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1 Introduction

The low energy effective actions have played a key role our understanding of strings and

branes particularly since there does not exist an underlying theory of these objects. of

For type II string theories these are the maximal supergravity theories in ten dimensions,

that is the IIA [1–3] and IIB [4–6] supergravity theories which contain all perturbative and

non-perturbative corrections at low energy. The higher space-time derivative corrections

have been studied for many years initially in the context of the IIB theory. For terms

with no more than fourteen space-time derivatives it has been proposed that the coef-

ficients of graviton scattering are certain SL(2,Z) automorphic forms that obey Poisson

equations [7–15]. These automorphic forms contain all perturbative and non-perturbative
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corrections to these terms. Quite a number of these effects have been checked against known

string corrections and this provides both strong evidence for these automorphic forms and

also strong evidence that the SL(2,R) symmetry of the IIB supergravity theory [4] really

is a symmetry of string theory when discretised to SL(2,Z).

Gravitational higher derivative corrections of type II string theory in lower dimensions,

and the automorphic forms that might occur, were discussed quite some time ago [15–17]

and was continued in [18, 19]. More recently a renewed attempt to understand these

correction has been made, specific automorphic forms have been proposed for the higher

derivative corrections with fourteen and less space-time derivatives. These automorphic

forms have been systematically studied and in particular their perturbative limits found and

shown to agree with string theory results [20–24]. These automorphic forms are constructed

from certain representations of En+1 where d = 10 − n is the dimension of the theory.

The regularisation of these automorphic forms was also understood [20–24]. Although

there is some discussion of the the automorphic forms arising as coefficients of terms with

more than fourteen space-time derivatives in ten dimensions [14, 25–27], there has been

little discussion of the automorphic forms arising as coefficients of terms with more than

fourteen space-time derivatives in less than ten dimensions, with the exception of [12], and

the general constraints that were derived in [28, 29]. However, there remains much to be

understood about these objects.

If one knew the automorphic forms that occur in the effective action then one would

know all brane and string effects, at least for ten and eleven dimensions and their toroidal

compactifications. It is likely that one could learn much about the underlying theory of

string and branes from these objects. Generally the knowledge that a quantity is some

kind of automorphic form places very strong constraints on what this quantity can be.

This is familiar to physicists for holomorphic automorphic forms. The automorphic forms

that arise in the higher derivative effective actions are non-holomorphic but instead obey

a Poisson equation, that is a Laplace equation that also has a non-zero right-hand side.

However, the automorphic forms that are studied in the mathematics literature obey a

Laplace equation of the type ∆Φ + λΦ = 0 where ∆ is the Laplacian on the coset formed

by the scalar fields. The automorphic forms that occur for the R4 and ∂4R4 terms obey

such a Laplace equation, while the automorphic form for the next correction, ∂6R4, obeys

an equation of the form ∆Φ+λΦ = (ΦR4
)2 where ΦR4

is the automorphic form for the R4

term [11, 21–23]. As a result one can not in general rely on the mathematics literature for

help when trying to find the automorphic forms that occur for terms in the effective action

that have higher numbers of space-time derivatives.

An important check on the properties of the automorphic forms that occur for the

higher derivative corrections is to study them as the parameters of string theory are taken

to certain limits. The perturbative limit has been much studied and was used in [20] to

provide a powerful check on the acceptability of proposed automorphic forms. In particular

most automorphic forms do not lead to perturbative behaviour of the form found in string

theory, that is, g−2+2n
s where gs is the string coupling and n a positive integer. The

perturbative limit is achieved by taking the dilaton field φ to minus infinity as gs = eφ.

The behaviour of automorphic form in this and a number of other limits have been studied
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in [21–23], these include the decompactification of a single dimension limit, the M-theory

limit and the d = 10− n dimensional perturbative limit.

String theory in d = 10 − n dimensions possess n + 2 parameters. Apart from one

dimensional full parameter, which can be taken to be the Planck length, the remaining

n+1 can be thought of as the expectation values of the scalar fields that arise in the non-

linear realisation of En+1 from the Cartan subalgebra of En+1. The string parameters can

also be thought of as the Planck length, the string coupling and the parameters of the torus

that can be used to find the theory from ten dimensions. This second way of describing the

parameters of string theory has the advantage that taking the various limits corresponds

to particular physical processes such a the perturbative limit or certain decompactification

limits. While the former description has the advantage that the expectation values of the

scalar fields are closely connected with the group theory used to construct the coset on

which the Laplacian mentioned above is defined.

The relationship between these two ways of describing the parameters of string theory

was given in reference [30]. This paper also contained the precise procedure for taking all

the possible the limits, that is, it specified for each limit what combination of the fields is

taken to a limit and what combination is to be held fixed. In this paper we will use these

results to investigate how the Poisson equation behaves in all the possible limits. Since

the Poisson equation contains the Laplacian on the scalar coset and the construction of

this latter object is found by group considerations. As a result, in this paper we use the

connections found in reference [30] to find the behaviour of the Laplacian in all possible

limits of the string theory parameters, this is just an exercise in group theory. In section 2

we recall the relation between the string theory parameters and the parameters used to

parameterise the coset group theory element. In section 3 we give the behaviour of the

Laplacian in the possible limits, relying on the results found in appendices A and B, and

we also specify generically how the terms in the effective action behave in these limits.

In section 4 we consider the Poisson equation satisfied by the automorphic forms in

the limit in which one dimension is decompactified. We make two assumptions, one of

which concerns the generic form of this equation and the other the generic behaviour of

the automorphic form in this limit. By making these assumptions, and using the results

found earlier on the decompactification limit of section 3.4, we find constraints on the

Poisson equation the automorphic form must satisfy. Indeed for the automorphic forms

that arise for terms in the effective action with fourteen space-time derivatives or less we

are able to completely determine the Poisson equation. Thus from these two assumptions

we are able to recover much of what we know about the automorphic forms that occur in

the higher derivative correction to string theory.

In section 5 we consider the behaviour of the Poisson equation in the perturbative

limit and show how it can be used to systematically derive the perturbative behaviour of

the above mentioned automorphic forms.

Given the complexity of the problem of determining the automorphic forms that occur

for higher space-time derivatives we hope that starting from our two very natural assump-

tion will prove a useful way of finding what the automorphic forms can be.
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2 Parameters

In this section we review how the parameters arise in string theory as discussed in [30]

but we will use a slightly different definition of the parameters. String theory in d dimen-

sions has n + 2 parameters where n = 10 − d. These parameters must also occur in the

corresponding low energy effective action, that is the maximal supergravity theory in d

dimensions. One of these parameters provides the dimensional scale and from the string

perspective is the string length ls while from the supergravity viewpoint it is the Planck

length in d dimensions ld which is related to the Newtonian coupling κd by ld−2
d = 2κ2d

The remaining n+1 dimensionless parameters can be thought as the expectation values of

certain of the scalars that occur in the supergravity theories. To give a familiar example;

in the IIA theory in ten dimensions we have two parameters; the Planck length l10(A) and

the expectation value of the dilaton as seen from the supergravity viewpoint which cor-

respond, from the perspective of the string theory, to the string length ls and the string

coupling gs(A).

The scalars in the maximal supergravity theory in d dimensions belong to a non-linear

realisation of the group with Lie algebra En+1 and it is the expectation values of the scalars

associated with the Cartan sub-algebra of En+1 that lead to n+1 dimensionless parameters.

We note that unlike the other scalars, the scalars associated with the Cartan subalgebra

appear in the supergravity theory as arguments of exponential factors. Like any semi-simple

finite dimensional Lie algebra, En+1 can be formulated as the multiple commutators of a set

of Chevalley generators which include those of the Cartan subalgebra. Indeed, it provides a

basis for the Cartan subalgebra, denoted {Ha, a = 1, . . . , n+1}, each generator of which is

associated with a node of the Dynkin diagram of En+1. The part of the group element that

occurs in the non-linear realisation and belongs to the Cartan subalgebra can be written

in the form exp(
∑

a ϕ̇aHa) where ϕ̇a, a = 1, . . . , n+ 1 are n+ 1 scalar fields which we will

refer to as the Chevalley fields. As a result each Chevalley field ϕ̇a can be associated with

a node in the En+1 Dynkin diagram. We give below the Dynkin diagram of En+1 with the

labelling of the nodes which we will use.

n+ 1

•
|

• − . . . − • − • − • − •
1 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

The parameters can also be thought to arise from a dimensional reduction process.

However, there are three different ways to find the theory in d dimensions by dimensional

reduction; we can dimensionally reduce from eleven dimensional M theory on a n + 1-

dimensional torus, the ten dimensional type IIA theory on a n-dimensional torus or the

IIB theory on a n-dimensional torus to find the d-dimensional theory. As before we can
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take the one dimensional parameter to be the Planck length in d dimensions ld, but also

useful are the Planck length in eleven dimensions, l11 and the Planck lengths of the ten

dimensional IIA and IIB theories denoted by l10(A), l10(B) respectively. Their relations

to the corresponding Newton constants are given by the analogue of the above equation

for ld, for example l911 = 2κ211. The remaining n + 1 dimensionless parameters are the

volumes of the n+ 1-dimensional torus, and all its subtori, used to derive the theory from

eleven dimensions. While if we dimensionally reduce from the ten dimensional IIA or IIB

theories the n + 1 parameters are the string coupling gs(A), or gs(B), and the dimensions

of the n-dimensional torus, and all its subtori. We note that to find the same theory in

d dimensions one must use different n-dimensional tori when dimensionally reducing from

IIA and IIB. Of interest to us is the relationship between the n+1 dimensionless parameters

just discussed and the expectation values of the Chevalley fields [30].

The relation between the expectation values of the Chevalley scalar fields and the

above string couplings are given by [30]

gd = e−(
8−n
4 )ϕ̇n , (2.1)

gs(A) = e−
3
2
ϕ̇n+ϕ̇n+1 (2.2)

gs(B) = e−2ϕ̇n (2.3)

Let us denote the volumes of the respective tori by Vn+1(M), Vn(A) and Vn(B) which

are defined by

Vn(A) = (2π)n
r10r9 . . . rd+1

(l10(A))n
= e

8−n
8

(ϕ̇n+2ϕ̇n+1) (2.4)

Vn(B) = (2π)n
r10r9 . . . rd+1

(l10(B))n
= e

8−n
4

ϕ̇n−1 , (2.5)

Vn+1(M) = (2π)n+1 r11r10r9 . . . rd+1

(l11)n+1
= e

8−n
3

ϕ̇n+1 , (2.6)

In these equations we have also given their expressions in terms of the Chevalley fields.

For d < 9 the other n− 1 parameters that describe the torus can be expressed as the

radius of the torus in the d+ 1 direction rd+1

rd+1

ld+1
= e

8−n
9−n

ϕ̇1 , (2.7)

and the volumes of the sub-tori of dimension j = 2, 3, . . . , n− 2

Vn−1 = (2π)n−1 r9 . . . rd+1

(l9)n−1
= e

8−n
7

(ϕ̇n−1+ϕ̇n+1) (2.8)

Vj = (2π)j
rd+jrd+j−1rd+j−2 . . . rd+1

ljd+j

= e
8−n

8−n+j
ϕ̇j , for j = 2, 3, . . . , n− 2 (2.9)

Note that the volumes in equations (2.7)–(2.9) are independent of r10, that is, the

radius of the torus involved in the dimensional reduction of the type IIA, or type IIB, theory

to nine dimensions, but this quantity appears in the volumes in equations (2.4)–(2.6). The

remaining radii r9, . . . , rd+1 are the radii of the torus used in the compactification below

nine dimensions.
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V
3

8−n

n+1(M)

•
|

• − . . . − • − • − • − •
V

9−n
8−n

1 V
5
8−

n−3 V
6

8−n

n−2 V
7

8−n

n−1 V
− 3

8−n

n+1(M) V
8

8−n

n(M)V
− 6

8−n

n+1(M)

Figure 1. The En+1 Dynkin diagram labelled by the d dimensional M-theory parameters.

We refer the reader to [30] for further details. We note that the dimensions of the

torus are made dimensionless by dividing by the Planck length, but there is a choice over

which Planck length to take. In reference [30] we used the Planck length in d dimensions

ld, but in this paper we have used the Planck length in the decompactified theory which

leads to slightly different expressions in equations (2.4)–(2.9) in terms of the Chevalley

fields. For example the volume of the M-theory torus in reference [30] was defined to be

Vn+1(M) = (2π)n+1 r11r10...rd+1

ln+1
d

, whereas in this paper we take the volume of the M-theory

torus to be given by Vn+1(M) = (2π)n+1 r11r10...rd+1

ln+1
11

in this paper. This also explains why

we find the quantity ld+j in equation (2.9) for example.

Clearly, the number of parameters listed above are more than n + 2; the redundancy

corresponding to the three different way one can find the d-dimensional theory by dimen-

sional reduction of type IIA, type IIB supergravity on an n torus or eleven dimensional

supergravity on an n + 1 torus. The relations between the different parameters are dis-

cussed in detail in [30]. We now give the set of n+1 independent dimensionless parameters

that arise from the dimensional reduction from eleven dimensions; these are the volume of

the n+1-dimensional torus Vn+1(M) and its subtori, V1, . . . , Vn of equations (2.6)–(2.9). As

explained above the Chevalley fields are in one to one correspondence with the nodes of the

Dynkin diagram of En+1 in figure 2 and by looking at the expressions for the parameters

in terms of these fields we can associate the parameters with the nodes of the En+1 Dynkin

diagram. Drawing these on the Dynkin diagram leads to figure 1.

The meaning of the diagram is that the exponential of the scalar field associated with

the node being considered is equal to the quantity shown at that node, for example for

node n + 1 we read off that eφn+1 = V
3

8−n

n+1(M). having read off all the relations one can

express the parameters in terms of the Cartan scalars.

Similar identifications for the n+1 parameters in terms of the dimensional reductions

from the type IIA and type IIB theories in reference [30]. One may also label the En+1

Dynkin diagram in terms of the parameters resulting from the dimensional reductions of

both the type IIA and type IIB theories as shown in figures 1 and 2.

