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AdS spacetime yields the Rindler metric. According to the proposal of Flat/contracted-

CFT correspondence, the flat-space limit on the bulk side of asymptotically AdS space-

times corresponds to the contraction of the conformal field theory on the boundary. We

use this proposal for the Rindler-AdS/CFT correspondence and propose a dual theory for

the Rindler spacetime, which is a contracted conformal field theory (CCFT). We show

that the two-dimensional CCFT symmetries exactly predict the same two-point functions

that one may find by taking the flat-space limit of three-dimensional Rindler-AdS holo-

graphic results. Using the Flat/CCFT proposal, we also calculate the three-dimensional

Rindler energy-momentum tensor. Since the near horizon geometry of non-extreme black

holes has a Rindler part, we note that it is plausible to find a dual CCFT at the horizon

of non-extreme black holes. By using our energy-momentum tensor, we find the correct

mass of non-rotating BTZ and show that the Cardy-like formula for CCFT yields the

Bekenstein-Hawking entropy of non-extreme BTZ. Our current work is the first step to-

wards describing the entropy of non-extreme black holes in terms of CCFTs microstates

which live on the horizon.
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1 Introduction

Recently, there has been a growing interest in studying holography for asymptotically flat

spacetimes. One particular method for studying flat-space holography was introduced

in [1–3] in which one starts from the known results of the AdS/CFT correspondence and

takes their flat limit. In addition to this, various aspects of the flat-space holography were

also addressed in [4–14] by merely taking flat-space limit of the AdS counterparts.

It is a well-known fact that taking the flat-space limit of calculations performed in

asymptotically AdS spacetimes leads to results related to the asymptotically flat space-

times. The flat limit of AdS is achieved by taking its large radius limit, which is equivalent

to the zero cosmological constant limit. At the level of action and all covariantly con-

stant quantities, the flat limit of AdS clearly generates the results found in the flat case.

However, for the metric of asymptotically AdS spacetimes, the large radius limit must be

taken carefully.1

A related question in this regard is the interpretation of the flat limit from the point

of view of the boundary theory. It was argued in [1–3] that the flat limit of asymptotically

AdS spacetimes corresponds to the contraction of coordinates of the boundary CFT. Ac-

cordingly, asymptotically flat spacetimes have a dual description in terms of a contracted

conformal field theory (CCFT). For developing the Flat/CCFT correspondence one may

start from AdS/CFT and take the appropriate limit, i.e., the large radius limit of AdS on

the bulk side and contraction of coordinates on the boundary. As we will discuss in section

1An example of coordinate systems for asymptotically AdS spacetimes for which the flat limit is well-

defined is given in the paper [15].
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3, the structure of conformal boundary dictates the coordinate which must be contracted

in the CFT.

As another check for the Flat/CCFT correspondence, one can take the flat limit of

the Rindler-AdS/CFT correspondence. Observers with constant acceleration in the AdS

spacetimes perceive a temperature. Moreover, they do not have access to the full AdS

spacetime and are restricted to the two wedge-like regions which are characterized by

cosmological horizons. The coordinate system in which these observers are at rest is called

Rindler-AdS coordinates whose flat limit is the Rindler spacetime. It was argued in [16]

that the physics inside the two wedges of Rindler-AdS has a holographic description as

entangled states of a pair of CFTs which live on the boundary of Rindler-AdS wedges.

The reduced density matrix of one of these CFTs describes the spacetime inside one of

the wedges up to the horizon which should be replaced by some kind of singularity. Using

this holographic picture, the thermodynamics of Rindler-AdS has been recovered in [17].

The temperature and entropy of Rindler-AdS are given by using two-point function and

degeneracy of states of the dual CFT.

One can use the results of Rindler-AdS/CFT correspondence in order to develop a

holographic dual theory for the Rindler spacetimes. Since the flat limit of Rindler-AdS

is Rindler spacetime, it is possible to use the dictionary of Flat/CCFT correspondence

and find the CCFT dual to the Rindler. Similar to CFTs, one can calculate n-point

functions of CCFTs (see for example [18, 19]). In this paper, we perform the same method

for the two-dimensional CCFT resulting from the contraction of the CFT dual to the

three-dimensional Rindler-AdS and show that the two point function of scalar operators is

completely consistent with the bulk calculations. Moreover, one can use the proposal of [11]

for the calculation of the stress tensor of asymptotically flat gravity. We repeat the same

procedure for the three-dimensional Rindler spacetimes and find non-zero components of

the stress tensor which can be used in the calculation of conserved charges by using Brown

and York’s method [20].

