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1 Introduction

Construction of a manifestly Lorentz invariant field theory for heterotic or type II strings

has been an open problem. The problem essentially comes from the Ramond (R) sector

— there is no natural, fully consistent candidate for the kinetic term of R sector fields. In

contrast in the Neveu-Schwarz (NS) sector one can write down a consistent field theory at

the tree level [1–14]. However since in quantum theory R sector states propagate in the

loop even if the external states are all NS sector states, absence of a tree level string field

theory including the R sector states constitutes a bottleneck in the construction of a string

field theory at the quantum level.

The purpose of this note is to circumvent this problem by introducing the notion of

gauge invariant one particle irreducible (1PI) effective action for string field theory involving

NS sector external states. As in conventional field theory, the full quantum amplitudes are

given by the tree level amplitudes computed from this 1PI effective action. Thus if we are

working with external states in the NS sector, we do not need to worry about the R sector

states — they have already been integrated out in constructing this 1PI action.

In a quantum field theory the construction of the 1PI action requires fixing a gauge,

computing the 1PI amplitudes using the propagators and vertices of the gauge fixed theory,

recasting the result in terms of an 1PI action, and then expressing the result as a sum of

a gauge invariant effective action and a gauge fixing term. It turns out that string theory

– 1 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
2

allows us to bypass all the steps and directly construct a gauge invariant 1PI action.

Of course the final S-matrix elements computed from this are still expressed as integrals

over the moduli spaces of Riemann surfaces, and so the construction of this 1PI action

does not simplify this computation. However since the 1PI action can be used to ask

questions which require going off-shell in the intermediate stage, e.g. the issues of mass

renormalization [15, 16] and vacuum shift [17] studied recently, using the 1PI effective

action we can simplify the analysis of these questions.

Our construction of the 1PI effective action will be based on the definition of the off-

shell amplitude given in [18] using the formalism of picture changing operators (PCO’s) [19–

22]. On-shell there is also a more geometric approach based on integration over supermoduli

space [23–41]. Off-shell generalizations of this formalism was attempted in [23–25], but,

to our knowledge, a fully satisfactory formalism does not yet exist. If such a formalism is

developed then it can also in principle be used to give a different construction of the 1PI

effective action.

The 1PI action we have introduced here leads us to the same definition of off-shell

amplitudes as the ones used in [15–17]. The main advantage of using the formalism of

gauge invariant 1PI action is that using this we can simplify the proof that various physical

quantities computed from off-shell amplitudes are independent of the choice of the local

coordinates or the locations of the PCO’s used in defining the off-shell amplitude. We list

below some of the concrete results coming out of this formalism:

1. In the presence of massless fields, conventional string perturbation theory requires an

infrared cut-off to regulate contributions from separating type degenerations at the

intermediate stages of calculation [33]. Our approach based on gauge invariant 1PI

effective action eliminates the need of such an infrared cut-off by subtracting off the

contribution from massless fields to the propagator using a well defined procedure.

2. It has been known for a while [33, 42] that if we change the local coordinate system

and/or PCO locations, then in order to keep the physical quantities (including con-

ventional on-shell S-matrix elements) unchanged we need to make appropriate shifts

of various moduli fields. The formalism based on 1PI effective action provides a nat-

ural explanation of this result by using the fact that two different 1PI effective action

corresponding to different choices of local coordinate systems and/or PCO locations

are related by a field redefinition and this field redefinition in general produces a shift

in the moduli fields.

3. ref. [16] described a general procedure for computing renormalized masses of physical

states using the Siegel gauge kinetic term. However for general states a direct proof

of the fact that these renormalized masses are invariant under a change of local

coordinate system and/or PCO locations was lacking. We give a proof of this by

relating the Siegel gauge analysis to the analysis of the kinetic operator of the gauge

invariant 1PI effective action. Since under a change in the local coordinates / PCO

locations the kinetic operator of the 1PI action gets conjugated by a non-singular
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matrix, the locations of its zero eigenvalues in the momentum space, representing

physical states, remain unchanged.

4. ref. [17] described a general procedure of computing string theory amplitudes around a

vacuum that is not the perturbative vacuum but is obtained from it by a small shift of

a scalar field. Using the 1PI effective action one can give a justification of these rules.

Also unlike in the approach described in [17] where one needs an infrared regulator

at the intermediate stages of the calculation for regulating massless tadpoles, in

the approach based on 1PI effective action we determine the vacuum expectation

values of the massless fields by solving their equations of motion, and hence avoid

the appearance of tadpoles even at the intermediate steps of the calculation.

The rest of the paper is organised as follows. In section 2 we review the background

material needed for the construction of the 1PI action. In section 3 we describe the 1PI

action, its gauge invariance, equations of motions and the construction of the vacuum

solutions. We also show that the change in the 1PI action under a change in the choice

of local coordinates at the punctures and locations of the PCO’s used in the construction

of the 1PI action can be absorbed into a redefinition of the string fields. Most of the

results in this section are adaptations of the corresponding results in classical bosonic

string field theory [43–49] in this new context. In section 4 we apply this formulation to

study mass renormalization and vacuum shift effects in string theory. In particular we give

a simple argument showing that the renormalized physical mass and the S-matrix elements

in perturbative vacuum are independent of the choice of local coordinate system and the

PCO locations used to construct the 1PI action. This argument can also be extended to

the shifted vacuum when the latter is the correct ground state, Finally in appendix A we

extend the analysis of section 3.4 to show that even when we consider two choices of PCO

locations which differ in their vertical segment, there is a field redeinition that relates the

corresponding 1PI actions.

2 Background

In this section we shall review some of the background material that goes into the con-

struction of the 1PI effective action of string field theory. For definiteness we focus on the

NS sector of the heterotic string theory but the results have straightforward generalization

to the NSNS sector of type II string theories. We shall follow the conventions of [18].

The world sheet theory contains a matter superconformal field theory with central charge

(26,10), and a ghost system of total central charge (−26,−10) containing anti-commuting

b, c, b̄, c̄ ghosts and commuting β, γ ghosts. The (β, γ) system can be bosonized as [19]

γ = η eφ, β = ∂ξ e−φ, δ(γ) = e−φ, δ(β) = eφ , (2.1)

where ξ, η are fermions and φ is a scalar with background charge. We assign (ghost number,

picture number, GSO) quantum numbers to various fields as follows:

c, c̄ : (1, 0,+), b, b̄ : (−1, 0,+), γ : (1, 0,−), β : (−1, 0,−),

ξ : (−1, 1,+), η : (1,−1,+), eqφ : (0, q, (−1)q) . (2.2)
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We do not make any specific choice of the matter superconformal field theory except that

it has a free part describing Minkowski space-time so that we have the notion of mass

spectrum, S-matrix etc.

We now introduce a vector space H0 containing a subset of states in the matter-ghost

conformal field theory satisfying the following conditions:

|s〉 ∈ H0 iff b−0 |s〉 = 0, L−
0 |s〉 = 0 , η0|s〉 = 0, picture number of |s〉 = −1, (2.3)

where

b±0 ≡ (b0 ± b̄0), L±
0 ≡ (L0 ± L̄0) . (2.4)

The off-shell string field is taken to be a state |Ψ〉 ∈ H0 of ghost number 2. For later use

we also define

c±0 =
1

2
(c0 ± c̄0) . (2.5)

Finally we denote by QB the BRST charge and by X (z) = {QB, ξ(z)} the picture changing

operator.

Since our construction will make use of some of the results of [18], we review here

the pertinent results. We denote by Mg,n the moduli space of Riemann surfaces of genus

g with n distinguishable punctures. P̃g,n will denote a fiber bundle over Mg,n where

the fiber is infinite dimensional, containing information about a choice of local coordinate

system (up to phases) around each puncture and locations of 2g + n − 2 PCO’s on the

Riemann surface.1 In [18] we constructed, for a set of states {|Φ1〉, · · · |Φn〉} ∈ H0, a p-form

Ω
(g,n)
p (|Φ1〉, · · · |Φn〉) on P̃g,n for arbitrary p, satisfying

n∑

i=1

(−1)n1+···ni−1Ω(g,n)
p (|Φ1〉, · · · |Φi−1〉, QB|Φi〉, |Φi+1〉, · · · |Φn〉) =

(−1)pdΩ
(g,n)
p−1 (|Φ1〉, · · · , |Φn〉) , (2.6)

where d denotes exterior derivative on P̃g,n and ni is the ghost number of |Φi〉.

Ω
(g,n)
p (|Φ1〉, · · · |Φn〉) is a multilinear function of the n states |Φ1〉, · · · |Φn〉, constructed

in terms of a correlation function on the Riemann surface with the state |Φi〉 inserted at

the i-th puncture using the local coordinate system at that puncture. It has the symmetry

property

si,i+1 ◦ Ω
(g,n)
p (|Φ1〉, · · · |Φi−1〉, |Φi+1〉, |Φi〉, |Φi+2〉 · · · |Φn〉) = (−1)nini+1 Ω(g,n)

p (|Φ1〉, · · · |Φn〉)

(2.7)

where si,i+1 is the transformation on P̃g,n that exchanges the punctures i and i + 1 to-

gether with their local coordinates and si,i+1 ◦ Ω
(g,n)
p is the pullback of Ω

(g,n)
p under this

transformation. Another useful property of Ω
(g,n)
p (|Φ1〉, · · · |Φn〉) is that it is non-vanishing

only if the ghost numbers of |Φ1〉, · · · |Φn〉 add up to p− 6g + 6.

1This is a generalization of corresponding construction in bosonic string theory [47, 50] where the choice

of local coordinate system is the only data on the fiber.
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The analysis of [15, 16, 18] also identified, for each g, n, a 6g − 6 + 2n dimensional

subspace Kg,n of Mg,n called the 1PI region and a ‘section’ Rg,n of P̃g,n over this subspace

with the following properties2

1. For some (g, n), Rg,n could have ‘vertical segments’ along which the locations of the

PCO’s change without any change in the moduli parametrizing the base. This is

necessary for avoiding the spurious singularities which occur in type II / heterotic

string perturbation theory [20]. The rules for carrying out the integration along

these vertical segments have been described in [18] and further refined in [51]. For

this reason we shall refer to Rg,n as an integration cycle instead of a section.

2. Even though the punctures are distinguishable, we choose Rg,n to be symmetric

under the exchange of the punctures. This means that for every point in Rg,n we’ll

also have in Rg,n the point obtained by exchanging any two punctures together with

their local coordinate systems, and the locations of the PCO’s will remain unchanged

under this exchange.