The relations between the parameters of the d dimensional type IIA, type IIB string

theories and M-theory may be derived through the dependence of the parameters on the

Chevalley fields, for further details see reference [30]. In the conventions of this paper the
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V
4

8−n

n(A)g
2

8−n

d

•
|

• − . . . − • − • − • − •
V

9−n
8−n

1 V
5

8−n

n−3 V
6

8−n

n−2 V
7

8−n

n−1 V
− 4

8−n

n(A) g
4

8−n

d g
− 4

8−n

d

Figure 2. The En+1 Dynkin diagram labelled by the d dimensional type IIA parameters.

V
7

8−n

n−1 V
−4
8−n

n(B)

•
|

• − . . . − • − • − • − •
V

9−n
8−n

1 V
5

8−n

n−3 V
6

8−n

n−2 V
4

8−n

n(B) g
− 4

8−n

d

Figure 3. The En+1 Dynkin diagram labelled by the d dimensional type IIB parameters.

relations between the parameters are

Vn(A) = Vn(M) = V
7
4
n−1g

− 1
2

d(B)V
−1
n(B), (2.10)

Vn(B) = V
− 3

4

n+1(M)V
7
4
n−1 = V −1

n(A)g
−1
d(A), (2.11)

Vn+1(M) = V
7
3
n−1V

− 4
3

n(B) = V
4
3

n(A)g
− 2

3

d(A), (2.12)

Vn(M) = Vn(A) = V
7
3
n−1g

− 1
2

d(B)Vn(B), (2.13)

gd(A) = gd(B) = V 2
n(M)V

3
2

n+1(M), for n > 0, (2.14)

where gd(A) and gd(B) denote the d = 10−n dimensional coupling obtained when type IIA

or type IIB string theory, respectively, is compactified on an n torus. Note that the torus

subvolumes Vj , j = 1, . . . , n−1, of the type IIA, type IIB and M-theory tori are equivalent,

i.e. Vk(A) = Vk(B) = Vk(M), for k = 1, . . . , n− 1.

3 Laplacians and automorphic forms in the limits

We will be interested in studying the automorphic forms in the limits when certain param-

eters, or equivalently certain scalar fields, become large or small as appropriate. However,

the automorphic forms are thought to satisfy differential equations that contain the Lapla-

cian where differentiation is with respect to the scalar fields of the theory. As such it is

useful to study the Laplacian in these limits and in turn use these results to study the

automorphic forms in the limits. Since the automorphic forms are not in general known it

is difficult to study their limits, however, one can study the properties they should satisfy
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in the limits by studying the Poisson equation they satisfy in these limits. This can be

used to place restrictions on the automorphic forms.

The Laplacian lives on the coset space En+1/H, where H is the maximal compact

subgroup and it can be constructed from a group element g ∈ En+1 subject to the equiv-

alence relation g → gh for any group element h ∈ H. The Laplacian is then given by

∆ = 1√
γ
∂i
(√

γγij∂j
)

where γij are the components of the En+1/H group metric found by

tracing over the Cartan forms constructed from g. A full derivation is given in appendix A.

The limits we examine in this paper break the En+1 group into various subgroups.

In these limits the Laplacian splits into a Laplacian for the various subgroups plus a part

that contains the scalar field being taken to the limit. In the remainder of this section we

present the behaviour of the En+1/H Laplacians in the various limits as well as the generic

behaviour of higher derivative terms in the d dimensional theory.

3.1 M-theory limit

We begin by studying the large volume limit of the M-theory torus VM(m) in d = 11−m =

10 − n dimensions, that is the decompactification to M theory. In equation (2.6) above

we find that VM(m) is related to the En+1 Chevalley field ϕ̇n+1 by VM(m) = e(
8−n
3 )ϕ̇n+1 .

Taking the VM(m) → ∞ limit is thus the same as taking ϕ̇n+1 to the limit and so this

breaks the En+1 symmetry leaving a GL(1)× SL(n+ 1) symmetry. One may think of this

as deleting node n + 1 in the En+1 Dynkin diagram and decomposing the En+1 algebra

with respect to the remaining GL(1)×SL(n+1) subalgebra, for an account of how to carry

out this procedure, see reference [31], however it is important to note that when one takes

VM(m) → ∞ the En+1 symmetry is broken.

In order to preserve the SL(n+ 1) symmetry in this limit we find that one must hold

fixed the Cartan fields

ϕ̃ =
n−1
∑

a=1

ϕ̇aαa − ϕ̇nλn−1 + ϕ̇n+1αn (3.1)

where αi and λi, i = 1, . . . , n are the simple roots and fundamental weights of SL(n + 1).

We refer the reader to section 4.1.4 of reference [30] for a detailed discussion of this point.

In the large volume limit of the M-theory torus VM(m) = e−(
8−n
3 )ϕ̇n+1 → ∞ the

Laplacian ∆ becomes

∆ =
1

2x2
∂

∂ϕ̇n+1

∂

∂ϕ̇n+1
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n+1
+∆SL(n+1)

=
n+ 1

2(8− n)

∂

∂ϕ̇n+1

∂

∂ϕ̇n+1
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n+1
+∆SL(n+1) (3.2)

where we have used x2 = 8−n
n+1 . We refer the reader to appendix B.1 for a detailed derivation.

By dimensional analysis one sees that an arbitrary d dimensional higher derivative

term in Einstein frame that occurs in the effective action takes the form

lk−d
d

∫

ddx
√−gΦEn+1O (3.3)

– 8 –
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where O is a k derivative polynomial in the d dimensional curvature R, Cartan forms P or

field strengths F .

We now examine how the automorphic form in equation (3.3) behaves in the large

volume limit of the M-theory torus. To do this we will convert the d dimensional Planck

length ld to the eleven dimensional Planck length l11 and the volume of the M-theory torus

VM(m) using the relation

ld = l11V
− 1

8−n

M(m) (3.4)

and the condition

lim
Vm(M)→∞

ln+1
11

∫

ddx
√−gVm(M) =

∫

d11x
√

−ĝ, (3.5)

Applying this limit to the general term of equation (3.3) we conclude that any term which

is linear in Vm(M) is preserved in the limit while any term with a power of V p
m(M) for p < 1

vanishes in the limit.

In the Vm(M) → ∞ limit the En+1 coefficient function ΦEn+1 generically splits as

ΦEn+1 =
∑

i

V ai
M(m)Φ

i
SL(n+1) (3.6)

where i labels the different SL(n+ 1) coefficient functions, that is, SL(n+ 1) automorphic

forms, arising in the limit and ai is a real number. Demanding that the large volume limit

of this generic higher derivative term converges to an acceptable higher derivative term

in the M-theory effective action implies that the large volume limit Vm(M) → ∞ exists

and that the resulting terms in eleven dimensions have constant coefficients rather than

non-trivial SL(n+1) automorphic forms. Put another way the eleven dimensional terms in

the M theory effective action can not depend on the moduli of the torus. We note that an

SL(n+1) which is built from the trivial representation is a constant. Using equations (3.4)

and (3.5) and the decomposition of the automorphic form of equation (3.6) we find the

generic term of equation (3.3) can be written in the limit in the form

lk−d
d

∫

ddx
√−gΦEn+1O = lk−11

11

∫

d11x
√

−ĝ lim
Vm(M)→∞

V
2−k
8−n

M(m)

(

∑

i

V ai
M(m)Φ

i
SL(n+1)

)

O

= lk−11
11

∫

d11x
√

−ĝbÔ (3.7)

where Ô denotes the different d = 11 M-theory polynomials in the eleven dimensional

curvature R̂, and field strengths F̂ that arise in the decompactification of the d dimensional

polynomial in the curvature R, Cartan forms P and field strengths F . We have in the last

line of equation (3.7) encoded the requirement, mentioned above, that the only SL(n+ 1)

coefficient functions that can be preserved in the limit are constants, denoted by b. The

terms that are clearly preserved in this limit are those in
∑

i V
ai
M(m)Φ

i
SL(n+1) with V

−( 2−k
8−n)

M(m)

as in this case the factor of VM(m) combines with that contributed from converting the d

dimensional Planck length to the eleven dimensional Planck and VM(m) via equation (3.4)
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to converge to an eleven dimensional higher derivative term. Terms with a lesser power of

VM(m) vanish in the VM(m) → ∞, while those with a greater power are non-analytic and

must be treated carefully. We refer to the references [12, 21–23, 25, 27, 32] for a discussion

of this point.

Having found the terms that result in the decompactification to eleven dimensions we

can demand that they match the known coefficient functions of the higher derivative terms

in the M-theory effective action in eleven dimensions. As we will demonstrate in section 4

we can apply the Laplacian when written in the limit to the automorphic form when also

written in the limit and for certain limits this can place strong constraints on the form of

the differential equation satisfied by the automorphic form and as a result the automorphic

form itself.

3.2 Perturbative limit

The string coupling gd in d = 10 − n dimensions is related to the En+1 Chevalley field

ϕ̇n by gd = e−(
8−n
4 )ϕ̇n . Taking the gd → 0 limit is the same as taking ϕ̇n → ∞ and so it

breaks the En+1 symmetry leaving a GL(1) × SO(n, n) symmetry. One may think of this

as deleting node n in the En+1 Dynkin diagram and decomposing the En+1 algebra with

respect to the remaining GL(1)× SO(n, n) subalgebra, for an account of how to carry out

this procedure in general see reference [31]. It is important to note that when one takes

gd → 0 the En+1 symmetry is broken to GL(1)× SO(n, n) .

In order to preserve the SO(n, n) symmetry in the perturbative limit gd → 0 we find

that one must hold fixed the Cartan fields

ϕ̃ =
n−1
∑

a=1

ϕ̇aαa − ϕ̇nλn−1 + ϕ̇n+1αn, (3.8)

where αi and λi, i = 1, . . . , n−1 are the simple roots and fundamental weights of SO(n, n)

respectively. We refer the reader to section 4.1.2 of reference [30] for a detailed discussion

of this point.

In the perturbative limit gd = e−(
8−n
4 )ϕ̇n → 0 the Laplacian ∆ becomes

∆ =
1

2x2
∂

∂ϕ̇n

∂

∂ϕ̇n
− (n2 − n+ 4)

(8− n)

∂

∂ϕ̇n
+∆SO(n,n)

=
4

2(8− n)

∂

∂ϕ̇n

∂

∂ϕ̇n
− (n2 − n+ 4)

(8− n)

∂

∂ϕ̇n
+∆SO(n,n) (3.9)

where we have used x2 = 8−n
4

We require that the perturbative terms are consistent with a perturbative expansion

in gd. In string frame this implies that each term has a gd dependence that is of the form

g2g−2
d where g is the genus. String frame in d dimensions is related to Einstein frame by

gEµν = g
− 4

d−2

d gSµν . Upon rescaling to string frame, an arbitrary higher derivative term in

the d = 10−n dimensional type II string theory effective action, as given in equation (3.3),

is given by
∫

ddx
√−gSg

4∆−2d
d−2

d ΦEn+1OS , (3.10)
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where OS is some polynomial in the d dimensional curvature R, Cartan forms P , or field

strengths F , the subscript S denotes string frame quantities and ∆ is the number of space

time metrics minus the number of inverse space time metrics in OS . Demanding that

the perturbative limit of this generic higher derivative term exists from a string theory

perspective means that in the limit gd → 0 any term in the effective action agrees with

a perturbative expansion in gd, for this one requires that each term is multiplied by a

factor of the form g−2+2n
d , where n is either zero or a positive integer. Given a putative

automorphic form we can compute its behaviour in the perturbative limit and having

substituted this into equation (3.10) we can test if it has an acceptable string perturbation

theory or not. This was indeed what was done in reference [20–23] and it was found to be

a very restrictive requirement.

3.3 Type IIB limit

The volume of the type IIB torus Vn(B) in d = 10 − n dimensions is related to the En+1

Chevalley field ϕ̇n−1 by Vn(B) = e
8−n
4

ϕ̇n−1 . Taking the Vn(B) → ∞ limit corresponds to

taking ϕ̇n−1 → ∞ and so it breaks the En+1 symmetry leaving a GL(1) × SL(2) × SL(n)

symmetry. One may think of this as deleting node n − 1 in the En+1 Dynkin diagram

and decomposing the En+1 algebra with respect to the remaining GL(1)× SL(2)× SL(n)

subalgebra.

In order to preserve the SL(2) × SL(n) symmetry in this limit we find that one must

hold fixed the Cartan fields

ϕ̃ =
n−2
∑

a=1

ϕ̇aαa + ϕ̇n+1αn−1 − ϕ̇n−1λn−2 (3.11)

where αi and λi, i = 1, . . . , n − 1 are the simple roots and fundamental weights of SL(n)

respectively and in addition fix

ϕ̃ = µϕ̇n−1 − βϕ̇n (3.12)

where µ and β are fundamental weight and simple root of SL(2). We refer the reader to

section 4.1.2 of reference [30] for a detailed discussion of this point.

In the large volume limit of the type IIB torus Vn(B) = e
8−n
4

ϕ̇n−1 → ∞ the Laplacian

∆ becomes

∆ =
1

2x2
∂

∂ϕ̇n−1

∂

∂ϕ̇n−1
− (2n2 − n)

(8− n)

∂

∂ϕ̇n−1
+∆SL(n) +∆SL(2)

=
n

(8− n)

∂

∂ϕ̇n−1

∂

∂ϕ̇n−1
− (2n2 − n)

(8− n)

∂

∂ϕ̇n−1
+∆SL(n) +∆SL(2) (3.13)

where we have used x2 = 8−n
2n . A partial derivation is given in appendix B.2.

