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1 Introduction and summary of results

The holographic duality between planar four dimensional N = 4 supersymmetric Yang-

Mills theory (SYM) and string theory on AdS5×S5 has been investigated to a remarkable

level of accuracy thanks to the role played by integrability on both sides of the corre-

spondence [1]. In particular, integrability methods can be applied to the calculation of

the anomalous dimensions of (planar) single trace operators as well as to the energy of the

dual string states. In the integrability approach, the two quantities are essentially the same

object depending on the ’t Hooft coupling λ whose effects are treated non-perturbatively.

In the large volume limit, the spectrum is captured by a set of asymptotic Bethe Ansatz

equations [2]. Finite size corrections are nowadays under full control by means of the

Thermodynamical Bethe Ansatz (TBA) machinery, an infinite set of integral equations [3–

7]. Recently, the TBA equations have been recast in the so-called quantum spectral curve

or Pµ-system [8]. This new proposal is a nonlinear Riemann-Hilbert problem for a set

of only a few functions and is much simpler than the original formulation. A remarkable
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application of the Pµ-system can be found in [9]. Extensions to the ABJM theory are

discussed in [10, 11].

In this paper, we focus on the Pµ-system prediction for the so-called curvature function

associated with twist J operators with spin S in the sl(2) sector of N = 4 SYM. Such

operators have the generic form

OI
J,S = Tr

(

ZJ−1DS Z

)

+ · · · , (1.1)

where Z denotes one of the complex scalars of the theory, D is a light-cone covariant

derivative and the dots stand for permutations required in order to build a dilatation

operator eigenstate, labeled by I. In the following, we shall omit this index because we

shall consider the state with minimal scaling dimension ∆. As usual, the scaling dimension

of O is split into a classical plus quantum part

∆ = J + S + γ(S, J ; g), g =

√
λ

4π
. (1.2)

The anomalous dimension γ(S, J ; g) admits a small S expansion

γ(S, J ; g) = γ(1)(J ; g)S + γ(2)(J ; g)S2 + · · · . (1.3)

The first term is called the slope function, while the second has been recently dubbed the

curvature function in [12]. Expansions with respect to charges like S or J are quite inter-

esting since their coefficients are functions of λ that can be studied both at weak and strong

coupling, i.e. in the gauge or string theory. Therefore, any integrability based calculation

that is able to interpolate between small and large values of λ becomes immediately a test

of the holographic correspondence.1

Since S is integer, the expansion (1.3) is mathematically ill defined and deserves some

caution. Nevertheless, based on various physical assumptions about the solutions of the

Bethe equations, the slope function has been determined in closed form at all loops [14–16],

and reads

γ(1)(J ; g) =
4π g

J

IJ+1(4π g)

IJ(4π g)
=

8π2 g2

J(J + 1)
− 32π4 g4

J(J + 1)2(J + 2)
+ · · · , (1.4)

where IJ are modified Bessel’s functions. This quantity is protected from wrapping cor-

rections and is also insensitive to the dressing phase in the asymptotic Bethe Ansatz [17]

that contributes at O(S2).

Going to the next order in the small S expansion, the curvature function has been

computed recently in [12] by means of the Pµ-system at all loops. The curvature function

is somewhat richer than the linear slope because it receives contributions from the dress-

ing phase and from wrapping corrections. The weak-coupling expansion of the curvature

function has been reported in [12] for specific values of the twist J = 2, 3, 4. In principle, it

1Another celebrated example is the cusp anomalous dimension, a.k.a. the scaling function, appearing as

the coefficient of the leading logS term at large S, see for instance [13].
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is possible to evaluate it at any integer J although it appears that the calculation is more

and more cumbersome as J increases.

A quite different approach to the analysis of (1.3) has been pursued in [18] in the

context of the investigation of the spectrum of semiclassical quantum strings in AdS5×S5

on the example of folded (S, J) string (with spin S in AdS5 and orbital momentum J in

S5) dual to the above gauge theory states. One of the outcomes of the analysis of [18]

is that the weak-coupling anomalous dimension γ(S, J ; g) can be expanded at large J in

powers of 1/J with coefficients that are polynomials in S. Thus, it is possible to give a non

ambiguous meaning to (1.3), at least order by order in 1/J . Wrapping corrections are lost

in this approach, since they are exponentially suppressed at large J . Nevertheless, this is

not a problem for the linear slope, which is independent on wrapping, as well as for the

higher order slopes at one loop.

At the leading order in S, one easily checks that the large J expansion agrees at

one-loop with the first term in (1.4) that is ∼ 1/J(J + 1). On the other hand, for the

curvature function, an expansion like (1.4) is not available. In particular, we don’t control

parametrically the dependence on J . We only have the weak-coupling expansion of the

curvature function at specific values of J from the Pµ-system [12]. Matching the large J

expansion is then non trivial, since one needs the resummation of an infinite series in 1/J .

The problem is difficult even at one-loop. In more details, expanding the curvature

function at weak coupling we write

γ(2)(J ; g) = g2 γ
(2)
1 (J) +O(g4). (1.5)

In [12], the values of γ
(2)
1 (J) are computed at J = 2, 3, 4 and read2

γ
(2)
1 (2) = −8 ζ3, γ

(2)
1 (3) = −2 ζ3, γ

(2)
1 (4) = −14

5
ζ3 +

48

π2
ζ5 −

252

π4
ζ7. (1.6)

These values should match the following infinite sum, taken from [18], evaluated at the

finite points J = 2, 3, 4

γ
(2)
1 (J) = 16π2

(

− 1

4J3
+

1
8 − π2

12

J4
+

− 3
16 + π2

4 − π4

90

J5
+

5
32 − 19π2

48 + 2π4

45 − π6

315

J6
+ · · ·

)

. (1.7)

The problem with (1.7) is that its terms have been computed by a semi-analytical method

and there is no control over their general structure. A few more terms can be added, as

in [12]. They lead to a surprisingly good numerical agreement for J = 4, but work badly

for J = 2, 3. All in all, the precise matching between explicit numbers like (1.6) and (1.7)

for generic J remains until now an open problem.