3. Some time we may encounter a situation in which a single integration cycle cannot

be chosen consistent with this symmetry principle. A simple example is three punc-

tured sphere requiring one insertion of the picture changing operator. In order to

be consistent with the symmetry principle we would require that the location of the

PCO will be invariant under any SL(2, C) transformation that permutes these three

punctures. It is easy to verify that there is no such point on the sphere. However we

can choose a pair of points which are permuted among themselves under the SL(2, C)

transformations that permute the three punctures. Thus we can restore full permuta-

tion symmetry by taking the average of these two choices for the location of the PCO.

To deal with such situations we allow Rg,n to be formal weighted average of multiple

integration cycles. Since eventually we shall be interested in integrating Ω
(g,n)
6g−6+2n

over these integration cycles, the integral over the weighted average of integration

cycles can be regarded as the weighed average of the integrals over the corresponding

integration cycles.

4. Take a Riemann surface (equipped with choice of local coordinate system and ar-

rangement of PCO’s) corresponding to a point in Rg1,n1 and another Riemann sur-

face corresponding to a point in Rg2,n2 . If we take one puncture from each of these

Riemann surfaces, denote the local coordinates around these punctures by z and w

with the punctures being located at z = 0 and w = 0, and glue the two Riemann

2In [15, 16, 18] we did not use the specific symbols Kg,n and Rg,n for these subspaces. This notation

is introduced in this paper. Also, while the concrete algorithm for constructing these regions was given

in [15, 16, 18], explicit construction of these regions was not given as there is a lot of freedom. A concrete

example can be provided by computing the off-shell 1PI amplitudes in the closed bosonic string field theory

of [47] in Siegel gauge. The subspace of the moduli space covered by the 1PI amplitudes will give Kg,n and

the local coordinates at the punctures induced from this construction will give Rg,n sans the information

on the PCO’s. The PCO locations will then have to be chosen consistent with gluing compatibility and

avoiding spurious singularities using the trick of vertical integration described in [18].

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
2

surfaces by the plumbing fixture relation

z w = e−s+iθ , 0 ≤ s < ∞, 0 ≤ θ < 2π, (2.8)

we get a two parameter family of Riemann surfaces of genus g1 + g2 and n1 + n2 − 2

punctures, labelled by s and θ. Considering the 6gi − 6 + 2ni parameter family of

Riemann surfaces contained in Rgi,ni
we get altogether 6(g1 + g2) + 2(n1 + n2)− 10

parameter family of Riemann surfaces. These describe a subspace of Mg1+g2,n1+n2−2

which we shall denote by Kg1,n1 ◦Kg2,n2 . Furthermore the choice of local coordinates

at the punctures and the locations of PCO’s on the original surfaces automatically

produce similar data on the final Riemann surfaces. Thus we really have a 6(g1 +

g2) + 2(n1 + n2) − 10 dimensional subspace of P̃g1+g2,n1+n2−2. We shall call this

Rg1,n1 ◦Rg2,n2 . Summing over all inequivalent permutations of the external punctures

we generate a subspace of P̃g1+g2,n1+n2−2 that we shall call S[Rg1,n1 ◦ Rg2,n2 ].

5. Similarly by gluing three families of Riemann surfaces associated with Rg1,n1 , Rg2,n2

and Rg3,n3 in all possible ways, but using only two plumbing fixtures so that no closed

loop is formed, we generate a new 6(g1 + g2 + g3) + 2(n1 + n2 + n3)− 14 parameter

family of Riemann surfaces of genus g1+g2+g3 and n1+n2+n3−4 punctures. These

correspond to a subspace of Mg1+g2+g3,n1+n2+n3−4. Again the choice of the local co-

ordinates and the PCO data on the original Riemann surfaces generate similar data

on the final Riemann surfaces, producing a subspace of P̃g1+g2+g3,n1+n2+n3−4. This

process can be continued, generating more and more families of Riemann surfaces

by gluing more and more 1PI families of Riemann surfaces in all possible inequiva-

lent ways.

6. Now consider a given g and n. Following the procedure described above we can

generate a large class of Riemann surfaces of genus g with n punctures, — some from

1PI region Kg,n of the moduli space, some from gluing two 1PI family of Riemann

surfaces of lower genera and/or lower number of punctures and so on. The claim is

that this exhausts the whole of Mg,n in a one to one fashion, — indeed Kg,n is chosen

so as to precisely account for any deficit that we might have from gluing surfaces of

lower genera / lower number of punctures. Furthermore the gluing compatible choice

of integration cycles guarantee that the choice of the integration cycle over Mg,n

that we get this way is continuous across the boundaries between different types of

contributions e.g. the boundary of Rg1,n1 ◦ Rg−g1,n−n1+2 from the s = 0 end of the

plumbing fixture relation (2.8) smoothly matches a component of the boundary of

Rg,n. Again, the construction of Rg,n is designed to ensure this by choosing the

integration cycle Rg,n on Kg,n such that it smoothly matches the integration cycle

Rg1,n1 ◦Rg−g1,n−n1+2 on Kg1,n1 ◦Kg−g1,n−n1+2 at the common boundary of Kg,n and

Kg1,n1 ◦ Kg−g1,n−n1+2. We shall denote the integration cycle of P̃g,n over the whole

of Mg,n obtained this way by Sg,n. Also all parts of Sg,n outside Rg,n will be called

one particle reducible (1PR) part of Sg,n and the associated Riemann surfaces will

be called 1PR Riemann surfaces.
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7. In this description of Mg,n, all separating type degenerations — where a Riemann

surface degenerates into two or more distinct Riemann surfaces joined by a long han-

dle — comes from 1PR Riemann surfaces with the parameter s in (2.8) approaching

infinity for one or more of the plumbing fixture. Thus the 1PI family Rg,n does

not contain any boundary associated with separating type degeneration. However

Rg,n can (and does) contain boundaries corresponding to non-separating type de-

generations where two punctures on the same Riemann surface are connected by a

long handle.

Once these different regions have been identified, we define the genus g, n-point off-shell

amplitude with external states |Φ1〉, · · · |Φn〉 to be the integral of Ω
(g,n)
6g−6+2n(|Φ1〉, · · · |Φn〉)

over the subspace Sg,n. The contribution to this integral from the 1PI part Rg,n of Sg,n

will be called the 1PI contribution to the off-shell amplitude, while the contribution from

the 1PR part of Sg,n will be called the 1PR contribution. This will be justified later when

we construct the 1PI effective action for the string field theory and compute the off-shell

amplitude from this effective action. We should note here that off-shell amplitudes refer

to off-shell Green’s functions with external tree level propagators truncated.

Readers familiar with the construction of the covariant string field theory [47] would

recognize the close resemblance between the regions Rg,n used here and the regions Vg,n

used in the construction of the quantum master action of bosonic string field theory. Of

course one difference is that in the construction of [47] there was no information about the

PCO’s, so the regions Vg,n were subspaces of P̂g,n which had Mg,n as the base and the

data on local coordinates (modulo phases) at the punctures as fibers. The main difference

however is that while building the analog of the integration cycle Sg,n over the whole of

Mg,n from the plumbing fixture of the Riemann surfaces associated with Vg,n, we also

allow closed loops. Thus for example we can glue two punctures on the same Riemann

surface associated with Vg,n, glue two punctures of a Riemann surface associated with

Vg1,n1 with two punctures of a Riemann surface associated with Vg2,n2 and so on. As a

result all degenerations — separating as well as non-separating type — come from one or

more of the plumbing fixture parameters s approaching infinity, and Vg,n never contains

any degenerate Riemann surface. If we take the Vg,n’s of [47] and glue them together in

all possible ways using (2.8) including configuration with loops, but not allowing those

configurations where by taking the parameter s associated with one of the plumbing fixture

relations to infinity we reach a separating type degeneration, we get possible candidates

for Rg,n (without the PCO data). This is precisely analogous to the construction of 1PI

amplitudes using Feynman diagrams of a quantum field theory.

The boundary of Rg,n is an object of special interest since the integral of a total

derivative on Rg,n will receive contribution from this boundary. As already discussed, Rg,n

has boundaries corresponding to non-separating type degenerations. However they will not

be of interest to us since the boundary contributions from these boundaries can be made

to vanish using appropriate iǫ prescription [52, 53]. Thus from now on we shall ignore the

existence of these boundaries. The other boundaries of Rg,n coincide with the boundaries

of Rg1,n1 ◦ Rg−g1,n−n1+2 arising from the s = 0 end of the plumbing fixture relation (2.8)
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since Rg,n and Rg1,n1 ◦Rg−g1,n−n1+2 will have to ‘fit together’ inside P̃g,n to generate part

of the smooth integration cycle Sg,n. Denoting this boundary by {Rg1,n1 ,Rg2,n2} we get

∂Rg,n = −
1

2

∑

g1,g2
g1+g2=g

∑

n1,n2
n1+n2=n+2

S[{Rg1,n1 ,Rg2,n2}] , (2.9)

where, as before, S denotes the operation of summing over all inequivalent permutation of

the external punctures. The factor of 1/2 reflects that on the right hand the same term

appears twice due to the exchange symmetry g1 ↔ g2, n1 ↔ n2. Even for g1 = g2 and

n1 = n2 there is a double counting since S sums over exchanges of the puncture labels.

The − sign reflects that the boundaries of Rg,n and Rg1,n1 ◦ Rg2,n2 must be oppositely

oriented sinceRg,n together with (1/2)
∑

g1,g2
g1+g2=g

∑
n1,n2

n1+n2=n+2
Rg1,n1◦Rg2,n2 fill part of Sg,n.

Physically {Rg1,n1 ,Rg2,n2} represents the set of punctured Riemann surfaces equipped with

choice of local coordinates at the punctures and PCO locations that we obtain by gluing

the families of Riemann surfaces corresponding to Rg1.n1 and Rg2,n2 using plumbing fixture

relation (2.8) with the parameter s set to zero. The orientation of {A,B} will be defined

by taking its volume form to be dθ ∧ dVA ∧ dVB where dVA and dVB are volume forms on

A and B respectively.

