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1 Introduction

Higher spin field theory has a very rich history driving the developments of modern theo-
retical physics and after many decades still remains a very active subject. It started with
Dirac [1] trying to generalize his celebrated spin—% equation. His comment in that paper
“the underlying theory is of considerable interest” still resonates. After the classical work
by Fierz and Pauli [2] there was an increasing number of papers formulating the theory
of a massive arbitrary spin in four dimensions [3, 4] as well as developments for the mass-
less arbitrary helicities using the ‘principle’ of gauge invariance [5, 6]. Since then there
has been tremendous progress with generalizations of these results regarding irreducible
representations of the little group in D-dimensions [7], derivations of the massive theo-
ries by means of dimensional reduction of the massless theories in D + 1-dimensions [§],
Stiickelberg formulations [9], BRST [10], quantization and many other things.

The discussion of arbitrary spin gauge fields in the context of simple supersymmetry
in four dimensions parallels this development of the general discussion. At the level of
component fields this was initiated by Curtright [11], followed by the superfield discussion at
the level of on-shell equations of motion [12], and finally followed by the off-shell discussions
in the work of Kuzenko, et al. [13, 14]. These pioneering works on higher spin 4D, N =1
supermultiplets have also led to the creation of a growing literature [15, 16] on the subject.

A current generator of interest about higher spin theories has been created by string
theory as its low-energy approximation leads to consideration of fields of unbounded spins
since the spectrum of string and superstring theory includes an infinite tower of massive
spin states. Therefore a limit must exist where (super)string theory is formulated as a
field theory of interacting spins. That points to the interesting direction of extending all
previous results to include supersymmetry. The tool to build 4D, N = 1 manifestly SUSY
invariant theories is superspace and the usage of superfields.

For the massless case such a construction exists [13, 14]. The theories presented in
these works, were initially described in terms of constrained superfields. The purpose
of the differential constraints is to achieve gauge invariance, however these constraints
can easily be solved in terms of prepotentials. These prepotentials can play a role in the
formulation of massive superspin theories and possibly in the description of interactions. In
a subsequent work [17], the unconstrained prepotentials were introduced and used to show
that the works of [18, 19] occur by applying a transformation to the original formulations.

In this current work we would like to show how representation theory of the Super-
Poincaré group makes these prepotential variables, building blocks for massive and massless
theories and then use them to reproduce the superspace actions that describe irreducible
representations with arbitrary super-helicity. Then we explore the rich off-shell compo-
nent structure of these theories and provide the corresponding supersymmetric transfor-
mation laws.

In the previous works, when discussion about the component field spectrum of the
theories was given, it was based on f-expansion of the superfields in the Wess-Zumino
gauge. This implied that by using that ansatz for the components and the usual rules of
projection, the component action and the SUSY-transformation laws can be derived.



This process is straightforward but cumbersome. For this reason we exploit an alter-
native efficient way of defining components, using the superfield equations of motion. The
action itself, with the help of the Bianchi identities, will guide us to efficient definitions
of the components, the derivation of the component action and the SUSY-transformation
laws. This approach builds naturally on [20] for the study of the component structure of
super-helicity Y = 1 and discussions [21] on old-minimal supergravity.

However there is a key difference with both of these. The first one used the superfield
strength as a guide for the definition of the components. This approach can not be gener-
alized for the arbitrary super-helicity because of the mass dimensionality of the superfield
strength is proportional to super-helicity and therefore can not appear in the action. In the
second paper components were defined without finding the component action and SUSY-
transformation laws. We will do both of these for the arbitrary super-helicity system.

In what follows, we focus on arbitrary super-helicity (integer and half odd integer)
irreducible representation of the 4D, N/ = 1 Super-Poincaré group. The presentation is
organized as follows: in section 2 we briefly review the representation theory of the lit-
tle group of the 4D, N = 1 Super-Poincaré group, following [10]. This discussion will
illuminate the proper superfields one should use in order to construct the desired represen-
tations. In section 3 we focus on the massless case and illustrate how the principle of gauge
invariance emerges from the requirement to have a smooth transition between massive and
massless theories. In section 4 we construct the integer superhelicity superspace action and
explore the off-shell component structure of the theory. We present a self-contained method
of defining the components, find the component action and give explicit expressions for the
SUSY-transformation laws. In section 5 we repeat the procedure for the half odd inte-
ger superhelicity representations. In the last section 6 we present the map of free highest
superhelicity irreducible representations and there is a short discussion about the clues it
contains for N' = 2 theories. The main new results in this work involve the derivation of a
complete component-level description that involves no explicit #-expansion of superfields.
The conventions used are the ones of [21].