The generic higher derivative term in the effective action was given in equation (3.3)

and we now examine how the automorphic form behaves in the large volume limit of the

type IIB torus. To do this we will convert the d dimensional Planck length ld to the type
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IIB ten dimensional Planck length l10(B) and the volume of the type IIB torus Vn(B) using

the relation

ld = l10(B)V
− 1

8−n

n(B) (3.14)

and use the condition

lim
Vn(B)→∞

ln10(B)

∫

ddx
√−gVn(B) =

∫

d10x
√

−ĝ, (3.15)

which implies that any term with Vn(B) dependence Vn(B) is preserved in the limit while any

term with a lesser power of Vn(B) vanishes in the limit. In the Vn(B) → ∞ limit the En+1

symmetry is broken, leaving a GL(1) × SL(2) × SL(n) symmetry. The En+1 coefficient

function ΦEn+1 generically splits into an expansion in the volume of the type IIB torus

Vn(B) as

ΦEn+1 =
∑

i

V ai
n(B)Φ

i
SL(2)Φ

i
SL(n) (3.16)

where i labels the different SL(2) and SL(n) coefficient functions arising in the limit and ai
is a real number. Demanding that the large volume limit of this generic higher derivative

term converges to an acceptable higher derivative term in the type IIB effective action

means that the large volume limit Vn(B) → ∞ exists and that the resulting terms are ten

dimensional type IIB higher derivative terms have coefficient functions that are only SL(2)

automorphic forms and that the SL(n) automorphic forms become constants in the limit

since the ten dimensional type IIB effective action can not depend on the moduli of the n

torus. This condition may be expressed as

lk−d
d

∫

ddx
√−gΦEn+1O = lk−10

10(B)

∫

d10x
√

−ĝ lim
Vn(B)→∞

V
2−k
8−n

n(B)

(

∑

i

V ai
n(B)Φ

i
SL(2)Φ

i
SL(n)

)

O

= lk−10
10(B)

∫

d10x
√

−ĝ

(

∑

i

biΦ
i
SL(2)

)

Ô (3.17)

where bi is a real number and Ô labels the different d = 10 type IIB polynomials in the ten

dimensional curvature R̂, and field strengths F̂ that arise in the decompactification of the

d dimensional polynomial in the curvature R, Cartan forms P and field strengths F . The

last line of equation (3.17) encodes the requirement that we find only SL(2) automorphic

forms in the ten dimensional type IIB theory. The terms that are clearly preserved in

this limit are those in
∑

i V
ai
n(B)Φ

i
SL(2)Φ

i
SL(n) with V

−( 2−k
8−n)

n(B) , in this case the factor of Vn(B)

combines with that contributed from converting the d dimensional Planck length to the

type IIB ten dimensional Planck length and Vn(B) via equation (3.14) to converge to a

ten dimensional type IIB higher derivative term. Terms with a lesser power of Vn(B)

vanish in the Vn(B) → ∞, while those with a greater power are non-analytic and must be

treated carefully.

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
8

3.4 Decompactification of a single dimension limit

The ratio of the radius in the d+ 1 direction rd+1 to the d+ 1 dimensional Planck length

ld+1 in d = 10− n dimensions is related to the En+1 Chevalley field ϕ̇1 by
rd+1

ld+1
= e

8−n
9−n

ϕ̇1 .

Taking the
rd+1

ld+1
→ ∞ limit corresponds to taking ϕ̇1 → ∞ and so corresponds to breaks

the En+1 symmetry leaving a GL(1) × En symmetry. One may think of this as deleting

node 1 in the En+1 Dynkin diagram and decomposing the En+1 algebra with respect to

the remaining GL(1)× En subalgebra.

In order to preserve the En symmetry in this limit we find that one must hold fixed

the Cartan fields

ϕ̃ =
n+1
∑

a=2

ϕ̇aαa−1 − ϕ̇1λ1 (3.18)

where αi and λi, i = 1, . . . , n − 1 are the simple roots and fundamental weights of En

respectively. We refer the reader to section 4.1.3 of reference [30] for a detailed discussion

of this point.

In the decompactification of a single dimension limit
rd+1

ld+1
= e

8−n
9−n

ϕ̇1 → ∞ the Laplacian

∆ becomes

∆ =
1

2x2
∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

(2x2(9− n))

∂

∂ϕ̇1
+∆En

=
(9− n)

2(8− n)

∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

2(8− n)

∂

∂ϕ̇1
+∆En (3.19)

where we have used x2 = 8−n
9−n

. We refer to appendix B.4 for a partial derivation of this

result. This result was found in [21] by testing out a putative Laplacian on the Eisenstein

series automorphic forms that were know to obey the Laplace equation. Our approach is

in this paper is quite different in that we derived the above result in group theory and we

are going use it to place restrictions on the automorphic forms that occur in string theory.

We now examine how the automorphic form behaves in the decompactification of a

single dimension limit. We require that the terms remaining in the decompactification of a

single dimension limit match the known coefficient functions of the higher derivative terms

in the type II effective action in d+ 1 dimensions.

The generic higher derivative term in the effective action was given in equation (3.3)

and we now examine the behaviour of this term in the decompactification of a single

dimension limit. To do this we will convert the d dimensional Planck length ld to the d+1

dimensional Planck length ld+1 and the ratio of the radius in the d + 1 direction rd+1 to

the d+ 1 dimensional Planck length ld+1 using the relation

ld = ld+1

(

rd+1

ld+1

)− 1
8−n

(3.20)

and use the condition

lim
rd+1
ld+1

→∞
ld+1

∫

ddx
√−g

rd+1

ld+1
=

∫

dd+1x
√

−ĝ, (3.21)
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which implies that any term which is linear in
rd+1

ld+1
is preserved in the limit while any term

with
(

rd+1

ld+1

)p

for p < 1 vanishes in the limit. In the
rd+1

ld+1
→ ∞ limit the En+1 symmetry is

broken to a GL(1)×En symmetry and the En+1 coefficient function ΦEn+1 generically splits

into an expansion in the ratio of the radius in the d+ 1 direction to the d+ 1 dimensional

Planck length
rd+1

ld+1
as

ΦEn+1 =
∑

i

(

rd+1

ld+1

)ai

Φi
En

(3.22)

where i labels the different En coefficient functions arising in the limit and ai is a real

number. Demanding that the large volume limit of this generic higher derivative term

converges to an acceptable higher derivative term in the d+ 1 dimensional effective action

of type II string theory means that the decompactification of a single dimension limit
rd+1

ld+1
→ ∞ exists and that the resulting terms are d + 1 dimensional higher derivative

terms in the type II string theory effective action with coefficient functions that are En

automorphic forms. This condition may be expressed as

lk−d
d

∫

ddx
√−gΦEn+1O = l

k−(d+1)
d+1

∫

dd+1x
√

−ĝ lim
rd+1
ld+1

→∞

rd+1

ld+1

2−k
8−n

(

∑

i

rd+1

ld+1

ai
Φi
En

)

O

= ld+1
k−(d+1)

∫

dd+1x
√

−ĝ

(

∑

i

Φi
En

)

Ô (3.23)

where Ô labels the different d + 1 dimensional type II string theory polynomials in the

d + 1 dimensional curvature R̂, and field strengths F̂ that arise in the decompactification

of the d dimensional polynomial in the curvature R, Cartan forms P and field strengths F .

The last line of equation (3.23) expresses the requirement that the only allowed coefficient

functions in the d+1 dimensional type II string theory effective action are En automorphic

forms. The terms that are clearly preserved in this limit are those in
∑

i
rd+1

ld+1

aiΦi
En

with

rd+1

ld+1

−( 2−k
8−n), in this case the factor of Vn(B) combines with that contributed from converting

the d dimensional Planck length to the d + 1 dimensional Planck length and
rd+1

ld+1
via

equation (3.20) to converge to a d + 1 dimensional higher derivative term. Terms with

a lesser power of
rd+1

ld+1
vanish in the

rd+1

ld+1
→ ∞, while those with a greater power are

non-analytic and must be treated carefully.

3.5 Decompactification of a j dimensional subtorus limit

The j dimensional subtorus Vj of an n torus in d = 10 − n dimensions is related to the

En+1 Chevalley field ϕ̇j by Vj = e
8−n

8−n+j
ϕ̇j . Taking the Vj → ∞ limit breaks the En+1

symmetry leaving a GL(1)× SL(j)×En+1−j symmetry. One may think of this as deleting

node j in the En+1 Dynkin diagram and decomposing the En+1 algebra with respect to

the remaining GL(1)× SL(j)× En+1−j subalgebra.
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In order to preserve the SL(j)×En+1−j symmetry in this limit we find that one must

hold fixed the Cartan fields

ϕ̃ =

j−1
∑

i=1

ϕ̇iαi − ϕ̇jλj−1 (3.24)

and n+ 1− j quantities

ϕ̂ =
n+1
∑

a=j+1

ϕ̇aα̂a−j − ϕ̇j λ̂1 (3.25)

to preserve the SL(j) × En+1−j symmetry where αi and λi, i = 1, . . . , j − 1 are the sim-

ple roots and fundamental weights of SL(j) and α̂i and λ̂i, i = 1, . . . , n + 1 − j are the

simple roots and fundamental weights of En+1−j . We refer the reader to section 4.1.6 of

reference [30] for a detailed discussion of this point.

In the large volume limit of the j dimensional subtorus Vj = e
8−n

8−n+j
ϕ̇j → ∞ the

Laplacian ∆ becomes

∆ =
1

2x2
∂

∂ϕ̇j

∂

∂ϕ̇j
− (−n2 + 16n− 8j + nj − 4)

2x2(8− n+ j)

∂

∂ϕ̇j
+∆En+1−j

=
j(n+ 1− j)(8− n+ j)

2((n+ 1)(8− n+ j)− 9j)

∂

∂ϕ̇j

∂

∂ϕ̇j

− j(n+ 1− j)

2((n+ 1)(8− n+ j)− 9j)
(−n2 + 16n− 8j + nj − 4)

∂

∂ϕ̇j
+∆En+1−j

(3.26)

where we have used x2 = (n+1)(8−n+j)−9j
j(n+1−j)(8−n+j) .

The generic term in the higher derivative action in d dimensions was given in equa-

tion (3.3) and we now examine how the automorphic form generically behaves in the large

volume limit of a j dimensional subtorus. We require that the terms remaining in the

large volume limit of the j dimensional subtorus match the known coefficient functions of

the higher derivative terms in the type II string effective action in d + j dimensions. To

examine the behaviour of such terms in the large volume limit of j dimensional subtorus

we will convert the d dimensional Planck length ld to the d+ j dimensional Planck length

ld+j and the volume of the j dimensional subtorus Vj using the relation

ld = ld+jV
− 1

8−n

j (3.27)

and use the condition

lim
Vj→∞

ljd+j

∫

ddx
√−gVj =

∫

dd+jx
√

−ĝ, (3.28)

which implies that any term linear in Vj is preserved in the limit while any term with a

lesser power of Vj vanishes in the limit. In the Vj → ∞ limit the En+1 symmetry breaks into

a GL(1) × SL(j) × En+1−j symmetry and the En+1 coefficient function ΦEn+1 generically

splits into an expansion in the volume of the j dimensional subtorus Vj as

ΦEn+1 =
∑

i

V ai
j Φi

SL(j)Φ
i
En+1−j

(3.29)
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where i labels the different SL(j) and En+1−j coefficient functions arising in the limit and

ai is a real number. Demanding that the large volume limit of this generic higher derivative

term converges to an acceptable higher derivative term in the d + j dimensional type II

string theory effective action means that the large volume limit Vj → ∞ exists and that

the resulting terms are d + j dimensional type II string theory higher derivative terms

with coefficient functions that are En+1−j automorphic forms. In other words the SL(j)

automorphic forms only lead to constants in the limit since the d + j dimensional type II

string theory effective action can not depend on the moduli of the j dimensional subtorus.

This condition may be expressed as

lk−d
d

∫

ddx
√−gΦEn+1O = l

k−(d+j)
d+j

∫

dd+jx
√

−ĝ lim
Vj→∞

V
2−k
8−n

j

(

∑

i

V ai
j Φi

SL(j)Φ
i
En+1−j

)

O

= l
k−(d+j)
d+j

∫

dd+jx
√

−ĝ

(

∑

i

biΦ
i
En+1−j

)

Ô (3.30)

where bi is a real number and Ô labels the different d = 10 type IIB polynomials in the

ten dimensional curvature R̂, and field strengths F̂ that arise in the decompactification

of the d dimensional polynomial in the curvature R, Cartan forms P and field strengths

F . The last line of equation (3.30) expresses the above requirement that the only allowed

coefficient functions in the d + j dimensional type II string theory effective action are

En+1−j automorphic forms. The terms that are clearly preserved in this limit are those

in
∑

i V
ai
j Φi

SL(j)Φ
i
En+1−j

with V
−( 2−k

8−n)
j , in this case the factor of Vj combines with that

contributed from converting the d dimensional Planck length to the d + j dimensional

Planck length and Vj via equation (3.27) to converge to a d+j dimensional higher derivative

term. Terms with a lesser power of Vj vanish in the Vj → ∞ limit, while those with a

greater power are non-analytic and must be treated carefully.

3.6 Type IIA limit

The volume of the type IIA torus Vn(A) in d = 10 − n dimensions is related to the En+1

Chevalley fields ϕ̇n and ϕ̇n+1 by Vn(A) = e
8−n
8

(ϕ̇n+2ϕ̇n+1) in addition the ten dimensional

type IIA string coupling gs(A) is related to the Chevalley fields by gs(A) = e−
3
2
ϕ̇n+2ϕ̇n+1 .

Taking the Vn(A) → ∞ limit corresponds to taking −3
2 ϕ̇n + 2ϕ̇n+1 → ∞ and it breaks the

En+1 symmetry leaving a GL(1) × GL(1) × SL(n) symmetry. One may think of this as

deleting nodes n and n+1 in the En+1 Dynkin diagram and decomposing the En+1 algebra

with respect to the remaining GL(1)×GL(1)× SL(n) subalgebra.

In order to preserve the SL(n) symmetry in this limit we find that one must hold fixed

the Cartan fields

ϕ̃ =
n−1
∑

a=1

ϕ̇aαa − ϕ̇nλn−1 − ϕ̇n+1λn−2 (3.31)

where αi and λi, i = 1, . . . , n − 1 are the simple roots and fundamental weights of SL(n)

respectively and in addition fix

ϕg = −3

2
ϕ̇n + ϕ̇n+1 (3.32)
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to preserve the type IIA string coupling. We refer the reader to section 4.1.5 of reference [30]

for a detailed discussion of this point.

