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1 Introduction

The AdS/CFT correspondence relates a gravitational theory in d + 1 dimensions to a

CFT in d dimensions. Various explicit solutions of the Einstein equations with a negative

cosmological constant have been studied in this context, for example stationary black hole

solutions are known to describe thermal equilibrium states of the CFT. An interesting

class of solutions of the 3 + 1 dimensional Einstein equations are the solutions with an

algebraically special Weyl tensor. This includes black hole solutions such as Kerr-AdS but

also much more general solutions which have free functional degrees of freedom and no

isometries. In this paper we will study the AdS/CFT interpretation of such solutions.

The Goldberg-Sachs theorem implies that the algebraically special property is equiv-

alent to the existence of a null geodesic congruence with vanishing shear. In this paper

we will focus on spacetimes for which this congruence also has vanishing rotation but non-

vanishing expansion. This defines the Robinson-Trautman (RT) family of algebraically

special solutions [1]. A general member of the RT family is a time-dependent deformation

of the Schwarzschild-AdS solution. As we will explain in section 2, these solutions have
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a simple explicit form depending on one function λ of three coordinates. This function is

constrained to satisfy a certain parabolic PDE: the RT equation.

The conformal boundary of a RT solution is a 2+1 dimensional spacetime with metric

ds2 = −dt2 + e2λ(t,x)ḡij(x)dxidxj (1.1)

where ḡij is a two-dimensional metric of constant curvature and λ is the function mentioned

above. In general this metric has no symmetries. One can regard it as an inhomogeneous

cosmological spacetime. The CFT lives in this spacetime. Using AdS/CFT we determine

the expectation value of the CFT energy-momentum tensor in a state dual to a RT solution.

We find that this can be written very simply as the sum of a perfect fluid part, with the fluid

at rest in the above coordinates, and a 3-derivative term constructed from the curvature

of the boundary metric.

From a CFT perspective, this result is surprising because it is a local function of the

boundary geometry, i.e., 〈Tab(t, x)〉 depends only on the spacetime geometry at the point

(t, x) and not, as would generically be the case, on the geometry at other points e.g. those

in the past light-cone of this point. This result can be attributed to the fact that the

bulk spacetime contains only ingoing radiation: the algebraically special property implies

that there is no scattering in the bulk and hence, although it is permitted by causality,

information does not propagate from the boundary at an early time back to the boundary

at a later time.

When the CFT is in a state in which observables vary slowly compared to the micro-

scopic scale of the theory (e.g. set by the mean free path) then it can be described by a

hydrodynamic derivative expansion. In the simplest situation of an uncharged fluid, the

fluid is described by slowly varying temperature and velocity fields. The fluid stress tensor

is expressed as an expansion in derivatives of these quantities. The coefficients in this

expansion are known as transport coefficients. The fluid/gravity correspondence of ref. [2]

(for a recent review see [3]) postulates the form of the bulk metric dual to a general motion

of the fluid. This metric takes the form of an infinite derivative expansion, whose form

has been determined explicitly up to two derivatives. The bulk Einstein equation and the

AdS/CFT correspondence then determine the transport coefficients of the dual fluid.

The metric of the fluid/gravity correspondence is sufficiently complicated that it seems

worth looking at particular cases in which it simplifies. One practical reason for doing this

is that it might be possible to determine the derivative expansion explicitly to higher

order in a particular case than has been achieved in the general case. If the particular

case is “sufficiently general”, then it might be possible to determine some of the higher

order transport coefficients this way. (This possibility was also discussed in ref. [4], which

considered a class of stationary bulk solutions for which 〈Tab〉 takes a perfect fluid form.)

In this paper, we will study the RT solution using the methods of the fluid/gravity

correspondence. In this case we know the expectation value of the CFT energy-momentum

tensor exactly so we can expand it in derivatives to an arbitrarily high order. Since the

solution contains free functional degrees of freedom, it seems likely that it is general enough

for this procedure to determine certain higher order transport coefficients.

– 2 –



J
H
E
P
0
6
(
2
0
1
4
)
1
4
8

To define transport coefficients, one must write out the derivative expansion of the

energy-momentum tensor including all possible terms that can arise at each order in deriva-

tives, modulo lower-order equations of motion and geometrical identities. Identifying all

possible terms becomes complicated beyond second order. To simplify this problem, we

introduce a new formalism for studying conformal relativistic fluid mechanics in 2+1 di-

mensions. This is inspired by the Geroch-Held-Penrose formalism in general relativity [5].

In our formalism, everything is reduced to the manipulation of scalar quantities. This

makes the classification of higher derivative terms much more straightforward than in a

tensorial approach.

Applying this formalism to the energy-momentum tensor obtained from the RT solu-

tions, we find that certain transport coefficients associated to four- and six-derivative terms

are determined uniquely. However, somewhat disappointingly, it turns out that transport

coefficients associated to three-derivative terms are not constrained. We also study the en-

tropy current defined by these solutions, and find that some higher-order curvature terms

have no contribution to the divergence of the entropy current. In addition, our formal-

ism enables us to determine uniquely the coefficients of some higher-order terms in the

entropy current.

Another nice example is the Kerr-AdS bulk metric. In this case, the CFT lives in the

Einstein static universe R×S2. For a large black hole, the hydrodynamic description of the

CFT should be valid. In refs. [6, 7], the CFT energy-momentum tensor was determined. It

was found to take the form of a perfect fluid rotating rigidly around the boundary sphere.

The fluid has vanishing shear but non-vanishing rotation. This seems surprising: the perfect

fluid form should be the leading order result but one would have expected higher derivative

corrections to the energy-momentum tensor. In particular one might have expected terms

constructed from the fluid rotation. Using our formalism, we again find that this result

does not constrain any three-derivative terms but it does constrain transport coefficients

at four derivatives.

The RT solutions have a null geodesic congruence with vanishing shear and rotation.

There exists a larger family of algebraically special solutions for which the shear vanishes

but not the rotation. The dependence of the bulk metric on a “radial” coordinate (an affine

parameter along the geodesics) is known explicitly, with the Einstein equation reducing to

certain PDEs constraining the dependence on the other coordinates (i.e. the “boundary”

coordinates). We briefly comment below on some results on the dual CFT interpretation

of this family of solutions. In this case, the CFT lives in a 2+1 dimensional spacetime

which is rotating:

ds2 = −(dt+ ai(t, x) dxi)2 + e2λ(t,x)ḡij(x)dxidxj . (1.2)

Once again we find that the CFT energy-momentum tensor can be written as the sum

of a perfect fluid part, with the fluid at rest in the above coordinates, and the same

three-derivative term constructed from the curvature of the boundary metric as we dis-

cussed above.

This paper is organised as follows. We review some properties of RT spacetimes in

section 2 and study the energy-momentum tensor of their dual CFT state. As we are

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
1
4
8

interested in studying also the dual CFT stress tensor in view of the fluid/gravity corre-

spondence, in section 3 we introduce our aforemontioned formalism to study conformal

fluids in 2+1 dimensions. We apply the formalism to the RT case in section 4 and to the

Kerr-AdS case in section 5. In section 6 we discuss algebraically special solutions with

non-vanishing rotation and suggest possible future directions for research.

2 Robinson-Trautman solutions

2.1 Properties of RT solutions

Robinson-Trautman spacetimes [1] are an important class of exact solutions of the Ein-

stein equations. They are defined by the existence of a geodesic, shear-free, twist-free but

expanding null congruence. According to the Goldberg-Sachs theorem, all such spacetimes

are algebraically special in the vacuum case, with the defining null congruence being a

repeated principal null direction.

In standard form, the metric satisfying the above properties with a negative cosmo-

logical constant Λ = −3/l2 can be written as [8, 9]

ds2 = −Φdu2 − 2dudr + r2g(2) g(2) =
2

P (u, ζ, ζ̄)2
dζdζ̄, (2.1)

with

Φ = K − 2r∂u lnP − 2m

r
+
r2

l2
. (2.2)

where m is a constant,

K = ∆ lnP ∆ = 2P 2∂ζ∂ζ̄ (2.3)

∆ is the Laplacian of a two-dimensional manifold with metric g(2) and K is the Gaussian

curvature of this metric (i.e. half the Ricci scalar). The function P (u, ζ, ζ̄), must obey the

Robinson-Trautman equation,

∂u lnP = − 1

12m
∆K (2.4)

which guarantees that the metric (2.1) is a solution of the vacuum Einstein equations

Gab =
3

l2
gab. (2.5)

Note that the RT equation is independent of the cosmological constant. For simplicity, we

will from now on choose units such that the AdS scale is set to unity, l = 1.

We will assume that the coordinates ζ, ζ̄ parameterize a compact two-dimensional man-

ifold (2)M , e.g S2 or T 2. The coordinates (u, r, ζ, ζ̄) are analogous to outgoing Eddington-

Finkelstein coordinates for the Schwarzschild solution with ∂/∂r tangent to the (affinely

parameterized) outgoing null geodesics with vanishing shear and rotation, and positive

expansion. There is a curvature singularity at r = 0.

The above metric admits a timelike conformal boundary at r = ∞ with topology

R× (2)M . The boundary metric can be chosen to be

ds2 = −du2 + g(2) (2.6)

– 4 –
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which can be interpreted as an inhomogeneous cosmological spacetime. In general, the

boundary metric is not conformally flat so the solution is not asymptotically AdS in the

usual sense.1 According to AdS/CFT, the dual CFT lives in this 2+1 dimensional geometry.

The Schwarzschild-AdS solution is recovered from the RT metric by taking g(2) to be

a time-independent metric of constant unit curvature:

P = P0(ζ, ζ̄) ≡ 1 +
K

2
ζζ̄. (2.7)

with K ∈ {1, 0,−1} corresponding to spherical, planar, or hyperbolic symmetry.

In the general case it is convenient to write

P = e−λ(u,ζ,ζ̄)P0(ζ, ζ̄) (2.8)

so the RT equation becomes an equation for λ. The parabolic nature of the RT equation

implies that it comes with a preferred direction of time [10]. We assume that m > 0. Then,

given initial data specified by a smooth function λ(u0, ζ, ζ̄), there exists a unique solution

of the RT equation for u ≥ u0. Moreover, this solution is analytic in ζ, ζ̄ for all u > u0.2

Hence if we are given smooth but non-analytic data λ(u0, ζ, ζ̄) then there will exist no

corresponding solution of the RT solution for u < u0.

Given arbitrary smooth initial data λ(u0, ζ, ζ̄), it has been shown that the correspond-

ing solution λ(u, ζ, ζ̄) converges exponentially fast to a constant λ∞ as u → ∞ [10]. This

holds for (2)M of arbitrary genus. The RT equation is volume preserving, i.e., the volume

of (2)M with metric g(2) is constant. This determines the value of the constant λ∞. By a

rescaling of the coordinates u, r one can arrange that λ∞ = 0. The rate of convergence is

determined by the first non-zero eigenvalue ν1 of the Laplacian of the metric corresponding

to P0 on (2)M :

λ = O(e−ν1u/(12m)). (2.9)

Since λ = 0 corresponds to the Schwarzschild-AdS solution, we can say that RT solutions

“settle down” to the Schwarzschild-AdS solution with mass parameter m as u→∞. Since

u = ∞ corresponds to the future event horizon H+ of the Schwarzschild-AdS solution, it

is natural to try to extend the RT spacetime across the null hypersurface u =∞ by gluing

to it the part of the Schwarzschild-AdS solution that lies beyond H+.

