i
4 k _
/d fE@Z z p = ?, (623)
2 log 22 u? 4% —k?
/d4$ €ka T = —? log ? s (624)

where fi? = 2u%e™, v = 0.57721 ... being the Euler constant. As we have seen this is
essentially what one needs to compute the Fourier transform of the 2-point correlator. The
novel feature in the calculation of the 3-point correlator is the appearance of products of
similar expressions in different points, a prototype being

1
(z —y)*(z—2)%(y — 2)*

(6.25)
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This is singular at coincident points and has a non-integrable singularity at t =y = 2z = 0.
Ignoring this let us proceed to Fourier-transforming it

i(k1z+kay—qz) ei(k1$+/€231+(k1+k2—4)z)
dha diy d* ‘ = / iz d*y d* 26
faas (2= 9P =2y -2 ’ (z— )2y (6:26)
i(klx—i-kgy)
= 2m)4 (g —ky — k) [ dradly ———
m)'sla =k k) [ atedly Ty
Let us set f(z,y) = m Then, using the convolution theorem, the Fourier transform
of f with respect to z is
Eifeltn = [dees sy =L fate 2
A S e
1 dp 1 1
== | —— Fo | = |k - | —
7 | @ | -0 # [
1 ety
=—= [dp———. 2
y2/ P20 —k)? (6:27)
Therefore
g g4 €lhothy) 4 ikay
/d zd y(x_y)QnyQ:/d y e Folf(z, y)l(k1)
dp 1
= —i(2m)" / : 6.28
(2) (2m)* p2(p — k1) (p + k2)? (6:28)

We can now compute the r.h.s. of (6.28) in the usual way by introducing a Feynman
parametrization in terms of two parameters u, v:

/<d4> e /d“/ /d4’ Ay

where p’ = p — uk; + vke and A = u(1l — u)k? + v(1 — v)k2 + 2uv k1 ko. Performing the p’
integral one gets

1—u d6£ 1 1u
/du/ dv/ / AT ZEWNE 247r /du/ —  (6.30)

Our attitude will be to define the regularization of (6.25) as the Fourier anti-transform of
the (6.30).

In general, however, the expressions we have to do with are not as simple as (6.30)

and the integrals as simple as (6.28). The typical integral of the type (6.28) contains a
polynomial of p, k1, ko in the numerator of the integrand. In this case we have two ways
to proceed: either we extend the running momentum p to extra dimensions (dimensional
regularization), as we have done in 2d, carry out the integration and Fourier-anti-transform
the final result, or we reduce the calculations to a differential operator applied to the
Fourier-anti-transform of (6.30) (differential regularization). Usually the former procedure
is more convenient, while in many cases the latter is problematic.
Other analogous expressions are obtained in appendix D.
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6.4 The parity-odd 3-point correlator with Feynman diagrams

This section is devoted to the same calculation as in subsection (6.2), but with Feynman
diagram techniques. In order to compute the 3-point function of the energy-momentum
tensor for a chiral fermion, it is very convenient to couple it minimally to gravity and
extract from the corresponding action the Feynman rules, as in [22, 30]. The relevant
formalism and notation is reviewed in ap