2 Irreducible representations

As is well known the Super-Poincaré group has two Casimir operators that label the irre-
ducible representations. The first one is the mass and the other one is a supersymmetric
extension of the Poincaré Spin operator.

2.1 Massive case

For the massive case the second casimir operator takes the form

w? 3
Cy = W+ <4+)\> Po) (2.1)
where W? is the ordinary spin operator (the square of the Pauli-Lubanski vector), Py 1s
the projection operator P, = —#DVDQD7 and the parameter A\ satisfies the equation
W2
M= — . 2.2
A= (22)



In order to diagonalize Cy we want to diagonalize both W2, Py The superfield
Po(n)a(m) that does this

n-+m
2 )

W2(I>oz(n)dc(m) = ](] + 1)m2q>a(n)o'¢(m)a J=
Po)Pa(nyatm) = Pam)a(m);

and describes the representation with the highest possible superspin

n-—+m

A= 5
n+m+1
C2q)a(n)d¢(m) = Y(Y + 1)(I)a(n)a(m), Y = f,

has to satisfy the following:

D*®a(m)im) = 0
D*®a(mya(m) = 0
D7 000 1)a(m) = 0 (2.3)
0 1)56(m-1) = 0
OPa(myam) = M*Pam)atm)
where all dotted and undotted indices are fully symmetrized and the spin content of this

supermultiplet is j =Y +1/2, Y, Y, Y — 1/2.
All the above constraints can be satisfied if

: N2
Pamatm) ~ 17D Wampam) » Wam+nam) ~ D™Dain Pagm)am) (2.4)
with
DBan(m)a(n) = 0, chiral
EE . B
7 Woetmpatrn =0 25)

OWatmt i) = M Wagm+1)amn)

The superfield that describes the highest superspin Y system, has index structure such
that n4+m = 2Y —1 where n, m are integers. This Diophintine equation has a finite number
of different solutions for the various (n,m) pairs, but the corresponding superfields are all
related because we can use the 36 ;4 operator to convert one kind of index to another. So
we can pick one of them to represent the entire class.

One last comment has to be made about the reality of the representation. Under a
hermitian conjugation, a (n,m) representation realized by a superfield like o (n)a(m) 8Oe€Ss
to a (m,n) representation, realized by @ o (m)a(n)

itm=mn, (n,n)*— (n,n) rreality
ifm+#n n,m)* — (m,n n,m
o oy LT E T ) () # ()
to make real representations

we need to consider (n,m) @ (m,n)



At the superfield level this mapping can be done by the dimensionless operator A, =

—ig;% which if used in repetition will convert all the undotted indices to dotted ones and

vice versa.

q)a(m)o'z(n) = A(“Wl L Aam’YmA’Yldl - A’ndl (I)'y(n)'y(m)

For irreducible representations with n = m (bosonic superfields) the reality condi-
tion becomes ®q(n)a(n) = (i)a(n)d(n) and for fermionic superfields (n = m + 1) the reality
condition is the Dirac equation i0a, “" @ (n—1)a(n) + MPa(m)a(n—1) = 0. The conclusion is
that real bosonic superfields with n = m = s (Hy(s)a(s), Ha(s)a(s) = Ha(s)a(s)), have even
total number of indices should be used to describe half odd integer superspin systems,
Y = s+1/2. On the other hand fermionic superfields with n = s+1 = m + 1 which satisfy
the Dirac equation (\Ijoa(s—i-l)d(s)? i@asﬂdsﬂ\fla(s)d(sﬂ) + mW¥y(s41)a(s)) should be used to
describe integer superpsin systems, ¥ = s+ 1.

2.2 Massless case

For the masssless case, the supersymmetric analogue to the Pauli-Lubanski vector W,

takes the form
1 _
Zyy = Way + Dy, Dy (2.6)

and our goal is to make it proportional to momentum. The superfield F,, ()4 (m) Which does
that and describes the highest super-helicity representation

n—m
Wi Famyam) = hPyiFam)aim) » h = 5
1 n—m
ZyyFomya(m) = <Y + 4> PyiFamamm), ¥ = —5 (2.7)
must satisfy the following:
D"}'ch(n)d(m) = 0, chiral
D Fgo(n-1)a(m) = 0 (2.8)
B ) _
87 Fa(n)ﬁd(mfl) =0

where all dotted and undotted indices are fully symmetrized and the helicity content is
h=Y+1/2, Y

The superfield that describes a system with super-helicity Y, must have index structure
such that n — m = 2Y. Unlike the massive case this Diophintine equation has infinite
many different solutions with an increasing number of indices. Nevertheless all of them
can be generated by acting with 8ﬁ 4 on the superfield with the fewest indices F,,(2y) and
symmetrize. Therefore we can choose a chiral superfield F,,(,) for the description of integer
superhelicity systems, Y = s and a chiral superfield F,(o,1) for the description of half odd
integer superhelicity systems, Y = s+ 1/2.