In the case of vanishing cosmological constant, it has been shown [11] (cf. also [12])

that the resulting spacetime is not smooth at u =∞: the metric is C5 but not C6 there.3

This level of smoothness seems physically acceptable. A negative cosmological constant,

however, reduces the smoothness of the extension. In particular, for m2 > 4/27, there

exists no C1 extension [12].4 We will be interested mainly in the case of large m (which

1In contrast, RT solutions with vanishing cosmological constant are asymptotically flat at future

null infinity.
2More precisely: if we write ζ = x+ iy then the solution is a real analytic function of x, y.
3However, there are other extensions that are C117 and, generically, this is the smoothest possible [11, 12].
4Understanding the degree of smoothness involves transforming from the coordinate u to a Kruskal-like

coordinate U . The form of this transformation depends on the cosmological constant, which is why the

result is different in the AdS case. For smaller m, the degree of smoothness is higher and approaches the

result for the asymptotically flat case as m→ 0.
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Figure 1. Conformal structure of a RT spacetime with negative cosmological constant. The

solution exists to the future of the null hypersurface u = u0, has a timelike infinity, and approaches

the Schwarzschild-AdS solution as u → ∞. However, for large m, the hypersurface u = ∞ is

actually a null singularity. There is also a curvature singularity at r = 0.

is required for validity of the fluid/gravity correspondence) so we will assume that no C1

extension exists, i.e., u = ∞ corresponds to a null singularity. This gives the Penrose

diagram of figure 1.

2.2 Time-reversed RT solution

The above solution is physically unsatisfactory because of the singularity at u = ∞. We

can circumvent this problem by applying time reversal: set u = −t to bring the metric to

the form

ds2 = −Φdt2 + 2dtdr + r2g(2) g(2) =
2

P (t, ζ, ζ̄)2
dζdζ̄, (2.10)

Φ = K + 2r∂t lnP − 2m

r
+ r2, (2.11)

and the RT equation is

∂t lnP =
1

12m
∆K (2.12)

with K = ∆ lnP as before. Choosing the time orientation so that −∂/∂r is future directed,

curves of constant t, ζ, ζ̄ are now ingoing null geodesics with vanishing rotation and shear.

The above metric admits a timelike conformal boundary as r → ∞. One can choose

the conformal frame so that the boundary metric is (writing P = e−λP0 as above)

ds2
3 = −dt2 +

2

P (t, ζ, ζ̄)2
dζdζ̄ = −dt2 + e2λ(t,ζ,ζ̄)ĝ(2), (2.13)

where ĝ(2) is a metric of constant curvature with K ∈ {1, 0,−1}.

– 6 –
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Figure 2. Penrose diagram for the time-reversed (extended) RT solution. The shaded region

represents the extension to the future of the hypersurface t = t0, where the spacetime is no longer

RT. The location of the event horizon H + is also shown. The solution approaches Schwarzschild-

AdS as t→ −∞ but (for large m) there exists no C1 extension across this null surface.

The time-reversed RT equation (2.12) can only be solved backwards in time: if λ is

specified at time t = t0 then there exists a unique solution for t ≤ t0. This solution has

λ → constant as t → −∞. Hence, in the bulk, the solution exists to the past of the null

hypersurface t = t0 and approaches the Schwarzschild-AdS solution as t→ −∞. However,

since there exists no C1 extension across the null hypersurface t = −∞ for large m, this

surface is really a null singularity, see figure 2.

The null hypersurface t = t0 is a future boundary of the bulk. It seems very likely that

the bulk solution can be extended to the future of this null hypersurface. An extension

could be constructed by specifying initial data in the bulk on the t = t0 hypersurface to be

that given by the RT solution. If this is supplemented with a specification of the conformal

boundary metric for t ≥ t0 then there should exist a unique bulk solution to the future of

t = t0, although this will not be a RT metric. If the boundary metric is chosen so that it

is smooth at t = t0 then the bulk solution should be smooth at t = t0. For example, one

could define the conformal boundary metric to take the form (2.13) for t > t0 with the

function λ chosen to match smoothly onto the RT solution at t = t0. Taking λ to approach

a constant sufficiently rapidly as t→∞ one would expect the bulk solution to settle down

to Schwarzschild-AdS at late time. This spacetime will then possess an event horizon as

shown in figure 2. We will refer to this spacetime as an extended RT solution.

2.3 CFT interpretation

We can now discuss the CFT interpretation of the above spacetime. Since we only know

the RT portion of the spacetime explicitly we will only be able to give a detailed discussion

of the CFT for time t ≤ t0. We choose a conformal frame so that the boundary metric gab

– 7 –
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is given by (2.13) for t ≤ t0. The boundary metric (2.13) has a special geometrical feature.

The unit timelike vector

va =

(
∂

∂t

)a
(2.14)

is tangent to a congruence of expanding, geodesic timelike curves with vanishing rotation

and shear. In fact the metric (2.13) (without imposing any restriction on P ) is the most

general 2+1 dimensional metric admitting such a congruence.

We apply the standard AdS/CFT prescription of ref. [13] to calculate the expectation

value of the CFT energy-momentum tensor. The result is

〈Ttt〉 =
m

4π
〈Tζζ〉 = − 1

8π
∂t

(
∂2
ζP

P

)
〈Ttζ〉 = − 1

16π
∂ζK 〈Tζζ̄〉 =

m

8πP 2
,

(2.15)

with other components related by symmetry and complex conjugation. It turns out that

this can be rewritten exactly in the compact form

〈Tab〉 = p0 (3vavb + gab) +
1

8π
Z(ab), (2.16)

where va = gabv
b = −(dt)a,

p0 =
m

8π
, (2.17)

and5

Zab =
(
δda − vavd

)
Cdbcv

c, (2.18)

where Cabc is the Cotton tensor of gab:

Cabc = ∇cRab −∇bRac +
1

4
(gac∇bR− gab∇cR) . (2.19)

In 2 + 1 dimensions the Weyl tensor vanishes identically. It is the Cotton tensor that is

conformally covariant and measures the deviation of the spacetime from conformal flatness.6

The above energy-momentum tensor is the sum of a conformal perfect fluid stress

tensor and a three-derivative curvature term. The perfect fluid term has energy density

ρ0 = 2p0 and constant temperature

T0 =
3

4π
(16πp0)1/3 =

3

4π
(2m)1/3. (2.20)

The perfect fluid term describes a fluid that remains at rest with constant temperature

in the spatially inhomogeneous, time-dependent geometry (2.13). Such a flow does not

satisfy the equation of motion of a conformal perfect fluid except in the special case for

which the boundary geometry is time-independent. However, the presence of the three-

derivative curvature term in (2.16) ensures that the full energy-momentum tensor is con-

served, ∇a〈T ab〉 = 0, provided the function P (equivalently λ) appearing in the boundary

metric (2.13) satisfies the RT equation.

5Note the sign in the brackets: we are not projecting orthogonally to va.
6The Cotton tensor also played an important role in the work of ref. [4]. Our term Z(ab) would vanish

if Cabc is restricted in the way discussed in that Reference.
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As t → −∞, λ → constant so the boundary becomes conformally flat and hence the

curvature term vanishes at early time. So in the far past, the energy-momentum tensor is

that of a thermal state at temperature T0. At finite t, it becomes non-thermal because of

the time-dependence of the spacetime.

The surprising feature of the result (2.16) is that it depends locally on the metric.

For a fixed “in” state, one would expect 〈Tab〉 at a spacetime point p to depend on the

geometry in the entire past light cone of p, not on just the local geometry at p [14]. From

an AdS/CFT perspective, this is because the boundary metric at a point q in the past

light cone of p affects the bulk geometry near q and bulk scattering leads to information

from q propagating to p. However, this does not happen here. The reason is that the

algebraically special property ensures that radiation in the bulk is purely ingoing: there

is no reflection back to the boundary. This is obviously non-generic, i.e., fine-tuned. This

fine-tuning amounts to requiring that the function λ in the boundary metric should satisfy

the RT equation. If λ did not satisfy this equation then 〈Tab〉 would not be a local function

of the metric.

3 Conformal fluids in 2 + 1 dimensions

Fluid dynamics is an effective description of an interacting field theory characterized by a

simple set of variables. In the simplest, uncharged case, these variables are a temperature

field T (x) and a velocity field ua(x) which is unit-normalized, uau
a = −1. These vary on a

scale L much larger than the characteristic interaction scale LI, set by the mean free path,

for example. As a consequence, derivatives of T and ua are increasingly smaller and fluid

dynamics can be described in an expansion in derivatives of the dynamical variables.

The equations of motion of an uncharged fluid are obtained from conservation of the

energy-momentum tensor

∇aT ab = 0. (3.1)

For an uncharged fluid, Tab is completely determined by the d degrees of freedom con-

tained in T and ua. Supplementing (3.1) with an expression for Tab written in terms of

the fluid variables thus constitutes a well-defined dynamical system, the relativistic fluid

dynamical equations.

The stress tensor for a general fluid is given by

Tab = (ρ+ p)uaub + pgab + Πab, (3.2)

where ρ is the energy density and p the pressure, both of which are determined by the

temperature via equations of state. The dissipative part Πab contains the contributions

constructed from derivatives of T and ua. Since these vary slowly, Πab can be expanded as

Πab =
∑
n≥1

Π
(n)
ab , (3.3)

where Π
(n)
ab contains n derivatives of the fluid variables. As a consequence of the slow

variation hypothesis, each Π
(n)
ab is increasingly subdominant in this expansion.

– 9 –
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Although the explicit expression of the Π
(n)
ab can only be determined by a detailed

study of the system in question, their allowed form is constrained by symmetry and other

general considerations. Since we are ultimately interested in three-dimensional conformal

fluids, we will restrict to this case from now on. For conformal fluids, the stress tensor

must be traceless (at all orders), which imposes that

ρ = 2p (3.4)

and that all Π
(n)
ab must be traceless. Conformal covariance also dictates the form of the

equation of state, which can be obtained by dimensional analysis:

p ∝ T 3. (3.5)

Furthermore, the stress tensor must transform homogeneously under conformal transfor-

mations. Hence, only (0, 2) tensors with this property can appear in each Π
(n)
ab .

There is an ambiguity in the above description because T (x) and ua(x) have no intrinsic

definition out of equilibrium. It is usually convenient to fix this ambiguity, and the standard

and natural way of doing this for uncharged fluids is by working in Landau frame, which

aligns the fluid velocity with the energy flow. More precisely, the velocity is defined to be

the unique (future-directed, unit-normalized) timelike eigenvector of the stress tensor,

Tabu
b = −ρua, (3.6)

and the temperature is defined by identifying the corresponding eigenvalue with the energy

density. This implies that the dissipative part is then transverse to ua, and hence Π
(n)
ab u

b = 0

for all n.

In Landau frame, the form of Π
(n)
ab is then restricted to be a linear combination of inde-

pendent symmetric, traceless (0, 2) tensors that contain n derivatives of the fluid variables,

are transverse to ua and transform homogeneously under conformal transformations. By

independent we mean those tensors that are not related to each other by geometric rela-

tions such as Bianchi identities or by the equations of motion (3.1). There is only a finite

number of such tensors at any order, and their complete classification at first and second

order in derivatives has been obtained in ref. [15] (see also [3, 7, 16]).

At first order, one finds that the equations of motion can be used to eliminate all

derivatives of the temperature (equivalently the pressure) in terms of derivatives of the

velocity. There is then a single contribution to the dissipative part Π
(1)
ab , namely the shear

tensor σab of the fluid7

Π
(1)
ab = −2η σab. (3.7)

The shear tensor is simply the symmetric traceless and transverse part of ∇aub,

σab = P(a
cPb)

d∇cud −
P cd∇cud

2
Pab, (3.8)

where

Pab = gab + uaub (3.9)

7Here we assume a parity-invariant fluid. We will discuss parity non-invariant fluids below.
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projects onto the subspace orthogonal to ua. The transport coefficient η is called the shear

viscosity. Its functional dependence on the temperature or, equivalently, on the pressure,

is dictated by conformal covariance:

η = η̂ p2/3, (3.10)

where η̂ is a constant. At second order, one again finds that the equations of motion allow

derivatives of p to be written in terms of derivatives of ua. The general form of the second-

order corrections in arbitrary dimensions is now well known [15], but in three dimensions

they reduce to the terms written in ref. [17]:

Π
(2)
ab = 2τπη u

cDcσab + λ2 (σa
cωcb + σb

cωca) , (3.11)

where we are using the notation of ref. [3], Da being the Weyl covariant derivative intro-

duced in ref. [16] (see appendix A), and ωab the rotation or vorticity of the fluid,

ωab = P[a
cPb]

d∇cud. (3.12)

The procedure outlined above can in principle be carried out to higher orders, but be-

comes increasingly complicated beyond two derivatives. Here we introduce a new formalism

that involves classifying scalars rather than tensor fields, making the task fairly simple.