In the large volume limit of the type IIA torus Vn(A) = e
8−n
8

(ϕ̇n+2ϕ̇n+1) → ∞ the

Laplacian ∆ becomes

∆ =
4n

(8− n)

∂

∂ϕ̇V

∂

∂ϕ̇V
−
(

4n2 − 2n

8− n

)

∂

∂ϕ̇V
+

∂

∂ϕ̇g

∂

∂ϕ̇g
+

∂

∂ϕ̇g
+∆SL(n) (3.33)

where we have defined ϕ̇V = ϕ̇n + 2ϕ̇n+1 and ϕ̇g = −3
2 ϕ̇n + ϕ̇n+1.

The generic higher derivative term in the d dimensional effective action was given in

equation (3.3) and we now examine how the automorphic form that it contains generically

behaves in the large volume limit of the type IIA torus. To proceed we will convert the

d-dimensional Planck length ld to the type IIA ten dimensional Planck length l10(A) and

the volume of the type IIA torus Vn(A) using the relation

ld = l10(A)V
− 1

8−n

n(A) (3.34)

and use the condition

lim
Vn(A)→∞

ln10(A)

∫

ddx
√−gVn(A) =

∫

d10x
√

−ĝ, (3.35)

which implies that any term linear in Vn(A) is preserved in the limit while any term with

a lesser power of Vn(A) vanishes in the limit. In the Vn(A) → ∞ limit En+1 decomposes as

GL(1)×GL(1)× SL(n) and the En+1 coefficient function ΦEn+1 generically splits into an

expansion in the volume of the type IIA torus Vn(A) and type IIA string coupling gs(A) as

ΦEn+1 =
∑

i

V ai
n(A)g

ci
s(A)Φ

i
SL(n) (3.36)

where i labels the different SL(n) coefficient functions arising in the limit and ai and ci
are real numbers. Demanding that the large volume limit of this generic higher derivative

term converges to an acceptable higher derivative term in the type IIA effective action

means that the large volume limit Vn(A) → ∞ exists and that the resulting terms are

ten dimensional type IIA higher derivative terms have constant coefficients since the ten

dimensional type IIB effective action can not depend on the moduli of the n torus. This

condition may be expressed as

lk−d
d

∫

ddx
√−gΦEn+1O = lk−10

10(A)

∫

d10x
√

−ĝ lim
Vn(A)→∞

V
2−k
8−n

n(A)

(

∑

i

V ai
n(A)g

ci
s(A)Φ

i
SL(n)

)

O

= lk−10
10(A)

∫

d10x
√

−ĝ

(

∑

i

big
ci
s(A)

)

Ô (3.37)

where bi is a real number and Ô labels the different d = 10 type IIA polynomials in the ten

dimensional curvature R̂, and field strengths F̂ that arise in the decompactification of the

d dimensional polynomial in the curvature R, Cartan forms P and field strengths F . The
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last line of equation (3.37) expresses the above requirement that the only allowed coefficient

functions in the ten dimensional type IIA theory are powers of gs(A) with trivial, that is,

constant SL(n) automorphic forms. The terms that are clearly preserved in this limit are

those in
∑

i V
ai
n(A)g

ci
s(A)Φ

i
SL(n) with V

−( 2−k
8−n)

n(A) , in this case the factor of Vn(A) combines with

that contributed from converting the d dimensional Planck length to the type IIA ten

dimensional Planck length and Vn(A) via equation (3.34) to converge to a ten dimensional

type IIA higher derivative term. Terms with a lesser power of Vn(A) vanish in the Vn(A) →
∞, while those with a greater power are non-analytic and must be treated carefully.

In addition, the perturbative terms remaining after taking the limit must agree with

a perturbative expansion in the ten dimensional type IIA string coupling gs(A). In string

frame this implies that each term has a gs(A) dependence of the form g−2+2g
s(A) , where g is the

genus. String frame in ten dimensions is related to Einstein frame by gEµν = e−
1
2
σ̃gSµν .

Upon rescaling to Einstein frame in the type IIA ten dimensional theory we find
∫

d10x
√−gSOS →

∫

d10x
√−gSg

∆−5
2

s(A)OS , (3.38)

where O is some polynomial in the ten dimensional curvature R, fields strengths F or

derivatives of the type IIA dilaton, S denotes string frame quantities and ∆ is the number

of ten dimensional type IIA space time metrics minus the number of inverse space time

metrics. Therefore any term that is preserved in the large volume limit of the type IIA

torus must satisfy

= lk−10
s(A)

∫

d10x
√

−ĝS

(

∑

i

big
ci
s(A)

)

g
∆−5
2

s(A) ÔS = lk−10
s(A)

∫

d10x
√

−ĝS

(

∑

i

big
−2+2gi
s(A)

)

ÔS (3.39)

where gi is the genus associated with the perturbative contribution to term i in the large

Vn(A) expansion of the En+1 automorphic form.

4 Derivation of Poisson equations

It has been found that demanding that the effective action be invariant under supersym-

metry implies that the automorphic form that appears as the coefficient of the R4 term

in the ten dimensional type IIB effective action satisfies a Laplace equation for which the

Laplacian is the one defined on the coset space of the massless scalar fields [9]. The cor-

responding Laplace, or Poisson equations, satisfied by the automorphic forms that appear

as the coefficient functions in the effective action for the higher order terms and in d < 10

dimensions have not been deduced directly via supersymmetry constraints. However, the

automorphic forms that occur for the R4, ∂4R4 and ∂6R4 terms in d = 10 − n dimen-

sions have been conjectured and found to lead to all the known and perturbative and

non-perturbative features of these terms [21–23] and these are also known to satisfy the

Poisson equations. In particular, the automorphic forms that occur as coefficients of R4,

∂4R4 in d = 10 − n dimensions, denoted ΦR4

En+1
and Φ∂4R4

En+1
respectively, are expected to

satisfy the equations [21–23]

∆En+1Φ
R4

En+1
+

3(n2 − n− 2)

8− n
ΦR4

En+1
= 0 (4.1)
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and

∆En+1Φ
∂4R4

En+1
+

5(n2 − n− 6)

8− n
Φ∂4R4

En+1
= 0 (4.2)

where where ∆En+1 is the En+1 Laplacian, which is given in appendix A.

However the automorphic form Φ∂6R4

En+1
which is the coefficient of ∂6R4 obeys a more

complicated equation namely [21–23]

∆En+1Φ
∂6R4

En+1
+

6(n2 − 16)

8− n
Φ∂6R4

En+1
= −

(

ΦR4

En+1

)2
. (4.3)

As we mentioned in the introduction if one knew the automorphic forms that occur in the

effective action then one would know all string effects, at least for ten dimensions and for

toroidal compactifications. For certain dimensions the above Poisson equations contain

constants on the right-hand, these are connected to non-analytic terms that we do not

consider in this paper.

In this section we give a different approach to the problem of determining the auto-

morphic forms that is based on the behaviour of the Laplacian and the automorphic form

in the limit when one of the dimensions is decompactified. Our aim is to use this limit to

place restrictions on the differential equation that the automorphic form can obey. This is

particularly useful as knowing the differential equation one can using the formulae given in

this paper to deduce the behaviour of the automorphic form in all the possible different lim-

its; indeed knowing the equation is almost tantamount to knowing the automorphic form

itself. We now give two assumptions that place very strong restrictions on the coefficients

that occur in the Poisson equation.

Assumption 1. We assume that the automorphic form obeys a differential equation of

the form

∆En+1Φ
R

k
2

En+1
+Ak(n)ΦR

k
2

En+1
=
∑∏

i

Bk
i (n)

(

ΦR
ki
2

En+1

)aki
(4.4)

where Ak(n), Bk
i (n) are constants and aki (n) are integers, the sum on the right hand side is

over all possible products of coefficient functions appearing at lower orders in the effective

action than ΦEn+1 . Clearly this assumption is true for the cases when the number of

space-time derivatives in the effective action is fourteen or less. As the Laplacian acting

on an automorphic form is also an automorphic form, the right hand side must also be

an automorphic form and so this assumption really amounts to the assumption that the

automorphic form which occurs on the right hand side of the equation is composed of

the automorphic forms that occurred for lower number of space-time derivatives. One

might suspect that this can be shown in general from the supersymmetric nature of the

effective action.

As mentioned in section 3.4, in the decompactification of a single dimension limit we

take
(

rd+1

ld+1

)

→ ∞ and the higher derivative terms in the d dimensional effective action lift

to higher derivative terms in the d+ 1 dimensional effective action. In this limit the En+1

automorphic functions of the higher derivative terms in the effective action decompose into

GL(1)×En automorphic forms where the GL(1) factor is associated with the power of
rd+1

ld+1
.
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Assumption A2. The automorphic form ΦR
k
2

En+1
associated with a higher derivative term

in the d = 10−n dimensional effective action, where k denotes the number of d dimensional

space-time derivatives in the higher derivative term, decompactifies as

lim
(

rd+1
ld+1

)

→∞
lk−d
d ΦR

k
2

En+1
= lk−d

d+1

{

c
k
2
k
2

(

rd+1

ld+1

)

ΦR
k
2

En
+
∑

j<k

c
k
2
j
2

(

rd+1

ld+1

)2+k−j−d

ΦR
j
2

En

+c0k
2

(

rd+1

ld+1

)k−d

+ . . .

}

. (4.5)

where c
k
2
j
2

are constants and the sum is over all coefficient functions Φj
En

of higher derivative

terms satisfying j < k where j is the number of derivatives of the associated term. The

+ . . . denoted certain terms that are required for consistency and arise from using the

decompactification limit on the terms that occur on the right hand side of equation (4.4);

these terms are known and may be derived by an induction procedure from the terms that

have been explicitly written down in equation (4.5). We will later on give an example of

how this works. This expansion is consistent with those given in [21–23] for the cases of

R4, ∂4R4 and ∂4R4. The lk−d
d factor multiplying Φk

En+1
arises since the higher derivative

terms in the effective action are of the form

lk−d
d

∫

ddx
√−gΦO

En+1
O

where O is a k derivative polynomial in the d dimensional type II string theory, curvatures

R, field strengths F and Cartan forms P . Using equation (3.21) we find this expansion can

be written in the form

lim
(

rd+1
ld+1

)

→∞
Φk
En+1

= (
rd+1

ld+1
)
k−d
8−n

{

c
k
2
k
2

(

rd+1

ld+1

)

Φk
En

+
∑

j<k

c
k
2
j
2

(

rd+1

ld+1

)2+k−j−d

Φj
En

+c
k
2
0

(

rd+1

ld+1

)k−d

+ . . .

}

. (4.6)

When we substitute the decompactification limit of the automorphic form of equa-

tion (4.6) into equation (4.4) we find a set of equations, one equation for each power of
rd+1

ld+1
that occurs. As we will see these place very strong conditions on the coefficients that

occur in equation (4.4).

The behaviour of the first term in equation (4.5), or (4.6), is determined by demanding

that one finds in the decompactified effective action a term of the form

lk−d−1
d+1

∫

dd+1x
√−gΦk

En
R

k
2 (4.7)

Indeed looking at equation (4.6) we see that the factor of
rd+1

ld+1
is required to reproduce the

measure and the change from the factor of the Planck length ld to ld+1 which is required

to get the appropriate dimensional factor in d + 1 dimensions. Thus the first terms in
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equation (4.5), or (4.6), is not an assumption but can be shown to be true using the above

argument.

Comparing the leading order power, that is
rd+1

ld+1

k−d
8−n

+1
, which occurs on the left-hand

side of equation (4.5), or (4.6), that is in ∆En+1ΦEn + A(n)ΦEn , with that which arises

from the powers of the automorphic forms on the right-hand side we find that

k − d

8− n
+ 1 =

∑

i

(

ki − d

8− n
+ 1

)

aki (4.8)

and so resulting in the condition

k =
∑

i

(ki − 2)aki + 2 (4.9)

This places a strong constraint on the automorphic forms that can occur on the right-hand

side of equation (4.4). We note that we have deduced the first power of
rd+1

ld+1
on the right-

hand side of (4.5), or (4.6), without making any assumption and so the results just derived

have a similar status.

We can also compare the coefficient of this leading term. Using equation (2.7) we

find that the leading power can be written as
rd+1

ld+1

k−d
8−n

+1
= e

(k−2)ϕ̇1
9−n . Substituting into

equation (4.4), only keeping terms with this power, using the Laplacian in the decompact-

ification limit of equation (3.19) we find that the coefficients of equation (4.4) must obey

Ak(n)−Ak(n− 1) = −(k − 2)(k + 10 + n2 − 17n)

2(8− n)(9− n)
(4.10)

We will now use assumptions A1 and A2 to place further conditions on the coefficients

that occur in equation (4.4) by comparing the coefficients of the other powers of
rd+1

ld+1
. To

illustrate how this works in a simple way we will assume that there are no + . . . contributions

in equation (4.5), or (4.6), that is, there are no contribution from the automorphic forms

on the right hand side of equation (4.4) that lead to powers of
rd+1

ld+1
in these equations.

This is not always the case and if there is then the equations (4.12) and (4.14) below must

be modified accordingly. However, making this assumption will allow us to demonstrate

the power of the method. Comparing the coefficients of

(

rd+1

ld+1

)
(d−k)(n−9)

(8−n)

= e(k−d)ϕ̇1 (4.11)

we find terms which contain no automorphic forms and which lead to the condition

Ak(n) = −(k − 10 + n)(9k − 78− n(k − 2))

2(8− n)
(4.12)

We note that this does indeed satisfy equation (4.10).

Finally let us compare the remaining coefficients, that is, those that occur with the

powers

(

rd+1

ld+1

)k−ki+2−d+
(k−d)
(8−n)

= e
((8−n)(k−ki+n−8)+k−10+n)

(9−n)
ϕ̇1 (4.13)

– 21 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
8

Using the Poisson equation for Φki in d+ 1 dimensions we find the constraints

Ak(n)−Aki(n−1) = −(k(9−n) + ki(n−8)− 62)((8−n)(k−ki+n−8) + k−10+n)

2(8− n)(9− n)
(4.14)

As we have mentioned if there are + . . . contributions in equation (4.5), or equation (4.6)

the above results are modified. Below we show how this works for the case of ∂6R4.