3 Massless theories

Now that we know the basic building blocks for the various representations and the con-
straints they have to satisfy, the next logical step is to attempt to construct superspace
actions that will dynamically generate all the above. This is easier said than done. For the
massive arbitrary superspin case the construction of a superspace action is still an open
question, but some small progress has been done [25-28]. We will focus on the description
of massless irreducible representations. Massless theories have their own special features
that we will attempt to present in a unifying and pedagogical way.

3.1 Non supersymmetric sector, N' = (0

First of all it is a fact about physics that there is a discontinuous difference between the
massive spin states and the massless helicity states. Also if we want to describe massless
helicity theories in a lagrangian way, respecting locality and Lorentz invariance we are
forced to introduce redundancies (gauge symmetry).

In principle we could have two separate classes of theories, one for the massive and one
for massless states, that do not communicate. But if we have a theory for a massive spin,
there must be a mass parameter and therefore we should be able to ask and answer the
question, what happens as we gradually reduce the mass and eventually take the massless
limit. The answer is that the limit exists and it is the corresponding irreducible massless
theory. This connection between the lagrangian formulation of massive irreducible spin
theories and massless irreducible helicity theories can be used as the cornerstone for the
construction of 4D non-supersymmetric (N = 0) free spin theories and makes contact
with various other ideas such as the gauge invariant description of massive spin states and
Stiieckelberg formulations.

3.2 Supersymmetric sector, N’ =1

Because the representations of the 4D, N = 1 Super-Poincaré group include all the above
structure, it seems reasonable to assume that this smooth transition between massive and
massless theories holds in N' = 1 superspace as well. Having that in mind we get the
following.

3.2.1 Integer case

The superspace action for the massive integer superspin (Y = s) representation must be
constructed in terms of a fermionic superfield W )4(s—1) Which can also be defined in terms
of a chiral superfield W, (54 1)a(s—1) ~ DQD(%H‘IIQ(S))@(S,D. On the other hand the theory
of massless integer super-helicity must be described in terms of a chiral superfield F (a4
and also it must be the massless limit of the massive theory. These theories are described
by different objects, how can the one be the massless limit of the other? For that to happen
we have to able to construct an object like F, (o5 out of W (g)a(s—1) / Wa(s+1)a(s—1)- Given
the chirality property of F' and W and their index structure, we could guess a mapping
that could do the trick.

Fogas) ~ Oans ™" - Oy DDy iy Var(s))i(s—1) (3.1)

a2s



But there is a problem with this map. The problem is that F, o4 which describes the
system and carries the physical degrees of freedom seems to be defined in terms of another
object W (5)a(s—1)- Also F' as defined above seems to have the on-shell degrees of freedom
of ¥ which is more than needed. If this is going to work we have to find a way to 1) remove
the physical (observable) status of ¥ and 2) remove its extra degrees of freedom.

There is a mechanism that can do both at the same time. That is to introduce a redun-
dancy. We identify W, 5)a(s—1) With Yo (5)a(s—1) + Ra(s)a(s—1) and instead of talking about
Vo (s)a(s—1) we talk about equivalence classes of W (5)¢(s—1) ~ Ya(s)a(s—1) T Ra(s)a(s—1)- This
redundancy, whatever it is has to respect the physical - propagating degrees of freedom of
F and leave them unchanged. Hence

8(a25ds—1 .. ~8a5+2d1 D2Das+1Ra(s))d(S*1) =0 (3.2)

The most general solution to that is

1

1
Roc(s)d(s—l) = ED(asKa(s—l))d(s—l) + WD(dsflAa(s)d(s—Q)) (33)

S —_—
where Ko (s—1)a(s—1)s Aa(s)a(s—2) are completely unconstrained superfields. It is obvious
that this redundancy will be the starting point for the gauge invariance story.