The new formalism is inspired by the Geroch-Held-Penrose (GHP) formalism [5] and the

Weyl-covariant formalism of ref. [16] (see appendix A). In GHP, one has two preferred null

directions that one chooses as null basis vectors. In the fluid dynamical case, one has a

preferred timelike congruence instead specified by the fluid velocity field (once the choice

of frame, e.g. Landau frame, has been made). The remaining (spatial) basis vectors can

be chosen arbitrarily and rotated at will. One is then interested in scalars that transform

homogeneously under conformal transformations and spatial rotations, so that appropriate

derivative operators must be defined to take this into account. In this section we only

indicate the key ideas and results, referring the reader to appendix B for more details.

We choose the fluid velocity ua to be one of the basis vectors and complete the basis

with the complex-conjugate pair of vector fields ma, m̄a such that the only non-zero inner

products between basis vectors are

gabu
aub = −1, gabm

am̄b = 1. (3.13)

A Weyl transformation gab → Ω2gab induces a rescaling of all the basis vectors,

ua → Ω−1ua, ma → Ω−1ma, m̄a → Ω−1m̄a. (3.14)

Furthermore, we can perform a rotation on ma, m̄a,

ma → eiλma, m̄a → e−iλm̄a, (3.15)

which we will refer to as a spin transformation. We then project all tensor fields along

this basis, so that each component thus obtained will transform in a different way under
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spins. We say that a scalar quantity Q has definite conformal weight w and spin weight s,

abbreviated weight (w, s) if, under the transformations above, it transforms according to

Q→ ΩweisλQ. (3.16)

In general, however, derivatives of Q will not have definite weight, even when projected

along the basis. We then define new derivative operators D , δ, δ̄ which are essentially

partial derivatives along each of the basis vectors ua,ma, m̄a respectively, corrected by

adding some “connection” terms to ensure that the resultant object has a definite weight.

The construction of these operators and their precise definition is given in appendix B—

see equations (B.28), (B.29), (B.30). Here we only need to point out that, if Q has weight

(w, s) as above, then DQ, δQ, δ̄Q will have weights (w−1, s), (w−1, s+1) and (w−1, s−
1), respectively.

The usefulness of this formalism in fluid dynamics lies in the following. Consider a

conformal fluid in 2+1 dimensions in Landau frame, i.e. the stress tensor is

Tab = p(3uaub + gab) + Πab, (3.17)

where Πab is symmetric, traceless and transverse to ua. These conditions together imply

that the only non-zero components of Πab are

π2 ≡ Πabm
amb, π−2 ≡ Πabm̄

am̄b, (3.18)

with spins 2 and −2, respectively. Reality of Tab implies that π−2 = π̄2, hence we need

only consider the spin-2 component. In order to classify the possible contributions to Πab

in a derivative expansion, then, one only needs to find the independent scalars having spin

weight 2. Thus one deals only with scalars and partial derivatives, making the task of

classifying the terms at high orders much simpler.

After projecting the relevant fluid dynamical and curvature tensor fields along the basis

and using the Ricci identities (see appendix B for details), one finds only seven independent

scalars, summarized in table 1. Apart from the pressure p, the fluid data comprises three

scalars built from the fluid velocity: σ, σ̄ correspond to the two independent components of

the shear and ω corresponds to the single independent component of the vorticity. One can

also build scalars from the curvature:8 the φi in table 1 are three particular components

of the Weyl covariant Ricci tensor Rab defined in ref. [16] (see eq. (A.8) of appendix A).

In order to complete our formalism, we need to know how to commute derivatives and

the form of the equations of motion and the Bianchi identities. If Q is a scalar of weight

(w, s) as before, the commutators are given in terms of the fluid dynamical and curvature

objects of table 1 by

(Dδ − δD)Q = iωδQ− σδ̄Q− 2w(φ1 − δ̄σ + iδω)Q+ s(2φ1 − δ̄σ + iδω)Q, (3.19)

(D δ̄ − δ̄D)Q = −iωδ̄Q− σ̄δQ− 2w(φ̄1 − δσ̄ − iδ̄ω)Q− s(2φ̄1 − δσ̄ − iδ̄ω)Q, (3.20)

(δδ̄ − δ̄δ)Q = −2iωDQ+ (2iwDω − sφ0)Q. (3.21)

8It is worth emphasising that the Weyl covariant curvature tensors of appendix A involve not just the

Riemann tensor of the metric, but also contributions from derivatives of the velocity.
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Fluid data Weight Curvature components Weight

p (−3, 0)

σ = mamb∇aub (−1, 2) φ1 = uambR(ab) (−2, 1)

ω = imam̄b∇[aub] (−1, 0) φ0 = mam̄bR(ab) (−2, 0)

σ̄ = m̄am̄b∇aub (−1,−2) φ̄1 = uam̄bR(ab) (−2,−1)

Table 1. Independent scalars with definite conformal and spin weights.

The Bianchi identities reduce to

0 = δ̄φ1 − δφ̄1 + δ2σ̄ − δ̄2σ − i(D2ω − δδ̄ω − δ̄δω), (3.22)

0 = Dφ0 − 2δφ̄1 − 2δ̄φ1 + δ2σ̄ + δ̄2σ + 4ωDω, (3.23)

and the fluid equations of motion ∇aT ab = 0 become

2Dp+ σπ̄2 + σ̄π2 = 0, δp+ δ̄π2 = 0. (3.24)

The latter imply that not all scalars quoted in table 1 and their derivatives are independent.

First, one can argue iteratively that all derivatives of p can be eliminated in favour of

derivatives of ua order by order using the equations of motion. More precisely, suppose

that this is true to kth order in derivatives, so that π2 depends on derivatives of all scalars

of table 1 except p. Then eqs. (3.24) imply that, at order k + 1, all derivatives of p can be

written in terms of derivatives of the other scalars and hence eliminated from π2.

Eqs. (3.24) also imply that the apparently one-derivative quantities Dp, δp are actually

two-derivative quantities. Hence if we substitute Q = p in the commutators above then

the l.h.s. in all cases is at least third order in derivatives. However the r.h.s. contains terms

that would a priori be of second order in derivatives, namely φ1 − δ̄σ+ iδω and Dω. This

means that these are in fact three-derivative quantities:

φ1 = δ̄σ − iδω +O(∂3) (3.25)

and9

Dω = O(∂3), (3.26)

where O(∂3) represents terms involving three or more derivatives. Hence, at two deriva-

tives, we can eliminate φ1 and its complex conjugate in terms of derivatives of σ, σ̄, ω and

set Dω = 0. This can then be done order by order in our derivative expansion. In par-

ticular, eliminating φ1 and Dω as in eqs. (3.25), (3.26) in the Bianchi identities gives the

single equation

Dφ0 = δ2σ̄ + δ̄2σ +O(∂4). (3.27)

9For a perfect fluid, we have Dω = 0 exactly. This is equivalent to the conservation of enstrophy discussed

in ref. [18]. Dω = 0 is an equation for propagation of vorticity. Similar equations for the propagation of the

shear and expansion (Raychaudhuri’s equation) of ua have been used to eliminate other curvature scalars

in favour of σ, σ̄, ω and their derivatives, see appendix B.
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Fluid data Curvature Derivative operators

p: (−3, 0)

σ: (−1, 2) δ: (−1, 1)

ω: (−1, 0) φ0: (−2, 0) D : (−1, 0)

σ̄: (−1,−2) δ̄: (−1,−1)

Table 2. Independent objects relevant for fluid dynamics and their weights (w, s).

That is, Dφ0 differs from derivatives of the shear by four-derivative terms and can therefore

be eliminated at three derivatives. This can again be done order by order in the derivative

expansion. We are thus left with only five scalars, which are summarized in table 2.

Furthermore, as just explained, we can eliminate Dω, Dφ0 and all derivatives of p.

Classifying the various contributions to the derivative expansion in the stress tensor

is now much simpler than in the usual approach. As emphasised above, we only need to

consider the spin-2 component π2. At any level in derivatives, all we need to do is classify

all independent scalars built from the objects of table 2 with s = 2. They will appear in

π2 in a linear combination with coefficients depending on p, and this p-dependence is fixed

by conformal covariance. In three dimensions, Tab has conformal weight w = −1 which

implies that π2 has w = −3.

It is also simple to classify scalars with spin s 6= 2. The motivation for doing this is

that we also want to define an entropy current : a vector field Ja constructed from the fluid

variables whose divergence is non-negative for any flow in any background. Of course, such

a vector field can be expanded in our basis,

Ja = −J0u
a + J̄1m

a + J1m̄
a, (3.28)

where J0, J1, J̄1 are components with spins 0, 1 and −1, respectively. Hence, by classifying

spin-0 and spin-1 scalars, we can determine the most general form for the entropy cur-

rent. The conformal weight of Ja is w = −3 which implies that the components J0, J1, J̄1

have w = −2.

There is only one independent scalar involving no derivatives, namely the pressure p,

which then determines the energy density ρ = ρ(p) = 2p and the temperature T = T (p) =

αp1/3 for some constant α. At first order (one derivative), there are only two scalars with

non-negative spin: σ and ω. The first has spin 2 and can appear in the stress tensor:

π
(1)
2 = Cσp

2/3σ, (3.29)

where Cσ is a constant and the dependence on p, which is fixed by requiring that π2 has

conformal weight w = −3, was made explicit. Note that this agrees with equation (3.7):

in our notation, the latter is rewritten as

Π
(1)
ab = −2η σab = −2η (σ̄mamb + σm̄am̄b) , (3.30)

so that

π
(1)
2 = Π

(1)
ab m

amb = −2ησ. (3.31)
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The shear viscosity η is then related to Cσ simply by

η = −1

2
Cσp

2/3. (3.32)

At two derivatives, we have the following scalars:

spin 0: φ0, σσ̄, ω2

spin 1: δ̄σ, δω

spin 2: Dσ, σω

(3.33)

Only those in the third line can appear in π2:

π
(2)
2 = p1/3 (CDσDσ + Cσωσω) , (3.34)

where again the dependence on p is determined by the conformal weight and the coefficients

CQ are constants. This also agrees in form with the known expression (3.11) for the

second-order corrections to the perfect fluid. In fact, equation (3.11) can be written in our

formalism as

Π
(2)
ab = (2τπηD σ̄ − 2iλ2σ̄ω)mamb + (2τπηDσ + 2iλ2σω) m̄am̄b, (3.35)

so that

π
(2)
2 = 2τπηDσ + 2iλ2σω (3.36)

and the coefficients in the two languages are related by

τπη =
1

2
CDσp

1/3, λ2 = − i
2
Cσωp

1/3. (3.37)

As it turns out, using our formalism we can easily go beyond second order and deter-

mine all independent, three-derivative scalars:

spin 0: δ2σ̄, δδ̄ω, δ̄2σ, σ̄Dσ, σD σ̄, ωφ0, σσ̄ω, ω3

spin 1: δ̄Dσ, δφ0, σ̄δσ, ωδ̄σ, σδσ̄, ωδω, σδ̄ω

spin 2: δ2ω, δδ̄σ, D2σ, ωDσ, σφ0, σ2σ̄, σω2

(3.38)

Thus we find that there are seven independent contributions to the stress tensor at third

order, in which case the transport coefficients are independent of p. Note that an ordering

choice for derivatives has been made when writing down the scalars in (3.38). For example,

δ̄δσ is an equally possible spin-2 object. However, using the commutators of derivatives,

we can write this in terms of δδ̄σ, ωDσ and σφ0. Hence δ̄δσ is not independent from the

spin-2 scalars listed in (3.38). Similar arguments hold for δδ̄ω (spin 0) and δ̄Dσ (spin 1).