We now show that assumptions A1 and A2 lead to the known equations satisfied by

the automorphic form associated with the R4, ∂4R4 and ∂6R4 terms in the d = 10 −
n dimensional type II string effective action. Let us begin with the R4. For this case

equation (4.6) reads

lim
(

rd+1
ld+1

)

→∞
ΦR4

En+1
= (

rd+1

ld+1
)
8−d
8−n

(

c44

(

rd+1

ld+1

)

ΦR4

En
+ c40

(

rd+1

ld+1

)8−d
)

, (4.15)

Since there are no automorphic forms corresponding to terms with fewer space-time deriva-

tives, equation (4.9) implies that the equation ΦR4

En+1
satisfies has no right-hand side and

so is of the form

∆En+1Φ
R4

En+1
+A(n)R

4
ΦR4

En+1
= 0, (4.16)

In the
(

rd+1

ld+1

)

→ ∞ limit equation (4.16) becomes

(

(9− n)

2(8− n)

∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

2(8− n)

∂

∂ϕ̇1
+∆En +A(n)R

4

)

×
(

c44e
6

9−n
ϕ̇1ΦR4

En
+ c40e

(−2+n)ϕ̇1

)

= 0 (4.17)

where we have used the expression of equation (3.19) for the Laplacian in this limit and

we have used equation (2.7) to write
(

rd+1

ld+1

)

in terms of ϕ̇1. Collecting terms that contain

e(−2+n)ϕ̇1 we find that

A(n)R
4
=

3(n2 − n− 2)

8− n
(4.18)

This agrees with the known value as given in equation (4.1). The only other powers of
(

rd+1

ld+1

)

are given by e
6

9−n
ϕ̇1 and these imply that

AR4

n −AR4

n−1 =
3(−n2 + 17n− 18)

(9− n)(8− n)
(4.19)

This is indeed satisfied by the above values of AR4

n and agrees with equation (4.14) when

k = 8. Thus we have recovered from assumptions A1 and A2 the equation satisfied by the

automorphic form which is the coefficient in the effective action of R4.

We now consider the automorphic form Φ∂4R4

En+1
that is the coefficient of the ∂4R4.

Examining equation (4.9) we find that this equation also possess no right-hand side and so

has the form

∆En+1Φ
∂4R4

En+1
+A(n)∂

4R4
Φ∂4R4

En+1
= 0, (4.20)
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For this automorphic form the decompactification limit of equation (4.5) reads

lim
(

rd+1
ld+1

)

→∞
Φ∂4R4

En+1

= (
rd+1

ld+1
)
12−d
8−n

(

c66

(

rd+1

ld+1

)

Φ∂4R4

En
+ c64

(

rd+1

ld+1

)6−d

ΦR4

En
+ c60

(

rd+1

ld+1

)12−d
)

, (4.21)

Using equation (2.7) and (3.19) this equation is given in the decompactification limit by

(

(9− n)

2(8− n)

∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

2(8− n)

∂

∂ϕ̇1
+∆En +A(n)∂

4R4

)

×
(

c66e
10

9−n
ϕ̇1Φ∂4R4

En
+ c64e

− (10−n)(3−n)
9−n

ϕ̇1ΦR4

En
+ c60e

(2+n)ϕ̇1

)

= 0, (4.22)

We can now compare the coefficients of the three powers that occur giving three equations.

We have already analysed the leading power, that is e
10

9−n
ϕ̇1 , and we find that for k = 12

equation (4.14) becomes

A(n)R
4 −A(n− 1)∂

4R4
= −(2n+ 9)(n− 3)(n− 10)

(8− n)(9− n)
(4.23)

The coefficients of the power e−
(10−n)(3−n)

9−n
ϕ̇1 implies the equation

A(n)∂
4R4 −A(n− 1)∂

4R4
= −5

(22 + n2 − 17n)

(8− n)(9− n)
(4.24)

Finally equating to zero the terms that occur with the power e(2+n)ϕ̇1 we find that

A(n)∂
4R4

=
5(n2 − n− 6)

8− n
. (4.25)

With this value and that of equation (4.14) we find that equations (4.23) and (4.24) are

automatically satisfied.

We now repeat the procedure for the coefficient of ∂6R4, that is, the automorphic form

denoted by Φ∂6R4

En+1
. Assuming the Poisson equation satisfied by Φ∂6R4

En+1
is of the form (4.4)

we find in this case that the right hand side of the Poisson equation can be non-zero. In

particular, one finds that the condition of equation (4.9) for the possible polynomials of

the automorphic forms found at lower orders in the effective action does have the solution

i = 8 and ai = 2 for k = 14 and so one can have on the right hand side of the Poisson

equation the term

B(n)(ΦR4

En+1
)2. (4.26)

As a result the Poisson equation satisfied by Φ∂6R4

En+1
is given by

∆En+1Φ
∂6R4

En+1
+A(n)∂

6R4
Φ∂6R4

En+1
= B(ΦR4

En+1
)2. (4.27)
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Expanding the right hand side of equation (4.23) using equation (4.6) we have

lim
rd+1
ld+1

→∞
B(n)(ΦR4

En+1
)2 = B(n)

{

(c44)
2 rd+1

ld+1

12
8−n

(ΦR4

En+1
)2 (4.28)

+2c44c
4
0

(

rd+1

ld+1

)
−n2+11n−12

8−n

ΦR4

En+1
+ (c40)

2

(

rd+1

ld+1

)
2(9−n)(n−2)

8−n

}

We note that there this expression contains the automorphic form ΦR4

En+1
squared in d+ 1

dimensions but also the automorphic form ΦR4

En+1
which is required for the Poisson equation

in d+ 1 dimensions. It also contains a term with no automorphic form which will lead to

such a term on the right-had side of the Poisson equation.

Using equation (4.5) the expansion of Φ∂6R4

En+1
in the decompactification limit is given by

lim
rd+1
ld+1

→∞
l14−d
d Φ∂6R4

En+1

= l14−d
d+1

(

c77

(

rd+1

ld+1

)

Φ∂6R4

En
+ c76

(

rd+1

ld+1

)4−d

Φ∂4R4

En
+ c74

(

rd+1

ld+1

)8−d

ΦR4

En

+c70

(

rd+1

ld+1

)14−d

+ d70

(

rd+1

ld+1

)15−2d
)

. (4.29)

In this expansion we find two terms which contain no automorphic form. The first of which

is the one expected and listed explicitly in equation (4.5), while the second term is one of

those whose presence was indicted by the + . . . and arises to compensate such a term that

appears on the right-hand side; indeed the final term in equation (4.28).

Using equations (4.4), (4.6) and (4.23) the Poisson equation in the decompactification

limit is given by

(

(9− n)

2(8− n)

∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

2(8− n)

∂

∂ϕ̇1
+∆En +A(n)∂

6R4

)

×c77e
12

9−n
ϕ̇1Φ∂6R4

En
+ c76e

−(11−n)(4−n)
9−n ϕ̇1Φ

∂4R4

En
+ c74e

−n2+11n−12
9−n

ϕ̇1ΦR4

En

+c70e
(4+n)ϕ̇1 + d70e

(2n−4)ϕ̇1}

= B(n)((c44)
2e

12
9−n

ϕ̇1(ΦR4

En+1
)2 + 2c44c

4
0e

−n2+11n−12
9−n

ϕ̇1ΦR4

En+1
+ (c40)

2e2(−2+n)ϕ̇1). (4.30)

Equating the coefficient of e(4+n)ϕ̇1 we find that

A(n)∂
6R4

=
6(n+ 4)(n− 4)

8− n
. (4.31)

in agreement with the known values. The coefficients of the terms containing e
12

9−n
ϕ̇1

imply that

A(n)∂
6R4 −A(n− 1)∂

6R4
= −6(n2 − 17n+ 24)

(8− n)(9− n)
, (4.32)
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and, examining the Poisson equation that results in d+ 1 dimensions, that

(c44)
2B(n) = B(n− 1) (4.33)

the coefficients of the terms containing e−
(11−n)(4−n)

9−n
ϕ̇1 imply that

A(n)∂
6R4 −A(n− 1)∂

4R4
= −(n− 11)(n− 4)(n+ 16)

(8− n)(9− n)
, (4.34)

the coefficients of the terms containing e
−(n2

−11n+12)
9−n

ϕ̇1 imply that

A(n)∂
6R4 −A(n− 1)R

4
= 2B(n)

c40c
4
4

c74
− 3n(n2 − 11n+ 12)

(8− n)(9− n)
(4.35)

and finally the coefficients of the terms containing e2(n−2)ϕ̇1 imply the equation

A(n)∂
6R4

= B(n)
(c40)

2

d70
− (n− 2)(−n2 + 5n− 24)

(8− n)
. (4.36)

Using equation (4.31) and equation (4.19) we may write equation (4.35) as

B(n)
c40c

4
4

c74
= −3

(18n2 + 44n+ 288)

(9− n)(8− n)
(4.37)

While using equation (4.31) we may write equation (4.36) as

(n− 6)(n+ 1)
d70

(c40)
2
= B(n) (4.38)

For all the automorphic forms we have considered the pattern is the same, the eigen-

value for n is determined by the terms with no automorphic form in the decompactification

and then the eigenvalues for other values of n by the terms that give the same automorphic

form back, for example in equations (4.31) and (4.32) respectively.

By normalising the way the automorphic form occurs in the effective action we may

choose the coefficient ckk = 1. equation (4.33) then implies that B(n) ≡ B is independent

of n. With these values equations (4.37) and (4.38) simplify and place strong constraints

on the coefficient functions.

In carrying out the above calculations we have used independent decompactification

formulae for the automorphic forms involved, however, the powers of eϕ̇1 coming from

the right hand-side from the decompactification of ΦR4
must match those coming from

the decompactification of Φ∂6
R4. This places a strong check on the decompactification

formulae we have used.

We close this section by giving an alternative derivation of equation (4.9). By con-

sidering the dimensional reduction of the effective action from eleven dimensions it was

argued [30] that the automorphic form ΦR
k
2 that occurs in the term in the effective action

of the form
∫

ddxΦR
k
2 R

k
2 had to contain a term containing the exponential

ΦR
k
2 ∼ e−

√
2( k−2

6 )ϕ·Λn+1 (4.39)
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where Λn+1 is the fundamental weight of En+1 associated with node n + 1 and as before

k is the number of space-time derivatives in the automorphic form. As explained in refer-

ence [28] this is consistent with what is known about the automorphic forms that are known

to occur. This exponential factor arises from the automorphic form on the left-hand side

of equation (4.4) and as a result it must also occur on the right-hand side of this equation

if this contains a product automorphic forms. As a result the sum of the weights from

the automorphic forms on the right hand side of Poisson equation must match those from

the automorphic form on the left-hand side and so we immediately find the condition of

equation (4.9). One can find the same conclusion by using the constraints that arise form

the dimensional reduction of the IIA [29] or IIB theories [28].

5 The Poisson equation and its perturbative limit

In this section we will consider how the Poisson equation (4.4) behaves in the perturbative

limit studied in section 3. There the perturbative limit appears as taking gd = e−
(8−n)

4
ϕ̇n →

0. This breaks En+1 into SO(n, n) × GL(1). For simplicity we will restrict our attention

to the ten-dimensional IIB theory in which case n = 0 and so gd = e−2ϕ̇0 and we have an

SL(2, R) symmetry, but one could carry out the analysis for the IIA theory and indeed in

any dimension. The string coupling is given in terms of the dilaton φ of the IIB by gs = eφ

and so φ = −2ϕ̇0. In the perturbative limit the Laplacian of equation (3.2) is given by

∆ =
d2

dφ2
+

d

dφ
(5.1)

Let us consider a contribution to the effective action describing graviton scattering

which can be written in the generic form
∫

d10x
√−gEΦ

k
2

SL(2)R
k
2
E (5.2)

where the subscript E denotes that we are in Einstein frame. Converting to string frame

through the redefinition (gE)µν = e−
1
2
φ(gS)µν , where φ is the dilaton and S subscript

denotes string frame quantities, one has
∫

d10x
√−gER

m
E =

∫

d10x
√−gSΦSL(2)e

−( 5−m
2 )φRm

S . (5.3)

where m = k
2 . In the perturbative limit, that is gs = eφ → 0, we require that in string

frame a k derivative term in the d = 10 dimensional effective action constructed from m

curvatures takes the form
∫

d10x
√−gS

∞
∑

q=0

aqe
(−2+2q)φRm

S . (5.4)

where q is the genus, or loop order, of the corresponding perturbative contribution and

aq are the associated real coefficients. Therefore the perturbative contribution from the

coefficient function ΦSL(2) must be of the form

lim
φ→0

ΦSL(2) =
∑

q=0

aqe
( 5−m

2
−2+2q)φ. (5.5)
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The perturbative contribution to the automorphic form can be thought of as composed

of a homogeneous solution, for which the right hand side vanishes, and a particular solution,

both of which are a power series in the string coupling gs, in other words exponentials of the

form e−sφ. Let us suppose that the automorphic form has a part which is a homogeneous

solution, then equation (4.4) implies that the eigenvalue has the form

A = −s(s− 1) (5.6)

where A ≡ ARm
(0) is the coefficient that occurs in equation (4.4) in ten dimensions.

The automorphic forms for SL(2,R) that obey equation (4.4) with no right-hand side

are well known and in the perturbative limit they have the generic form

e−sφ + e(s−1)φ (5.7)

Comparing these with equation (5.5) we conclude that

s+
5

2
− m

2
= 2− 2q1 and s− 7

2
+

m

2
= −2 + 2q2 (5.8)

where q1 and q2 are positive integers which correspond to the orders of perturbation theory

which occur in the homogeneous solution. Adding and subtracting these equations we

find that

m = 2(q1 + q2 + 1) and s = q2 − q1 +
1

2
(5.9)

Examining equation (5.8) we find the limits

s+
m

2
≥ 3

2
and

m

2
− s ≥ 1

2
(5.10)

which in turn implies that s(s − 1) ≥ (m−1)(m−3)
4 and s(s − 1) ≤ (m−1)(m−3)

4 from which

we conclude that

s(s− 1) =
(m− 1)(m− 3)

4
and so s =

m− 1

2
(5.11)

It follows that the resulting string contributions which arise from a homogeneous term to

the Poisson equation are, in string frame, of the generic form

e−2φ + e(m−4)φ, (5.12)

that is, a tree and m−4
2 loop contribution.