It follows from general properties of conformal field theories on Riemann surfaces that

on {Rg1,n1 ,Rg2,n2}, Ω
(g1+g2,n1+n2−2)
p satisfies the factorization property

∫

θ

Ω(g1+g2,n1+n2−2)
p (|Φ1〉, · · · |Φn1+n2−2〉)

=
∑

p1,p2
p1+p2=p−1

(−1)n1+···nn1−1+p1+p2+p1p2 Ω(g1,n1)
p1

(|Φ1〉, · · · |Φn1−1〉, |ϕr〉)

∧ Ω(g2,n2)
p2

(|ϕr〉, |Φn1〉, · · · |Φn1+n2−2〉) (2.10)

where
∫
θ
denotes the result of integration over the angular coordinate θ appearing in the

plumbing fixture relation (2.8), and {|ϕr〉} and {|ϕr〉} are a set of dual basis ofH0 satisfying

〈ϕr|c−0 |ϕs〉 = δrs ⇔ 〈ϕs|c
−
0 |ϕ

r〉 = δrs . (2.11)

In arriving at (2.10) one has to use the fact that the θ integral produces the projector δL0,L̄0

and is accompanied by an insertion of b−0 in the correlator. Together they ensure that the

sum over the complete set of states |ϕr〉, |ϕ
r〉 run only over states in H0 satisfying (2.3).

The (−1)n1+···nn1−1+p1+p2+p1p2 factor can be obtained from the results of [18] after taking

into account an extra minus sign due to the fact that here we are picking the boundary

contribution from the lower limit of the s integral while [18] analyzed the boundary contri-

bution from the upper limit. We also need to use the fact that the basis states 〈ϕc
r| of [18]

are related to 〈ϕr| given here by 〈ϕc
r| = 〈ϕr|c−0 .

3 The 1PI effective action

The construction of the 1PI action of NS sector fields will be a generalization of the tree

level action for NS sector fields given in [2]. Most of the properties of this theory discussed
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in this section will involve adapting the various results for the classical bosonic string

field theory of [44–46] to the 1PI effective action of heterotic / type II string field theory.

However we shall try to keep the discussion self-contained by briefly outlining the proofs

of the various results we shall describe.

We shall take the string field to be an element of the small Hilbert space as given by

the η0|s〉 = 0 condition in (2.3)[19]. This was the spirit of the construction in [1, 2], and

some of the recent approaches, e.g. the ones considered in [11, 12, 14] also falls broadly

in this class. There are also alternate approaches based on taking the string field to be

an element of the large Hilbert space, e.g. the ones used in [3–7] — but at present we do

not know whether this approach can be generalized to give a fully consistent 1PI effective

action for the NS sector fields.

3.1 The { } and [ ] products

We define, for |Φi〉 ∈ H0,

{Φ1 · · ·Φn} =
∞∑

g=0

(gs)
2g

∫

Rg,n

Ω
(g,n)
6g−6+2n(|Φ1〉, · · · |Φn〉) . (3.1)

If Rg,n contains vertical segments then one has to use the procedure described in [18, 51]

for carrying out the integral over these segments. We also define |[Φ2 · · ·Φn]〉 ∈ H0 via the

relations

〈Φ1|c
−
0 |[Φ2 · · ·Φn]〉 = {Φ1 · · ·Φn} (3.2)

for all |Φ1〉 ∈ H0. Here 〈A|B〉 denotes the BPZ inner product. Note that to keep the

notation simple we have dropped the ket symbol | 〉 from the states when they appear in

the argument of { } or [ ]. Also we shall drop the ket symbol from |[Φ2 · · ·Φn]〉 except

in inner products, i.e. [Φ2 · · ·Φn] will actually denote |[Φ2 · · ·Φn]〉. It follows from the

property of Ω
(g,n)
p that in order to get non-vanishing result for {Φ1 · · ·Φn} we must have∑n

i=1 ni = 2n where ni is the ghost number of Φi, and that [Φ2 · · ·Φn] has ghost number

equal to 3 +
∑n

i=2 ni − 2(n− 1).

Based on the identities (2.6) and (2.9) one can now establish a set of identities involving

QB and [ ]. Since their derivation is identical to the ones for bosonic string field theory [47]

we shall be brief. The first identity gives the symmetry properties of [· · · ] and {· · · }:

[Φ2 · · ·Φi−1Φi+1ΦiΦi+2 · · ·Φn] = (−1)nini+1 [Φ2 · · ·Φn]

{Φ1Φ2 · · ·Φi−1Φi+1ΦiΦi+2 · · ·Φn} = (−1)nini+1{Φ1Φ2 · · ·Φn} . (3.3)

The inner product of the first equation of (3.3) with an arbitrary bra 〈Φ1|c
−
0 , which is also

the second equation of (3.3), comes from the integral of (2.7) over Rg,n. The second useful

identity is

{Φ1 · · ·Φk[Φ̃1 · · · Φ̃ℓ]} = −{Φ̃1 · · · Φ̃ℓ[Φ1 · · ·Φk]} for |Φi〉, |Φ̃j〉 ∈ H0 . (3.4)

To prove this we note that as a consequence of (2.11),
∑

r |ϕr〉〈ϕ
r|c−0 and

∑
r |ϕ

r〉〈ϕr|c
−
0

act as identity operator on states in H0. If we insert the first operator in front of [· · · ] on
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the left hand side of (3.4) and the second operator in front of [· · · ] on the right hand side

of (3.4), we see that the two expressions are identical except for a sign and the locations of

ϕr and ϕr in the correlation function. Using the ghost number conservation laws mentioned

below (3.2), the fact that ghost numbers of ϕr and ϕr are related by nϕr = 5−nϕr , and (3.3)

we can show that the arguments inside {· · · } on the two sides can be brought to the same

arrangement at the cost of generating an extra minus sign. This cancels the explicit minus

sign in (3.4) showing that the two sides are equal.

The third equation, known as the main identity [47], tells us that for n ≥ 1,3

QB[Φ2 · · ·Φn] +

n∑

i=2

(−1)n2+···ni−1 [Φ2 · · ·Φi−1QBΦiΦi+1 · · ·Φn]

+
∑

ℓ,k≥0
ℓ+k=n−1

∑

{ir ;r=1,···ℓ},{js;s=1,···k}
{ir}∪{js}={2,···n}

σ({ir}, {js})[Φi1 · · ·Φiℓ [Φj1 · · ·Φjk ]] = 0 (3.5)

where in the last term the sum runs over all possible ways of splitting the set {2, · · ·n} into

the set {ir} and the set {js}. σ({ir}, {js}) is the sign that one picks up while rearranging

QB,Φ2, · · ·Φn to Φi1 , · · ·Φiℓ , QB,Φj1 , · · ·Φjk . The inner product of (3.5) with an arbitrary

bra 〈Φ1|c
−
0 is obtained by integrating (2.6) over Rg,n and multiplying both sides by (−1)n1 .

The first two terms in (3.5) come from the integral of the left hand side of (2.6) whereas

the last term has its origin in the integral of the right hand side of (2.6). The latter,

being a total derivative, receives contribution from the boundary ∂Rg,n described in (2.9).

This can then be evaluated using (2.10). The terms that are generated are of two types:

{Φ1Φi1 · · ·Φiℓ [Φj1 · · ·Φjk ]} and {Φj1 · · ·Φjk [Φ1Φi1 · · ·Φiℓ ]}. Using (3.4) we can show that

the two terms are in fact identical after performing the sum over the sets {ir} and {js}.

This allows us to keep only the first term and cancel the extra factor of 1/2 in (2.10). This

can then be interpreted as the inner product of −〈Φ1|c
−
0 with the last term on the left

hand side of (3.5).

Note that inside [· · · ] in the first term of (3.5) the first argument is Φ2 and hence there

are only n− 1 arguments. Thus for n = 1 we have the equation QB[] + [[]] = 0.

3.2 The action and its gauge invariance

We are now ready to describe the 1PI effective action and its gauge invariance. The string

field |Ψ〉 is taken to be an element of H0 of ghost number 2. The action is given by

S(|Ψ〉) = gs
−2

[
1

2
〈Ψ|c−0 QB|Ψ〉+

∞∑

n=1

1

n!
{Ψn}

]
(3.6)

where {Ψn} denotes {ΨΨ · · ·Ψ} with n copies of Ψ inside { }. The gauge transformation

law for |Ψ〉 is given by

δ|Ψ〉 = QB|Λ〉+
∞∑

n=0

1

n!
[ΨnΛ] (3.7)

3In the analysis of [47] there is an additional contribution involving ∆ operation in (2.9) which gives

rise to additional terms in the identities involving QB and [ ]. These terms are absent here since we build

up the moduli space Mg,n from 1PI Riemann surfaces instead of the Riemann surfaces associated with the

elementary vertices of string field theory.
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where |Λ〉 is an element of H0 with ghost number 1. Proof of gauge invariance of the

action (3.6) proceeds in the same way as in [44–47] except that in classical string field

theory the range of summation over n in (3.6) and (3.7) begins at 3 and 1 respectively. We

shall now briefly discuss the proof. Under the transformation (3.7) the change δS in the

action is given by

gs
2δS=

∞∑

n=0

1

n!
〈Ψ|c−0 QB[Ψ

nΛ]〉+

∞∑

n=1

1

(n−1)!
{Ψn−1QBΛ}+

∞∑

n=1

1

(n−1)!

∞∑

m=0

1

m!
{Ψn−1[ΨmΛ]} ,

(3.8)

where we have used QB
2 = 0 to set one of the terms to 0. Now the first two terms on the

right hand side can be manipulated as

∞∑

n=0

1

n!
〈QBΨ|c−0 [Ψ

nΛ]〉+
∞∑

n=1

1

(n− 1)!
〈QBΛ|c

−
0 |[Ψ

n−1]〉

=
∞∑

n=0

1

n!
{QBΨΨnΛ} −

∞∑

n=1

1

(n− 1)!
〈Λ|c−0 QB[Ψ

n−1]〉

= −
∞∑

n=0

1

n!
〈Λ|c−0 |[QBΨΨn]〉 −

∞∑

n=1

1

(n− 1)!
〈Λ|c−0 QB[Ψ

n−1]〉 . (3.9)

We now interpret the first term on the right hand side as the average of n+1 terms where

QB acts on each of the Ψ’s inside [· · · ] once, make change of variables n = m − 1 in the

first term and n = m+ 1 in the second term and use (3.5) with all the Φi’s equal to Ψ to

express the right hand side of (3.9) as

∞∑

m=0

1

m!