We conclude this section by commenting on discrete transformations. We will call time

reversal a transformation T with action

T : ua → −ua, (3.39)

keeping ma, m̄a unchanged. In turn, a parity transformation P will act on the basis as

P : ma ↔ m̄a (3.40)
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with ua fixed. Note that both T and P change orientation, since the only independent com-

ponent of the volume form εabc is (say) εabcu
ambm̄c. Under time reversal, the fundamental

objects of table 2 change according to

T : σ → −σ, ω → −ω, D → −D , (3.41)

with p, φ0 and δ, δ̄ unchanged. On the other hand, under parity, we have

P : σ ↔ σ̄, ω → −ω, δ ↔ δ̄, (3.42)

with p, φ0 and D unchanged. We do not expect time reversal to be a symmetry of a general

fluid. In fact, dissipation is precisely a feature of non-invariance under time reversal. On

the other hand, we expect a large class of conformal fluids to be invariant under parity.

The action of P on the stress tensor

Tab = 2p
(
uaub +m(am̄b)

)
+ π̄2mamb + π2m̄am̄b (3.43)

is

P : Tab → T ′ab = 2p
(
uaub +m(am̄b)

)
+ π′2mamb + π̄′2m̄am̄b. (3.44)

If the fluid is parity-invariant, i.e. T ′ab = Tab, then we must have

π′2 = π̄2. (3.45)

Any scalar Q appearing in π2 will be multiplied by a coefficient CQp
αQ wich is itself

invariant under parity. The scalar itself will change as Q→ ±Q̄, so that parity-invariance

requires that CQ is real if Q→ Q̄ and CQ is purely imaginary if Q→ −Q̄. We can notice

examples of the two behaviours above. The shear term in π
(1)
2 transforms as σ → σ̄, hence

parity-invariance requires Cσ or, equivalently, the shear viscosity η, to be real. On the

other hand, the second term in π
(2)
2 changes as σω → −σ̄ω. Parity-invariance then requires

Cσω to be purely imaginary, that is, λ2 to be real.

The discussion in the previous paragraph shows that parity-violating fluids have addi-

tional transport coefficients. For example, if one does not require parity invariance, then

there is another (0, 2) tensor that can contribute to Πab at first order, namely [19]

σ̃ab =
1

2

(
εacdu

cσdb + εbcdu
cσda

)
. (3.46)

This has only two non-zero components in our notation,

σ̃2 = σ̃abm
amb = iσ (3.47)

and its complex conjugate σ̃−2 = σ̃abm̄
am̄b = −iσ̄, where we used εabcu

ambm̄c = −i, see

appendix B. If one then writes

Π
(1)
ab = −2ησab − 2ηHσ̃ab, (3.48)

one finds

π
(1)
2 = Π

(1)
ab m

amb = −2(η + iηH)σ. (3.49)
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This is equivalent to having a complex coefficient Cσ in (3.29) and

η = −1

2
Re(Cσ)p2/3, ηH = −1

2
Im(Cσ)p2/3. (3.50)

The transport coefficient ηH is called Hall viscosity. Its presence introduces no dissipa-

tion [19]: any entropy current constructed from the fluid variables has divergence [15, 20, 21]

∇aJa = −2

3

s

p1/3
Re(Cσ)σσ̄ +O(∂3), (3.51)

where s is the entropy density. Some examples can be found in refs. [19, 22, 23], which

recently investigated holographic models dual to parity-violating fluids in 2+1 dimensions

exhibiting a non-zero Hall viscosity and other analogous transport coefficients.

4 Fluid/gravity interpretation of RT

4.1 Introduction

We determined above the expectation value of the CFT energy-momentum tensor in a

state dual to a RT solution. As emphasized above, the result (2.16) is exact, it does not

assume any derivative expansion. But now let us consider the case in which the background

geometry (2.13) is slowly varying compared to the scale set by the inverse temperature of

the fluid. Specifically, we assume that the background geometry varies spatially over a

length scale L, so the Gaussian curvature of g(2) is K = O(L−2). The RT equation then

implies that temporal variations in the background geometry occur over the time scale L4

so the time variation is very slow compared to the scale of the spatial variation.

We can use the RT equation to eliminate time derivatives from our CFT energy-

momentum tensor, and then expand it according to the number of spatial derivatives. It

is clear that this will give a leading order perfect fluid piece of the form discussed above

and corrections involving three or more spatial derivatives.

We want to compare this with the known results for the derivative expansion of the

energy-momentum tensor dual to a general fluid flow in a general background, as given

by the fluid/gravity correspondence [2, 7]. In order to do so, we wish to employ our new

formalism developed above. We then start by defining the vector fields(
m0
)a

= P

(
∂

∂ζ̄

)a
,

(
m̄0
)a

= P

(
∂

∂ζ

)a
. (4.1)

Together with va of eq. (2.14), these form a basis for the tangent space at every point and

satisfy the conditions required for our formalism:

gabv
avb = −1, gab

(
m0
)a (

m̄0
)b

= 1, (4.2)

with all other inner products zero. But in order to compare our results with previous

results, we must ensure that we are comparing like with like. Our result (2.16) is not in

Landau frame so we need to perform a field redefinition to convert to Landau frame. This

amounts to solving the eigenvalue problem

Tabu
b = −ρua, (4.3)
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which defines a new energy density ρ and a new velocity field ua. The Landau frame velocity

differs from va used above by terms involving three or more spatial derivatives. Since va

has vanishing rotation and shear, it follows that ua has rotation and shear involving four

or more spatial derivatives (in fact we will see that the rotation vanishes even in Landau

frame). This should be contrasted with a generic flow, for which rotation and shear are

really one-derivative quantities. Hence, for this particular flow, the corrections to the

perfect fluid written explicitly in (3.7) and (3.11) involve four or more spatial derivatives

so they are subleading compared to possible three-derivative terms in Πab.

Since we know the stress tensor (2.16) explicitly, we can convert to Landau frame and

determine explicitly the corrections to the perfect fluid to the desired order. Using our

formalism above, we can then classify all scalars that might appear in these corrections

and compare with our known result. This allows us to constrain some transport coefficients

at higher order.

4.2 Landau frame results

In its full generality, the eigenvalue problem (4.3) cannot be solved exactly in a useful

way, so we proceed to solve it in a spatial derivative expansion. As explained above, time

variations are much slower than spatial variations. We use the RT equation to convert

time derivatives into spatial derivatives and write

ρ =
∑
k≥0

ρ(k), ua =
∑
k≥0

u(k)
a , (4.4)

where ρ(k) and u
(k)
a are each supposed to contain k spatial derivatives of P . We note that,

in the coordinate system used above, 〈Tab〉 given in (2.15) has components involving no

derivatives, 〈Ttt〉, 〈Tζζ̄〉; three derivatives, 〈Ttζ〉, 〈Ttζ̄〉; and six (spatial) derivatives, 〈Tζζ〉,
〈Tζ̄ζ̄〉. This implies that the energy density and velocity will have corrections only for those

values of k which are multiples of 3. Up to six spatial derivatives, we find

ρ = 2p = ρ(0) + ρ(6) +O(L−9)

=
m

4π
− P 2

48πm
∂ζK ∂ζ̄K +O(L−9) (4.5)

and

ua =
(
u(0)

)a
+
(
u(3)

)a
+
(
u(6)

)a
+O(L−9)

= va +
P

6m

[
∂ζK

(
m0
)a

+ ∂ζ̄K
(
m̄0
)a]

+

(
P

6m

)2

∂ζK ∂ζ̄K va +O(L−9). (4.6)

The proportionality factor α in T = αp1/3 is determined by the fluid/gravity map [7]:

T =
3

4π
(16πp)1/3. (4.7)
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We likewise need to correct the vectors
(
m0
)a
,
(
m̄0
)a

. Up to six spatial derivatives, we

can choose

ma =
(
m(0)

)a
+
(
m(3)

)a
+
(
m(6)

)a
+O(L−9) (4.8)

=
(
m0
)a

+
P

6m
∂ζ̄Kv

a +
1

2

(
P

6m

)2 [
∂ζK∂ζ̄K

(
m0
)a

+
(
∂ζ̄K

)2 (
m̄0
)a]

+O(L−9),

with m̄a determined by complex conjugation.

Using these definitions and working always till six spatial derivatives, using the RT

equation to eliminate time derivatives, it is now a fairly simple matter to determine the

relevant scalars that we need. We find that this flow has a non-zero shear,

σ =
P 2

6m

(
∂2
ζ̄K + 2∂ζ̄ lnP∂ζ̄K

)
+O(L−7), (4.9)

but vanishing rotation, ω = O(L−7). As anticipated, the shear involves four spatial deriva-

tives for this particular flow. The remaining connection coefficients (see appendix B)

required to define the derivative operators are found to be

a = O(L−7), (4.10)

θ = O(L−7), (4.11)

τ = i
P 2

6m

(
∂ζ lnP ∂ζ̄K − ∂ζ̄ lnP ∂ζK

)
+O(L−7), (4.12)

κ = −P∂ζ̄ lnP +O(L−7). (4.13)

One can then show that Aa = O(L−7), so that the Weyl-covariant Ricci tensor Rab of

appendix A, eq. (A.8), differs from the usual Ricci tensor Rab by an eight-derivative term,

Rab = Rab +O(L−8). The curvature scalar φ0 is then given simply by

φ0 = K +O(L−8). (4.14)

We can now classify all scalars built solely from σ, σ̄, φ0 and their derivatives and

containing no more than six spatial derivatives. A partial classification in the general case

was given in section 3, eqs. (3.29), (3.33), (3.38). The only one-derivative scalar in the

general classification that is relevant here is the shear σ, which we know is in fact a four

spatial derivative object for this particular flow. For a general flow, the scalars σσ̄ and Dσ

would be two-derivative quantities. However, in our case, they both contain at least eight

spatial derivatives, i.e. are both O(L−8), and hence will be discarded. At two derivatives,

we are thus left with

2 derivatives:

{
spin 0: φ0

spin 1: δ̄σ
(4.15)

Again, these are two-derivative quantities for a general flow and are thus labelled as such

here. But in our case, although φ0 does contain a two spatial derivative contribution,

eq. (4.14), δ̄σ turns out to be a five spatial derivative object. Similarly, at three derivatives
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we discard all terms with contributions smaller than O(L−6). It is easy to see that we are

then left with

3 derivatives:


spin 0: δ2σ̄, δ̄2σ

spin 1: δφ0

spin 2: δδ̄σ, σφ0

(4.16)

As σ = O(L−4), there are likely to be four-derivative scalars giving a contribution

to the stress tensor which is comparable to (3.29). For the same reason, only those four-

derivative scalars built solely from the curvature scalar φ0 will have a contribution that is

O(L−4). It is then easy to find such quantities:

4 derivatives (curvature):

{
spin 0: φ2

0, δδ̄φ0

spin 2: δ2φ0

(4.17)

In fact, one finds that

δ2φ0 = 6mσ +O(L−7). (4.18)

To order O(L−6), then, there is a degeneracy between derivatives of curvature and shear.

This plays an important role in the RT case because the two contributions must cancel

in the stress tensor, as we observe no four spatial derivative contributions in our exact

expression. We will see below that this allows us to determine uniquely the transport

coefficient associated with δ2φ0. On the other hand, at higher orders some contributions

arising from curvature and shear mix in such a way that we can only constrain some linear

combinations of the corresponding transport coefficients.