Furthermore, we note that two-dimensional Rindler spacetimes appear in the near hori-

zon geometry of non-extreme black holes. This is a property of all non-extreme black holes

with any asymptotic behaviour and in any dimension. Here, we use the Rindler/CCFT

correspondence and propose a dual theory for the non-extreme black holes which has near

horizon information. In this view, Rindler/CCFT for non-extreme black holes is reminis-

cent of kerr/CFT correspondence [21] for the extremal cases. For non-rotating BTZs we

check this proposal. At the first step we find the mass of non-rotating BTZ by using our

proposed stress tensor for the Rindler gravity. Finally, we find the entropy of non-rotating

BTZ by using Cardy-like formula of CCFTs which results in the Bekenstein-Hawking en-

tropy. This formula has been derived in [4] and used previously for the calculation of

entropy of three-dimensional flat cosmological solutions [22].

The paper is organized as follows. In section 2 we briefly review Rindler-AdS. In

section 3 we find the CCFT dual to the three-dimensional Rindler spacetime and calculate

two point functions of scalar operators and also energy momentum tensor of the Rindler

space. Section 4 is devoted to the non-extreme/CCFT correspondence for which we use

our proposal for finding a dual theory at the horizon of non-extreme BTZ. In section 5 we

conclude with some future remarks.
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2 Rindler-AdS spacetime

An observer at r = r0 of three-dimensional Rindler-AdS metric,

ds2 = −α2r2dτ2 +
dr2

1 + r2

ℓ2

+

(

1 +
r2

ℓ2

)

dχ2, (2.1)

perceives a constant acceleration a2(3) =
1
r2
0

+ 1
ℓ2
, where ℓ is AdS radius and proper time of

observer is given by αr0τ . Thus the time coordinate of the metric (2.1) is the proper time

of an observer which is located at r = r0 = 1
α
. The temperature which these observers

measure, can be given by using Rindler temperature of higher dimensional flat embeding

space [23–26]. Let {X0, X1, X2, X3} denote the coordinates of embedding space with

signature (−,+,+,−). The metric (2.1) is given by the following change of coordinates in

the four-dimensional embedding space:

X0 = r sinh(ατ),

X1 = r cosh(ατ),

X2 =
√

ℓ2 + r2 sinh

(

χ

ℓ

)

,

X3 =
√

ℓ2 + r2 cosh

(

χ

ℓ

)

. (2.2)

Thus hyperspace r = r0 is given by

(X1)2 − (X0)2 = r20 =
1

a2(4)
, (2.3)

where a(4) is four-dimensional Rindler acceleration and the temperature is

T =
a(4)

2π
=

1

2πr0
=

√

a2(3) −
1
ℓ2

2π
. (2.4)

Thus the Rindler-AdS observer must have acceleration greater than a critical value 1
ℓ2

in

order to perceive a temperature. It is clear from (2.4) that the temperature which an

observer with proper time τ measures is

TRindler-AdS =
α

2π
. (2.5)

This must coincide with the periodicity of Euclidean time in the metric (2.1).

The relation between Rindler-AdS coordinate and global coordinate of AdS3 with

metric

ds2 = −
(

1 +
ρ2

ℓ2

)

dt2 +

(

1 +
ρ2

ℓ2

)−1

dρ2 + ρ2dφ2 (2.6)
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is given by [17]

ρ2 = r2
[

cosh2
(

χ

ℓ

)

+ sinh2(ατ)

]

+ ℓ2 sinh2
(

χ

ℓ

)

tanφ =

√
r2 + ℓ2 sinh

(

χ
ℓ

)

r cosh(ατ)

tan

(

t

ℓ

)

=
r sinh(ατ)√

r2 + ℓ2 cosh
(

χ
ℓ

) (2.7)

From the last equation of (2.7), it is clear that in the limit τ → ±∞, we have t → ± ℓπ
2 .

Thus Rindler-AdS covers a portion of global AdS which consists of two wedges. Any

accelerating observer has access just to one of the wedges.