∑

0≤n1,n2≤∞
n1+n2=m

m!

n1!n2!
〈Λ|c−0 |[Ψ

n1 [Ψn2 ]] . (3.10)

The m!/(n1!n2!) term comes from the number of ways we can divide the m objects into n1

objects and n2 = m − n1 objects. Regarding n1, n2 as independent summation variables

we can now express this as

∞∑

n1,n2=0

1

n1!n2!
{ΛΨn1 [Ψn2 ]} = −

∞∑

n1,n2=0

1

n1!n2!
{Ψn2 [ΛΨn1 ]} (3.11)

where we have used (3.4). Identifying (n1, n2) with (m,n − 1) we see that this exactly

cancels the third term in (3.8). This establishes gauge invariance of the action.

It is also easy to verify that if we use the Siegel gauge fixing (b0 + b̄0)|Ψ〉 = 0, then

the tree level amplitude computed from this action produces the full off-shell amplitude

given by ∑

g

gs
2g−2

∫

Sg,n

Ω
(g,n)
6g−6+2n(|Φ1〉, · · · |Φn〉) . (3.12)

Essentially joining two or more interaction vertices by a Siegel gauge propagator cor-

responds to joining the corresponding Riemann surfaces by the plumbing fixture rela-

tion (2.8). The sum of all tree level graphs then produces the union of all integration
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cycles that can be obtained either from 1PI surfaces of genus g with n punctures, or by

gluing 1PI surfaces of lower genera / lower number of punctures using plumbing fixture to

produce a genus g Riemann surface with n punctures. By construction this produces all

of Sg,n.

Note that if we relax the condition that |Ψ〉 carries ghost number 2 and allow it to carry

arbitrary ghost number, we shall obtain the Batalin-Vilkovisky (BV) master action [47].

However this will satisfy the classical master equation instead of the quantum master

equation. This is in consonance with the fact that we are supposed to compute only tree

amplitudes using this action. However since in computation of tree diagrams only ghost

number two states appear even as intermediate states, the extra fields in this master action

do not seem to play any useful role here.

3.3 Equations of motion and the vacuum

The equations of motion derived from the action are given by

QB|Ψ〉+
∞∑

n=1

1

(n− 1)!
[Ψn−1] = 0 . (3.13)

Note the constant term arising from the n = 1 term. This is related to the presence of the

linear term proportional to {Ψ} in the 1PI effective action from one loop onwards. Thus

|Ψ〉 = 0 is not a classical solution, and we have to solve the classical equations of motion

derived from the 1PI action to find the correct ground state. This can be done by looking

for a solution to these equations iteratively as a power series in gs, starting with |Ψ〉 = 0

as the leading solution at order gs
0. Thus if |Ψk〉 denotes the solution to order gs

k then we

can write the equation as4

QB|Ψk+1〉 = −
∞∑

n=1

1

(n− 1)!
[Ψn−1

k ] +O(gs
k+2) , (3.14)

and solve this iteratively. Since the expansion of |Ψk〉 begins at order gs, the sum over n on

the right hand side can be truncated at n ≤ k+ 2, but we shall keep the upper limit to be

∞ for the ease of manipulating the terms. In order to ensure that there is no obstruction to

this procedure we have to ensure that the right hand side is a BRST trivial state to order

gs
k+1. A necessary condition for this is that the right hand side is BRST invariant, i.e.

QB

∞∑

n=1

1

(n− 1)!
[Ψn−1

k ] (3.15)

vanishes to order gs
k+1. This is known to be true since the early days of string field theory

(see e.g. [54]), but we shall briefly describe the proof for completeness. Using (3.5) we can

express (3.15) as

−
∞∑

n=2

1

(n− 2)!
[Ψn−2

k (QBΨk)]−
∞∑

n=1

1

(n− 1)!

∑

n1,n2≥0
n1+n2=n−1

(n− 1)!

n1!n2!
[Ψn1

k [Ψn2
k ]] . (3.16)

4Even though the natural loop expansion parameter is gs
2, in some special cases, e.g. the one discussed

in section 4.4, the classical solution |Ψ〉 begins its expansion at order gs. For this reason we have taken gs

as the expansion parameter.
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In the first term we can substitute for QBΨk using (3.14) with k replaced by k − 1 on the

left hand side, but on the right hand side we can continue to use Ψk since the net error we

shall make by this in (3.16) will be of order gk+2
s . The second term can be simplified by

taking n1 and n2 to be independent summation variables. This reduces (3.16) to

∞∑

n=2

1

(n− 2)!

∞∑

m=1

1

(m− 1)!
[Ψn−2

k [Ψm−1
k ]]−

∑

n1,n2≥0

1

n1!n2!
[Ψn1

k [Ψn2
k ]] +O(gs

k+2) . (3.17)

After identifying n1 with n−2 and n2 with m−1 these two terms cancel showing that (3.15)

vanishes to order gs
k+1.

This in turn allows us to write down an explicit solution of (3.14) in the L+
0 6= 0

sector. Denoting by P the projection operator into zero momentum L+
0 = 0 states and

using {QB, b
+
0 } = L+

0 , we can write the iterative solution to (3.14) as

|Ψk+1〉 = −
b+0
L+
0

∞∑

n=1

1

(n− 1)!
(1−P)[Ψk

n−1] +QB|sk+1〉+ |Φk+1〉 , (3.18)

where |sk+1〉 denotes the expansion of some arbitrary ghost number one, zero momentum

state |s〉 ∈ H0 to order gs
k+1 and |Φk+1〉 satisfies

P|Φk+1〉 = |Φk+1〉, QB|Φk+1〉 = −
∞∑

n=1

1

(n− 1)!
P[Ψn−1

k ] +O(gs
k+2) . (3.19)

The existence of the solutions to the second equation is not automatic. To see this let us

suppose that |Vi〉 for i = 1, · · ·N is a basis of states in H0 describing non-trivial elements of

the BRST cohomology and carrying zero momentum, ghost number 2 and L+
0 = 0. These

in fact represent zero momentum massless states. Then in order for the second equation

in (3.19) to have solution, we need

〈Vi|c
−
0 |

∞∑

n=1

1

(n− 1)!
[Ψn−1

k ]〉 = O(gs
k+2) for 1 ≤ i ≤ N . (3.20)

Unless this holds at each order in gs, we cannot solve (3.14) by the iterative procedure we

have described. As we shall discuss shortly, this will be related to the possible existence of

massless tadpoles in the theory.

Before we proceed let us point out that during the process of carrying out this iter-

ative procedure we shall encounter repeated operation of (L+
0 )

−1(1 − P) and [· · · ], e.g.

[· · · (L+
0 )

−1(1 − P)[· · · ]]. Representing 1/L+
0 as

∫∞
0 dse−sL+

0 and the L−
0 = 0 projector as∫

dθeiθL
−
0 we can interpret terms with repeated application of 1/L+

0 and [ ] in terms of cor-

relation functions on a single Riemann surface obtained by joining 1PI Riemann surfaces

by the plumbing fixture relations (2.8). The (1−P) factor plays a crucial role: it subtracts

off the contribution from the massless states in the propagator, thereby removing possible

divergences from the s → ∞ end of the integral. As a result this procedure does not require

any infrared regulator.

Let us now turn to another consequence of the presence of non-trivial elements of

BRST cohomology in the L+
0 = 0 sector. If eq. (3.20) holds then (3.19) has solutions. Let
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|Φ
(0)
k+1〉 be a particular solution which differs from |Φk〉 by terms of order gs

k+1. However

from this we can construct a more general family of solutions to (3.19) with the same

property by taking

|Φk+1〉 = |Φ
(0)
k+1〉+ gs

k+1
∑

i

c
(k+1)
i |Vi〉 , (3.21)

where c
(k+1)
i are arbitrary constants. This freedom exists at every order in gs. However

since the choice of c
(ℓ)
i ’s for a given ℓ affects the solution at higher order via the recursion

relations, it may so happen that (3.20) fails to hold for arbitrary choice of c
(ℓ)
i ’s at lower

order. In that case we have to adjust the c
(ℓ)
i ’s at lower order to make (3.20) hold. If this

is not possible, i.e. we cannot make (3.20) hold for any choice of c
(ℓ)
i ’s then we have to

conclude that the system does not have a perturbative ground state. This is what happens

if there are tadpoles of classical moduli fields in the theory. For theories in which (3.20)

can be made to hold, we can divide the massless states into two kinds. For some states

the constants c
(ℓ)
i remain undetermined at every order in gs. These represent scalar fields

without potential — the massless moduli fields. For other states the constants c
(ℓ)
i get fixed

by requiring (3.20) to hold. These are scalar fields with potential.5

Note that even if we ignore the freedom provided by the vacuum expectation values

of the moduli fields, the solution is ambiguous due the freedom of adding BRST trivial

state QB|sk+1〉 in (3.18). Any such term added at a given order will of course affect the

higher order terms in the solution. It can be shown that this freedom reflects the freedom

of transforming a given solution by a gauge transformation of the form described in (3.7).

Since this is gauge equivalent to the original solution, we can set |sk+1〉 to zero from the

beginning.

Once we have obtained a classical solution — which we shall denote by Ψcl — we can

expand the action around the new background and obtain the new action. After throwing

away the additive constant S(|Ψcl〉), the new action can be expressed in terms of the

fluctuation Ψ̂ = Ψ−Ψcl as [48]

gs
−2

[
1

2
〈Ψ̂|c−0 QB|Ψ̂〉+

∞∑

n=2

1

n!
{Ψ̂n}′

]
, (3.22)

where we define

{A1 · · ·Ak}
′ ≡

∞∑

n=0

1

n!
{Ψn

clA1 · · ·Ak} , for k ≥ 2 ,

[A1 · · ·Ak]
′ ≡

∞∑

n=0

1

n!
[Ψn

clA1 · · ·Ak] , for k ≥ 1 ,

{A1}
′ ≡ 0, [ ]′ ≡ 0 . (3.23)

5Most often massless scalars which are not moduli fields transform in the non-trivial representation of

some gauge group and hence we can get a solution by setting them to zero from the beginning. However,

as we shall discuss in section 4.4, there can some time be more than one possible choices of the constants

c
(ℓ)
i , at least in low orders in gs, signalling the existence of multiple perturbative vacuum. In this case the

c
(ℓ)
i = 0 solution may not represent the true ground state, i.e. (3.20) at higher order may force us to choose

the c
(ℓ)
i 6= 0 solution.
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Note the absence of linear term in Ψ̂ in the action signalling that |Ψ̂〉 = 0 is a solution of the

equations of motion. Furthermore one can show, using the equations of motion satisfied

by |Ψcl〉, that eqs. (3.2)–(3.5) hold with {· · · }, [· · · ] replaced by {· · · }′, [· · · ]′. Thus the

action (3.22) has gauge invariance with [· · · ] replaced by [· · · ]′ in the gauge transformation

laws (3.7).