3.2.2 Half odd integer case

Similar discussion can be done for the half odd integer scenario. The massive theory is
constructed by a real bosonic superfield H,(s)4(s) which can be defined as well by a chiral
superfield Wy sq1)a(s) ~ D2D(a3+1Ha(s))a(S). The massless theory is based on a chiral
superfield F(2541) and it is the massless limit of the massive theory. For that to happen

we must have
Foas+1) ~ Oanesr ™ - - Oagss " D Doy Hos))a(s) (3.4)
and to solve the problem of the physical degrees of freedom as mentioned above we must

identify Ho(s)a(s) With Ha(s)a(s+) T Ba(s)a(s) where Ry(g)a(s) 18 constrained

6( @ aas+2dlD2DaS+lRa(s))d(s) =0 (3.5)

Q2541
The most general solution® to this is

1 - 1=

Ra(s)ats) = 5D Lats—1)a(s) — P s Lasias—1)) - (3.6)

4 Ineteger superhelicity theory

Using the equivalency class characterized by W, (s)s(s—1) and redundancy R (s)a(s—1) We
will show by construction that there is a unique superspace action that will describe the
irreducible representation of integer super-helicity, ¥ = s.

LR must be real since H is real.



4.1 The superspace action

Superfield ¥ must have mass dimensions 1/2,? and the action must involve two covariant
derivatives.? The most general action that can be written is:

S = / 052 a UPOSID2g, e

Fap BBy e
+a3\1’a(s)d(871)f)ds Docs \IJa(sfl)d(S)
+a4\I/a(S)d(S_1)Das Dds ‘i/a(s—l)d(s)

The goal is to find an action that respects the redundancy. That is the starting point for
gauge invariance 6 S = 0. The strategy to obtain this is to pick the free parameters in a
special way. If this is not possible then we introduce auxiliary superfields, compensators
and/or impose constraints on the parameters of the redundancy (gauge parameters). It is
reasonable to expect any compensators introduced, if necessary, will not introduce degrees
of freedom with spin higher or equal than the one we wish to describe. Thus, they must
have less indices than W.

For this case we obtain the following expression for the modification of the action due
to the redundancy,

5aS = /dsz {—QalDQS\IIO‘(S)d(S_I)
i G4Das \Ija(s—l)d(S)} DBDds_lAﬁa(s—l)d(S—Q)
17 - _ .
+ {_a3 |:S :| DdSDa571\IJQ(S_1)O‘(S)
s

s+1

+ [—a:a + 04] DaS_IDaS\T’a(SI)d(S)} DBKBa(s—Q)o’z(s—l)

i {2a2DaSDQ\I,a(s)d(s—1) _ agl—)dsDz@a(s_na(s)} Ko(s—1)a(s1)
+-c.c. (4-1)

Obviously we can not make all this terms vanish just by picking values for the a’s with-
out setting them all to zero and also we can’t introduce compensators with proper mass
dimensionality and index structure. The way out is to give some structure to the gauge
parameter K. So let us choose

a1 =as =0

DP Kpa(s-2)a(s-1) = 0 = Ka(s—1)a(s—1) = D La(s)a(s—1) (4.2)
209 = —ag
So we find
_ 8 2 qy0(s)c(s—1 NG T
568 = —az / d®2D, D2 ()a (=) (Dﬁ Lga(s-1)a(s—1) +D6La(s—1)ﬁ'a(s—1>)
+e.c. (4.3)

2Tts highest spin component is a propagating fermion.
3The action must be quadratic in ¥ and dimensionless.



This suggests we introduce a real bosonic compensator Vi, (,_1)4(s—1) Which transforms
like 0GVa(s—1)a(s—1) = D La(s)a(s—1) + D Lo(s—1)a(s) and couples with the real piece of
DDV ()4(s—1)-

In order to achieve invariance, we add to the action two new pieces, a coupling term
of V with ¥ and a kinetic energy term for V. The full action takes the form

S = / a8y — %aﬂ““““”ly‘I’a(sm(sfl) tee
+a3qja(8)d(5—1)DdsDaS\Tfa(s_l)d(s)
_agva(sfl)d(sfl)[)asf)z\Ila(s)d(s—l) +cc
+b1Va(s—l)o'é(s—1)D7D2D7Va(5_1)d(8—1) (44
+o2V ATV AD2 D2}V (oo
+bgVe=DeE=D, - DDV, 0 gja(s_1) + CoC.
+bgVAETDAETID, D, DDV, (e 2)5a(s-2) + G0

and it has to be invariant under
56V atopatst) = ~D*Luoaiet) + [(3—11)'] D (6,1 Ma(s)a(s—2)) (4.5a)