The flat limit (ℓ → ∞) of the metric (2.1) is well-defined and results in Rindler

space-time,

ds2 = −α2r2dτ2 + dr2 + dχ2. (2.8)

3 From Rindler-AdS/CFT to Rindler/CCFT

Let us start from the metric of Rindler-AdS (2.1) and try to find metric of its conformal

boundary. The boundary is located at r → ∞. For large and fixed r we can write the

metric of conformal boundary as

ds2CB =
r2

G2

(

−α2G2dτ2 +
G2

ℓ2
dχ2

)

, (3.1)

where G is Newton constant. Here we intentionally used G in the conformal factor to avoid

its dependence on ℓ. Thus the boundary is a plane with the metric ds2 = −dT 2 + dX2,

where T = αGτ and X = χG/ℓ. From this identification it is clear that the flat limit on

the bulk side, i.e. G/ℓ → 0, corresponds to the contraction of X coordinate, i.e. X → ǫX.

Let us call the two-dimensional CFT for which the X coordinate has been contracted, a

contracted-CFT, or CCFT. It is argued in the rest of this paper that holographic dual of

one of the Rindler wedges is a CCFT.

The fact that in the Rindler/CCFT correspondence X coordinate must be contracted,

is not in contrast with the original proposal of [3] for the Flat/CCFT correspondence, where

time might be contracted. In fact the CFT of [3] lives on the cylinder while in the present

case it is on the plane. In mapping from a cylinder to the plane, X and T change their

roles. A way for seeing this fact is using line elements (2.1) and (2.6). It is easy to see that

by making the changes ατ → iφ ,r → ρ and χ → it, the metric of Rindler-AdS transforms

to the global coordinate. These transformations are also valid for the asymptotic Killing

vectors and the generators of dual CFTs. Thus the contraction of time in the global case

changes to the contraction of space in the Rindler case.

3.1 Two-point functions of scalar operators

For developing Rindler/CCFT, similar to Flat/CCFT correspondence, we begin with

Rindler-AdS/CFT calculations and take the appropriate limit. One of the results of [17]
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is that the holographic calculation for the two-point function of two scalar operators with

conformal weights h1 = h2 = h̄1 = h̄2, located in one of the entangled CFTs, results in

〈O(χ1, τ1)O(χ2, τ2)〉 =
1

[

cosh(χ1−χ2

ℓ
)− cosh (α(τ1 − τ2))

]∆
, (3.2)

where

∆ = h+ h̄ = 1 +
√

1 +m2ℓ2, (3.3)

and m is the mass of corresponding scalar filed on the bulk side.

The ℓ → ∞ limit (precisely G/ℓ → 0 limit ) of the two-point function (3.2) results in

a non-zero value just for the massless case m = 0:

〈O(χ1, τ1)O(χ2, τ2)〉rindler =
1

[1− cosh (α(τ1 − τ2))]
∆0

, (3.4)

where ∆0 = 2.

Now we want to show that symmetry considerations lead to a similar result as (3.4)

for a CCFT. In order to find two point functions of scalar operators in the X-contracted

CFT or CCFT, we should find the symmetry generators of CCFT in the first step. A way

to do this calculation is to start from the symmetry generators of CFT and contract them

in the manner that Flat/CCFT correspondence proposes.

The Virasoro generators of the CFT dual to the Rindler-AdS spacetime are given by

Ln = e−nz∂z, L̄n = e−nz̄∂z̄, (3.5)

where z = x + t and z̄ = x − t. In the appendix we show how this representation for the

conformal symmetry is derived.2

According to the dictionary of Flat/CCFT correspondence [1–3], the generators of

contracted conformal algebra are given by

Ln = Ln − L̄−n, Mn = ǫ(Ln + L̄−n), (3.6)

and contracting x → ǫx. At the ǫ → 0 limit we have

Ln = e−nt(−nx∂x + ∂t), Mn = e−nt∂x, (3.7)

which satisfy:

[Lm, Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n, [Mm,Mn] = 0. (3.8)

This algebra is isomorphic to the BMS3 algebra [27, 28] as the asymptotic symmetry of

three dimensional asymptotically flat spacetimes.