Due to the presence of the {Ψ̂2}′ term in the action (3.22) the quadratic term is not

controlled only by QB. It is convenient to introduce a new operator Q̂B defined via

Q̂B|A〉 ≡ QB|A〉+ [A]′ = QB|A〉+

∞∑

n=0

1

n!
[Ψn

clA] . (3.24)

If we also define

{A1 · · ·Ak}
′′ ≡ {A1 · · ·Ak}

′ for k ≥ 3, [A1 · · ·Ak]
′′ ≡ [A1 · · ·Ak]

′ for k ≥ 2,

{A1}
′′ ≡ 0, {A1A2}

′′ ≡ 0, [ ]′′ ≡ 0, [A1]
′′ ≡ 0 , (3.25)

then one can express the action (3.22) as

gs
−2

[
1

2
〈Ψ̂|c−0 Q̂B|Ψ̂〉+

∞∑

n=3

1

n!
{Ψ̂n}′′

]
(3.26)

so that there is no linear term and the quadratic term is controlled by Q̂B. Furthermore

one can show, using the equations of motion satisfied by |Ψcl〉, that Q̂B is nilpotent and

that eqs. (3.2)–(3.5) hold with QB, {· · · }, [· · · ] replaced by Q̂B, {· · · }
′′, [· · · ]′′. Thus the

action (3.26) has gauge invariance with QB and [· · · ] replaced by Q̂B and [· · · ]′′ in the

gauge transformation laws (3.7). This generalizes the result of [48] for classical string

field theory.

Before concluding this section we shall compare the procedure described above of

shifting Ψ by Ψcl with the conventional approach to superstring perturbation theory where

no such shift is needed. As we have seen, the effect of shifting the background by |Ψcl〉 is to

replace { } by { }′. If in (3.18) we had dropped the second and the third terms on the right

hand side, and also the projector (1−P) from the first term, and used the corresponding

expression for |Ψcl〉 to define { }′, then this would effectively correspond to including in the

definition of 1PI amplitudes also 1PR contributions where the internal propagators (i.e.

punctures involved in the plumbing fixture) carry zero momentum. By replacing (L+
0 )

−1 by∫∞
0 ds e−sL+

0 we can interpret these as the ‘tadpole diagrams’ of conventional perturbation

theory. However in that case one needs to use suitable upper cut-off Λ on the s integral at

the intermediate stage of the calculation to tame the divergences coming from the L+
0 = 0

states [33]. One then has to check that at the end of the calculation we can take the cut-off

to infinity without encountering any divergence. In the approach described above, where

we use the full expression (3.18), we do not need any infrared regulator since effectively

we subtract the contribution from L+
0 = 0 states from

∫∞
0 ds e−sL+

0 , and then take into

account the contribution from these missing states separately. However in this approach

we need to ensure that at each order in gs we can find a solution to (3.19) that can be used

for constructing the solution to the next order. This is equivalent to checking the absence

of tadpole divergence in conventional perturbation theory.
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✛

❄ ✲

✻

R′
g,n

R̃g,n

−Rg,n

✻

Ûg,n

Figure 1. A pictorial representation of eqs. (3.27) and (3.28). The right hand side of (3.27) which

is also the left hand side of (3.28) is the contribution to the boundary integral of Ω
(g,n)
6g−6+2n from the

upper and lower horizontal edges of the rectangle. The first term on the right hand side of (3.28)

is the volume integral of dΩ
(g,n)
6g−6+2n over the interior R̃g,n of the rectangle. Since the height of

the rectangle is infinitesimal we can replace the effect of integration along the vertical direction by

contraction with Ûg,n. Finally the last term of (3.28) represents the negative of the contribution

to the boundary integral of Ω
(g,n)
6g−6+2n from the vertical edges of the rectangle. Thus (3.28) follows

from Stoke’s theorem. Although we have taken the height of the rectangle to be constant for the

ease of drawing the figure, this is certainly not necessary. Finally note that here we have drawn

Rg,n and R′

g,n
as one dimensional horizontal lines, but the general case corresponds to them being

multidimensional, with the whole figure stretching out of the plane of the paper / screen.

3.4 Effect of changing the local coordinates and/or PCO locations

We now turn to the problem of studying the effect of changing the choice of local coordinates

and/or the locations of the PCO’s on the 1PI action. A change of this form will correspond

to a new choice of the (6g − 6 + 2n) dimensional regions Rg,n in P̃g,n satisfying (2.9). Let

us denote them by R′
g,n. We shall consider infinitesimal deformations so that Rg,n and

R′
g,n are close in P̃g,n. Then we can write

δS =
∞∑

g=0

gs
2g−2

∞∑

n=1

1

n!

[(∫

R′
g,n

−

∫

Rg,n

)
Ω
(g,n)
6g−6+2n(|Ψ〉⊗n)

]
, (3.27)

where |Ψ〉⊗n denotes that there are n entries of |Ψ〉 in the argument. Let Ûg,n be an

infinitesimal vector field that takes a point in Rg,n to a neighbouring point in R′
g,n. The

definition of Ûg,n is ambiguous up to addition of infinitesimal tangent vectors of Rg,n, but

this will not affect the final result. In this case (3.27) can be expressed as [49]

δS =
∞∑

g=0

gs
2g−2

∞∑

n=1

1

n!

[∫

Rg,n

dΩ
(g,n)
6g−6+2n[Ûg,n](|Ψ〉⊗n) +

∫

∂Rg,n

Ω
(g,n)
6g−6+2n[Ûg,n](|Ψ〉⊗n)

]
,

(3.28)

where for any p-form ωp, ωp[Û ] denotes the contraction of ωp with the vector field Û :

ωi1···ipdy
i1 ∧ · · · ∧ dyip [Û ] ≡ Û i1ωi1i2···ipdy

i2 ∧ · · · ∧ dyip . (3.29)

Intuitively this equation can be understood as follows. The first term on the right hand side

represents the integral of dΩ
(g,n)
6g−6+2n over a 6g−5+2n dimensional region R̃g,n bounded by

Rg,n and R′
g,n. This can be integrated to give (3.27) together with a contribution from the

component of the boundary of R̃g,n that joins ∂R′
g,n to ∂Rg,n. The second term in (3.28)

subtracts this contribution. A pictorial representation of this can be found in figure 1.
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We shall now show following [49] that the change in action given in (3.28) can be

regarded as the result of a redefinition of the field |Ψ〉 to |Ψ〉+ |δ̃Ψ〉 where |δ̃Ψ〉 is given by

〈Φ|c−0 |δ̃Ψ〉 = −
∞∑

g=0

gs
2g

∞∑

n=1

1

(n− 1)!

∫

Rg,n

Ω
(g,n)
6g−5+2n[Ûg,n](|Φ〉, |Ψ〉⊗(n−1)) , (3.30)

for any state |Φ〉 in H0. We now see that since this is integrated over Rg,n, adding a tangent

vector of Rg,n to Ûg,n will not change the integral. To prove (3.30), let us denote by δ̃S

the change in the action induced by the field redefinition (3.30). Then from (3.6) we get

δ̃S = gs
−2

[
〈Ψ|c−0 QB|δ̃Ψ〉+

∞∑

n=1

1

(n− 1)!
{Ψn−1δ̃Ψ}

]
. (3.31)

The first term can be written as

g−2
s 〈QBΨ|c−0 |δ̃Ψ〉 = −

∞∑

g=0

gs
2g−2

∞∑

n=1

1

(n− 1)!

∫

Rg,n

Ω
(g,n)
6g−5+2n[Ûg,n](QB|Ψ〉, |Ψ〉⊗(n−1))

=
∞∑

g=0

gs
2g−2

∞∑

n=1

1

n!

∫

Rg,n

dΩ
(g,n)
6g−6+2n[Ûg,n](|Ψ〉⊗n) (3.32)

In going from the second to the final expression in the above equation we first averaged

over all the n possible position of QB|Ψ〉 inside the argument of Ω
(g,n)
6g−5+2n[Ûg,n], and then

used (2.6). This agrees with the first term on the right hand side of (3.28). Thus it remains

to show that the second term on the right hand side of (3.31) agrees with the second term

on the right hand side of (3.28). Using (2.9) the latter can be expressed as

−
1

2

∞∑

g=0

gs
2g−2

∞∑

n=0

1

n!

∑

g1,g2,n1,n2
g1+g2=g,n1+n2=n+2

∫

S[{Rg1,n1 ,Rg2,n2}]
Ω
(g,n)
6g−6+2n[Ûg,n](|Ψ〉⊗n) , (3.33)

up to an additive constant. The additive constant corresponds to the n = 0 term in (3.33)

and has no effect on any physical quantity. We can now carry out the integral over the

angular variable θ in the plumbing fixture relation (2.8) and use the relation (2.10). On

{Rg1,n1 ,Rg2,n2} the infinitesimal vector field Ûg,n can be written as a sum of two vector

fields — one with support on Rg1,n1 , characterizing the difference between R′
g1.n1

and

Rg1,n1 and the other with support on Rg2,n2 , characterizing the difference between R′
g2,n2

and Rg2,n2 . Now since (3.33) is invariant under (g1, n1) ↔ (g2, n2), the two terms give the

same contribution. Thus we can keep only one of the terms, e.g. where Ûg,n has support

on Rg2,n2 and multiply the result by a factor of 2. This allows us to write (3.33) as

−

∞∑

g=0

gs
2g−2

∞∑

n=0

1

n!