0 Va(s—1a(s—1) = D* La(s)a(s—1) + DY La(s—1)a(s) (4.5b)

The equations of motion of the superfields are the variation of the action with respect
to the corresponding superfield

oS
Ta(s)d(s—l) = swals)a(s—1) (45C)
05
Ga(s-1i(s-1) = Fya(-DaG-1) (4.5d)
and the invariance of the action gives the following Bianchi Identities
1
2
D Ta(s)d(s—l) + QD(aSGa(s—l))d(s—l) =0 (456)
D% 1T (5)a(s—1) = 0 (4.5f)
The satisfaction of the Bianchi identities fix all the coeflicients
1
bl = 5&3 b3 =0
bo =10 by =0
and the action takes the form?*
1 . _
8 a(s)a(s—1 2
S = /d Z{—QC‘I/ (s)&( )D \Ijoz(s)d(s—l) + c.c.
+C\Ija(s)d(s_1)DdsDa5\i’a(s—l)d(s)
_Cva(s—l)d(s—l)DasDQ\I}a(s)d(s_l) + c.c.
1 . _
+2cVa(S_l)“(s_l)DVDzDA,Va(S1)@(51)} (4.6)

“Here ¢ is an overall unconstrained parameter which can be absorbed into the definition of .
We leave it as it is for now and fix it later in the component discussion.



The equations of motion are

—9 C =a. _
To(s)a(s—1) = =D W (s)a(s—1) + QD D(a,Ya(s—1))a(s)
€ 52
+§D D(a,Va(s—1))a(s—1) (4.7a)
asT2 N s TV 21Ty
Ga(s—1)a(s—1) = —¢ (D*D*Wy(9)4(5—1) + DY¥D* Wy (s 1)a(s))
+cD'D*Dy Vi (s-1)a(s—1) (4.7b)

This is exactly the longitudinal-linear theory presented in [14] if we solve the superfield
constraints and express their action in terms of the prepotential. Now, however we gain a
different understanding of why the action has to be expressed in terms of a superfield like
¥ and why it has a gauge transformation as it does.

The work in [14] presented a second theory for integer super-helicity, the transverse-
linear theory. That theory is most certainly consistent classically, but violates one of our
assumptions in that some of its auxiliary fields possess spins greater than that carried
by the gauge superfield. To our knowledge, no studies of the quantum behavior of these
off-shell supersymmetrical and even free theories has been carried out. If is our suspicion
that the presence of auxiliary superfields with a higher superspin than the main gauge
superpotential is likely to have a more complicated ghost structure. It would be a very
interesting investigation to test this idea.

We have managed to find a superspace action which is gauged invariant but still we
haven’t proved that this theory describes an integer super-helicity system. To do so, we
must show that there is an object like F, (o), it is chiral and on-shell it satisfies the required
by representation theory constraints.

Using the equations of motion we can now prove that a chiral superfield F o) exists
and satisfies following Bianchi identity:

D% Fi(2s) = *ma‘“ (d2o-1 - 0" & Ta(s)a(s—1))
B
+WD280{5*1(@2571 ..
1+2cB -
(25 — 1)12¢ (G2

1 _

(25 — 1)!20D(d25’1

o1 La(s—1)a(s))

o
0% Mgy - 0" 4, Go(s—1)a(s—1))

+ Dasaa571d23—2 s aaldsTa(s)d(s—l) (48)
where
_ 1 o
Fi2s) = @D D¢

and that shows that if T,,(5)a(s—1) = Ga(s—1)a(s—1)) = 0, we obtain the desired constraints

0.42580{5710.425—1 e aald.g+1\i’a(s—1)d(s)) (49)

to describe a super-helicity Y = s system, where B is a parameter determined by variations
and definitions.