In this paper, we address the problem of reconciling (1.7) with predictions like (1.6) in

a general way. Our analysis will be based on a double expansion of the curvature function

at large J and small mode number, where the latter is a useful device to organise the

2Notice that the predictions at J = 2, 3 have been compared with the direct small S expansion of the

known analytical expressions of the one loop anomalous dimension. However, for J ≥ 4, such a prediction

is not available.
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various powers of π in (1.7). We shall provide strong arguments for the following compact

formula providing the one loop curvature function at any J

γ
(2)
1 (J) =

8π3

J(J + 1)

∫ 1

0
dx

[

x (1− x)2J−2 − x2

2
(1− x)J−1

(

(1 + x)J−1 + (1− x)J−1

)]

×

×
(

tan
πx

2
− cot

πx

2

)

. (1.8)

This formula is the required bridge between the Pµ-system and large J approaches. Indeed,

one can formally expand in powers of π the the last factor of the integrand function and

performing the integration over x term by term, one finds indeed

γ
(2)
1 (J) =

16π2

J(J + 1)

∞
∑

k=0

[

Γ(J) Γ(k + 1)

4Γ(J + k + 1)
− (J − 1)(4J + 2k − 1) Γ(2J − 2) Γ(2k + 1)

Γ(2J + 2k + 1)

]

×

×(−1)k
22k

(2k)!
B2kπ

2k. (1.9)

Each term of this series is a rational function of J and expanding at large J one recov-

ers (1.7), as we checked at order 1/J12. Also, evaluating (1.8) at integer J ≥ 2 one finds

the following finite sums of odd index ζ values

γ
(2)
1 (J) =

16π3

J(J + 1)

J−1
∑

n=0

J
∑

k=0

k+n+1
∑

u=3

(−1)k+n+u sin
(π u

2

)

2−u u!

J (k + n+ 2)
×

×(k − 2 J + k (−1)k)

(

J − 1

n

)(

J

k

)(

k + n+ 2

u

)

ζu
πu

. (1.10)

Setting J = 2, 3, 4 , the results (1.6) are obtained (for additional explicit points, see sec-

tion 4).

In more details, the plan of the paper is the following. In section 2, we formulate the

relevant Bethe Ansatz problem and present various tools to derive analytically its expansion

at large J and small winding. In section 3, we resum the J dependence of the curvature

function, order by order in the small winding parameter. In section 4, we further resum

the dependence on the winding parameter, thus arriving at our proposed closed formula.

Appendix A collects long explicit expansion that extend the data available in literature.

Appendix E proves a convergence property of the small winding expansion in rigorous way.

2 One loop Bethe Ansatz equations and their expansion

In the following, J is a positive number and S is a positive even integer. The physically

relevant case is J integer ≥ 2. About S, the results will be polynomial in S and will be

valid for any integer S. The choice of an even S just simplifies the discussion.

The one-loop Bethe equations for twist J operators with spin S in the sl(2) sector of

N = 4 SYM are

− εi π + J arctan

(

1

2ui

)

+
S
∑

j 6=i

arctan

(

1

ui − uj

)

= 0, i = 1, . . . , S, (2.1)
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where εi = 1 for i = 1, . . . , S2 , and εi = −1 for i = S
2 +1, . . . , S. The εi term fixes the mode

numbers of the solution to be those of the ground state of the associated spin-chain (this

is n = 1 in the notation of [12]). The solution is unique and symmetric under u → −u.3

The associated (one-loop) energy of the spin-chain is4

E(S, J) =
1

8π2

S
∑

i=1

1

u2i +
1
4

=
1

4π2

S

2
∑

i=1

1

u2i +
1
4

. (2.2)

At generic S > 4, the energy is not a rational function of J . Nevertheless, the large J

expansion takes the following form

E(S, J) =
∞
∑

n=2

n−1
∑

m=1

c(m)
n

Sm

Jn
= E(1)(J)S + E(2)(J)S2 + . . . , (2.3)

where the constants c
(m)
n are rational combinations of even powers of π up to π2n−6. In

appendix (A), we report the extended O(1/J11) expansion of E(2)(J) that we obtained by

the semi-analitic method proposed in [18]. Inspection of the coefficients of the expansion

shows that any simple structure is hindered by the presence of increasing powers of π.

These are not a mathematical artefact because π enters the Bethe equations (only) in the

first term of (2.1) which is physically associated with the winding of the dual folded string.

These qualitative remarks suggest a different way of organising the expansion of E(S, J)

that we present in the next section. This new expansion, in small winding number, will

turn out to be quite powerful as we shall see later.

2.1 Small winding expansion

Winding can be introduced by rescaling π → nπ in the Bethe equations. Equivalently, one

can reset π → P and consider an expansion in terms of the P variable around P = 0. In

other words, we introduce the further expansion

E(m)(J) =
∞
∑

p=0

E(m)
p (J)P 2p. (2.4)

Let us begin with the leading order E0. This is obtained by rescaling in the Bethe equations

ui = xi/P and taking P → 0. This leads to the simplified Bethe equations

− εi +
J

2xi
+
∑

j 6=i

1

xi − xj
= 0, i = 1, . . . , S. (2.5)

The εi term is physically very important. In the classical limit, the solution becomes a

two-cut finite gap solution, which is parametrised by the mode numbers εi. Compared to

this case, the analysis of the similar equations for 1-cut solutions [19] is much simpler. The

best way to treat the ε term is to use the identity (a similar trick has been exploited in [20])
∫ ∞

0
dε

x

x2 + ε2
=

π

2
sign(x). (2.6)

3Working with odd S does not break this symmetry, but only introduces a zero root u.
4The relation with γ1(S, J) in γ(S, J ; g) = g2 γ1(S, J) + · · · is simply γ1(S, J) = 16π2 E(S, J).
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Defining