In any case, a similar reasoning applies to higher orders and we can classify the cur-

vature terms having five and six spatial derivatives:

5 derivatives (curvature): φ0δφ0, δ̄δ2φ0 (spin 1) (4.19)

6 derivatives (curvature):

{
spin 0: φ3

0, φ0δδ̄φ0, δφ0 δ̄φ0, δ2δ̄2φ0

spin 2: φ0δ
2φ0, (δφ0)2, δδ̄δ2φ0

(4.20)

Now we write down the most general combination of the above scalars that can contribute

to π2 up to six spatial derivatives:

π2 = Cσp
2/3σ + Cσφ0σφ0 + Cδδ̄σδδ̄σ + Cδ2φ0p

−1/3δ2φ0

+p−1
[
Cφ0δ2φ0φ0δ

2φ0 + C(δφ0)2(δφ0)2 + Cδδ̄δ2φ0δδ̄δ
2φ0

]
, (4.21)

where the CQ are constants. An explicit computation now gives

π2 =
P 2

6m
p

2/3
0

(
Cσ + 48πCδ2φ0

) (
∂2
ζ̄K + 2∂ζ̄ lnP ∂ζ̄K

)
+
P 2

6m

(
Cσφ0 + 48πCφ0δ2φ0 + Cδδ̄σ + 48πCδδ̄δ2φ0

)
K
(
∂2
ζ̄K + 2∂ζ̄ lnP ∂ζ̄K

)
+
P 2

12m

(
Cδδ̄σ + 48πCδδ̄δ2φ0

) (
∂2
ζ̄∆K + 2∂ζ̄ lnP ∂ζ̄∆K

)
+
P 2

6m

(
Cδδ̄σ + 48πCδδ̄δ2φ0 + 48πC(δφ0)2

)
(∂ζ̄K)2 +O(L−7). (4.22)
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We want to compare this expression with the one obtained from the exact stress ten-

sor (2.16). This is given up to six spatial derivatives by

π2 = 〈Tab〉mamb

= − P 2

96πm

[
∂2
ζ̄∆K + 2∂ζ̄ lnP ∂ζ̄∆K + (∂ζ̄K)2

]
+O(L−9). (4.23)

We immediately see that the latter expression contains no four spatial derivative terms.

Therefore, their coefficient must cancel in (4.22) and we obtain

Cδ2φ0 = − 1

48π
Cσ. (4.24)

This is a fluid dual to Einstein gravity, and hence is parity-invariant. The coefficient Cσ
is related to the shear viscosity by (3.32) and the latter is known from the fluid/gravity

correspondence [17]:

η =
1

16π

(
4πT

3

)2

, (4.25)

giving

Cσ = − 2

(16π)1/3
, (4.26)

and hence

Cδ2φ0 =
2

3(16π)4/3
. (4.27)

By comparing (4.22) and (4.23), we are furthermore able to determine a sixth-order trans-

port coefficient explicitly,

C(δφ0)2 =
1

768π2
, (4.28)

and constrain the other four according to

Cσφ0 + 48πCφ0δ2φ0 = −Cδδ̄σ − 48πCδδ̄δ2φ0 =
1

8π
. (4.29)

4.3 Entropy production

In the fluid description we wish to associate an entropy current to the fluid, i.e., a vector Ja

constructed from the fluid temperature and velocity as well as the background curvature,

such that Ja reduces to the usual result for a fluid in equilibrium and such that ∇aJa ≥ 0

for all flows and backgrounds. As has been discussed e.g. in refs. [20, 21], there is not a

unique definition of Ja: several different choices might have the desired property.

For a general flow of a conformal fluid, the leading order result for ∇aJa in a deriva-

tive expansion is independent of the ambiguity in defining Ja, eq. (3.51). In general, σσ̄

appearing in (3.51) is a two-derivative term. However, for our particular flow, σ is a four

spatial derivative term and hence this is an eight spatial derivative contribution. Hence it

is conceivable that there are terms in (3.51) which are subleading for a general flow but

nevertheless determine the leading order behaviour for our solution. For example, there

might be a term on the r.h.s. of (3.51) proportional to φ2
0 (four derivatives). However,
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ref. [21] has shown that such four-derivative pure curvature terms cannot arise on the

r.h.s. of (3.51) (see also [20]). Nevertheless, higher-order contributions such as δφ0δ̄φ0 (six

derivatives) and φ4
0 (eight derivatives) are not excluded, and for our flow these would be

more important, or as important, as σσ̄ in (3.51).

Ref. [24] showed how to construct an entropy current with the desired property by

using null geodesics to define a map from the conformal boundary to the event horizon,

then using this map to pull back the volume form on a cross-section of the horizon to give

a corresponding form on the boundary. Dualizing this gives the entropy current. Positivity

of ∇aJa then follows from the Hawking area theorem in the bulk. As discussed in ref. [24],

there is ambiguity present in this construction since one can make different choices for the

null geodesics used to construct the map from boundary to event horizon. However, the

simplest choice is to use the ingoing null geodesics used in the construction of the bulk

solution. In our case, we will use the preferred set of ingoing null geodesics defined by the

algebraically special nature of the bulk.

The first step is to determine the location of the event horizon in the bulk. Here it

is important that we know that our RT spacetime is part of an extended RT spacetime

which settles down to Schwarzschild-AdS in the future, and such that the whole spacetime

is slowly varying. Only then can we be sure that the location of the event horizon can

be obtained using a derivative expansion. At leading order in the derivative expansion,

corresponding to a planar Schwarzschild-AdS solution, the event horizon is located at

r = r+ where

r+ = (2m)1/3 (4.30)

We now write the location of the event horizon as r = r+ +f(t, xi) where xi are coordinates

on (2)M . A 1-form normal to the horizon is n = dr − df . The condition that this be

null gives

0 =

[
K +

1

6m
r∆K + F (r)− 2∂tf +

1

r2

(
∇̂f
)2
]
r=r++f

(4.31)

where F (r) = (r2/l2)(1− r3
+/r

3), ∇̂ is the Levi-Civita connection associated to the metric

g(2) on (2)M and (∇̂f)2 is calculated using g(2). We now assume that f can be expanded

in derivatives:

f = f1 + f2 + f3 + . . . (4.32)

where fn is a quantity involving n spatial derivatives. Substituting into (4.31) and solving

order by order one finds that fn = 0 for odd n and

f2 = −
r2

+

6m
K, (4.33)

f4 = −
r3

+

(6m)2
∆K, (4.34)

f6 =
r4

+

(6m)3

[
1

3
K3 −K∆K −∆∆K −

(
∇̂K

)2
]
. (4.35)

Now we need to calculate the volume form on a cross-section of the event horizon. Let `a

be a null vector field transverse such that `ana = −1 on the horizon and ηabcd the spacetime
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volume form. Then the volume form on a horizon cross-section is

Xab = ηabcd`
cnd (4.36)

We can choose `a = −∂/∂r. A calculation then gives

X =
1

2
(r+ + f)2√g(2)εijdx

i ∧ dxj − dt ∧√g(2)εij(∇̂f)jdxi (4.37)

where g(2) is used to raise indices in the final term. We can define a map which sends

a boundary point (t, xi) to the point (t, r+ + f(t, xi), xi) on the event horizon. Pulling

back the above 2-form using this map gives a 2-form X on the boundary whose expression

is identical to (4.37). Finally, we want to associate the (pull-back of) the horizon area

form with a notion of entropy. In classical black hole thermodynamics, the entropy of a

black hole is related to its area by S = A/4. We then dualize the above 2-form using the

boundary metric to obtain an entropy current

J =
1

4
(∗X) , (4.38)

with the appropriate factor of 1/4 relating entropy and area. This gives

Ja =
(r+ + f)2

4

(
∂

∂t

)a
− 1

4
gij(2)∂jf

(
∂

∂xi

)a
. (4.39)

This is an exact result, no derivative expansion has been assumed here. We can, however,

expand this result in spatial derivatives and compare with the general expression obtained

in the fluid/gravity map. The latter is given to second order in derivatives by [7]

Ja = sua +
1

4
ua
(
A1 σbcσ

bc +A2 ωbcω
bc +A3R

)
+

1

4

(
B1Dbσba +B2Dbωba

)
+ . . . , (4.40)

where

s =
1

4

(
4πT

3

)2

=
(16πp)2/3

4
(4.41)

is the entropy density, and the coefficients Ai, Bi are constants, which are fixed by the

fluid/gravity map [7]. In our formalism, equation (4.40) becomes

Ja =
1

4

[
(16πp)2/3 + (2A1 + 2A3 + 2B1)σσ̄ + (2A2 − 2A3 + 2B2)ω2 + 2A3φ0

]
ua

+
1

4
(B1δσ̄ − iB2δ̄ω)ma +

1

4
(B1δ̄σ + iB2δω)m̄a + . . . . (4.42)

In the RT case, σσ̄ and δω contain at least eight spatial derivatives, and the ω2 term is

even more negligible. Therefore, the only relevant constants in our case are A3 and B1,

which are fixed by the fluid/gravity map as [7]

B1 = −2A3 =
2

3
. (4.43)

However, similarly to our analysis of the energy-momentum tensor, eq. (4.42) will not

give the leading order expression in the RT case. For example, the leading order contri-

bution of δ̄σ, which is a two-derivative object in general, involves five spatial derivatives
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in our case. But there are other terms in (4.42) which would be subleading for a generic

flow, namely three- and four-derivative contributions, and nevertheless are important here.

These terms are built from the curvature and were already determined in section 4.2 above,

namely δφ0, φ2
0 and δδ̄φ0 —see eqs. (4.16), (4.17). In fact, with the aid of our new formal-

ism, we can go to higher orders by considering the contributions involving up to six spatial

derivatives. We begin by expanding our exact result in our usual coordinate system. To

six spatial derivatives, we find

J0 = −uaJa

= −
r2

+

4
+

1

6
K +

1

18r2
+

(
∆K − 1

2
K2

)
+

1

54r4
+

(
∆∆K − 1

3
K3 +

7

2
P 2∂ζK ∂ζ̄K

)
+O(L−7) (4.44)

and

J1 = maJ
a

=
P

36r3
+

(
∂ζ̄∆K + 2K∂ζ̄K

)
+O(L−7). (4.45)

On the other hand, we have determined in section 4.2 above all spin-0 and spin-1 scalars

involving no more than six spatial derivatives, eqs. (4.15), (4.16), (4.17), (4.19), (4.20). We

can use them to write down the most general expression for J0 and J1 containing up to six

spatial derivatives and compare them with the previous equations. For J0, we have

J0 = A0p
2/3 +Bφ0φ0 + p−1/3

(
Bδ̄2σ δ̄

2σ +Bδ2σ̄δ
2σ̄
)

+ p−2/3
(
Bφ20φ

2
0 +Bδδ̄φ0δδ̄φ0

)
+p−4/3

(
Bφ30φ

3
0 +Bφ0δδ̄φ0φ0δδ̄φ0 +Bδφ0 δ̄φ0δφ0 δ̄φ0 +Bδ2δ̄2φ0δ

2δ̄2φ0

)
, (4.46)

where A0 and the BQ are constants, and the dependence on p for each term is fixed by

imposing the conformal weight of J0 to be w = −2. Similarly, for J1 we write

J1 = Bδ̄σ δ̄σ + p−1/3Bδφ0δφ0 + p−1
(
Bφ0δφ0φ0δφ0 +Bδ̄δ2φ0 δ̄δ

2φ0

)
, (4.47)

where the conformal weight is also w = −2. Note that, in these two equations, the various

contributions are ordered according to their number of derivatives in a general derivative

expansion. An explicit computation then gives

J0 =
A0r

2
+

(16π)2/3
+Bφ0K +

(16π)2/3

2r2
+

(
Bδδ̄φ0∆K + 2Bφ20K

2
)

+
(16π)1/3

12r4
+

(
Bδ̄2σ +Bδ2σ̄ + 48πBδ2δ̄2φ0

)
∆∆K

+
(16π)1/3

6r4
+

[
Bδ̄2σ +Bδ2σ̄ + 48π

(
Bφ0δδ̄φ0 +Bδ2δ̄2φ0

)]
K∆K +

(16π)4/3Bφ30
r4

+

K3

+
(16π)1/3

3r4
+

[
− A0

24π
+Bδ̄2σ +Bδ2σ̄ + 48π

(
Bδφ0 δ̄φ0 +Bδ2δ̄2φ0

)]
P 2∂ζK ∂ζ̄K +O(L−7)