To see how this works let us apply it to the much studied cases of R4 and R6 ∼
∂4R4 which have m = 4 and m = 6. The automorphic forms for these two cases obey

equations (4.1) and (4.2) respectively both of which have no right hand side and so the

homogeneous solution is the only solution. For R4 we find that s = 3
2 and we have a tree

level and one loop contribution while for ∂4R4 we find that s = 5
2 and we have a tree level

and two loop contribution.
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Clearly if m is an odd integer, for example for ∂6R4 ∼ R7, then the homogeneous

solution is not compatible with string perturbation theory and we must conclude that the

homogeneous solution is not present in the automorphic form.

We now consider the particular solution which by definition receives contributions from

the right hand side. The factor that converts the automorphic form from Einstein frame

to string frame is given in equation (5.3) and this can be written using equation (4.9) as

e−φ 5−m
2 = e−2φΠie

φ
(mi−1)

2 (5.13)

To convert the Poisson equation to string frame we must multiply by this factor on the

left and right hand side of this equation. When doing this on the right hand side this is

equivalent to multiplying the individual automorphic forms that occur in the product by

Φ
ki
2 → eφ

(mi−1)

2 Φ
ki
2 (5.14)

where 2mi = ki and then multiply the result also by e−2φ.

This last maneuver makes it easy find the perturbative terms that are part of the

particular solution and arise from the right hand side. Let us see how this works for the

correction with the smallest number of space-time derivatives that has a right hand side,

namely, the automorphic form that appears with ∂6R4 with m = 7, or k = 14. This

automorphic form obeys equation (4.3). To transform this equation to string frame we

must multiply the left hand side by eφ. On the right hand side we find the square of ΦR4

and to get to string frame we multiply each of these factors by e
3
2
φ, namely

e
3
2
φΦR4 ∼ e0φ + e2φ (5.15)

As a result on the right hand side we find in the perturbative limit the terms

e−2φ(e0φ + e2φ)2 = e−2φ + e0φ + e2φ (5.16)

Thus the ∂6R4 term in the effective action must have contributions to at tree level, one

loop and two loop.

It is instructive to continue with this example. The value of A in this case follows by

putting n = 0 in equation (4.12) to find that A = −12. We now consider the homogeneous

solution to the Laplacian in the perturbative limit. The solution will be of the form of

equation (5.7) in this limit and so we take 12 = s(s−1) and so s = 4 or −3, for either choice

the homogeneous solution in the perturbative limit is given by e−4φ + e3φ. To transform to

string frame we must, as noted above, multiply by eφ to find e−3φ + e4φ. The first term is

not allowed in string perturbation theory but the second term is and this can then appear

in the particular solution in addition to the terms that must appear as they appear on the

right hand side. At first sight this is a contradiction as there is no homogeneous solution

to the full Poisson equation in this case. However, it is important to distinguish between

the homogeneous solution to the full Poisson equation and a homogeneous solution in the

Poisson equation in the perturbative limit. We note that by definition, in the perturbative

limit, a term in the homogeneous solution does not appear in the right-hand side of the
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Poisson equation. The term in the homogeneous solution in the perturbative limit that is

an acceptable string correction is in fact part of the particular solution to the full Poisson

equation. Consequently the ∂6R4 contribution can also have a three loop contribution in

addition to the tree level, one loop and two loop contributions found above.

One can iteratively repeat this procedure order by order for automorphic forms with

increasing number of space-time derivatives in the level to find which orders in perturbation

theory that contribute. For certain values of m one can have the perturbative contribution

of equation (5.12) from the homogeneous solution. The particular solution must contain

the terms that arise from the right hand side of equation (4.4) but it may also contain

terms that are the homogeneous solution to the equation in the perturbative limit, as we

have just seen for the case m = 7. To extend these consideration to automorphic forms

associated with terms that have higher numbers of space-time derivatives one needs to

know the coefficient A. This is in general not known. However, if we take n = 0 in

equation (4.12) we find that in ten dimensions

A = − 1

16
(k − 10)(9k − 78) =

(

3p− 1

2

)(

3p− 3

2

)

= −s(s− 1) (5.17)

where k = 8 + 2p, s = 3p−1
2 or s = 3−3p

2 for the term that can be written as ∂2pR4.

Assuming this to be correct, we recognise this value as being of the form that allows a

homogeneous solution to the equation in the perturbative limit and this leads in string

frame to the contributions

e−pφ + e2(p−1)φ (5.18)

Clearly for p > 2 the first term is not an allowed string correction, but the second term is

always allowed and can be thought of as a p loop contribution to the particular solution

arising from the homogeneous solution to the Poisson equation in the perturbative limit as

happened for the automorphic form associated with ∂6R4. One can continue in the same

vein to consider the perturbative contributions to terms with higher numbers of space-time

derivatives. For example for the R9 term we find, using equation (4.9), that the right hand

side of the Poisson equation it obeys can contain ΦR4

En+1
Φ∂4R4

En+1
. Using the argument given

above leads to the perturbative contributions

e−2φ(e0φ + e2φ)(e0φ + e4φ) = e−2φ(e0φ + e2φ + e4φ + e6φ) (5.19)

leading to a tree, one loop, two loop and three loop contributions. This corresponds to the

sum 9 = 3+ 5+ 1. However, we can also have a homogeneous solution in the perturbative

limit which, using equation (5.18) contributes e8φ and so an additional four loop contri-

bution. However, one can also write 9 = 4 + 4 + 1 this corresponds to a right hand side

that contains the square of the automorphic form corresponding to the term ∂2R4 which is

mentioned below. As such the result just described could be modified by considering this

term. Nonetheless this discussion illustrate that once the terms that can enter are better

understood it may well be possible to derive which perturbative contribution occur in a

simple way.
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6 Discussion

In this paper we have studied the behaviour of string theory in all possible limits of its pa-

rameters. The higher derivative string corrections in d = 10−n dimensions are determined

by automorphic forms of En+1. As such we have studied the behaviour of these automorphic

forms and in particular the Poisson equations that they are thought to satisfy. Important

for this derivation was the identification of the string parameters in terms of the parameters

that appear in the group elements from which the automorphic forms are constructed.

If one knew all the automorphic forms that occur then one would know all string and

brane corrections in ten and lower dimensions which are related by toroidal dimensional

reduction. However, for terms with more that 14 space-time derivatives very little is

known. Unfortunately this is a highly technical subject in which it is difficult to make

significant progress.

Using the results we have found for the behaviour of the Laplacian and in particular

its decompactification by one dimension we have investigated the Poisson equations that

the automorphic forms are thought to obey. By making two simple assumptions we are

able to derive the equations satisfied by the automorphic forms for all terms with less that

14 space-time derivatives and so derive, in a simple way, much of what is known about

these automorphic forms. It would be interesting if one could derive rather than assume

the form of the decompactification limit of the automorphic forms in equation (4.5). We

note that this expansion has a relatively simple form and this could indicate that there is

a relatively straightforward derivation. A true knowledge of the expansion would be most

useful in applying the techniques of this paper to discover the properties of the automorphic

forms in the effective action beyond 14 space-time derivatives. At first sight it would seem

to be straightforward to apply these techniques to terms with more than 14 space-time

derivatives. However, there are two problems.

The reader may have noticed that we did not consider a term in the effective action of

the form ∂2R4. This term does not appear in the effective action as it has a momentum

prefactor that vanishes on shell. However, this term has been discussed in several places in

the literature [12, 26], but it is still not that well understood. It is thought that it should

appear in the supersymmetry arguments used to derive the terms that appear on the right

hand side of the Poisson equation. This suggests that this term possess a corresponding

automorphic form which could appear among the product of automorphic forms on the right

hand side of the Poisson equation. In principle one could write down its decompactification

limit and then proceed in the way explained above.

There is however another possible complication for the terms with higher numbers of

space-time derivatives. For these terms it is thought [12, 26] that the automorphic form

that appears in the effective action are themselves sums of automorphic forms that also

obey individual Poisson equations. One could however, still hope to apply our techniques

in that the automorphic forms that appear in the sum can each have a decompactification

limit, as in equation (4.5), and this can be used in the Poisson equation that it satisfies. It

would be interesting to take these two points into account and apply the method presented

in this paper.
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In section 5 we discussed the perturbative limit in ten dimensions, but one could apply

the same techniques to study the perturbative limit in less than ten dimensions and also all

the other limits in any dimension. It could be educational to carry this out. In particular

it would be interesting to find the form of these expansions and in particular the powers of

the parameters that can occur. For example in the limit of string perturbation theory one

finds powers of g−2+2q
d where q is the genus, but for example in the M theory limit what

powers of VM can occur. It can be hoped that one might find further restriction on the

automorphic forms in this way.

A The En+1 Laplacian

In this section we will give an expression for the Laplacian ∆ on En+1/H in terms of the

parameters that we have used to parameterise the En+1 group element. In our application

the parameters depend on the space-time and so are fields, those associated with the Cartan

subalgebra were parameterised in this paper by the so called Chevalley fields. Using the

relation between the parameters of the d = 10 − n-dimensional theory and the Chevalley

fields, discussed earlier in this paper, we will then be able to compute the Laplacian in the

various limits in the subsequent appendices.

The En+1/H Laplacian may be defined in terms of the components of the metric on

the En+1/H symmetric space which we may write as

ds2 =
1

2
γijdσ

idσj . (A.1)

where σi are the parameters, or scalar fields, parameterising the En+1/H coset. The metric

can be written in terms of the veilbein and for a coset space, such as En+1/H, the veilbein

is contained in the Cartan forms of the group En+1. The latter are given by g−1dg where

g ∈ En+1 but are subject to the transformations g → gh with h ∈ H which implements

the equivalence relation concerning elements in the same coset. The group action on the

coset is given by g → g0g with g0 ∈ En+1. By writing the group element g in its Iwasawa

decomposition it is easy to see that we may use the h transformations to bring the group

element to the form

g = e
∑

~α χ~αE~αe~ϕ.
~H with the inverse given by g−1 = e−~ϕ. ~He−

∑

~α χ~αE~α (A.2)

where ~H and E~α are the Cartan generators and positive root generators of En+1 and ~ϕ,

and χ~α are associated parameters, in fact fields, of the group element g. In terms of our

notation above σi = {~ϕ, χ~α}.
The algebra En+1, like all Kac-Moody algebras, possess an involution Ic called the

Cartan involution which acts on the generators as

Ic : (E~α, E−~α, H) → −(E−~α, E~α, H), (A.3)

for ~α a positive root. We may divide the generators of En+1 into those that are even, that

is E~α −E−~α, and those that are odd, that is, E~α +E−~α, ~H. The subgroup H is generated
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by the even generators. Using this involution we may divide the Cartan form into its even

and odd part by writing

g−1dg = S +Q (A.4)

where the odd part of the Cartan form S is given by

S =
1

2

(

g−1dg − Ic(g
−1dg)

)

(A.5)

and the even part Q is

Q =
1

2

(

g−1dg + Ic(g
−1dg)

)

(A.6)

The veilbein on the coset is the part of the Cartan form in the coset direction, that is the

part that is odd, and so in the quantity S given by equation (A.5). As a result the metric

on the coset En+1/H may be written as

ds2 = Tr(SS) (A.7)

where we take the generators to be in some matrix representation. Using the group element

g defined as in equation (A.2) one finds the Cartan form is given by

g−1dg = e−~ϕ. ~He−
∑

~α χ~αE~α

(

∑

~α

dχ~αE~α

)

e
∑

~α χ~αE~αe~ϕ.
~H + d~ϕ. ~H

= e−~ϕ. ~H

(

∑

~α

dχ~αE~α

)

e~ϕ.
~H + d~ϕ. ~H +O(χ2

~α)

=
∑

~α

dχ~α

(

E~α + [−~ϕ. ~H,E~α] +
1

2!
[−~ϕ. ~H, [−~ϕ. ~H,E~α]] + . . .

)

+ d~ϕ. ~H +O(χ2
~α)

=
∑

~α

e−~ϕ·~αdχ~αE~α + d~ϕ. ~H +O(χ2
~α), (A.8)

In what follows we will also be neglecting neglecting higher order terms in χ~α but we will

not write this explicitly . Writing ~α =
∑n+1

a=1 naαa and ϕ = 2αaϕ̇a

(αa,αa)
, where αa are the

simple roots of En+1 and na are integer coefficients, one has

g−1dg =
∑

~α

e−
∑

a,b ϕ̇aAabnbdχ~αE~α + d~ϕ. ~H, (A.9)

where Aab are the components of the Cartan matrix of En+1.

The odd part of the Cartan form S under the Cartan involution Ic is given by

S =
∑

~α

e−
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnbdχ~α

(

E~α + E−~α

2

)

+ d~ϕ. ~H, (A.10)

The sum over ~α is over all positive roots which translates into a corresponding sum over na.

– 32 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
8

Using equations (A.7) and (A.10), the components of the metric γij on the En+1/H

coset space may then be found in terms of the Chevalley fields ϕ̇a, a = 1, . . . , n + 1 and

the axions χ~α parameterising the group element g ∈ En+1/H to be given by

ds2 =
1

2
γijdσ

idσj = Tr(SS) =
n+1
∑

a=1

n+1
∑

b=1

Aabdϕ̇adϕ̇b +
1

2

∑

~α

e−2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnbdχ~αdχ~α

(A.11)

where we have taken

tr(HaHb) = Aab, tr(E~αE−~β
) = tr(E−~αE~β

) = δ
~α~β
. (A.12)

One finds

γϕ̇aϕ̇b
= 2Aab, γχ~αχ~α

= e−2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb , (A.13)

and all other components of γij are zero. The components of the inverse metric (γ−1)ij are

given by

(γ−1)ϕ̇aϕ̇b =
1

2

(

A−1
)ab

(γ−1)χ~αχ~α = e2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb , (A.14)

and all other components γij are zero in the approximation we are taking.