G(x) =

S
∑

i=1

1

x− xi
, and G(x) ≡ JG(Jx), (2.7)

we obtain after some manipulation,5 for x > 0,6

1

2J
(G2 + G′) +

G(x)
2x

− 2

π

∫ ∞

0
dε

G(x)− i εG(i ε x)
1 + ε2

= 0. (2.8)

Integrating the last term in the complex plane, this reduces to7

1

2J
(G′(x) + G2(x)) +

G(x)
2x

− 2 iResε= i

2x

G(x)− i εG(i ε x)
1 + ε2

= 0. (2.9)

The residue can be further simplified and we arrive at the final form

1

2J
(G′(x) + G2(x)) +

G(x)
2x

− 2Resu=1
uG(u/2)
4x2 − u2

= 0. (2.10)

The energy is obtained from

E0(J) = − 1

8J2
G′(0). (2.11)

A detailed analysis of the large J perturbative solution of this equation leads to the edu-

cated Ansatz

G(x) = 4S x

4x2 − 1
+

∞
∑

n=1

1

Jn

x

(4x2 − 1)2n+1

2n−1
∑

k=0

cn,kx
2k. (2.12)

Plugging this expansion in (2.10), we determine systematically the coefficients cn,k. Many

of them are are listed in appendix B. Replacing these coefficients in the expression (2.11)

for E0(J), we obtain

E0(J) =
S

2J2
+

−S2

4 − S
2

J3
+

3S3

16 + S2

8 + S
2

J4
+

−21S4

128 + 3S3

64 − 3S2

16 − S
2

J5

+
159S5

1024 − 99S4

512 + 3S3

16 + 5S2

32 + S
2

J6
+O

(

1

J7

)

. (2.13)

in agreement with the P ≡ π → 0 terms in appendix A.

2.2 Next-to-leading order

At the next-to-leading order O(P 2) we face some technical difficulties that can be treated

following the ideas in [21], developed for the much simpler case of a one-cut solution. To

5We exploit in particular G(x) = −G(−x) due to the symmetry xi → −xi.
6For general x, the integral has a factor sign(x) in front. In the following, we shall always take x > 0.
7Here, there is an important hidden trick. In the large J expansion, G(x) has poles only in x = ±1/2

order by order in 1/J . This can be seen from (2.5) that implies xi = ±J

2
+ O(

√
J) with half of the xi

having one sign and the other half having the opposite sign. In the expansion at large J , this gives the

poles of G(x) at x = ±1/2, see also (2.12). Instead, at finite J , the function G(x) has poles at the scaled

Bethe roots.
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the next order in the small P expansion we have

0 = − 2

π

∫ ∞

0
dε

xi
x2i + ε2

+
J

2xi
+

∑

j 6=i

1

xi − xj
+ P 2

(

− J

24x3i
− 1

3

∑

j 6=i

1

(xi − xj)3

)

+O(P 3).

(2.14)

After some technical manipulation collected in appendix C, this equation can be written

0 =
1

2J
(G′(x) + G2(x)) +

G(x)
2x

− 2Resu=1
uG(u/2)
4x2 − u2

(2.15)

+P 2

[

− 1

24 J2

G(x)− xG′(0)

x3
− 1

3 J3

(

− 1

2
H′(x)− 1

24
G′′′(x)− 1

4
G′(x)2

)]

+O(P 3),

where the function H(x) can be expressed in terms of G(x) as

H(x) = J

(

2xResu=1
G(u/2)2 + G′(u/2)

4x2 − u2
− G(x)2 + G′(x)− G′(0)

4x

)

−1

3
G(x)3 − G(x)G′(x)− 1

3
G′′(x) +O(P 2). (2.16)

The energy has now an explicit O(P 2) correction

E0(J) + E1(J)P
2 = − 1

8J2

(

G′(0)− P 2

24J2
G′′′(0)

)

. (2.17)

The Ansatz for G(x) is the same as before, but now the coefficients cn,k have an additional

term ∼ P 2,

cn,k = cn,k;0 + cn,k;1 P
2. (2.18)

The values cn,k,0 are the previous ones. The new coefficients cn,k,1 can be iteratively

determined, as before, and are listed in appendix D. Replacing in the expression for the

energy, we find

E0(J) + E1(J)P
2

=
S

2J2
+

−S2

4 − S
2

J3
+

(

1
8 − P 2

12

)

S2 + 3S3

16 + S
2

J4

+

(

P 2

24 + 3
64

)

S3 +
(

P 2

4 − 3
16

)

S2 − 21S4

128 − S
2

J5
+

1

J6

((

1

2
− 5P 4

3

)

S +

(

P 2

384
− 99

512

)

S4

+

(

3

16
− 43P 2

192

)

S3 +

(

P 4

2
− 19P 2

48
+

5

32

)

S2 +
159S5

1024

)

+
1

J7

((

25P 4 − 1

2

)

S

+

(

1431

4096
− 13P 2

256

)

S5 +

(

25P 2

96
− 765

2048

)

S4 +

(

P 4

4
+

15P 2

64
+

21

512

)

S3

+

(

−11P 4 +
9P 2

16
− 11

64

)

S2 − 315S6

2048

)

+O(1/J8). (2.19)

The P 2 ≡ π2 terms agree with those in appendix A. The P 4 terms cannot be compared

because they are going to be corrected by the E2(J)P
4 terms at the next order.
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3 Resummation with respect to J

The procedure outlined in the previous section can be automatised. Doing so, we can

extract, in particular, a long 1/J series for the P = 0 coefficient of the quadratic slope

E
(2)
0 (J). This can be resummed in the nice form

E
(2)
0 (J) = − 1

2J(J + 1)(2J − 1)
. (3.1)

The same approach can be applied to the next orders in the small P expansion. Remarkably,

in all the cases we worked out, it has been possible to resum the 1/J series. The final result

turns out to be

E(2)(J) = − 1

2J(J + 1)(2J − 1)
− 2J2 − 2J − 1

6J2(J + 1)2(2J − 1)(2J + 1)
π2

− 4J2 − 2J − 3

45J2(J + 1)2(2J − 1)(2J + 1)(2J + 3)
π4

− 2
(

8J4 + 32J3 + 28J2 − 38J − 45
)