Since the flat limit in the bulk calculation of correlators is non-zero for the massless

case with a finite value of scaling dimension ∆ = ∆0 = 2, we restrict ourselves to this

particular case. In order to find two-point function of the scalar operator, we need δξ̃O
2The dimensionless coordinates x and t are related to the χ and τ coordinates of the bulk geometry by

t = ατ and x = χ/ℓ.
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which is the variation of the operator O under the symmetry transformation ξ̃. We want

to find this quantity for the CCFT by using the analogue transformation in the CFT which

for our case is given by

δξO =
∆0

2

(

∂zξ
z + ∂z̄ξ

z̄
)

O +
(

ξz∂z + ξz̄∂z̄
)

O. (3.9)

Using the following identities between CCFT and CFT elements,

z̃ + ¯̃z = lim
ǫ→0

1

ǫ
(z + z̄), z̃ − ¯̃z = lim

ǫ→0
(z − z̄), (3.10)

ξz̃ + ξ
¯̃z = lim

ǫ→0

1

ǫ
(ξz + ξz̄), ξz̃ − ξ

¯̃z = lim
ǫ→0

(ξz − ξz̄) (3.11)

∂z̃ + ∂¯̃z = lim
ǫ→0

ǫ(∂z + ∂z̄), ∂z̃ − ∂¯̃z = lim
ǫ→0

(∂z − ∂z̄), (3.12)

where tilde shows the corresponding elements in the CCFT, one can check that

δξ̃O = lim
ǫ→0

δξO =
∆0

2

(

∂z̃ξ
z̃ + ∂¯̃zξ

¯̃z
)

O +
(

ξz̃∂z̃ + ξ
¯̃z∂¯̃z

)

O. (3.13)

Lets denote the two-point function of scalar operator in the CCFT by

G2(t1, x1; t2, x2) = 〈O(t1, x1)O(t2, x2)〉. This must be invariant under the Mn and Ln

for n = 0,±1. Using (3.7) and (3.13), we find that

(

e−nt1∂x1
+ e−nt2∂x2

)

G2(t1, x1; t2, x2) = 0, (3.14)
[

− n∆0(e
−nt1 + e−nt2) + e−nt1(∂t1 − nx1∂x1

)

+e−nt2(∂t2 − nx2∂x2
)
]

G2(t1, x1; t2, x2) = 0. (3.15)

These equations determine the two-point function as

G2(t1, x1; t2, x2) =
C

(

sinh t1−t2
2

)2∆0

, (3.16)

which is the same as (3.4).

3.2 A stress tensor for Rindler spacetime

Using Rindler/CCFT correspondence, we can define a stress tensor for the Rindler space-

time. The connection is similar to the generic rule of AdS/CFT, i.e., the stress tensor of

gravity is given by one pint function of energy-momentum tensor of dual theory. Since in

developing Flat/CCFT correspondence we find all quantities by the flat limit of AdS/CFT

calculations, we apply the same procedure for the stress tensor as well. In fact the method

of calculation of the flat-space energy-momentum tensor has been introduced earlier in

the paper [11].3 The stress tensor of flat gravity is given by one point functions of the

contracted CFT resulting from contracting the one point functions of the original CFT.

3The holographic renormalization approach for the flat space holography has been also studied in [29]

and [30], but non of them addressed the connection to contracted CFT.
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In this section we use the same method for finding the stress tensor of three-dimensional

Rindler spacetimes. The starting point is Rindler-AdS metric (2.1) and the definition of

Brown and York’s quasi-local energy momentum tensor [20],

Tµν =
2√−γ

δS

δγµν
, (3.17)

where S = Sgrav(γµν) is the gravitational action viewed as a functional of boundary met-

ric γµν ,

S =
1

16πG

∫

M

d3x
√−g

(

R− 2

ℓ2

)

− 1

8πG

∫

∂M

d2x
√−γ K − 1

8πGℓ

∫

∂M

d2x
√−γ. (3.18)

The second term is Gibbons-Hawking term and the last one is the counterterm action that

must be added in order to obtain a finite stress tensor, and K is trace of the extrinsic

curvature of the boundary

K = γµνKµν = γµνγρµ ∇ρnν , (3.19)

where γµν = gµν − nµnν and nν is the outward pointing normal vector to the boundary

∂M. (3.17) and (3.18) result in

Tµν = − 1

8πG

(

Kµν −Kγµν +
γµν
ℓ

)

. (3.20)

At the boundary of Rindler-AdS (2.1) i.e. r → ∞, the non-zero components of Tµν are

Tττ =
α2ℓ

16πG
, Tχχ =

1

16πGℓ
. (3.21)

It is clear that the flat limit G/ℓ → 0 is not well-defined for (3.21). In order to define stress

tensor of Rindler spacetime ,T̃µν , by taking the flat limit of the stress tensor of Rindler-AdS