(4.48)
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and

J1 =
(16π)1/3

r+
PBδφ0∂ζ̄K +

P

6r3
+

(
Bδ̄σ + 48πBδ̄δ2φ0

)
∂ζ̄∆K

+
P

3r3
+

[
Bδ̄σ + 48π

(
Bφ0δφ0 +Bδ̄δ2φ0

)]
K∂ζ̄K +O(L−7), (4.49)

where we have now expanded in spatial derivatives. We can now compare these with the

results obtained from expanding the RT entropy current in derivatives to determine the

unknown coefficients. We first find

A0 = −(16π)2/3

4
, (4.50)

which is consistent with the association

s = −A0p
2/3, (4.51)

see eq. (4.41). Next we determine uniquely

Bφ0 =
1

6
. (4.52)

This coefficient is related to A3 of ref. [7] by

Bφ0 = −A3

2
, (4.53)

so our results are compatible with the fluid/gravity prediction for A3, eq. (4.43). We are

furthermore able to determine uniquely the constants

Bδδ̄φ0 = −4Bφ20 =
1

9(16π)2/3
, (4.54)

Bφ0δδ̄φ0 = 12Bφ30 =
8

7
Bδφ0 δ̄φ0 = − 2

27π(16π)4/3
(4.55)

and

Bδφ0 = Bφ0δφ0 = 0, (4.56)

but the remaining coefficients can only be constrained in the following linear combinations:

Bδ̄2σ +Bδ2σ̄ + 48πBδ2δ̄2φ0 = −48πBφ0δδ̄φ0 =
2

9(16π)1/3
, (4.57)

Bδ̄σ + 48πBδ̄δ2φ0 =
1

6
. (4.58)

Our coefficient Bδ̄σ is related to B1 of ref. [7] by

Bδ̄σ =
B1

4
. (4.59)

Our results only allowed us to determine a linear combination of Bδ̄σ and Bδ̄δ2φ0 . If we

then use B1 = −2A3 from the fluid/gravity map, we can determine

Bδ̄σ = Bφ0 =
1

6
(4.60)
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and then

Bδ̄δ2φ0 = 0. (4.61)

The first of these is in agreement with the known value for B1, eq. (4.43). In fact, it is

possible to show in general that non-negativity of the divergence of the entropy current

requires Bδ̄σ = Bφ0 or, equivalently, B1 = −2A3 [20, 21].

We now go back to our exact expression (4.39) for the entropy current and calculate

its divergence. Using the RT equation we obtain

∇aJa = − 1

24m
(r+ + f)2∆K +

1

2
(r+ + f)∂tf −

1

4
∆f. (4.62)

We can now substitute the derivative expansion for f into the r.h.s. . The r.h.s. involves

four (spatial) derivative terms but it is easy to see that these cancel. There are no terms

involving an odd number of derivatives. With some work (using the RT equation to elimi-

nate time derivatives) one finds that the six spatial derivative terms also cancel. The first

non-vanishing contribution arises at eight spatial derivatives:

∇aJa =
r4

+

2(6m)3

[
∇̂i∇̂jK −

1

2
(g(2))ij∆K

]2

+O(L−10). (4.63)

Comparing this with the expression for the shear of the fluid determined above, we find

that this agrees precisely with the shear squared term in (3.51).

This result is perhaps surprising: for this particular fluid flow, the shear squared term

is an eight spatial derivative term. But one might have expected to see terms on the r.h.s.

above with fewer spatial derivatives, constructed from the curvature of the background

metric. The results of ref. [21] already rule out the possibility of a term of the form

φ2
0, but one might have expected to find terms such as δφ0δ̄φ0 (six derivatives) and φ4

0

(eight derivatives). Our result shows that such terms are absent up to (and including)

eight derivatives.

5 The Kerr-AdS solution

In this section we will study the Kerr-AdS solution. The motivation is that it has been

shown previously that the expectation value of the CFT energy-momentum tensor takes

the form of a perfect fluid in this background [6, 7]. This is surprising because the fluid has

non-vanishing vorticity. Therefore terms constructed from this vorticity and its derivatives

could have appeared in the derivative expansion of the CFT energy-momentum tensor.

However, they are absent. Many such terms are non-dissipative so there is no obvious

reason for their absence. In this section we will show that this property places further

restrictions on transport coefficients in the dual fluid.

The Kerr-AdS metric is given in Boyer-Lindquist coordinates and in units such that

Λ = −3 by [9]

ds2 = − ∆r

Ξ2ρ2
(dt− a sin2 θ dφ)2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

Ξ2ρ2

[
adt− (r2 + a2)dφ

]2
, (5.1)
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where

ρ2 = r2 + a2 cos2 θ, (5.2)

∆r = (r2 + a2)
(
1 + r2

)
− 2mr, (5.3)

∆θ = 1− a2 cos2 θ, (5.4)

Ξ = 1− a2. (5.5)

In order to make contact with the general form of the metric of the fluid/gravity map, it

is interesting to write the metric in Eddington-Finkelstein-like coordinates. Consider the

following transformation:

v =
1

Ξ
t+ r∗, ϕ = φ+ r̃, (5.6)

where r∗, r̃ are determined by

dr∗

dr
=
r2 + a2

∆r
,

dr̃

dr
=
aΞ

∆r
. (5.7)

Note that both equations can be integrated to give r∗(r) and r̃(r), since the r.h.s. in both

cases is a function of r only. We therefore have

dv =
1

Ξ
dt+

r2 + a2

∆r
dr, dϕ = dφ+

aΞ

∆r
dr. (5.8)

We now use these relations to change from {t, r, θ, φ} to {v, r, θ, ϕ}. The metric we obtain

by doing this is

ds2 = −∆r −∆θa
2 sin2 θ

ρ2
dv2 + 2dvdr +

2a sin2 θ

Ξρ2

[
∆r −∆θ(r

2 + a2)
]

dvdϕ

−2a sin2 θ

Ξ
drdϕ+

ρ2

∆θ
dθ2 +

sin2 θ

Ξ2ρ2

[
∆θ(r

2 + a2)2 −∆ra
2 sin2 θ

]
dϕ2.

(5.9)

Following the AdS/CFT prescription [13] to determine the boundary stress tensor, one

finds [6, 7]

〈Tab〉 = p(3uaub + gab), (5.10)

where

p =
m

8π
, ua =

(
∂

∂v

)a
(5.11)

and the boundary metric gab is10

ds2
3 = −dv2 +

2a sin2 θ

Ξ
dvdϕ+

1

∆θ
dθ2 +

sin2 θ

Ξ
dϕ2. (5.12)

Thus, the stress tensor describes exactly a perfect conformal fluid at rest with constant

pressure p, and hence constant temperature T .

10This is conformal to the metric of the Einstein static universe.
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This result seems surprising because one might have expected higher order corrections

to the perfect fluid, constructed, for example, from the vorticity of the fluid, which will be

shown below to be non-zero. We therefore want to use the formalism developed in section 3

and appendix B to understand this simple case in view of the fluid/gravity correspondence,

which should be valid for large m. The fluid velocity ua will of course be chosen as the

timelike basis vector. The other basis vectors can be chosen as

ma =
ia sin θ√

2∆θ

(
∂

∂v

)a
+

√
∆θ

2

(
∂

∂θ

)a
+

iΞ√
2∆θ sin θ

(
∂

∂ϕ

)a
(5.13)

and its complex-conjugate m̄a. In this basis, only the following connection components

(see appendix B) are non-zero:

ω = τ = a cos θ, κ =
cos θ√

2∆θ sin θ

(
1− a2 cos 2θ

)
. (5.14)

On the other hand, the only non-zero, independent curvature components are

φ0 = Ξ− 2a2 cos 2θ, φ1 =
ia
√

∆θ sin θ√
2

. (5.15)

However, in this case all the f -components (see appendix B) vanish, thus allowing us

to eliminate other quantities. In fact, one can verify explicitly that the following rela-

tions hold exactly, which hold for any perfect fluid with vanishing shear — compare with

eqs. (3.25), (3.26):

Dω = 0, φ1 = −iδω. (5.16)

Furthermore, the Bianchi identities reduce simply to

Dφ0 = 0. (5.17)

Hence, for Kerr-AdS, we have only two independent scalars to consider, ω and φ0. These

obey Dω = Dφ0 = 0, and the equations of motion are simply

Dp = 0, δp = 0. (5.18)

Acting on a scalar of weight (w, s), the commutators then reduce to

(Dδ − δD)Q = iωδQ− isQδω, (5.19)

(D δ̄ − δ̄D)Q = −iωδ̄Q− isQδ̄ω, (5.20)

(δδ̄ − δ̄δ)Q = −2iωDQ− sQφ0. (5.21)

We can now proceed as in the RT case: we classify the scalars built from ω and φ0 and

their derivatives that could play a role in derivative expansions. In particular, we want to

understand why the stress tensor describes exactly a perfect fluid in this case. This can

only happen if all non-zero contributions to the dissipative components π2, π̄2 cancel at all

orders. This conceivably allows us to determine additional transport coefficients.
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We begin by noting that we can use the commutators to bring any D-derivative to act

directly on ω or φ0, at the expense of picking up terms that are products of scalars with

fewer derivatives. Since Dω = Dφ0 = 0, we can ignore scalars containing D-derivatives

and consider as fundamental objects only ω, φ0, δ, δ̄.

There is a single one-derivative scalar in this case, ω (spin 0). At two derivatives, the

scalars in (3.33) reduce to

spin 0: φ0, ω2

spin 1: δω.
(5.22)

We find the first possible contribution to π2 at three derivatives only — cf. eq. (3.38):

spin 0: δδ̄ω, ωφ0, ω3

spin 1: δφ0, ωδω

spin 2: δ2ω.

(5.23)

However, it turns out that, in this case, δ2ω = 0. One can show this is a consequence

of conformal flatness of the metric (5.12).11 For any perfect fluid following a shear-free

flow, such that eqs. (5.16) hold, vanishing of the Cotton tensor of the background metric

is equivalent to

δδ̄ω + ωφ0 + 2ω3 = 0, (5.24)

δφ0 + 8ωδω = 0, (5.25)

δ2ω = 0. (5.26)

One can verify that these three equations are satisfied for the Kerr-AdS case. Hence, we

need to go at least to fourth order in derivatives to find a non-zero contribution to the

stress tensor.

It is not difficult to classify the four-derivative scalars built solely from ω, φ0, δ, δ̄.

We obtain
spin 0: ω4, ω2φ0, ωδδ̄ω, δωδ̄ω, φ2

0, δδ̄φ0

spin 1: ω2δω, δ2δ̄ω, φ0δω, ωδφ0

spin 2: ωδ2ω, (δω)2, δ2φ0

(5.27)

We know that δ2ω = 0, but

δω = −a
√

∆θ sin θ√
2

. (5.28)

Hence (δω)2 6= 0, and this contribution must then be cancelled by the term δ2φ0 in the

stress tensor. In fact, using eqs. (5.25), (5.26), we find

δ2φ0 + 8(δω)2 = 0. (5.29)

11This could also be understood as follows. The bulk solution is invariant under t→ −t, φ→ −φ which

acts on the basis vectors as a PT transformation. So Tab must be invariant under PT for this flow. Hence

any PT violating term in Tab must either vanish for this flow or its coefficient must vanish (in which case

the term is absent for all flows). The former happens for the term in π2 proportional to δ2ω.
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The non-zero contribution to the stress tensor at fourth order in derivatives would then be

π
(4)
2 = p−1/3

[
C(δω)2(δω)2 + Cδ2φ0δ

2φ0

]
= p−1/3

[
C(δω)2 − 8Cδ2φ0

]
(δω)2. (5.30)

Since this must vanish, the relation

C(δω)2 = 8Cδ2φ0 (5.31)

must hold. But we have determined Cδ2φ0 using the RT solution, eq. (4.27), and hence this

allows us to determine

C(δω)2 =
1

3π(16π)1/3
. (5.32)

To summarise: in this section we have considered the Kerr-AdS spacetime and used the fact

that the dual CFT energy momentum tensor takes the form of a perfect fluid to obtain fur-

ther constraints on higher order transport coefficients in the fluid/gravity correspondence.