315J2(J + 1)2(J + 2)(J + 3)(2J − 1)(2J + 1)(2J + 3)(2J + 5)
π6

− 4
(

16J4 + 56J3 + 56J2 − 44J − 105
)

1575J2(J + 1)2(J + 2)(J + 3)(2J − 1)(2J + 1)(2J + 3)(2J + 5)(2J + 7)
π8 (3.2)

− 8
(

32J6 + 384J5 + 1640J4 + 2880J3 + 1478J2 − 2634J − 4725
)

6237J2(J + 1)2(J + 2)(J + 3)(J + 4)(J + 5)(2J − 1)(2J + 1)(2J + 3)(2J + 5)(2J + 7)(2J + 9)
π10

+ . . . ,

where dots stands for similar expressions, i.e. higher powers of π times rational functions

of J that we did not compute (but see more later, in particular (4.30)). The identification

of the rational functions in (3.2) is quite safe. The first three terms have been identified

by comparing with about 20 terms at large J . For the next rational functions, we assumed

a regular structure of the degrees of the polynomials in the numerator and denominator

and always computed at least two more coefficients of the large J expansion in addition to

those making the fitting problem well posed. The remarkably simple factorisation of the

denominators was not an input, so the pattern regularity is again a positive outcome of

the procedure. See also the various properties listed in the next section.

We remark that we also tried to resum the coefficients of P 2k in E(3), i.e. the cubic

slope. Unfortunately, in this case, we could not find a simple resummation neither for the

simplest coefficient which is that at P = 0. A similar negative result holds for the quadratic

slope at two-loops. After some straightforward analysis, we found the following extension

of the results of [18] (see eq. (C-9) of that reference)

γ
(2)
2 (J)

∣

∣

∣

π→0
= (16π2)2

(

− 1

4 J5
+

5

8 J6
− 17

16 J7
+

25

16 J8
− 131

64 J9
+

153

64 J10

− 595

256 J11
+

337

256 J12
+

1741

1024 J13
− 9071

1024 J14
+

100045

4096 J15
+ · · ·

)

, (3.3)

and, again, we could not resum this partial series by any simple rational Ansatz.
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3.1 Remarkable properties of the resummed small winding expansion

Our result for E(2)(J) in (3.2) can be written in the much more suggestive form that is

obtained by factoring the leading term and replacing powers of π by even argument ζ values

E(2)(J) = − 1

2J(J + 1)(2J − 1)
[

1 +

(

6

J + 1
− 4

2J + 1
− 2

J

)

ζ2

+

(

12

J + 1
+

8

2J + 1
− 24

2J + 3
− 4

J

)

ζ4

+

(

− 6

J + 1
+

30

J + 2
+

14

J + 3
+

36

2J + 1
− 40

2J + 3
− 60

2J + 5
− 6

J

)

ζ6

+

(

− 72

J + 1
+

40

J + 2
+

168

J + 3
+

80

2J + 1
+

112

2J + 3
− 336

2J + 5
− 112

2J + 7
− 8

J

)

ζ8

+

(

− 210

J + 1
− 260

J + 2
+

700

J + 3
+

270

J + 4
+

22

J + 5
+

140

2J + 1
+

720

2J + 3
− 504

2J + 5

− 1200

2J + 7
− 180

2J + 9
− 10

J

)

ζ10 + · · ·
]

. (3.4)

This expression displays various intriguing regularities. First, all partial fractions have

integer coefficient. Then, we can identify general simple formulae for various terms inside

the square bracket. Examples are the terms

− 2n

J
ζ2n, −2n(2n2 − 6n+ 1)

J + 1
ζ2n,

4n(2n− 3)

2J + 1
ζ2n,

4

3

n(n− 1)(2n− 1)(2n− 7)

2J + 3
ζ2n.

(3.5)

Finally, at large J , the leading term with coefficient ζ2n is simply 2n/Jn. All these re-

markable features suggest that a deeper understanding of the resummation (3.2) could be

possible. From a different perspectives, they support its validity. Indeed, we have to keep

in mind that any resummation stands always as a conjecture because it is based on a finite

number of terms, lacking a stronger analytical control over the series that are resummed.

4 Matching the one-loop Pµ-system prediction at integer J

Let us begin with J = 2. In order to match the Pµ-system prediction (1.6), we would like

to show that

γ
(2)
1 (2) = −8 ζ3. (4.1)

Our resummed (with respect to J) expansion (3.2) reads instead

γ
(2)
1 (2) = −4π2

9
− 2π4

135
− 4π6

4725
− 2π8

35721
− 4π10

1002375
− 4π12

13378365
+ · · · . (4.2)

In order to understand how a series in π can give a sum proportional to ζ3, it is natural

to look for integral representations of ζn values containing π as an explicit parameter. In
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particular, we remind that the following identities hold

ζ(2n+ 1) =
(−1)n 22n π2n+1

(2n+ 1)!

∫ 1

0
B2n+1(x) tan

πx

2
dx

=
(−1)n−1 22n π2n+1

(2n+ 1)!

∫ 1

0
B2n+1(x) cot

πx

2
dx, (4.3)

where Bn(x) are Bernoulli polynomials. We tried a simple linear combination of these

identities and discovered that the series (4.2) is reproduced by the small P expansion of

the very simple combination

F2(P ) =
8P 3

3

∫ 1

0
B3(x)

(

tan
Px

2
− cot

Px

2

)

dx, (4.4)

where we remind that B3(x) =
1
2(x − 1)x(2x − 1) . Also, setting P → π, we recover the

Pµ-system result (4.1) ! As an interesting byproduct, the integral representation F2(P )

allows to prove that the small winding expansion (4.2) is convergent, see appendix E.