,Tµν , we use the proposal of [11] and write

T̃++ + T̃−− = lim
G

ℓ
→0

[

G

ℓ
(T++ + T−−)

]

,

T̃++ − T̃−− = lim
G

ℓ
→0

[T++ − T−−] , (3.22)

where the light-cone coordinates in the Rindler-AdS are given by x± = G
ℓ
χ ± αGτ , while

in Rindler spacetime we define the light-cone coordinates as x̃± = χ ± αGτ with τ and

χ being coordinates of (2.8). The T̃+− component like T+− is assumed to be zero. The

reader can easily check that with the definition (3.22), T̃++ and T̃−− are both finite, and

finally for the Rindler spacetime we have

T̃ττ =
α2

16π
, T̃χχ =

1

16πG2
. (3.23)

Since the dual CCFT of Rindler is constructed by contracting space-like coordinate i.e.

, x → ǫx, it is natural to expect that its momentum operator is found from the original
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CFT by a similar scaling. The first line of (3.22) is the corresponding equation for the

scaling of momentum from the bulk point of view. The second equation of (3.22) shows

that Hamiltonian of CCFT is the same as that of the original CFT. This is justified by the

fact that our contraction does not affect the time coordinate.

The point which we used implicitly in the definition (3.22) of the stress tensor for

Rindler spacetime (but will be explicitly used in the rest of this section) is that we assume

that similar to the original CFT, CCFT lives on a plane. The metric of this plane is similar

to the CFT case but with the difference that its x coordinate is the contracted one. This

fact is clear in the definition of the light-cone coordinates x± and x̃± for Rindler-AdS and

Rindler spacetimes, respectively, where the limit G/ℓ → 0 in the bulk corresponds to the

limit ǫ → 0 on the boundary. In summary, the CCFT dual to the Rindler spacetime

ds2 = −α2r2dτ2 + dr2 + dχ2, (3.24)

lives on a plane with metric

ds2∂M = −α2G2dτ2 + dχ2. (3.25)

4 Non-extreme black holes/CCFT correspondence

The energy momentum of previous section for Rindler spacetime can be used in the com-

putation of conserved charges of non-extreme BTZ. If one takes the near horizon limit

of non-extreme black holes with any asymptotic behaviour, the resulting geometry has a

Rindler part. Let us study the simplest case which is non-rotating BTZ with the metric

ds2 = −f(ρ)dτ2 + f(ρ)−1dρ2 + ρ2dφ2, (4.1)

where f(ρ) = ρ2

ℓ2
− 8GM and M is the mass of the black hole. If we denote the outer

horizon by ρh, which is given by ρh = ℓ
√
8GM , and define a new coordinate y = ρ− ρh, in

the near horizon characterized by y ≪ ρh, we find

ds2NH = −f ′(ρh)ydτ
2 + (f ′(ρh)y)

−1dy2 + ρ2hdφ
2. (4.2)

Defining a new coordinate r by dr = dy/
√

f ′(ρh)y results in

ds2NH = −f ′2(ρh)

4
r2dτ2 + dr2 + ρ2hdφ

2. (4.3)

Comparing (4.3) with (3.24) shows that the near horizon metric is Rindler with α =

f ′(ρh)/2 =
√
8GM/ℓ and a compact χ coordinate, given by χ = ρhφ.

4

Using (3.23), we find the non-zero component of the stress tensor as

T̃ττ =
α2

16π
=

GM

2πℓ2
, T̃φφ =

ρ2h
16πG2

=
ℓ2M

2πG
. (4.4)

4ℓ in the parameter α and also ρh is not radius of AdS in the metric of Rindler-AdS. Thus taking the

limit ℓ → ∞ from the calculations of Rindler-AdS does not affect α and ρh.
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Let us use (4.4) and compute the conserved charge of killing vector ξ = ∂τ . If we use

the metric

ds2∂M = −α2G2dτ2 + ρ2hdφ
2, (4.5)

in the Brown and York’s formula

Qξ =

∫

Σ
dφ

√
σvµξν T̃µν , (4.6)

where Σ is the spacelike surface of ∂M (τ = constant surface), σab is metric of Σ i.e.

σabdx
adxb = ρ2hdφ

2 and vµ is the unit time-like vector normal to Σ, we find

Q∂τ =
αρh
8G

= M. (4.7)

Thus our stress tensor results in the mass of the non-rotating BTZ as the charge of killing

vector ξ = ∂τ , where τ is dimension-full time of near horizon geometry. This is a non-trivial

check for our proposed energy-momentum tensor of Rindler spacetime.