6 Further comments and outlook

We investigated above the CFT interpretation of RT spacetimes. With a suitable choice of

timelike congruence in the conformal boundary (i.e. a choice of frame), we found that the

expectation value of the CFT energy-momentum tensor can be put exactly in the form

〈Tab〉 = p0 (3vavb + gab) +
1

8π
Z(ab), (6.1)

where Zab is a three-derivative object built from the curvature, more specifically the Cotton

tensor, of the boundary geometry, eq. (2.18). This expression is local in the boundary met-

ric, a property that can be traced back to the fact that the bulk spacetime is algebraically

special. The leading order part has the form of a perfect conformal fluid at rest with con-

stant pressure p0 (equivalently constant temperature) flowing without shear or rotation in

the background given by the conformal boundary of the RT spacetime, eq. (2.13). The

three-derivative curvature term ensures that this energy-momentum tensor is conserved,

as long as the RT equation is satisfied, i.e. as long as the bulk is really a member of the

RT class.

A larger class of algebraically special solutions in 3 + 1 dimensions is obtained by

dropping the rotation-free condition defining RT solutions, i.e., we consider solutions with

a shear-free null geodesic congruence for which the expansion and rotation are both non-

vanishing. In this case, the vacuum Einstein equations can still be integrated, in the sense

that all the dependence of the metric on a “radial” coordinate (affine parameter along the

null congruence) is known, whereas the dependence on the “boundary coordinates” occurs

through a few functions satisfying certain PDEs.

Such a general algebraically special metric can be put in the form [8, 25]

ds2 = −2(du+Ldζ+L̄dζ̄)
[
dr+Wdζ+W̄dζ̄+H(du+Ldζ + L̄dζ̄)

]
+

2(r2 + Σ2)

P 2
dζdζ̄. (6.2)
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Here, L = L(u, ζ, ζ̄) is a complex function, P = P (u, ζ, ζ̄) is real, and

2iΣ = P 2(∂̄L− ∂L̄), (6.3)

W = i∂Σ− (r + iΣ)∂uL, (6.4)

H = P 2Re
[
∂(∂̄ lnP − ∂uL̄

]
− r∂u lnP − mr +MΣ

r2 + Σ2
+
r2

2
+

5Σ2

2
, (6.5)

with

∂ = ∂ζ − L∂u, ∂̄ = ∂ζ̄ − L̄∂u, (6.6)

and m = m(u, ζ, ζ̄), M = M(u, ζ, ζ̄) are real functions. Note that Σ is also real. Further-

more, the RT solution is recovered when L = 0, in which case Σ = 0, W = 0 and 2H = Φ.

The vacuum Einstein equations have been integrated to give the complete dependence

of the metric on the radial coordinate r. The dependence on the other coordinates is

determined by a set of nonlinear PDEs given in ref. [25].

Following the same procedure as for the RT case, we can consider the time-reversed

solution with u = −t and choose the conformal factor such that the boundary metric is

ds2
3 = −

[
dt− L(t, ζ, ζ̄)dζ − L̄(t, ζ, ζ̄)dζ̄

]2
+

2

P (t, ζ, ζ̄)2
dζdζ̄. (6.7)

By taking again the velocity to be

va =

(
∂

∂t

)a
, (6.8)

together with

ρ0 = 2p0 =
m(t, ζ, ζ̄)

4π
, (6.9)

we find that the AdS/CFT prescription for the boundary energy-momentum tensor yields

precisely the same result as in the RT case, eq. (6.1), where Zab is the same three-derivative

curvature term as we had before, eq. (2.18). Thus, with this choice of frame, the CFT

state again assumes the form of a conformal fluid such that the only correction to the

perfect fluid is a three-derivative object constructed from the curvature of the background

geometry (6.7). In this case, the perfect fluid part has a velocity which is shear-free but

has now a non-zero rotation. Notice that the Kerr-AdS solution is a special member of this

class. The conformal boundary of Kerr-AdS is conformally flat, Cabc = 0, so in this case

we recover the perfect fluid result of section 5, eq. (5.10).

We can summarize the above results in the following statement. In the conformal

boundary of the general expanding, algebraically special spacetime in 3+1 dimensions, there

exists a shear-free timelike congruence. Choosing this as a reference frame, the dual CFT

state corresponding to this general bulk spacetime is described by a conformal fluid whose

energy-momentum tensor takes the form (6.1). This is a local function of the boundary

metric gab, which is a consequence of the bulk being algebraically special.

We also studied above the fluid/gravity interpretation of RT and Kerr-AdS solutions,

which enabled us to constrain a few transport coefficients at order higher than 2. In order to
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do this, we introduced in section 3 and appendix B a new formalism for studying conformal

fluids in 2 + 1 dimensions. The latter simplifies the manipulations and classifications for

it involves dealing with scalar fields and partial derivatives only. As an illustration of its

usefulness, we were easily able to classify in section 3 all independent, three-derivative

objects that could contribute to the stress tensor at third order, eq. (3.38). In fact, it is

not much more difficult to go beyond third order and obtain the complete classification

also at the four-derivative level, although such results are not particularly useful for the

contents of this paper.

Nevertheless, accomplishing a higher-order classification might be useful for other pur-

poses. For instance, one might want to follow the procedure described in ref. [21] to con-

strain some higher-order transport coefficients. By writing down the most general entropy

current up to three derivatives and imposing its divergence (at fourth order in derivatives)

to be non-negative, ref. [21] obtained some constraints amongst transport coefficients of a

general fluid flow at second order. However, as discussed there, all such constraints are

automatically satisfied in the conformal case. Using our formalism, we can follow the same

procedure (the relevant scalars were determined in section 3) and recover these results in

a more straightforward calculation. Of course, in our method we deal only with the three-

dimensional conformal case, and hence no constraints on the energy-momentum tensor are

obtained, only the form of the entropy current itself is constrained. It is then clear, as

discussed in [21], that if one wants to constrain the stress tensor for a conformal fluid one

must go to higher orders in derivatives. It seems to us that the formalism introduced here

can provide a great deal of simplification in this task.

As the GHP formalism has recently been generalized to higher dimensions [26], one

might wish to extend the formalism presented here to d > 3. It is conceivable that a

suitable generalization of this method may prove itself useful in treating conformal fluid

dynamics in general.

Finally it is natural to ask whether there are higher-dimensional analogues of the alge-

braically special spacetimes studied here. Higher-dimensional Robinson-Trautman space-

times, defined by the existence of an expanding shear-free, rotation-free null geodesic con-

gruence, were studied in ref. [27]. For non-vanishing mass parameter (our m) it was found

that the only such spacetime is the Schwarzschild-AdS solution. So higher-dimensional RT

solutions do not exhibit the interesting time-dependence present in 3 + 1 dimensions. In

4 + 1 dimensions, a full classification of algebraically special solutions for which the pre-

ferred null direction is expanding and rotation-free was given in ref. [28]. Most solutions

are Kaluza-Klein or warped product spacetimes involving 3 + 1 dimensional RT solutions.

But a few other solutions were discovered and it would be interesting to investigate their

AdS/CFT interpretation.
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A Weyl-covariant formalism

The Weyl-covariant formalism introduced in ref. [16] is particularly appropriate to study

conformal fluids, as it automatically incorporates Weyl covariance. Here we summarize the

notation and conventions used in this paper, referring the reader to [16] for more details.

Consider a tensor field Qa...b.... We say that it is conformally covariant of weight w if,

under a conformal transformation

gab → g̃ab = Ω2gab, (A.1)

it transforms homogeneously in the form

Q̃a...b... = ΩwQa...b.... (A.2)

Thus the metric has weight w = 2. By introducing a Weyl connection Aa transforming as

Ãa = Aa +∇a ln Ω, (A.3)

one can define a Weyl covariant derivative Da by

DcQa...b... = ∇cQa...b... − wAcQa...b...
+(gcdAa − δacAd − δadAc)Qd...b... + . . .

−(gcbAd − δdcAb − δdbAc)Qa...b... − . . . . (A.4)

One can then verify that DcQa...b... is also conformally covariant with weight w. Further-

more, Da is metric-compatible, Dagbc = 0.

One can then define a Riemann curvature tensor by considering the commutator of

two Weyl covariant derivatives. For example, if Xa is a conformally covariant vector field

of weight w, one finds

(DaDb −DbDa)Xc = RcdabXd − wFabXc, (A.5)

where

Fab = ∇aAb −∇bAa = F̃ab (A.6)

and

Rcdab = Rcdab − gcdFab − 4δe[cgd][aδ
f
b]

(
∇fAe +AfAe −

A2

2
gfe

)
= Ω−2R̃cdab. (A.7)

It is then straightforward to define a corresponding Weyl-covariant Ricci tensor,

Rab = Rcacb = Rab −Fab + (d− 2)
(
∇bAa +AbAa −A2gba

)
+ gab∇cAc = R̃ab, (A.8)

and a Weyl-covariant Ricci scalar,

R = R+ 2(d− 1)∇aAa − (d− 1)(d− 2)A2 = Ω2R̃. (A.9)
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It is important to notice that the Weyl-covariant curvature tensors do not possess the

same set of symmetries as the conventional curvature tensors constructed from the metric.

Some useful symmetry relations are

R(ab)cd = −gabFcd, (A.10)

Rabcd −Rcdab = 4δe[agb][cδ
f
d]Fef − gabFcd + gcdFab, (A.11)

Rab −Rba = −dFab. (A.12)

The relation Ra[bcd] = 0 holds, however. Furthermore, the curvature tensors above also

obey various Bianchi identities and their contractions:

D[aFbc] = 0, (A.13)

D[aRb|c|de] = 0, (A.14)

DaRabcd −DcRbd +DdRbc = 0, (A.15)

Da
(
Rab − 1

2
Rgab + Fab

)
= 0. (A.16)

When one is considering a conformal fluid on the background with metric gab, there is

a natural, preferred vector field, namely the fluid velocity ua. This can be used to fix the

ambiguity in Aa. In particular, when working in Landau frame, it is natural to impose

uaDaub = 0, gabDaub = 0, (A.17)

so that

Daub = σab + ωab (A.18)

is transverse and traceless. It turns out that these conditions uniquely determine Aa to be

Aa = aa −
θ

d− 1
ua, (A.19)

where

aa = ub∇bua (A.20)

is the acceleration, and

θ = ∇aua (A.21)

is the expansion.

In three dimensions, the Cotton tensor (2.19) plays an important role. It is conformally

invariant and its vanishing is equivalent to conformal flatness. This can be written in terms

of the Weyl-covariant formalism as

Cabc = Dc
(
Rba −

1

4
Rgba

)
−Db

(
Rca −

1

4
Rgca

)
+ 2DaFbc. (A.22)
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B A GHP formalism for fluids in 2+1 dimensions

Motivated by the GHP formalism [5] that is used to study algebraically special spacetimes,

and the Weyl-covariant formalism defined in the previous appendix, we can develop a

new formalism that is particularly useful to study conformal fluids in 2 + 1 dimensions.

In GHP, one has two preferred null directions that one chooses as null basis vectors. In

contrast, in fluid dynamics there is a preferred timelike congruence instead given by the

fluid velocity. This timelike vector field can be chosen as one of the basis vectors at every

point. One can then complete the basis with spacelike vector fields to form an orthonormal

basis. Every tensor field can then be projected along the basis to form scalar fields. As the

spatial directions can be rotated at will, one is only interested in those scalars transforming

homogeneously under such rotations. Moreover, if one is interested in conformal fluids, then

it is natural to restrict oneself to scalars that furthermore transform homogeneously under

conformal rescalings as well. In general, derivatives of such scalars will not possess the

same transformation properties, even when projected along the basis. However, one can

correct derivatives with connection terms to deal automatically with objects having the

desired transformation properties.