The same analysis for J = 3 leads to the combination

F3(P ) = −2P 3

3

∫ 1

0
(1− x)2 x (x3 − x2 + 3x− 1)

(

tan
Px

2
− cot

Px

2

)

dx, (4.5)

Indeed, the small P expansion of this quantity and its value at P = π are

F3(P ) = −2P 2

15
− 11P 4

1890
− P 6

4725
− 107P 8

9823275
− 82P 10

127702575
− 347P 12

8428369950
+ · · · , (4.6)

F3(π) = −2 ζ3, (4.7)

in agreement with both (3.2) and (1.6). Finally, for J = 4, we found the expression

F4(P ) = −2P 3

5

∫ 1

0
(1− x)3 x (4x3 − 3x2 + 4x− 1)

(

tan
Px

2
− cot

Px

2

)

dx, (4.8)

and the data

F4(P ) = −2P 2

35
− 23P 4

9450
− 53P 6

779625
− 23P 8

7882875
− 158P 10

1064188125
− 401P 12

47760763050
+ · · · ,(4.9)

F4(π) = −14

5
ζ3 +

48

π2
ζ5 −

252

π4
ζ7, (4.10)

still in agreement with (3.2) and (1.6). A natural conjecture is then that the procedure

can be extended to all J , with a function FJ(P ) of the form

FJ(P ) = P 3

∫ 1

0
(1− x)J−1 xFJ(x)

(

tan
Px

2
− cot

Px

2

)

dx, (4.11)

where FJ(x) is a polynomial with rational coefficients and degree J for odd J , and J − 1

for even J . Our expansion (3.2) is too short to fix the coefficients of FJ(x) for any J .

Nevertheless, we looked for solutions up to J = 8 and found in all cases a unique solution
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with minimal coefficients, i.e. without unnatural ugly rational coefficients. Besides, the

found solution is quite regular and reads

F2(x) = −4

3
(2x− 1), (4.12)

F3(x) = −2

3
(x3 − x2 + 3x− 1), (4.13)

F4(x) = −2

5
(4x3 − 3x2 + 4x− 1), (4.14)

F5(x) = − 4

15
(x5 − x4 + 10x3 − 6x2 + 5x− 1), (4.15)

F6(x) = − 4

21
(6x5 − 5x4 + 20x3 − 10x2 + 6x− 1), (4.16)

F7(x) = −1

7
(x7 − x6 + 21x5 − 15x4 + 35x3 − 15x2 + 7x− 1), (4.17)

F8(x) = −1

9
(8x7 − 7x6 + 56x5 − 35x4 + 56x3 − 21x2 + 8x− 1). (4.18)

The strong regularity of the coefficients of these polynomials is remarkable. Indeed, one

finds that in all cases

FJ(x) =
8

J(J + 1)

kmax
∑

k=0

(−1)k
xk

k!















J !

(J − k)!
, odd J

(J − 1)!

(J − k − 1)!
, even J

(4.19)

where kmax = J for odd J , and J − 1 for even J . The sum can be done explicitly and we

obtain our main result

FJ(P ) =
8P 3

J(J + 1)

∫ 1

0
dx

[

x (1− x)2J−2 − x2

2
(1− x)J−1

(

(1 + x)J−1 + (1− x)J−1

)]

×
(

tan
Px

2
− cot

Px

2

)

. (4.20)

Clearing the smoke of our empirical derivation, one indeed checks that the expansion (3.2)

is reproduced for any J by expanding (4.20) in P and integrating term by term. Together

with the agreement with (1.6) at J = 2, 3, 4, this leads us to propose (4.20) at P = π

as the correct expression for the one-loop curvature function. Evaluating it at various

J , we obtain (1.10) in the Introduction. Notice that the integral in (4.20) can be quite

efficiently determined by expressing, at each J , the polynomial inside the integral as a

linear combination of Bernoulli polynomials Bk(x). Then, only odd index polynomials

contribute through

∫ 1

0
Bk(x)

(

tan
πx

2
− cot

πx

2

)

dx =
ζk
πk

(−1)
k−1

2 22−kk! , odd k, (4.21)

while even index polynomials do not contribute due to B2n(x) = B2n(1−x). Specific cases
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of (1.10) are collected in the following list that extends (1.6)

γ
(2)
1 (2) = −8ζ3, (4.22)

γ
(2)
1 (3) = −2ζ3 (4.23)

γ
(2)
1 (4) = −14ζ3

5
+

48ζ5
π2

− 252ζ7
π4

, (4.24)

γ
(2)
1 (5) = −12ζ3

5
+

48ζ5
π2

− 252ζ7
π4

, (4.25)

γ
(2)
1 (6) = −44ζ3

21
+

80ζ5
π2

− 1860ζ7
π4

+
21600ζ9

π6
− 89100ζ11

π8
, (4.26)

γ
(2)
1 (7) = −13ζ3

7
+

750ζ5
7π2

− 6525ζ7
2π4

+
40500ζ9

π6
− 334125ζ11

2π8
, (4.27)

γ
(2)
1 (8) = −5ζ3

3
+

406ζ5
3π2

− 12565ζ7
2π4

+
184380ζ9

π6
− 7397775ζ11

2π8

+
37837800ζ13

π10
− 141891750ζ15

π12
. (4.28)

It would be very interesting to check these results by the Pµ-system at one-loop.