4.1 Entropy of non-extreme BTZ as degeneracy of CCFT states

Our discussion so far, proposes a dual two-dimensional CCFT for the three-dimensional

Rindler spacetime. Moreover, since the near horizon geometry of non-extreme black holes

has a Rindler part, it is plausible to propose a dual description for the non-extreme black

holes at the horizon. This dual theory is a CCFT, which has contracted conformal sym-

metry. In two-dimensions this symmetry is given by (3.8). If we start from two copies of

conformal algebra with central charges c and c̄ and define generators of CCFT as (3.6),

the [Ln, Lm] and [Ln,Mm] commutators will have central extensions. Let us denote the

central charge of [Ln, Lm] by cL and central charge of [Ln,Mm] by cM . They are given by

taking the following limit of the central charges of the original CFT:

cL = lim
ǫ→0

1

12
(c− c̄),

cM = lim
ǫ→0

ǫ

12
(c+ c̄). (4.8)

According to the Flat/CCFT proposal, the ǫ → 0 limit on the boundary theory

corresponds to G/ℓ → 0 in the bulk. If we use Brown and Henneaux’s central charges

c = c̄ = 3ℓ/2G [31], the central charge cL will be zero but cM = 1/4.

The degeneracy of states |hL, hM 〉 which are eigenstates of L0 and M0 with eigenvalues

hL and hM , can be given by a Cardy like formula for the CCFT. This formula has been

given in [4] for large charges as

S = ln d(hL, hM ) = 2π

(

cL

√

hM
2cM

+ hL

√

cM
2hM

)

, (4.9)

where (hL, hM ) are given in terms of conformal weights (h, h̄) of the original CFT as

hL = lim
ǫ→0

(h− h̄), hM = lim
ǫ→0

ǫ(h+ h̄), (4.10)
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If our proposal for the dual CCFT at the horizon of non-extreme black holes is correct,

the entropy of non-extreme BTZ must be given by such a formula in terms of degeneracy of

states of CCFT. In the following we will show this fact for the entropy of non-rotating BTZ.

The first step is the calculation of hM and hL. They are given by (4.10) from conformal

weights (h, h̄) of original CFT. The original CFT is dual to Rindler-AdS spacetimes for

which the flat limit results in near horizon geometry of BTZ. Thus the metric of Rindler-

AdS is given by (2.1) but its χ coordinate should be compactified as χ = ρhφ, where ρh is

radius of horizon of BTZ and it is just a parameter in this stage; the φ coordinate takes

values in the interval [0, 2π]. Now the entropy of the cosmological horizon of Rindler-AdS

located at r = 0 is finite and is given by S = πρh/2G. Using the Rindler-AdS/CFT

correspondence, this entropy must be given by Cardy formula in terms of degeneracy of

states of CFT. Let us write Cardy formula in the following form

S =
π2

3
(cTR + c̄TL), (4.11)

where right and left temperatures of CFT are given by

1

TR
= π

√

c

6h
,

1

TL
= π

√

c̄

6h̄
. (4.12)

Moreover, TL and TR are related to the temperature T = α/2π of Rindler-AdS as

1

T
=

ℓ

2

(

1

TR
+

1

TL

)

. (4.13)

Thus we can calculate h and h̄. The final result is

h =
ρ2h

16ℓG

(

2− αℓ2

ρh
+ 2

√

1− αℓ2

ρh

)

,

h̄ =
ρ2h

16ℓG

(

2− αℓ2

ρh
− 2

√

1− αℓ2

ρh

)

(4.14)

Now we can calculate (hL, hM ) of CCFT dual to Rindler spacetime. They are given

by (4.10) where ǫ must be identified with G/ℓ. Using (4.14), the G/ℓ → 0 is well-defined

and results in:

hL =
ρ2h
4G

√

− α

ρh
, hM = −αρh

8
. (4.15)

Putting everything in the Cardy-like formula (4.9) gives

S =
πρh
2G

, (4.16)

which is exactly the Bekenstein-Hawking entropy of non-extremal BTZ.
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5 Conclusion

Our calculations in this paper uncover the existence of a two-dimensional dual CCFT for

gravity in three-dimensional Rindler spacetimes. There are several points related to this

duality which we did not address in this paper. The hypersurface on which CCFT lives, i.e.,

the metric (3.25) is constructed by an anisotropic scaling of Rindler space. It seems that

this kind of anisotropic scaling is necessary for studying flat-space holography. Moreover,

for the current case of Rindler holography, the dual theory is at spacial infinity rather than

Null infinity of flat spacetimes. This point does not in contrast with previously known

results about flat-space holography but needs more study.5

The independence of correlation function (3.16) from space coordinates is another inter-

esting property of Rindler-space holography. These correlators may reveal some properties

of CCFTs dual to asymptotically flat spacetimes.