The Laplacian on the En+1/H symmetric space is given by

∆ =
1√
γ
∂i
(√

γγij∂j
)

, (A.15)

where γij are the components of the metric on En+1/H, γij are the components of the

inverse metric and γ = det(γij). Substituting the components of the inverse metric in

equations (A.10) into (A.11) and using γ = 2n+1det(Aab)e
−2

∑

~α

∑n+1
a=1

∑n+1
b=1 ϕ̇aAabnb one finds

∆ =
1

2

∑

a

∑

b

(A−1)ab
∂

∂ϕ̇a

∂

∂ϕ̇b
− 1

2

∑

~α

n+1
∑

b=1

nb
∂

∂ϕ̇b
+
∑

~α

e2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb

∂2

∂χ~α

. (A.16)

This expression may be simplified by noting that

1

2

∑

~α

n+1
∑

b=1

nb
∂

∂ϕ̇b
=

1

2

∑

~α

n+1
∑

a=1

n+1
∑

b=1

δbana
∂

∂ϕ̇b
=

1

2

∑

~α

n+1
∑

a=1

n+1
∑

b=1

na~αa.~Λb
∂

∂ϕ̇b

= ~ρ.
n+1
∑

b=1

~Λb
∂

∂ϕ̇b
=

n+1
∑

a=1

~Λa.
n+1
∑

b=1

~Λb
∂

∂ϕ̇b
=

n+1
∑

a=1

n+1
∑

b=1

(A−1)ab
∂

∂ϕ̇b
. (A.17)

The Laplacian may then be written as

∆=
1

2

∑

a

∑

b

(A−1)ab
∂

∂ϕ̇a

∂

∂ϕ̇b
−

n+1
∑

a=1

n+1
∑

b=1

(A−1)ab
∂

∂ϕ̇b
+
∑

~α

e2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb

∂2

∂χ2
~α

. (A.18)
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B Limits of the En+1 Laplacian

As we have discussed taking the parameters of the d = 10−n dimensional string theory to

certain limits corresponds to taking certain limits in the Chevalley fields ϕ̇i, i = 1, . . . , n+1.

We will demonstrate this process by deriving the behaviour of the En+1/H Laplacian in

the large volume limit of the M-theory torus VM → ∞ in the first subsection in detail and

then give the behaviour of the Laplacian in all limits in the other subsections.

B.1 M-theory limit

The M-theory limit is the large volume limit of the M-theory torus Vn+1(M) = e
8−n
3

ϕ̇n+1 →
∞. As we will show, this limit results in the breaking of the En+1 algebra into a GL(1)×
SL(n+ 1) subalgebra. To analyse the M-theory limit we delete node n+ 1 in the Dynkin

diagram given below.

⊗ n+ 1

|
• − • . . . • − • − • − •
1 2 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting node n+1 allows us to decompose the En+1 algebra in terms of the GL(1)×
SL(n+ 1) subalgebra. In this decomposition the simple roots of En+1 may be written

~αi = (0, αi), i = 1, 2, . . . , n,

~αn+1 = (x,−λn−2) (B.1)

where αi and λi are the simple roots and fundamental weights of SL(n+1) and x2 = 8−n
n+1 .

The corresponding fundamental weights are

~Λi =

(

λi.λn−2

x2
, λi

)

, i = 1, 2, . . . n, ~Λn+1 =

(

1

x
, 0

)

. (B.2)

In deriving these and other such results in this paper we are using the techniques of refer-

ence [33], which the reader can consult for this method.

To preserve the SL(n + 1) part of the GL(1) × SL(n + 1) subalgebra resulting from

taking the VM → ∞ limit, we must fix the quantities

n
∑

i=1

ϕ̇iαi − ϕ̇n+1λn−2. (B.3)

For further details on this point see section 4.1.4 of reference [30]. Defining the fields ϕ̃j ,

j = 1, . . . , n by

ϕ̃j =

( n
∑

i=1

ϕ̇iαi − ϕ̇n+1λn−2

)

.λj = ϕ̇j − λj .λn−2ϕ̇n+1 = ϕ̇j − (A−1)j n−2ϕ̇n+1, (B.4)
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where A−1 is the inverse SL(n + 1) Cartan matrix, we see that taking the VM(m) =

e
8−n
3

ϕ̇n+1 → ∞ limit is equivalent to taking the ϕ̇n+1 limit while holding ϕ̃i, i =

1, 2, . . . n fixed.

To implement this limit we will now rewrite the En+1 Laplacian in terms of the fields

ϕ̃i, i = 1, 2, . . . , n and ϕ̇n+1 appropriate to the VM → ∞ limit. The derivatives with respect

to the Cartan subalgebra fields ϕ̇i, i = 1, 2, . . . , n and ϕ̇n+1 become

∂

∂ϕ̇i
=

∂ϕ̃k

∂ϕ̇i

∂

∂ϕ̃k
=

∂

∂ϕ̃i
, i = 1, 2, . . . , n,

∂

∂ϕ̇n+1
= −

n
∑

i=1

(A−1)i n−2 ∂

∂ϕ̃i
+

∂

∂ϕ̇n+1
(B.5)

and

∂

∂ϕ̇i

∂

∂ϕ̇j
=

∂

∂ϕ̃i

∂

∂ϕ̃j
, i, j = 1, 2, . . . , n, (B.6)

∂

∂ϕ̇i

∂

∂ϕ̇n+1
=



−
n
∑

j=1

(A−1)j n−2 ∂

∂ϕ̃j
+

∂

∂ϕ̇n+1





∂

∂ϕ̃i
,

∂

∂ϕ̇n+1

∂

∂ϕ̇n+1
=

(

−
n
∑

i=1

(A−1)i n−2 ∂

∂ϕ̃i
+

∂

∂ϕ̇n+1

)



−
n
∑

j=1

(A−1)j n−2 ∂

∂ϕ̃j
+

∂

∂ϕ̇n+1



 .

The inverse En+1 Cartan matrix A−1, that appears in the Laplacian, can be written in

terms of the inverse SL(n+1) Cartan matrix A−1 as follows

(A−1)ij =
(A−1)i n−2(A−1)j n−2

x2
+ (A−1)i j , i, j = 1, 2, . . . , n,

(A−1)i n+1 =
(A−1)i n−2

x2
, i = 1, 2, . . . , n,

(A−1)n+1 n+1 =
1

x2
, (B.7)

This result follows from taking the inner product between the fundamental weights of

En+1 decomposed with respect to node n+1, as given in equation (B.2). Substituting these

expressions for the derivatives with respect to the Cartan subalgebra and the decomposition

of the inverse En+1 Cartan matrix with respect to node n+ 1 one finds

∆=
1

2

n
∑

i=1

n
∑

j=1

(A−1)ij
∂

∂ϕ̇i

∂

∂ϕ̇j

+

n
∑

i=1

(A−1)i n+1 ∂

∂ϕ̇i

∂

∂ϕ̇n+1

+
1

2
(A−1)n+1 n+1 ∂

∂ϕ̇n+1

∂

∂ϕ̇n+1

+

n
∑

i=1

n
∑

j=1

(A−1)ij
∂

∂ϕ̇j

+

n
∑

j=1

(A−1)n+1 j ∂

∂ϕ̇j

+

n
∑

i=1

(A−1)i n+1 ∂

∂ϕ̇n+1

+(A−1)n+1 n+1 ∂

∂ϕ̇n+1

+
∑

~α

e2
∑

n+1

a=1

∑
n+1

b=1
ϕ̇aAabnb

∂2

∂χ2
~α

=
1

2

n
∑

i=1

n
∑

j=1

(

(A−1)i n−2(A−1)j n−2

x2
+ (A−1)i j

)

∂

∂ϕ̃i

∂

∂ϕ̃j

+
n
∑

i=1

(A−1)i n−2

x2



−
n
∑

j=1

(A−1)j n−2 ∂

∂ϕ̃j

+
∂

∂ϕ̇n+1





∂

∂ϕ̃i
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+
1

2x2

(

−
n
∑

i=1

(A−1)i n−2 ∂

∂ϕ̃i

+
∂

∂ϕ̇n+1

)



−
n
∑

j=1

(A−1)j n−2 ∂

∂ϕ̃j

+
∂

∂ϕ̇n+1





+

n
∑

i=1

n
∑

j=1

(

(A−1)i n−2(A−1)j n−2

x2
− (A−1)i j

)

∂

∂ϕ̃j

−
n
∑

j=1

(A−1)j n−2

x2

∂

∂ϕ̃j

−
n
∑

i=1

(A−1)i n−2

x2

(

−
n
∑

i=1

(A−1)i n−2 ∂

∂ϕ̃i

+
∂

∂ϕ̇n+1

)

− 1

x2

(

−
n
∑

i=1

(A−1)i n−2 ∂

∂ϕ̃i

+
∂

∂ϕ̇n+1

)

+
∑

~α

e2
∑

n+1

a=1

∑
n+1

b=1
ϕ̇aAabnb

∂2

∂χ2
~α

=
1

2x2

∂

∂ϕ̇n+1

∂

∂ϕ̇n+1

− (3n2−n−4)

2(8− n)

∂

∂ϕ̇n+1

+
1

2

n
∑

i=1

n
∑

j=1

(A−1)i j ∂

∂ϕ̃i

∂

∂ϕ̃j

−
n
∑

i=1

n
∑

j=1

(A−1)i j ∂

∂ϕ̃j

+
∑

~α

e2
∑

n+1

a=1

∑
n+1

b=1
ϕ̇aAabnb

∂2

∂χ2
~α

. (B.8)

In deriving this last equation we have used that
λi.λj=i(n+1−j)

n+1 , for i ≤ j and
∑k

i=1 =
k(k+1)

2 .

The derivatives with respect to the axionic terms in the Laplacian, given equa-

tion (B.8), possess the coefficient e2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb . Writing the fields ϕ̇a in the basis

ϕ̃a given in equation (B.4) appropriate for taking the VM(m) → ∞ limit we find

e2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnb = e2

∑n
a=1

∑n
b=1 ϕ̃aAabnb−2ϕ̃n−2nn+1+4ϕ̇n+1nn+1 .

= e2
∑n

a=1

∑n
b=1 ϕ̃aAabnb−2ϕ̃n−2nn+1V

( 12
8−n)nn+1

M(m) (B.9)

In the VM(m) → ∞ limit, the derivatives with respect to the axions associated with positive

roots containing the simple root ~αn+1, and therefore having nn+1 > 0, appear to diverge.

However, this is a consequence of the Laplacian being constructed from components of the

inverse group metric γij . To examine the behaviour of the group metric in the VM(m) =

e
8−n
3

ϕ̇n+1 → ∞ limit we rewrite the coefficients of the axions in terms of the fields relevant

to the VM(m) → ∞ limit

ds2En+1
=

1

2
γijdσ

idσj=Tr(SS)=
n+1
∑

a=1

n+1
∑

b=1

Aabdϕ̇adϕ̇b +
1

2

∑

~α>0

e−2
∑n+1

a=1

∑n+1
b=1 ϕ̇aAabnbdχ~αdχ~α

=
n+1
∑

a=1

n+1
∑

b=1

Aabdϕ̇adϕ̇b +
1

2

∑

~α>0

e−2
∑n

a=1

∑n
b=1 ϕ̃aAabnb+2ϕ̃n−2nn+1V

−( 12
8−n)nn+1

M(m) dχ~αdχ~α.

(B.10)

In taking the VM(m)→∞ limit we see that the axionic terms in the group metric ds2En+1

associated with positive roots containing the simple root ~αn+1 vanish and therefore we

are left with non-zero axionic metric components of the group SL(n + 1) rather than the

full En+1 group. Put another way the sum in equation (B.9) no longer runs over roots

that contain αn+1. Therefore in order to deduce the behaviour of the En+1 Laplacian in

the VM(m)→∞ limit we should first take the limit in the group metric, which leaves us

with the group metric for the remaining GL(1) × SL(n + 1) subgroup and then calculate
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the components of the group metric from which we calculate the Laplacian rather than

take the limit directly in the Laplacian as was done above. The components of the group

metric associated with the Chevalley fields γϕ̇aϕ̇b
are unchanged in this limit and given in

equation (A.9). The axionic components of the group metric in this limit are

γχαχα = e−2
∑n

a=1

∑n
b=1 ϕ̃aAabnb (B.11)

with the remaining components, including the axionic terms in the group metric ds2En+1

associated with positive roots containing the simple root ~αn+1, being zero. We note that

in this latter equation the objects ϕ̃a which are fixed in the limit appear. The axionic

components of the inverse group metric in this limit are

γχαχα = e2
∑n

a=1

∑n
b=1 ϕ̃aAabnb (B.12)

with the remaining components, including the axionic terms in the group metric ds2En+1

associated with positive roots containing the simple root ~αn+1, being zero. Using equa-

tions (A.14) and (B.12) we find that in the VM(m) → ∞ limit, the Laplacian is given by

∆ =
1

2x2
∂

∂ϕ̇n+1

∂

∂ϕ̇n+1
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n+1
+

1

2

n
∑

i=1

n
∑

j=1

(A−1)ij
∂

∂ϕ̃i

∂

∂ϕ̃j

−
n
∑

i=1

n
∑

j=1

(A−1)ab
∂

∂ϕ̃b
+
∑

~α

e2
∑n

a=1

∑n
b=1 ϕ̃aAabnb

∂2

∂χ2
α

=
1

2x2
∂

∂ϕ̇n+1

∂

∂ϕ̇n+1
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n+1
+∆SL(n+1). (B.13)

B.2 Type IIB volume limit

In the type IIB limit Vn(B) → ∞. Examining equation (2.5) we find that this corresponds

to deleting node n− 1 in the Dynkin diagram given below.