4.1 A final non trivial consistency check

Our main result (4.20) has been derived by some clever inspection of the data encoded in

the expansion (3.2) where we have been able to determine the coefficients of the powers of π

up to π10. Actually, the results in appendix A contain various additional terms contributing

the curvature function with higher powers of π. A definitely non trivial consistency check

amounts to re-derive the coefficients in (3.2) from (4.20) for higher powers of π and compare

their large J expansion with appendix A. To this aim, we start from

tan
Px

2
− cot

Px

2
=

∞
∑

k=0

(−1)k−1 24k

(2k)!
B2k

(

Px

2

)2k−1

, (4.29)

where B2k are Bernoulli numbers. The term ∼ xk can be plugged inside (4.20) replacing the

tangent minus cotangent combination. After integrating over x, this gives the coefficient

of πk+1 in the addition terms of (3.2). The integration over x can be done analytically for

generic J and we obtain the following closed expression for the series (3.2):

E2(J) =
1

J(J + 1)

∞
∑

k=0

[

Γ(J) Γ(k + 1)

4Γ(J + k + 1)
− (J − 1)(4J + 2k − 1) Γ(2J − 2) Γ(2k + 1)

Γ(2J + 2k + 1)

]

×

×(−1)k
22k

(2k)!
B2kπ

2k, (4.30)

which is (1.9) mentioned in the Introduction. In particular, we find the following additional

terms to be added to those written in (3.2)

N12(J)

D12(J)
π12 +

N14(J)

D14(J)
π14 +

N16(J)

D16(J)
π16 + · · · (4.31)

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
1
4
1

where the explicit forms of the rational functions Nk(J)/Dk(J) are

N12(J) = − 11056

14189175
(64J6 + 736J5 + 3088J4 + 5272J3 + 3004J2 − 3254J − 10395),

D12(J) = J(J + 1)
5
∏

k=0

(J + k)
6
∏

k=0

(2J + 2k − 1), (4.32)

N14(J) = − 32

57915
(128J8 + 3072J7 + 29568J6 + 145152J5 + 378672J4 + 479808J3

+173752J2 − 399342J − 945945),

D14(J) = J(J + 1)
7
∏

k=0

(J + k)
7
∏

k=0

(2J + 2k − 1), (4.33)

N16(J) = − 231488

516891375
(256J8 + 6016J7 + 57088J6 + 277120J5 + 717664J4 + 898384J3

+357552J2 − 512280J − 2027025),

D16(J) = J(J + 1)
7
∏

k=0

(J + k)
8
∏

k=0

(2J + 2k − 1). (4.34)

The large J expansion is thus

N12(J)

D12(J)
= − 5528

14189175J9
+

11056

1289925J10
− 176896

1576575J11
+ · · · , (4.35)

N14(J)

D14(J)
= − 16

57915J10
+

464

57915J11
+ · · · , (4.36)

N16(J)

D16(J)
= − 115744

516891375J11
+ · · · . (4.37)

It can be compared with appendix A, upon identifying P ≡ π, and perfect matching

is found.

5 Conclusions

In this paper, we have presented a closed formula for the one-loop curvature function of

twist J operators in the sl(2) sector of N = 4 SYM. The formula agrees with the known

prediction from the Pµ-system as well as with the large J expansion of the Bethe equations

that we have derived systematically. In this sense, it is a reconciliation between various

approaches present in the literature about twist operators. The (one-loop) curvature func-

tion can be evaluated for any J with minor effort. Various natural developments of the

results presented in this paper are possible. In particular,

1. It would be interesting to derive our main result (1.8) by a weak-coupling expansion

of the Pµ-system. Indeed, the all-loop expressions of the curvature function from

the Pµ-system have increasing complexity with J and are not parametrical in this

parameter. It would be nice to see how the simple dependence on J that we presented

can be extracted from the Pµ-system.
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2. It is intriguing that both the cubic slope and the two loop curvature functions are

not covered by our analysis since their resummation, even at P = 0, are not found

in the class of rational functions of J . It could be that this fact is related to the role

of the dressing phase.

3. Finally, the same methods could be applied to the ABJM theory where predictions

from the Pµ-system can also be extracted.
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A Explicit expansions

Let us define the polynomials

Pn(S) =

n−1
∑

m=1

c(m)
n Sm. (A.1)

Their explicit values for n = 2, . . . , 11 are

P2 =
S

2
, (A.2)

P3 = −S2

4
− S

2
, (A.3)

P4 =
3S3

16
+

(

1

8
− π2

12

)

S2 +
S

2
, (A.4)

P5 = −21S4

128
+

(

3

64
+

π2

24
+

π4

180

)

S3 +

(

− 3

16
+

π2

4
− π4

90

)

S2 − S

2
, (A.5)

P6 =
159S5

1024
+

(

− 99

512
+

π2

384
− π4

240
− π6

1512

)

S4 +

(

3

16
− 43π2

192
− π4

120
+

11π6

3780

)

S3

+

(

5

32
− 19π2

48
+

2π4

45
− π6

315

)

S2 +
S

2
, (A.6)

P7 = −315S6

2048
+

(

1431

4096
− 13π2

256
+

π4

1920
+

π6

1512
+

π8

10800

)

S5

+

(

− 765

2048
+

25π2

96
+

11π4

576
+

11π6

7560
− 79π8

113400

)

S4

+

(

21

512
+

15π2

64
− π4

48
− π6

60
+

47π8

28350

)

S3

+

(

− 11

64
+

9π2

16
− 19π4

180
+

π6

45
− 2π8

1575

)

S2 − S

2
, (A.7)

P8 =
321S7

2048
+

(

− 17349

32768
+

41π2

384
+

413π4

92160
− π6

5376
− π8

8640
− π10

71280

)

S6

+

(

12849

16384
− 1635π2

4096
− 25π4

1024
− 167π6

30240
− 79π8

453600
+

79π10

498960

)

S5
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+

(

− 477

1024
+

271π2

6144
− 11π4

960
+

53π6

8640
+

16π8

2835
− 67π10

106920

)

S4

+

(

195

1024
− 679π2

1536
+

139π4

1440
+

311π6

5040
− 236π8

14175
+

197π10

187110

)

S3

+

(

21

128
− 139π2

192
+

151π4

720
− 32π6

315
+

22π8

1575
− 4π10

6237

)

S2 +
S

2
, (A.8)

P9 = −42639S8

262144
+

(

24345

32768
− 713π2

4096
− 659π4

61440
− 31π6

48384

+
17π8

345600
+

π10

47520
+

691π12

309582000

)

S7

+

(

− 196863

131072
+

11205π2

16384
+

8957π4

368640
+

7831π6

967680
+

91π8

64800
− 712373π12

20432412000

)