∑

g1,g2,n1,n2
g1+g2=g,n1+n2=n+2

S

[∫

Rg1,n1

Ω
(g1,n1)
6g1−6+2n1

(|Ψ〉⊗(n1−1), |ϕr〉)

∫

Rg2,n2

Ω
(g2,n2)
6g2−5+2n2

[Ûg2,n2 ](|ϕ
r〉, |Ψ〉⊗(n2−1))

]
. (3.34)
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In arriving at (3.34) we have taken into account the fact that besides the sign given in (2.10),

there is an extra minus sign resulting from the fact that the operation of contracting a form

with θ independent vector field Û with vanishing Û θ and integrating the form over θ anti-

commute, e.g.
∫

θ

(dy ∧ dθ[Û ]) = Ûy

∫

θ

dθ = 2πÛy,

(∫

θ

dy ∧ dθ

)
[Û ] = −2π dy[Û ] = −2πÛy . (3.35)

Now since all the external states are |Ψ〉, the S operation in (3.34) just produces a factor of

n!/(n1 − 1)!(n2 − 1)!. Regarding (g1, n1) and (g2, n2) as independent summation variables

and performing the sum over g1, we can express (3.34) as

−gs
−2

∞∑

n1=1

1

(n1−1)!
{Ψn1−1ϕr}

∞∑

g2=0

∞∑

n2=1

1

(n2−1)!
g2g2s

∫

Rg2,n2

Ω
(g2,n2)
6g2−5+2n2

[Ûg2,n2 ](|ϕ
r〉, |Ψ〉⊗(n2−1))

= gs
−2

∞∑

n1=1

1

(n1 − 1)!
{Ψn1−1ϕr}〈ϕ

r|c−0 |δ̃Ψ〉 = gs
−2

∞∑

n1=1

1

(n1 − 1)!
{Ψn1−1δ̃Ψ} . (3.36)

In the last step we have used the relation |ϕr〉〈ϕ
r|c−0 |s〉 = |s〉 for |s〉 ∈ H0 — this follows

from (2.11). (3.36) agrees with the second term on the right hand side of (3.31), establishing

the equality of (3.28) and (3.31) up to an additive constant.

Finally we note that even though we have described the field redefinition in terms of

the original string field Ψ, we can also translate this to a redefinition of the shifted field Ψ̂

using the known relation between Ψ̂ and Ψ.

The result of this subsection and the previous one leads to the following question.

Suppose that we have two different choices of Rg,n leading to two different actions. Suppose

further that for each action we have constructed vacuum solutions following the procedure

described in section 3.3. If we now perform the field redefinition described in this subsection

to relate the two actions, does it map these vacuum solutions to each other? If the vacuum

solutions are unique up to gauge transformations, then it is guaranteed that they will be

mapped to each other up to a gauge transformation. However if there are moduli fields

whose vacuum expectation values are not fixed, then all that one can conclude is that

the family of vacuum solutions for the two actions will be related to each other under

field redefinition, but the transformation rules for the parameters c
(n)
i in (3.21) under this

transformation will be very complicated in general. In particular even if we take all the

c
(n)
i ’s to be zero while solving the equations of motion derived from the first action, it may

not map to the solution with vanishing c
(n)
i ’s in the family of solutions to the equations of

motion derived from the second action. This explains the observation of [18, 33, 42] that a

change in the local coordinate system and/or PCO locations will have to be accompanied

by a shift in the expectation values of the moduli fields in order to ensure that we are in the

same physical theory, i.e. to keep the mass spectrum and S-matrix elements unchanged.

4 Applications

We shall now describe how the 1PI effective action can be used to simplify the analysis of

mass renormalization and vacuum shift in string theory. It should be kept in mind however
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that since the 1PI effective action gives the same off-shell amplitudes as those obtained using

the prescription used in [15–18], the results remain unchanged. Only the proof of some of

the results, in particular the result that physical quantities are independent of the choice

of local coordinates and PCO locations used to define the off-shell amplitudes, simplify.

4.1 Mass renormalization

We begin our discussion with the computation of the renormalized mass. Once we have

found the vacuum, the 1PI action expanded around the vacuum has no linear term. The

quadratic terms define the kinetic operator M . If we expand the string field in some basis

{|ϕ̄r〉} of ghost number two states in H0, then the explicit form of Mrs is given by

Mrs = 〈ϕ̄r|c
−
0 Q̂B|ϕ̄s〉 , (4.1)

where Q̂B has been defined in (3.24). Now we examine the eigenvalues of M .6 This can be

done at fixed momentum along the non-compact directions due to translational invariance

along those directions, and then we can study how the eigenvalues vary as a function of

the momentum. There are three kinds of behaviour:

1. Some of the eigenvalues will vanish for all momenta. These are pure gauge directions.

2. Some eigenvalues never vanish as a function of momentum. These are unphysical

modes.

3. Some eigenvalues vary as a function of momentum k and vanish at specific values of

k2. These describe physical states. The locations of the zeroes in the −k2 plane give

the physical renormalized mass2.

As an example from field theory, we can consider the free photon kinetic term in quantum

electrodynamics. In momentum space it is proportional to (−k2ηµν + kµkν). Taking

{kµ} = (k0, k1, 0, 0) the kinetic operator takes the form




(k1)2 k0k1

k0k1 (k0)2

(k0)2 − (k1)2

(k0)2 − (k1)2


 . (4.2)

This has eigenvalues

λ1(k) = 0, λ2(k) = (k0)2 + (k1)2, λ3(k) = λ4(k) = (k0)2 − (k1)2 . (4.3)

Since λ1(k) vanishes for all k, it represents a pure gauge mode. λ2(k) never vanishes (except

at the special point k0 = k1 = 0) and hence describes an unphysical mode. λ3(k) and λ4(k)

vanish at k0 = k1, and describe massless physical states. The important point to note is

that the mass spectrum can be found without any gauge fixing. If instead we had added a

6Note that even though Q̂B is nilpotent, the matrix M is not nilpotent. Hence it can have non-zero

eigenvalues.
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gauge fixing term and then computed the eigenvalues of the kinetic term and the locations

of their zeroes, the result will in general depend on the choice of gauge. We’ll then have to

make special effort to determine which of these zeroes describe physical states (for which

the location of the zeroes in the k2 plane should not depend on the gauge choice) and

which are gauge artifacts. This was the main problem encountered in the analysis of [16].

Here we see that the use of gauge invariant 1PI effective action allows us to circumvent

this problem by working with the gauge invariant quantum corrected kinetic term.

Now consider the effect of a change in the choice of local coordinates and/or PCO

locations. As discussed in section 3.4, this can be compensated by a field redefinition under

which the original vacuum gets mapped to a vacuum of the new action for some specific

choice of the moduli fields. As a result the kinetic operator M around the corresponding

vacua are related to each other by a transformation of the form

M → A(−k)TMA(k) , (4.4)

where A(k) is an operator acting on states of ghost number two and momentum k in H0

that can be computed using the field redefinition (3.30). The important point to note is

that since (3.30) involves integration over the 1PI regions Rg,n, it does not have any pole

in the −k2 plane in perturbation theory. Thus for every eigenstate of zero eigenvalue of

M , we can construct an eigenstate of zero eigenvalue of A(−k)TMA(k) by multiplying the

original eigenstate by the non-singular matrix A(k)−1. This shows that the locations of the

zeroes of the eigenvalues in the −k2 plane are not affected by the field redefinition. This

is turn establishes that the physical renormalized masses are independent of the choice of

local coordinate system and the locations of the PCO’s.

The above discussion has been somewhat formal, in the sense that it requires us to

work with infinite dimensional matrices M . We shall now describe how to reduce the

problem of computing renormalized mass to a more manageable form by ‘integrating out’

contribution from all states except those at a given mass level m — where mass level of

a state carrying momentum k is defined by the condition that its L+
0 eigenvalue vanishes

for k2 = −m2. This will then allow us to work with states of a given mass level at a

time, which are finite in number. During this analysis we shall also develop a systematic

perturbation expansion for computing the renormalized masses.

We recall that in order to address the problem of mass renormalization we have to find

zero eigenvalues of M , i.e. find solutions to the equation

Q̂B|ψ〉 = 0 . (4.5)

Let us express Q̂B as

Q̂B = QB +K, K|A〉 ≡
∞∑

n=0

1

n!
[Ψn

clA] (4.6)

so thatK contains operators of order gs
2 and higher. Since the natural expansion parameter

is κ ≡ gs
2, we shall from now on express all the quantities as a power series expansion in κ.7

7Here we are ignoring the special cases discussed in section 4.4 where |Ψcl〉 can be of order gs leading to

gs as the expansion parameter. Our analysis can be extended to these cases as well.
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We shall denote by |ψn〉 the result for |ψ〉 accurate to order κn, and the same convention

will be followed for all other states. Then we can express (4.5) as

QB|ψn+1〉 = −K |ψn〉+O(κn+2) . (4.7)

Let us suppose that we have found |ψn〉 satisfying (4.7) with n replaced by (n− 1). Then

using the nilpotence of QB + K one can show that QBK|ψn〉 = O
(
κn+2

)
. We can now

write down a formal solution to (4.7) of the form8

|ψn+1〉 = −
b+0
L+
0

K|ψn〉+O
(
κn+2

)
. (4.8)

(4.8) makes sense as long as K|ψn〉 is a linear combination of states with L+
0 6= 0. Now

while applying the above procedure we shall always begin with an initial state |ψ0〉 at

some given mass level m and proceed. On shell condition at tree level then requires the

momentum carried by the state to satisfy k2 = −m2 i.e. L+
0 = 0. Since in perturbation

theory we shall keep the momentum k close to the original value we see that for states at

the same mass level m as |ψ0〉, L
+
0 eigenvalues will be small (of order κ) and hence the

operator
b+0
L+
0

K may be of order one, signalling a breakdown of the perturbative procedure.

For this purpose we shall introduce a projection operator P that projects onto states of

mass level m and apply this recursive technique only on states other than those at mass

level m. Let us suppose that we want to compute the renormalized masses accurately up

to order κN . Then we claim that the following is a solution to (4.7) for n ≤ N − 1

|ψ0〉 = |φN 〉, |ψn+1〉 = −
b+0
L+
0

(1− P )K|ψn〉+ |φN 〉+O
(
κn+2

)
, (4.9)

where |φN 〉 satisfies

P |φN 〉 = |φN 〉 , (4.10)

QB|φN 〉 = −PK|ψN−1〉+O(κN+1) . (4.11)

The proof that (4.9) satisfies (4.7) goes as follows. The projection condition (4.10) tells us

that |φN 〉 is a level m state.9 Using (4.9) to express |ψn+1〉− |ψn〉 in terms of |ψn〉− |ψn−1〉

and noting that |ψ1〉 − ψ0〉 is of order κ one can show iteratively that |ψℓ+1〉 − |ψℓ〉 ∼ κℓ+1

for all ℓ. This observation, together with eq. (4.11), gives QB|φN 〉 = −PK|ψn〉+O(κn+2).

Using this and assuming that (4.7) holds with n replaced by (n− 1) one can easily verify

that (4.9) satisfies (4.7).