• n+ 1

|
• − • . . . • − • − ⊗ − •
1 2 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting node n-1 decomposes the En+1 algebra in terms of a GL(1)× SL(n)× SL(2)

subalgebra. In this decomposition the simple roots of En+1 may be written, using the

techniques of reference [32] as

~αi = (0, 0, αi) , i = 1, . . . , n− 2, ~αn−1 =
(

x,−µ1,−λn−2

)

,

~αn = (0, β1, 0) , ~αn+1 =
(

0, 0, αn−1

)

, (B.14)
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where the underline denotes SL(n) simple roots and fundamental weights and µ1, β1 are

the fundamental weight and simple root of SL(2) respectively. The variable x is fixed by

the condition on the length of the simple roots, ~α2
n = 2 = x2 + λ2

n−2 + µ2
1, this leads to

x2 = 8−n
2n . The corresponding fundamental weights are

~Λi =

(

λi.λn−2

x
, 0, λi

)

, i = 1, . . . , n− 2, ~Λn−1 =

(

1

x
, 0

)

,

~Λn =

(

1

2x
, µ1, 0

)

, ~Λn+1 =

(

λn−1.λn−2

x
, 0, λn−1

)

. (B.15)

In taking the Vn(B) → ∞ limit, which is equivalent to ϕn−1 → ∞, we must fix the quantities

ϕ̃i = ϕ̇i − (A−1)i n−2ϕ̇n−1, i = 1, . . . , n− 2,

ϕ̃n+1 = ϕ̇n+1 − (A−1)n−1 n−2ϕ̇n−1, ϕ̃ =
1

2
ϕ̇n−1 − ϕ̇n (B.16)

where A−1 is the inverse SL(n) Cartan matrix, to preserve the SL(2)× SL(n) symmetry.

In the large volume limit of the type IIB torus Vn(B) = e
8−n
4

ϕ̇n−1 → ∞ the Laplacian

∆ becomes

∆ =
1

2x2
∂

∂ϕ̇n−1

∂

∂ϕ̇n−1
− (2n2 − n)

(8− n)

∂

∂ϕ̇n−1
+∆SL(n) +∆SL(2)

=
n

(8− n)

∂

∂ϕ̇n−1

∂

∂ϕ̇n−1
− (2n2 − n)

(8− n)

∂

∂ϕ̇n−1
+∆SL(n) +∆SL(2) (B.17)

where we have used x2 = 8−n
2n .

B.3 Type IIA volume limit

In the type IIA limit Vn(A) = e
8−n
8

(ϕ̇n+2ϕ̇n+1) → ∞ and as a result it corresponds to deleting

nodes n+ 1 and n in the Dynkin diagram given below.

⊗ n+ 1

|
• − • . . . • − • − • − ⊗
1 2 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting nodes n and n+1 of the Dynkin diagram leads to the decomposition of En+1

into the subalgebra GL(1)×GL(1)×SL(n). As a result we will now examine how the roots

and weights of En+1 decompose in terms of those of GL(1)×GL(1)× SL(n).

Let us carry out the decomposition by first deleting node n to find the roots and

fundamental weights of Dn and then delete node n + 1 to find the algebra SL(n). The

simple roots of En+1 can be expressed as

~αi = (0, α̃i) , i = 1, . . . , n− 1, n+ 1 ~αn =
(

x,−λ̃n−1

)

. (B.18)

– 38 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
8

Here α̃i, i = 1, . . . , n are the roots of Dn and λ̃i are its fundamental weights which are

given by

~Λi =

(

λ̃i · λ̃n−1

x
, λ̃i

)

, i = 1, . . . , n− 1, n+ 1 ~Λn =

(

1

x
, 0̃

)

. (B.19)

The variable x is fixed by demanding that ~α2
n = 2 = x2 + λ̃2

n−1.

We now delete node n to find the An−1 algebra. The roots of En+1 are found from

the above roots by substituting the corresponding decomposition of the Dn roots and

weights into those of An−1. The roots of Dn in terms of those of An−1 are given by

α̃i = (0, αi) , i = 1, . . . , n − 1 and α̃n =
(

y,−λn−2

)

while the fundamental weights are

given by λ̃i =
(

λn−2·λi

y
, λi

)

i = 1, . . . , n− 1 and λ̃n+1 =
(

1
y
, 0
)

. Requiring α̃2
n+1 = 2 gives

y2 = 4
n
We then find that the roots of En+1 are given by

~αi=(0, 0, αi) , i=1, . . . , n−1, ~αn=

(

x,−λn−2 · λn−1

y
,−λn−1

)

, ~αn+1=
(

0, y,−λn−2

)

. (B.20)

The fundamental weights of En+1 are found in the same way to be

~Λi =

(

ci
x
,
λn−2 · λi

y
, λi

)

, i = 1, . . . , n− 1,

~Λn =

(

1

x
, 0, 0

)

, ~Λn+1 =

(

n− 2

4x
,
1

y
, 0

)

, (B.21)

where ci =
i
2 , i = 1, . . . , n− 2 and cn−1 =

n
4 . As λ̃

2
n−1 =

n
4 we find that x2 = 8−n

4 .

In taking the Vn(A) → ∞ limit, which is equivalent to ϕn−1 → ∞, we must fix the

quantities

ϕ̃j = ϕ̇j − (A−1)i n−1ϕ̇n − (A−1)i n−2ϕ̇n+1 (B.22)

where αi and λi, i = 1, . . . , n − 1 are the simple roots and fundamental weights of SL(n)

respectively to preserve the SL(n) symmetry and in addition fix

ϕ̇g = −3

2
ϕ̇n + ϕ̇n+1 (B.23)

to preserve the type IIA string coupling.

In the large volume limit of the type IIA torus Vn(A) = e
8−n
8

(ϕ̇n+2ϕ̇n+1) the Laplacian

∆ becomes

∆ =
4n

(8− n)

∂

∂ϕ̇V

∂

∂ϕ̇V
−
(

4n2 − 2n

8− n

)

∂

∂ϕ̇V
+

∂

∂ϕ̇g

∂

∂ϕ̇g
+

∂

∂ϕ̇g
+∆SL(n) (B.24)

where we have defined ϕ̇V = ϕ̇n + 2ϕ̇n+1 and used x2 = 8−n
2n .
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B.4 Decompactification of a single dimension limit

Using equation (2.7) we see that the decompactification of a single dimension limit
rd+1

ld+1
=

e
8−n
9−n

ϕ̇1 → ∞ corresponds to the deletion of node 1 in the Dynkin diagram given below.

• n+ 1

|
⊗ − • . . . • − • − • − •
1 2 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting node 1 decomposes the En+1 algebra in terms of the GL(1)×En subalgebra.

In this decomposition the simple roots of En+1 may be written

~α1 =
(

x,−λ̂1

)

, ~αi = (0, α̂i−1) , i = 2, . . . , n+ 1, (B.25)

where the hat denotes En simple roots and fundamental weights. The variable x is fixed

by the condition on the length of the simple roots, ~α2
1 = 2 = x2 + λ̂2

1. The corresponding

fundamental weights are

~Λ1 =

(

1

x
, 0

)

, ~Λi =

(

λ̂i−1.λ̂1

x
, λ̂i−1

)

, i = 2, . . . , n+ 1. (B.26)

We now proceed to calculate the inner products of the En fundamental weights in order to

calculate x in terms of n. To do this we decompose the En algebra into a GL(1) × SL(n)

subalgebra by deleting node n+ 1, one finds

α̂i = (0, αi) , i = 1, . . . , n− 1, α̂n =
(

y,−λn−3

)

, (B.27)

with fundamental weights

λ̂i =

(

λi.λn−3

y
, λi

)

, i = 1, . . . , n− 1, λ̂n =

(

1

y
, 0

)

. (B.28)

The variable y is fixed by the condition α̂2
n−2 = 2, this gives y2 = 9−n

n
. We then have

λ̂1.λ̂1 =

(

3

ny
, λ1

)

.

(

3

ny
, λ1

)

=
9

n2y2
+

n− 1

n
=

10− n

9− n
, (B.29)

where we have made use of the expression λi.λj =
i(n−j)

n
for i ≤ j. We may now substitute

this back into ~α1.~α1 to fix the variable x,

x2 = 2− λ̂1.λ̂1 =
8− n

9− n
. (B.30)

In taking the
rd+1

ld+1
→ ∞ limit, which is equivalent to ϕ1 → ∞, we must fix the

quantities

ϕ̃i−1 = ϕ̇i−1 − (A−1)i−1 1ϕ̇1 − ϕ̇1λ1 (B.31)
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for i = 2, . . . , n + 1 and where (A−1) is the inverse En Cartan matrix, to preserve the En

symmetry.

In the decompactification of a single dimension limit
rd+1

ld+1
= e

8−n
9−n

ϕ̇1 → ∞ the Laplacian

∆ becomes

∆ =
1

2x2
∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

(2x2(9− n))

∂

∂ϕ̇1
+∆En

=
(9− n)

2(8− n)

∂

∂ϕ̇1

∂

∂ϕ̇1
− (−n2 + 17n− 12)

2(8− n)

∂

∂ϕ̇1
+∆En (B.32)

where we have used x2 = 8−n
9−n

.

B.5 j dimensional subtorus limit

The j dimensional subtorus limit Vj =
8−n

8−n+j
ϕ̇j→ ∞ corresponds to deleting node j in the

Dynkin diagram given below.

⊗ n+ 1

|
• − • . . . ⊗ . . . − • − • − •
1 2 j n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting node j decomposes the En+1 algebra in terms of a GL(1) × SL(j) × En+1−j

subalgebra. In this decomposition the simple roots of En+1 may be written as

~αi =
(

0, αi, 0̂
)

, i = 1, . . . , j − 1, ~αj =
(

x,−λj−1,−λ̂1

)

,

~αk = (0, α̂k−j) , k = j + 1, . . . , n+ 1, (B.33)

where the underline and the hat denote SL(j) and En+1−j quantities and α, λ are the

respective simple root and fundamental weights of the corresponding algebra. The corre-

sponding fundamental weights are

~Λi =

(

λi.λj−1

x
, λi, 0̂

)

, i = 1, . . . , j − 1, ~Λj =

(

1

x
, 0, 0̂

)

,

~Λk =

(

λ̂k−j .λ̂1

x
, 0, λ̂k−j

)

, k = j + 1, . . . , n+ 1. (B.34)

The variable x is fixed by the condition on the length of the simple roots, ~α2
j = 2 =

x2 + λ̂1.λ̂1 + λj−1.+ λj−1. After some work one finds

x2 =
(n+ 1)(8− n+ j)− 9j

j(n+ 1− j)(8− n+ j)
. (B.35)

In taking the Vj → ∞ limit, which is equivalent to ϕj → ∞, we must fix the quantities

ϕ̃i = ϕ̇i − ϕ̇j(A
−1)i j−1 (B.36)
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for i = 1, . . . , j − 1 and

ϕ̂n+1−i = ϕ̇i − ϕ̇j(Â
−1)i 1λ̂1 (B.37)

for i = n + 1 − j, . . . , n + 1 to preserve the SL(j) × En+1−j symmetry where (A−1) is the

inverse Cartan matrix of SL(j) and (Â−1)i 1 is the inverse Cartan matrix of En+1−j .

In the large volume limit of the j dimensional subtorus Vj = e
8−n

8−n+j
ϕ̇j → ∞ the

Laplacian ∆ becomes

∆ =
1

2x2
∂

∂ϕ̇j

∂

∂ϕ̇j
− (−n2 + 16n− 8j + nj − 4)

2x2(8− n+ j)

∂

∂ϕ̇j
+∆En+1−j

=
j(n+ 1− j)(8− n+ j)

2((n+ 1)(8− n+ j)− 9j)

∂

∂ϕ̇j

∂

∂ϕ̇j

− j(n+ 1− j)

2((n+ 1)(8− n+ j)− 9j)
(−n2 + 16n− 8j + nj − 4)

∂

∂ϕ̇j
+∆En+1−j

(B.38)

where we have used x2 = (n+1)(8−n+j)−9j
j(n+1−j)(8−n+j) .

B.6 Perturbative limit

The d dimensional perturbative limit gd == e−(
8−n
4 ) → 0 corresponds to deleting node n

in the Dynkin diagram given below.

• n+ 1

|
• − • . . . • − • − • − ⊗
1 2 n− 3 n− 2 n− 1 n

The En+1 Dynkin diagram.

Deleting node n decomposes the En+1 algebra into the GL(1)× SOn,n) subalgebra. In

this decomposition the simple roots of En+1 may be written

~αi = (0, α̃i) , i = 1, . . . , n− 1, ~αn =
(

x,−λ̃n−1

)

, ~αn+1 = (0, α̃n) , (B.39)

where the tilde denotes SO(n, n) simple roots and fundamental weights. The variable x

is fixed by the condition on the length of the simple roots, ~α2
n+1 = 2 = x2 + λ̃2

n−1, this

leads to

x2 =
8− n

4
. (B.40)

The corresponding fundamental weights are

~Λi =

(

λ̃i.λ̃n−1

x
, λ̃i

)

, i = 1, . . . , n− 1, ~Λn =

(

1

x
, 0̃

)

, ~Λn+1 =

(

λ̃n.λ̃n−1

x
, λ̃n

)

. (B.41)

where the tilde denotes SO(n, n) simple roots and fundamental weights.
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In taking the gd → 0 limit, which is equivalent to ϕn → ∞, we must fix the quantities

ϕ̃i = ϕ̇i − ϕ̇n(A
−1)i n−1 + ϕ̇n+1αn, (B.42)

for i = 1, . . . , n− 1 and

ϕ̃n+1 = ϕ̇n+1 − ϕ̇n(A
−1)i n (B.43)

where (A−1) is the inverse Cartan matrix of SO(n, n), to preserve the SO(n, n) symmetry.

In the perturbative limit gd = e−(
8−n
4 )ϕ̇n → 0 the Laplacian ∆ becomes

∆ =
1

2x2
∂

∂ϕ̇n

∂

∂ϕ̇n
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n
+∆SO(n,n)

=
4

2(8− n)

∂

∂ϕ̇n

∂

∂ϕ̇n
− (3n2 − n− 4)

2(8− n)

∂

∂ϕ̇n
+∆SO(n,n) (B.44)

where we have used x2 = 8−n
4
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