S6

+

(

99543

65536
− 5045π2

8192
+

227π4

4096
+

4537π6

483840
− 7813π8

1814400
− 227π10

138600
+

76627π12

378378000

)

S5

+

(

− 12969

16384
+

623π2

1024
− 1639π4

23040
− 155π6

4032
− 43π8

1680
+

7913π10

935550
− 102253π12

182432250

)

S4

+

(

51

1024
+

689π2

1536
− 863π4

3840
− 6397π6

30240
+

11867π8

113400
− 1058π10

66825
+

159403π12

212837625

)

S3

+

(

− 43

256
+

57π2

64
− 181π4

480
+

503π6

1260
− 152π8

1575
+

64π10

6237
− 5528π12

14189175

)

S2 − S

2
,(A.9)

P10 =
716283S9

4194304
+

(

− 2091669

2097152
+

67109π2

262144
+

899π4

49152
+

5447π6

3096576

+
277π8

2764800
− π10

84480
− 691π12

176904000
− π14

2721600

)

S8

+

(

692223

262144
− 19251π2

16384
− 8141π4

491520
− 10967π6

1290240
− 69043π8

29030400

−26197π10

79833600
+

712373π12

81729648000
+

10981π14

1459458000

)

S7

+

(

− 1006731

262144
+

718259π2

393216
− 5227π4

36864
− 29413π6

1105920
− 25741π8

14515200

+
3727π10

1871100
+

32947π12

77837760
− 521273π14

8756748000

)

S6

+

(

203763

65536
− 111121π2

65536
+

5429π4

40960
− 179π6

1290240
+

48613π8

1451520

+
7013π10

950400
− 17579927π12

5108103000
+

349303π14

1459458000

)

S5

+

(

− 18357

16384
+

3779π2

16384
+

2201π4

18432
+

145009π6

967680
+

165811π8

1814400

−200791π10

2993760
+

1027603π12

94594500
− 7441π14

14215500

)

S4
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+

(

741

4096
− 21π2

32
+

1633π4

3840
+

4081π6

5760
− 8137π8

15120

+
45013π10

311850
− 60548π12

3869775
+

54298π14

91216125

)

S3

+

(

85

512
− 811π2

768
+

307π4

480
− 817π6

560
+

284π8

525

−208π10

2079
+

11056π12

1289925
− 16π14

57915

)

S2 +
S

2
, (A.10)

P11 = −1514943S10

8388608
+

(

21799467

16777216
− 186593π2

524288
− 35769π4

1310720
− 9701π6

3096576
− 7099π8

22118400

− 169π10

10644480
+

691π12

254016000
+

π14

1360800
+

3617π16

58296672000

)

S9

+

(

− 36451737

8388608
+

255955π2

131072
− 1193π4

393216
+

6433π6

1105920
+

623593π8

232243200
+

5729π10

8870400

+
5891749π12

81729648000
− 10981π14

2918916000
− 11128631π16

6947020080000

)

S8

+

(

8850417

1048576
− 139205π2

32768
+

20249π4

61440
+

91559π6

1935360
+

75661π8

7257600
− 13829π10

79833600

−20085073π12

27243216000
− 190951π14

1915538625
+

3888667π16

236830230000

)

S7

+

(

− 5148435

524288
+

2033689π2

393216
− 16397π4

36864
+

289517π6

7741440
− 92989π8

4838400
− 59173π10

3326400

−1495889π12

1135134000
+

74191597π14

61297236000
− 348304631π16

3907698795000

)

S6

+

(

3259851

524288
− 192831π2

65536
+

2503π4

15360
− 7007π6

184320
− 2386849π8

14515200
− 269257π10

19958400

+
27220307π12

851350500
− 13439483π14

2357586000
+

21550687π16

76621545000

)

S5

+

(

− 219645

131072
+

19109π2

16384
− 7933π4

23040
− 173951π6

322560
− 983261π8

3628800
+

2085959π10

4989600

−15685156π12

127702575
+

104438203π14

7662154500
− 7824683π16

15029610750

)

S4

+

(

− 627

16384
+

545π2

768
− 2051π4

2880
− 93461π6

40320
+

372437π8

151200
− 650801π10

623700

+
8246092π12

42567525
− 10522118π14

638512875
+

17121956π16

32564156625

)

S3

+

(

− 171

1024
+

313π2

256
− 47π4

45
+

2861π6

560
− 1879π8

700
+

536π10

693

−176896π12

1576575
+

464π14

57915
− 115744π16

516891375

)

S2 − S

2
. (A.11)
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B Leading order coefficients cn,k

c1,0 = −2S(S + 2), (B.1)

c1,1 = 8S(5S − 6), (B.2)

c2,0 =
1

2
S
(

3S2 + 2S + 8
)

, (B.3)

c2,1 = −10S
(

5S2 + 10S − 32
)

, (B.4)

c2,2 = 8S
(

73S2 − 242S + 200
)

, (B.5)

c2,3 = 32S
(

13S2 − 30S + 16
)

, (B.6)

c3,0 = − 1

16
S
(

21S3 − 6S2 + 24S + 64
)

, (B.7)

c3,1 =
1

4
S
(

237S3 + 330S2 + 1304S − 5312
)

, (B.8)

c3,2 = −14(S − 2)S
(

83S2 + 276S − 1008
)

, (B.9)

c3,3 = 8S
(

1169S3 − 8182S2 + 17720S − 12320
)

, (B.10)

c3,4 = 16S
(

1167S3 − 4962S2 + 6984S − 3200
)

, (B.11)

c3,5 = 64(S − 2)S2(S + 4), (B.12)

c4,0 =
1

128
S
(

159S4 − 198S3 + 192S2 + 160S + 512
)

, (B.13)

c4,1 = − 1

32
S
(

2241S4 + 1118S3 + 12272S2 + 30368S − 149504
)

, (B.14)

c4,2 =
3

8
S
(

4905S4 + 8294S3 + 9056S2 − 456352S + 730112
)