The non-extreme black holes/CCFT correspondence which we propose in this paper is

the first step in this direction and needs careful studies in higher dimensions. Since there

is no decoupling between near-horizon region and rest of space for the non-extreme black

holes, the information which the horizon CCFT may provide is problematic. The main

question is how much information this dual theory has about the inside region of horizon,

its hairs and entropy of black hole. Another point which relations (4.15) reveal, is the

unusual values of hL and hM . One of them is negative and another is imaginary, but in

the Cardy-like formula they compensate each other and the final entropy is well-defined.

The relation between CCFTs and the proposals of [33, 34] for the dual theory of horizons

which has a chiral Virasoro symmetry is another interesting question in this regard.6

All the above points are signs of non-triviality of CCFTs dual to flat spacetimes and

may uncover new facts about gravity in the flat spacetimes. We hope to address the above

points in our future works.
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A Representation of CFT generators dual to the Rindler-AdS

Symmetry generators can be given by starting from Killing vectors of Rindler-AdS (2.1),

restricting them to the (τ, χ) components and taking r → ∞ limit. This could result

in the global part of conformal algebra and one can extend them to find full symmetry.

Using generators of 4 dimensional flat embedding space, we can find Killing vectors of

5The BMS symmetry also exist at the spacial infinity of asymptotically flat spacetimes [32].
6A comment on the relation of this chiral Virasoro and equipartition of energy is given in section 4.3 of

review [35].
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Rindler-AdS as

J01 = − 1

α
∂τ (A.1)

J02 = − rℓ√
r2 + ℓ2

sinh(ατ) cosh

(

χ

ℓ

)

∂χ

−
√

r2 + ℓ2 sinh

(

χ

ℓ

)[

cosh(ατ)

αr
∂τ − sinh(ατ)∂r

]

(A.2)

J03 =
rℓ√

r2 + ℓ2
sinh(ατ) sinh

(

χ

ℓ

)

∂χ

+
√

r2 + ℓ2 cosh

(

χ

ℓ

)[

cosh(ατ)

αr
∂τ − sinh(ατ)∂r

]

(A.3)

J12 = − rℓ√
r2 + ℓ2

cosh(ατ) cosh

(

χ

ℓ

)

∂χ

+
√

r2 + ℓ2 sinh

(

χ

ℓ

)[

sinh(ατ)

αr
∂τ − cosh(ατ)∂r

]

(A.4)

J13 = − rℓ√
r2 + ℓ2

cosh(ατ) sinh

(

χ

ℓ

)

∂χ

−
√

r2 + ℓ2 cosh

(

χ

ℓ

)[

sinh(ατ)

αr
∂τ − cosh(ατ)∂r

]

(A.5)

J23 = ℓ∂χ (A.6)

Taking r → ∞ and defining t = ατ and x = χ/ℓ and restricting to the x and t components

gives the generators of global part of conformal algebra as

j01 = −∂t (A.7)

j02 = − sinh t coshx∂x − sinhx cosh t∂t (A.8)

j03 = sinh t sinhx∂x + coshx cosh t∂t (A.9)

j12 = cosh t coshx∂x + sinhx sinh t∂t (A.10)

j13 = − cosh t sinhx∂x − coshx sinh t∂t (A.11)

j23 = ∂x (A.12)

The SL(2, R)× SL(2, R) generators are given by

L0 =
1

2
(j23 − j01), L+1 =

1

2
(j02 + j03 + j12 + j13), L−1 = −1

2
(j02 − j03 − j12 + j13)

(A.13)

L̄0 =
1

2
(j23 + j01), L̄−1 =

1

2
(j02 − j03 + j12 − j13), L̄1 = −1

2
(j02 + j03 − j12 − j13)

(A.14)

which can be written as

Ln = e−nz∂z, L̄n = e−nz̄∂z̄ (A.15)

where z = x+ t and z̄ = x− t.
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