By iterating this solution till n = N − 1 starting with the seed solution |ψ0〉 = |φN 〉

we can determine |ψn〉 in terms of |φN 〉 for 0 ≤ n ≤ N . In particular we get an expression

for |ψN−1〉 in terms of |φN 〉 of the form

|ψN−1〉 = S|φN 〉+O(κN ) (4.12)

8A more general solution to (4.7) will allow us to add a term of the form QB |χn+1〉 to the right hand

side of (4.9). We are allowed to drop such terms this since we are interested in finding solutions to (4.7)

which are not pure gauge deformations.
9Notice that we have not introduced the states |φn〉 for 0 ≤ n ≤ N − 1 which would provide approxi-

mations to |φN 〉 to order κn. Instead of determining |φn〉 perturbatively, we shall later determine it in a

single step.
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for some linear operator S. S involves multiple successive operations of (1−P )(L+
0 )

−1 and

K, and, as in section 3.3, each term involving such products of operators may be interpreted

as contribution from a single Riemann surface obtained by joining 1PI Riemann surfaces

via plumbing fixture. The effect of the (1−P ) operator is to remove the contribution from

the states of mass level m from the propagator which could generate large numbers of order

1/κ from the s integral.

Eq. (4.11) now gives

QB|φN 〉 = −PKS|φN 〉+O(κN+1) . (4.13)

Since |φN 〉 is an arbitrary state of mass level m, we can express this as a linear combination

of the basis states |r〉 ∈ H0 of ghost number two and mass level m:

|φN 〉 =
∑

r

vr|r〉 . (4.14)

Taking the inner product of (4.13) with 〈s|c−0 where 〈s| is the BPZ conjugate of |s〉, we get

∑

r

〈s|c−0 (QB + PKS)|r〉 vr = O(κN+1) . (4.15)

Thus the problem reduces to finding the zero eigenvalues of a finite dimensional matrix.

Solutions which exist for all k will represent pure gauge states while solutions which exist

only for some fixed value of k2 near −m2 will represent physical states. Explicit form of

pure gauge solutions will be given in (4.17), (4.18).

In the next subsection we shall describe the relationship of this approach to the Siegel

gauge analysis of [16].

4.2 Relation to Siegel gauge analysis

Ref. [16] gave a prescription for computing mass renormalization, but it was based on the

analysis of Siegel gauge propagator and hence is apparently different from the definition of

physical renormalized mass we have suggested above. We shall now show that the definition

given in section 4.1 agrees with the one in [16], and hence we can use the argument given

in section 4.1 to conclude that the perturbative method described in [16] also gives results

which are independent of the choice of local coordinate system and locations of PCO’s.

Our strategy will be to show that any solution to (4.7) can be made to satisfy the

Siegel gauge condition after adding to it a pure gauge state. This will justify the approach

of [16] which worked with states in the Siegel gauge. First we note that by construction

|ψn+1〉 given in (4.9) satisfies the Siegel gauge condition for states at level other than m,

i.e. satisfies

b+0 (1− P )|ψn+1〉 = O(κn+2) , (4.16)

Thus we need to show that |φN 〉 can also be made to satisfy Siegel gauge condition. We

shall do this by exploiting the freedom of adding pure gauge solutions to |ψn+1〉, but for

this we must first find the form of the pure gauge solutions satisfying (4.16). We shall now
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describe an algorithm to generate such solutions. We first construct |λn〉 for 0 ≤ n ≤ N

by solving the recursion relations

|λ0〉 = |ηN 〉, |λn+1〉 = −
b+0
L+
0

(1− P )K|λn〉+ |ηN 〉+O
(
κn+2

)
, (4.17)

where |ηN 〉 is an arbitrary state of ghost number 1, momentum k and mass level m in

H0, with its κ expansion beginning at κ0 and going up to κN . Using (4.17) to express

|λn+1〉 − |λn〉 in terms of |λn〉 − |λn−1〉 and noting that |λ1〉 and |λ0〉 differ by order κ, one

can show iteratively that |λn+1〉 − |λn〉 = O(κn+1). We now define

|ψg
n+1〉 = (QB +K)|λn+1〉+O(κn+2) = QB|λn+1〉+K|λn〉+O(κn+2) for 0 ≤ n+ 1 ≤ N .

(4.18)

It follows using the nilpotence of (QB+K) that |ψg
n+1〉 satisfies (4.7) at generic momentum

and hence is a pure gauge state. Furthermore from (4.17) it is easy to check that |ψg
n+1〉

satisfies (4.16).

Let us now focus our attention on the physical states. Suppose that mR = m+O(κ)

is the correct renormalized mass for some physical state. Then at k2 = −mR
2 it will have

the general form given in (4.9)–(4.11). Now if we add to it any pure gauge state of the

from (4.18) carrying the same momentum, it will continue to remain an eigenstate of the

kinetic operator with zero eigenvalue. Our goal will be to argue that by adding appropriate

pure gauge states of the form (4.18) we can make each of the renormalized physical states

satisfy Siegel gauge condition. Since we shall be computing the solution accurate up to

order κN we shall take a pure gauge solution up to that order. Thus the general solution

takes the form

|χN 〉 ≡ |ψN 〉+ (QB +K)|λN 〉 = |ψN 〉+QB|λN 〉+K|λN−1〉+O(κN+1) (4.19)

where |ψn+1〉 and |λn+1〉 satisfy the recursion relations (4.9) and (4.17) for 0 ≤ n ≤ (N−1):

|ψ0〉 = |φN 〉, |ψn+1〉 = −
b+0
L+
0

(1− P )K|ψn〉+ |φN 〉+O
(
κn+2

)
,

|λ0〉 = |ηN 〉, |λn+1〉 = −
b+0
L+
0

(1− P )K|λn〉+ |ηN 〉+O
(
κn+2

)
. (4.20)

Using (4.19), (4.20) we now get

b+0 |χN 〉 = b+0 (|φN 〉+ P K |λN−1〉+QB |ηN 〉) +O(κN+1) . (4.21)

Now it follows from (4.11) that QB|φN 〉 has its expansion starting at order κ. Thus in the

κ → 0 limit |φN 〉 is a BRST invariant state. It then follows from the general result on

BRST cohomology that

|φN 〉 = cc̄e−φV (0)|0〉+QB|s〉+ κ|ξN−1〉 . (4.22)

Here V is a κ independent matter vertex operator of dimension (1/2 + α′(k2 +m2)/4, 1 +

α′(k2+m2)/4) carrying momentum k, and becomes a superconformal primary operator in
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the k2 → −m2 limit. |s〉 is some κ independent state of level m and |ξN−1〉 is a state of

level m whose κ expansion starts at order κ0. Now by choosing

|ηN 〉 = −|s〉 −
b+0
L+
0

(κ|ξN−1〉+ PK|λN−1〉) (4.23)

we can make the right hand side of (4.21) vanish to order κN , showing that |χN 〉 satisfies

the Siegel gauge condition. Since the |λN−1〉 determined from the recursion relation (4.20)

is a function of |ηN 〉, (4.23) gives a linear equation for |ηN 〉 which needs to be solved.

Furthermore this has to be done by regarding this as a matrix equation in the space of

mass levelm states and not perturbatively, since acting on states of mass levelm, b+0 (L
+
0 )

−1

is of order 1/κ and hence each of the terms in (4.23) will have their κ expansion beginning

at order κ0. For example for N = 1 we have |λ0〉 = |η1〉 and hence (4.23) takes the form

|η1〉 = −|s〉 −
b+0
L+
0

(κ|ξ0〉+ PK|η1〉) , (4.24)

i.e.

|η1〉 = −

(
1 +

b+0
L+
0

PK

)−1(
|s〉+ κ

b+0
L+
0

|ξ0〉

)
. (4.25)

Furthermore using (4.19), (4.20) we now get the leading order contribution to |χN 〉 to be

|χN 〉 = |φN 〉+QB|ηN 〉+O(κ) = cc̄e−φV (0)|0〉−QB
b+0
L+
0

(PK|ηN 〉+κ|ξN−1〉)+O(κ) . (4.26)

This analysis shows that by adding appropriate pure gauge states we can ensure that

the renormalized physical state satisfies the Siegel gauge condition at k2 = −mR
2. This in

turn implies that we can, from the beginning, look for the physical states by working with

states satisfying Siegel gauge condition. However this is still not equivalent to working

with the Siegel gauge fixed action and studying its (linearized) equations of motion. In the

latter case we not only restrict the states to be in the Siegel gauge, we also only examine a

subset of the equations of motion — namely those which have components along the states

in the Siegel gauge. Thus finding a zero eigenvalue of the Siegel gauge kinetic operator

is a necessary but not sufficient condition for a physical state, and we need to find some

additional criterion that will tell us which of the zero eigenvalues of the Siegel gauge kinetic

operator describe physical states. Eq. (4.26) tells us how to identify these physical states

in the Siegel gauge — in the κ → 0 limit they must be given by a sum of a state of the

form cc̄e−φV (0)|0〉 and a BRST trivial state. In the Siegel gauge analysis of [17] it was

found that if at tree level there are np physical states at mass level m, then after taking

into account loop effects there are precisely np states with zero eigenvalue of the kinetic

operator in the Siegel gauge whose eigenstates have the form given in (4.26). There were

also other zero eigenvalues whose eigenstates were not of this form. Thus the former must

be the desired physical states, while the latter must be states which will fail to satisfy

the linearized equations of motion when we examine its components along states outside

the Siegel gauge. Indeed [17] also identified the former as the true physical states using
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a different set of arguments. The current analysis shows that these are true eigenstates

with zero eigenvalue of the full kinetic operator c−0 Q̂B and hence the renormalized masses

associated with these eigenstates are invariant under a change of local coordinate system

and / or PCO locations.

4.3 S-matrix

In order to compute the S-matrix from the 1PI action one needs to fix a gauge, compute

the gauge fixed propagator, and then compute the tree level S-matrix in the theory us-

ing standard rules. While this does require a gauge fixing and hence introduces possible

dependence on spurious data in the intermediate stage, we do not need to introduce any

ghosts associated with the gauge fields since we only compute tree amplitudes. Thus the

standard proof that the tree level S-matrix of a field theory is independent of the choice of

gauge and field redefinition should hold. The difficult part of the proof of gauge invariance

(and invariance under field redefinition) of the S-matrix elements, involving analysis of

the invariance of the path integral measure under these transformations, can be avoided

altogether by working with gauge invariant 1PI effective action.

4.4 Vacuum shift

We shall now turn to the analysis of vacuum shift studied in [16]. The set up is as follows.

Suppose we have a scalar field φ that is massless at the tree level but has a tree level

potential Ags
−2φ4 for some positive constant A. Suppose further that one loop correction

generates a negative contribution −Bφ2 to the potential for some positive constant B.