, (B.15)

c4,3 = −3

2
S
(

17479S4 − 5662S3 − 661520S2 + 2242144S − 2078720
)

, (B.16)

c4,4 = 2S
(

72669S4 − 1004274S3 + 4214400S2 − 7226912S + 4452864
)

, (B.17)

c4,5 = 8S
(

78045S4 − 539514S3 + 1412464S2 − 1650144S + 720896
)

, (B.18)

c4,6 = 32S
(

3785S4 − 20474S3 + 41120S2 − 36512S + 12288
)

, (B.19)

c4,7 = −128(S − 2)S2(S + 4)(7S − 12). (B.20)

C Derivation of the O(P 2) expansion of the Bethe Ansatz

The first problem in treating (2.14) is the evaluation of the following quantity (sum over

both i and j)
∑

j 6=i

1

x− xi

1

(xi − xj)3
. (C.1)
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It is convenient to define

F (x, a) =
∑

j 6=i

1

x− xi

1

xi − xj + a
. (C.2)

Exploiting partial fraction decomposition, we find

F (x, a) =
∑

j 6=i

[

1

x− xi

1

x+ a− xj
+

1

x+ a− xj

1

a+ xi − xj

]

, (C.3)

and, after some manipulation,

F (x, a) = G(x)G(x+ a) +
G(x+ a)−G(x)

a
− F (x+ a,−a). (C.4)

Expanding in a at order a3, we find the identity

∑

j 6=i

1

x− xi

1

(xi − xj)3
= −1

2

d

dx

∑

j 6=i

1

x− xi

1

(xi − xj)2
− 1

24
G′′′(x)− 1

4
G′(x)2. (C.5)

So the problem is reduced to the calculation of

H(x) =
∑

j 6=i

1

x− xi

1

(xi − xj)2
. (C.6)

This quantity can be extracted by taking (2.14), multiplying by 1
x−xi

1
xi−xm

and summing

over i,m with i 6= m. Using G(x) = −G(−x) we have (looking at the poles)

∑

j 6=i

xi
x2i + ε2

1

x− xi

1

xi − xm
=

1

2

x

x2 + ε2

(

G2(x) +G′(x)−G2(i ε)−G′(i ε)

)

. (C.7)

Taking ε = 0, we also find (using G(0) = 0)

∑

j 6=i

1

xi

1

x− xi

1

xi − xm
=

1

2x

(

G2(x) +G′(x)−G′(0).

)

(C.8)

Finally,

∑

i
m 6=i

j 6=i

1

x− xi

1

xi − xm

1

xi − xj
=

∑

i
j 6=i

1

x− xi

1

(xi − xj)2
+

∑

ijm

all distinct

1

x− xi

1

xi − xm

1

xi − xj

= H(x) +
1

3
G(x)3 +G(x)G′(x) +

1

3
G′′(x). (C.9)

Putting together all the pieces, and defining J3H(Jx) = H(x), we obtain (2.15).
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D Next-to-leading order coefficients cn,k;1

c1,0;1 = 0, (D.1)

c1,1;1 = 0, (D.2)

c2,0;1 = −2

3
(S − 6)S, (D.3)

c2,1;1 = −8

3
S(S + 10), (D.4)

c2,2;1 =
32

3
S(5S + 2), (D.5)

c2,3;1 = −128

3
S(3S − 2), (D.6)

c3,0;1 =
1

3
S
(

S2 + 18S − 72
)

, (D.7)

c3,1;1 = −4

3
S
(

13S2 − 138S + 96
)

, (D.8)

c3,2;1 = −32S
(

5S2 + 34S − 56
)

, (D.9)

c3,3;1 =
128

3
S
(

47S2 − 38S − 48
)

, (D.10)

c3,4;1 = −256

3
S(3S − 4)(17S − 18), (D.11)

c3,5;1 = −1024

3
(S − 2)S2, (D.12)

c4,0;1 =
1

48
S
(

S3 − 326S2 − 1112S + 4800
)

, (D.13)

c4,1;1 =
1

12
S
(

205S3 + 2978S2 − 33048S + 46400
)

, (D.14)

c4,2;1 = −S
(

329S3 − 8454S2 + 11560S + 4224
)

, (D.15)

c4,3;1 = −4

3
S
(

5151S3 + 25926S2 − 119752S + 104832
)

, (D.16)

c4,4;1 =
16

3
S
(

11619S3 − 31666S2 − 648S + 38848
)

, (D.17)

c4,5;1 = −64(S − 2)S
(

1619S2 − 5660S + 4448
)

, (D.18)

c4,6;1 = −256

3
S
(

841S3 − 2918S2 + 2984S − 768
)

, (D.19)

c4,7;1 =
1024

3
(S − 2)S2(11S − 12). (D.20)

E Convergence of the small winding expansion

The convergence of the integral representations discussed in section 4 can be proved by the

methods that we illustrate in a prototypical example. Let us consider the quantity

F (z) =

∫ 1

0

1− zx/π

cos zx/2
dx (E.1)
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and its value at z = π

F (π) =
8C

π
, C = Catalan’s constant = 0.915965594 . . . . (E.2)

Consider G(w) = 1−w/π
cosw/2 . This function is holomorphic for −π < Re(w) < 3π. We can

subtract the pole in −π and consider

H(w) = G(w)− 4

w + π
. (E.3)

This function is holomorphic for −3π < Re(w) < 3π. Hence,

H(w) =

∞
∑

n=0

anw
n, |x| ≤ 2π. (E.4)

This implies
∫ 1

0
H(zx)dx =

∞
∑

n=0

an
n+ 1

zn, |z| ≤ 2π. (E.5)

Finally

F (z) =

∫ 1

0
H(zx)dx+ 4/z log(1 + z/π), (E.6)

and we have F (π) as a convergence series in π

F (π) =
∞
∑

n=0

an
n+ 1

πn +
4

π
log 2

=
1

2
+

π2

96
+

π4

2304
+

61π6

2580480
+

277π8

185794560
+

50521π10

490497638400
+ · · · (E.7)
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