Let us develop the ideas above in detail for the case of 2 + 1 dimensions. In this case,

take a basis {ua,ma
(1),m

a
(2)}, where ua is unit timelike and the ma

(i) are unit spacelike,

orthogonal to each other and to ua:

gabu
aub = −1, gabm

a
(i)m

b
(j) = δij , (B.1)

with all other inner products zero. The metric is then

gab = −uaub +
(
m(1)

)
a

(
m(1)

)
b

+
(
m(2)

)
a

(
m(2)

)
b
. (B.2)

We will sometimes find it useful to assume that this orthonormal basis is also right-handed,

εabcu
amb

(1)m
c
(2) = 1. (B.3)

Now define the complex vectors

ma =
1√
2

(
ma

(1) + ima
(2)

)
, m̄a =

1√
2

(
ma

(1) − im
a
(2)

)
. (B.4)

We then have

gabm
amb = gabm̄

am̄b = 0, gabm
am̄b = 1, (B.5)

and the metric is simply

gab = −uaub +mam̄b + m̄amb. (B.6)

We are interested in two fundamental transformations of the basis vectors. A conformal

transformation

gab → g̃ab = Ω2gab (B.7)

rescales the basis according to

ua → ũa =
1

Ω
ua, ma → m̃a =

1

Ω
ma. (B.8)
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Coefficient Transformation Interpretation

a = Labu
amb, ā = Labu

am̄b ã = eiλ

Ω (a+ma∇a ln Ω) Acceleration of ua

σ = Labm
amb, σ̄ = Labm̄

am̄b σ̃ = e2iλ

Ω σ Shear of ua

θ = Lab(m
am̄b + m̄amb) = θ̄ θ̃ = 1

Ω (θ + 2ua∇a ln Ω) Expansion of ua

ω = i
2Lab(m

am̄b − m̄amb) = ω̄ ω̃ = 1
Ωω Rotation or vorticity of ua

τ = iMabu
am̄b = τ̄ τ̃ = 1

Ω (τ − ua∇aλ) Transport of ma, m̄a along ua

κ = Mabm
am̄b, κ̄ = −Mabm̄

am̄b κ̃ = eiλ

Ω (κ+ ima∇aλ+ma∇a ln Ω) Non-geodesity of ma, m̄a

Table 3. Connection components.

A rotation of the spatial directions is given by

ua → ũa = ua, ma → m̃a = eiλma. (B.9)

The general transformation is therefore

ũa =
1

Ω
ua, m̃a =

eiλ

Ω
ma, (B.10)

and we want to see the corresponding transformation induced on other objects, in partic-

ular scalars.

It is more convenient, however, to treat the general case and specialize to scalars later.

The connection components are encoded in

Lab ≡ ∇aub, Mab ≡ ∇amb, M̄ab ≡ ∇am̄b. (B.11)

Not all components are independent, however, due to the normalization and orthogonality

conditions. We have

Labu
b = 0, Mabm

b = 0, M̄abm̄
b = 0, (B.12)

and

Labm
b +Mabu

b = 0, Labm̄
b + M̄abu

b = 0, Mabm̄
b + M̄abm

b = 0. (B.13)

Thus, we can find nine independent components in total, which are summarized in table 3.

In general, the connection components transform inhomogeneously under the general trans-

formation (B.10). In fact, one finds

L̃ab = Ω (Lab − ua∇b ln Ω + gabu
c∇c ln Ω) , (B.14)

M̃ab = Ωeiλ (Mab + imb∇aλ−ma∇b ln Ω + gabm
c∇c ln Ω) . (B.15)

The only components that do transform homogeneously are the two components of the

shear, σ, σ̄, and the rotation ω. These transformation properties are also summarized in

table 3.
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Although there are some connection components that do transform homogeneously

under (B.10), this will not be the case when we take derivatives, in general. Following

the same ideas as in GHP and the Weyl-covariant formalism of the previous appendix,

we would like to define a new derivative operator that preserves transformation properties

under (B.10). We will say that a tensor field Qa...b... has conformal weight w and spin

weight s, abbreviated weight (w, s), if, under the transformation (B.10), it transforms as

Q̃a...b... = ΩweisλQa...b.... (B.16)

Of course, most tensors of relevance, e.g. the metric, energy-momentum tensor, curvature

tensors, will have spin weight s = 0, as they are independent of the choice of ma, m̄a. How-

ever, one may still encounter tensor fields that can be rotated under (B.10), in particular

ma, m̄a themselves and their outer products.

Suppose we can find two one-forms Aa, Ba that transform as

Ãa = Aa +∇a ln Ω, B̃a = Ba +∇aλ (B.17)

under (B.10). Then we can define a new derivative operator acting on a tensor field of

weight (w, s) by

DcQ
a...

b... = ∇cQa...b... − (wAc + isBc)Q
a...

b...

+(gcdA
a − δacAd − δadAc)Qd...b... + . . .

−(gcbA
d − δdcAb − δdbAc)Qa...b... − . . . , (B.18)

which also has weigth (w, s):

D̃cQ̃
a...

b... = ΩweisλDcQ
a...

b.... (B.19)

Note that DcQ
a...

b... = DcQa...b... − isBcQa...b..., where Da is the Weyl-covariant derivative

defined in the previous appendix. Using only the connection components of table 3, we

can determine Aa and Ba to be

Aa = −θ
2
ua + āma + am̄a, (B.20)

Ba = τua − i(ā− κ̄)ma + i(a− κ)m̄a. (B.21)

Note that Aa = − θ
2ua + aa, in agreement with the conventional choice determined in the

previous appendix, eq. (A.19). In particular, we have

Daub = (iωma + σm̄a)m̄b + (σ̄ma − iωm̄a)mb, (B.22)

Damb = (iωma + σm̄a)ub, (B.23)

Dam̄b = (σ̄ma − iωm̄a)ub. (B.24)

We can now define curvature tensors as in the Weyl-covariant approach, by considering

the commutator of two derivatives. For example, if Xa is now a vector field of weight (w, s),

one finds

(DcDd −DdDc)X
a = RabcdXb − (wFcd + isHcd)X

a, (B.25)
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where Rabcd is the Weyl-covariant Riemann tensor of the previous appendix, eq. (A.7), and

Fab = ∇aAb −∇bAa, Hab = ∇aBb −∇bBa, (B.26)

both of which are invariant under (B.10).

Now we want to take components of the various tensor fields by projecting along the

basis vectors thus dealing with scalars only. Hence, if Q is a scalar of weight (w, s), we

define the derivatives

DQ ≡ uaDaQ, δQ ≡ maDaQ, δ̄Q ≡ m̄aDaQ. (B.27)

Explicitly, we have

DQ = ua∇aQ−
(
w

2
θ − isτ

)
Q, (B.28)

δQ = ma∇aQ− [wa+ s(κ− a)]Q, (B.29)

δ̄Q = m̄a∇aQ− [wā+ s(ā− κ̄)]Q. (B.30)

We see that DQ, δQ and δ̄Q have weights (w − 1, s), (w − 1, s + 1) and (w − 1, s − 1),

respectively.

As we saw above, the only connection components that have definite conformal and

spin weights are the shear and rotation, σ, σ̄, ω. On the other hand, all components of the

curvature tensors corresponding to the derivative operator Da are of course scalars with

definite weight. In three dimensions, the Weyl-covariant Riemann tensor is completely

determined by the Weyl-covariant Ricci tensor and the “field strength” Fab. In fact, it

is convenient to deal with the symmetric and antisymmetric parts of the Ricci tensor

separately. We define Φab = R(ab), so that

Rab = Φab −
3

2
Fab, (B.31)

cf. eq. (A.12). Then, one can show

Rabcd = −gabFcd + gac

(
Φbd −

1

2
Fbd −

1

4
Φgbd

)
− gad

(
Φbc −

1

2
Fbc −

1

4
Φgbc

)
−gbc

(
Φad −

1

2
Fad −

1

4
Φgad

)
+ gbd

(
Φac −

1

2
Fac −

1

4
Φgac

)
(B.32)

in three dimensions, where Φ = gabΦab = R. The relevant curvature scalars are then

summarized in table 4.

Not all the curvature scalars and the relevant connection components are independent,

for they are related by Bianchi identities and the analogs of the Newman-Penrose equations.

The latter are obtained by considering the Ricci identity

(DcDd −DdDc)Xb = −RabcdXa − (wFcd + isHcd)Xb, (B.33)
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Coefficient Weight (w, s)

φ2 = Φabm
amb (-2,2)

φ1 = Φabu
amb (-2,1)

φ0 = Φabm
am̄b = φ̄0 (-2,0)

φ′0 = Φabu
aub = φ̄′0 (-2,0)

φ−1 = Φabu
am̄b = φ̄1 (-2,-1)

φ−2 = Φabm̄
am̄b = φ̄2 (-2,-2)

f1 = Fabu
amb (-2,1)

f0 = iFabm
am̄b = f̄0 (-2,0)

f−1 = Fabu
am̄b = f̄1 (-2,-1)

h1 = Habu
amb (-2,1)

h0 = iHabm
am̄b = h̄0 (-2,0)

h−1 = Habu
am̄b = h̄1 (-2,-1)

Table 4. Curvature scalars.

putting Xa = ua,ma, m̄a and taking components along the basis vectors. One obtains

Dσ = φ2, (B.34)

Dω =
1

2
f0, (B.35)

φ′0 = −2(σσ̄ − ω2), (B.36)

δ̄σ − iδω = φ1 −
1

2
f1, (B.37)

h1 = i

(
φ1 +

1

2
f1

)
, (B.38)

h0 = φ0 +
1

2
φ′0 + σσ̄ − ω2, (B.39)

together with the complex-conjugate relations, when appropriate. The first two of these

are equations for the propagation of shear and rotation, respectively, whereas the third

is equivalent to Raychaudhuri’s equation (describing the propagation of the expansion) in

three dimensions. We can then see that all the f - and h-scalars, together with φ′0, φ2, φ̄2,

can be eliminated in terms of other curvature and connection scalars. We can then consider

the commutator of two derivatives acting on a scalar Q of weight (w, s),

(DaDb −DbDa)Q = −(wFab + isHab)Q, (B.40)

and take the nontrivial components along the basis to find

(Dδ − δD)Q = iωδQ− σδ̄Q− 2w(φ1 − δ̄σ + iδω)Q+ s(2φ1 − δ̄σ + iδω)Q, (B.41)

(D δ̄ − δ̄D)Q = −iωδ̄Q− σ̄δQ− 2w(φ̄1 − δσ̄ − iδ̄ω)Q− s(2φ̄1 − δσ̄ − iδ̄ω)Q, (B.42)

(δδ̄ − δ̄δ)Q = −2iωDQ+ (2iwDω − sφ0)Q. (B.43)
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The relevant Bianchi identities are

D[eR|ab|cd] = 0, D[aFbc] = 0, D[aHbc] = 0. (B.44)

Taking components gives the following equations:

0 = D

(
φ1 −

1

2
f1

)
− 1

2
δ(φ′0 − if0)− δ̄φ2 + σ

(
φ̄1 +

1

2
f̄1

)
+ iω

(
φ1 +

1

2
f1

)
, (B.45)

0 = D

(
φ0 +

1

2
φ′0

)
− δ

(
φ̄1 +

1

2
f̄1

)
− δ̄

(
φ1 +

1

2
f1

)
+ σφ̄2 + σ̄φ2 − ωf0, (B.46)

0 = Df0 − iδf̄1 + iδ̄f1, (B.47)

0 = Dh0 − iδh̄1 + iδ̄h1. (B.48)

Using the eliminations provided by the Newman-Penrose equations, one finds that the

Bianchi identities reduce to the following two non-redundant equations:

0 = δ̄φ1 − δφ̄1 + δ2σ̄ − δ̄2σ − i(D2ω − δδ̄ω − δ̄δω), (B.49)

0 = Dφ0 − 2δφ̄1 − 2δ̄φ1 + δ2σ̄ + δ̄2σ + 4ωDω. (B.50)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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