Thus we have the full potential

Ags
−2φ4 −B φ2 + · · · (4.27)

where · · · denotes other terms involving higher powers of φ and/or of gs
2. Now it is clear

that the potential has a minimum at

φ2 = Bg2s/2A+ · · · . (4.28)

The question is: how do we study perturbative string theory around this minimum?

From the point of view of the 1PI effective action the answer is as follows. Since φ

is massless at the tree level, one of the ci’s (or more generally some combination of the

ci’s) appearing in (3.21) represents the vacuum expectation value of φ. While solving

the equations of motion to find |Ψcl〉, we should run into a situation where the vanishing

of (3.20) can be achieved for three possible solutions corresponding to φ = 0 and φ =

±gs
√
B/2A.10 Here we need to pick the solution for ci’s that corresponds to the minimum

of the potential at φ = ±gs
√
B/2A rather than the maximum at φ = 0. Beginning with

this solution we need to systematically compute the higher order terms and correct the

solution at each order to ensure the vanishing of (3.20). The actual procedure is similar

10Note that in general φ and ci’s will be related by complicated functions, but to order gs we can expect

the relationship to be linear.
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to the one adopted in [54], although the latter paper only examined solutions to the tree

level string field theory action.

Once we have found the solution to any given order we can expand the action around

the minimum as in section 3.3 and carry out the usual computation of renormalized masses

and S-matrix elements. The result will formally be identical to the ones described in [17];

however unlike in [17] here we shall not need to regulate the infrared divergence associated

with tadpoles of φ even at the intermediate stage, since we determine the vacuum expec-

tation value of φ (and other fields) by solving the classical equations of motion rather than

demanding the vanishing of the φ-tadpole. The invariance of the renormalized mass and

S-matrix elements under a change of local coordinate system and/or PCO locations now

follow in the same way as in section 4.1, section 4.3.
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A Issues with vertical segment

In the analysis of [18] it was found that Rg,n’s cannot be taken to be sections over Kg,n

in the strict sense — there are codimension one subspaces K̃g,n of Kg,n on which the

locations of the PCO’s will have to change from an initial configuration (z1, · · · zp) to a final

configuration (z′1, · · · z
′
p) keeping the moduli fixed. In other words Rg,n contains vertical

segments. Even though the path connecting (z1, · · · zp) to (z′1, · · · z
′
p) passes through the

spurious singularities, there is a well defined value of the integral of Ω
(g,n)
p along this path

provided the PCO locations are moved one at a time. Now we can consider two such paths

in which the order in which the PCO locations are moved differ. Each of these paths

describe a choice of Rg,n. Let us call them Rg,n and R′
g,n. We would like to show that

the actions corresponding to the choices Rg,n and R′
g,n are related by a field redefinition.

However the problem is that the change is not infinitesimal and hence we cannot directly

apply the analysis of section 3.4. We shall now discuss a way to circumvent this problem.

We recall that we are allowed to choose weighted averages of different PCO prescrip-

tions in defining the region Rg,n. Thus we could take a one parameter family of regions

Rg,n(t) of the form

Rg,n(t) =
∑

i

f (i)
g,n(t)R

(i)
g,n , (A.1)

where R
(i)
g,n are different choices of Rg,n differing in their vertical segments and f

(i)
g,n(t)’s are

appropriate weight factors labelled by a parameter t satisfying
∑

i

f (i)
g,n(t) = 1 (A.2)
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and the gluing compatibility condition

∂Rg,n(t) = −
1

2

∑

g1,g1,n1,n2
g1+g2=g,n1+n2=n+2

S [{Rg1,n1(t),Rg2,n2(t)}] (A.3)

for each t. We choose the f
(i)
g,n(t) such that at t = 0 and 1 we get back Rg,n and R′

g,n

respectively, so that as we deform t from 0 to 1 we interpolate between the two choices of

the vertical segment which we wanted to show are equivalent. Now, under an infinitesimal

change δt of t, we get

δRg,n(t) = δt
∑

i

f (i)
g,n

′(t)R(i)
g,n , (A.4)

where ′ denotes derivative with respect to t. The right hand side of (A.4) is a weighted

sum of subspaces of P̃g,n. Since δRg,n is infinitesimal, we might hope to apply techniques

similar to those in section 3.4 to show that the change in the action can be absorbed by a

field redefinition. Our goal will be to show that this can indeed be done. Once we establish

this for infinitesimal deformations, the results for finite deformation will follow.

Note that we cannot take the interpolating region to be simply (1− t)R
(1)
g,n + tR

(2)
g,n as

this will violate the gluing compatibility condition (2.9). To illustrate this let us suppose

that the vertical segment first appears at genus g0 with n0 punctures in the interior of

Kg0,n0 . If Rg0,n0 and R′
g0,n0

denote two such choices then we can take the interpolating

integration cycles to be Rg0,n0(t) = tRg0,n0 + (1− t)Rg0,n0 . But now we have

{Rg0,n0(t),Rg0.n0(t)}= t2{Rg0,n0 ,Rg0.n0}+2t(1−t){Rg0,n0 ,R
′
g0.n0

}+(1−t)2{R′
g0,n0

,R′
g0.n0

}.

(A.5)

Since this forms a boundary of R2g0,2n0−2 we see that the choice of the interpolating

integration cycle R2g0,2n0−2(t) will have to be more complicated. Similarly R3g0,3n0−4(t),

which contains {Rg0,n0(t),R2g0,2g0(t)} as a boundary, must be even more complicated.

We now introduce the following (formal weighted sum of) subspaces of P̃g,n:

1. δRg,n(t) defined in (A.4) represents a formal sum of subspaces of P̃g,n. Due to (A.2)

we have
∑

i f
(i)
g,n

′(t) = 0. Since R
(i)
g,n’s differ from each other only on the fiber over

K̃g,n, we see that δRg,n(t) lies inside the fiber over K̃g,n. Furthermore since the

restriction of R
(i)
g,n to the fiber over any point m in K̃g,n describe a path in the fiber

with the same initial and final points for each i, the
∑

i f
(i)
g,n

′(t) = 0 relation implies

that the restriction of δRg,n(t) to this fiber will be a formal sum of closed paths in the

fiber, or more specifically in the space of PCO locations at fixed choices of the local

coordinate systems.11 We shall denote this formal sum of closed curves by Cg,n(m)

for every m ∈ K̃g,n. δRg,n(t) may now be identified as the collection of Cg,n(m)’s for

all m ∈ K̃g,n.

11At the intersection of two such K̃g,n’s we have vertical segments which are two dimensional surfaces

in the space of PCO locations instead of paths; on higher codimension surfaces involving intersection of

multiple K̃g,n’s the vertical segment has even higher dimensions. There are additional subtleties involving

these subspaces but they can be taken care of [51].
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2. Cg,n(m) in turn may be regarded as the boundary of Dg,n(m) — a formal sum of two

dimensional subspaces in the fiber overm. We can take this two dimensional subspace

to lie along fixed choices of local coordinate system, letting the PCO locations vary

along Dg,n(m).

3. We define ∆g,n to be the formal sum of 6g − 5 + 2n dimensional subspaces of P̃g,n

obtained by taking the collection of the Dg,n(m)’s for all m ∈ K̃g,n.

4. We also define Γg,n to be the formal sum of 6g− 6+2n dimensional subspace of P̃g,n

obtained by taking the collection of the Dg,n(m)’s for all m ∈ ∂K̃g,n. Here ∂K̃g,n is

the boundary of K̃g,n given by the intersection of K̃g,n and ∂Kg,n.

It follows from the above definitions that the boundary of ∆g,n is given by

∂∆g,n = δRg,n(t) + Γg,n . (A.6)

Physically this reflects the fact that ∆g,n has two kinds of boundaries. If we consider a fixed

point m in K̃g,n and move along the fiber direction, we encounter the boundary Cg,n(m),

whose collection for all m ∈ K̃ gives the first term on the right hand side of (A.6). On the

other hand if we move along K̃g,n then we may encounter the boundary ∂K̃g,n. Thus the

collection of Dg,n(m) for m ∈ ∂K̃g,n gives the second boundary of ∆g,n represented by the

Γg,n term in (A.6).

As a consequence of the gluing compatibility relation (A.3) one can show that

Γg,n = −
∑

g1,g1,n1,n2
g1+g2=g,n1+n2=n+2

S [{Rg1,n1 ,∆g2,n2}] . (A.7)

Intuitively this means that Γg,n, which encodes the difference between Rg,n(t + δt) and

Rg,n(t) at the boundary, gets contribution from two sources to order δt — one that encodes

the difference between Rg1,n1(t+δt) and Rg1,n1(t) and the other that encodes the difference

between Rg2,n2(t + δt) and Rg2,n2(t). Since both give equal contributions after summing

over g1, g2, n1, n2 we have kept only one of the terms and multiplied the result by a factor

of 2.

We are now ready to discuss the change in the action. This is given by

δS = δt
∞∑

g=0

gs
2g−2

∞∑

n=1

1

n!

∫

δRg,n(t)
Ω
(g,n)
6g−6+2n(|Ψ〉⊗n)

=
∞∑

g=0

gs
2g−2

∞∑

n=1

1

n!

[∫

∆g,n(t)
dΩ

(g,n)
6g−6+2n(|Ψ〉⊗n)−

∫

Γg,n

Ω
(g,n)
6g−6+2n(|Ψ〉⊗n)

]
, (A.8)

where in arriving that the last expression we have used (A.6). This is the equation analo-

gous to (3.28). Since this change is infinitesimal we can proceed as earlier and show that

this change in the action can be reinterpreted as the result of a field redefinition of the

form |Ψ〉 to |Ψ〉+ |δ̃Ψ〉 where |δ̃Ψ〉 is given by

〈Φ|c−0 |δ̃Ψ〉 = −
∞∑

g=0

gs
2g

∞∑

n=1

1

(n− 1)!

∫

∆g,n(t)
Ω
(g,n)
6g−5+2n(|Φ〉, |Ψ〉⊗(n−1)) , (A.9)
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for any state |Φ〉 in H0. The proof of this follows in a straightforward fashion, with the

change in the term proportional to 〈Ψ|c−0 QB|Ψ〉 in the action matching the first term on

the right hand side of (A.8) and the change in the rest of the terms in the action matching

the second term on the right hand side of (A.8).

The important aspect of (A.9) is that even though the subspace ∆g,n contains spurious

singularities, the rules of vertical integration given in [18] give a procedure for integrating

Ω
(g,n)
6g−5+2n over ∆g,n yielding a finite result. Thus the field redefinition described in (A.9)

is finite.
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