Before we start investigating the field spectrum of the above action, one more comment
needs to be made. This specific action and superfield configuration is not unique but the
simplest representative of a two parameter family of equivalent theories. To see that we

~10 -



can perform redefinitions of the superfields. Dimensionality and index structure allow us
to make the following redefinition of ¥

z
Vos)as—1) = Ya(s)a(s—1) QD(aSVa(sq))a(sq) (4.10)

where z is a complex parameter. This operation will generate an entire class of actions and
transformation laws which all are related by the above redefinition. The action is

1 o
S = /dsw {26 ges)als 1)D2\Ija(s)d(s—1) + c.c.

e \Ija(s)d(s—l)DdsDas\Ifa(s—l)d(s)
te(z 42— 1) VelrDa=lpaD2g o)+ ce
+cz Va(S*Ud(S*l)D?D“S‘I’a(s)c‘v(sfl) Tec

s—1 — 1ra(s—1)a(s—1) 1 N
- [ ] ez VETDAETID,  DIDPW, gy T (4.11)

S

1 . _
—|—§C(Z 45— 1)2 Va(s—l)a(s—l)D'yDZD’yVa(s_l)d(S_l)

1 = 17a(s—1)a(s—1 2 N2
" u c2z VCTDATIUD D2}V (o 1yagsmny

s—1 = a(s—1)a(s— B
+ |: 95 :| CZ(Z + 2z — 2) |4 (s=1)a( 1)Das_1D2D7Vya(372)d(371) + c.c.

(S - 1)2 5 17a(s—1)a(s—1) N MY
— 232 czz V Das—lDds—lD D V'yoz(s—2)&d(s—2) + c.c.

and the transformation laws are

2 z S T
06 ¥a(s)a(s—1) = (2 = 1) D Las)a(s—1) = D@, D™ La(s-1))a(s)
1 _
* [(3—1)'} Da, 1 Aa(s)a(s—2)) (4.12a)
06 Va(s—1)a(s—1) = D* La(s)a(s—1) + D La(s-1)a(s) (4.12Db)

4.2 Projection and components

Although superspace was developed to describe supersymmetric theories in a more efficient,
compact and clear way, there are still some reasons why we would like to study the off-shell
component structure of the theory.

1. There are cases where two theories on-shell describe the same physical system. There-
fore from the path integral point of view the theories are equivalent. Nevertheless the
off-shell structure of the two theories might be completely different. Knowledge of
the component formulation of the two theories will help us decide if they are different
theories with the same on-shell description or they are the same theory and there is
a 1-1 mapping between the two.

2. The off-shell component structure of a supersymmetric theory will give us clues about
which theories can be used to realize higher N and higher D representations.
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For these reasons we would like to extract the component field content of the above super-
space action, the number of degrees of freedom involved, their transformation law under
supersymmetry and their gauge transformations.

Previous discussion to this use the Wess-Zumino and explicit #-expansions. We propose
a different technique that will illuminate a more natural way to define the component struc-
ture and make the entire process of finding the component action and SUSY-transformation
laws efficiently.

The component action will depend on two kinds of fields, the dynamical ones that
will give the dynamics of the various spin states and the auxiliary ones that exist so
supersymmetry is preserved and they vanish on-shell. Exactly because the auxiliary fields
will have to vanish on-shell, we should be able to make redefinitions such that they appear in
the action in an algebraic way and specifically in quadratic monomials with each auxiliary
field to appear in one and only one monomial. In this way their equations of motion will be
the vanishing of these fields, making obvious their auxiliary status. That also means that
in this configuration the auxiliary fields must be gauge invariant objects. That is because
the full action is gauge invariant, the dynamical pieces are gauge invariant all together and
the auxiliary fields appear in this special way.

Since we want the auxiliary fields of the final action to be gauge invariant it might be
smart to define them using objects that are already gauge invariant. But the superspace
action already provides us with two gauge invariant objects, the equations of motion:’

65
Ta(s)d<s—1) = Wa [Ta(s)d(s—l)] = 3/2 (4-13)
0S
Ga(s—l)d(s—l) = Trale—Dale—1) [Ga(s—l)d(s—l)] =2 (4-14)

- SVals—1a(s—1)’

Ga(s—Da(s—1) = Ga(s—1)a(s—1)

Because they are gauge invariant, if we expand them in components, each one of
them will be gauge invariant. Furthermore because they vanish on-shell each one of these
components will vanish as well. So it looks like the ideal place to look for the auxiliary
component structure.

These superfields satisfy a set of equations that we will discover as we go along, but
at the top of the list we have the Bianchi identities® and their consequences:

1
2 2
DTy (s)a(s—1) t QD(aSGa(s—l))d(s—l) =0~ D*°Gys-1)a(s—1) =0 (4.15)

D?Go(s—1)a(s—1) = 0
DT as—1) =0~ D*Tyg4(s-1) =0 (4.16)
The results of these are that most of the components in the expansion of T' and G vanish

and we are left with very few that we can associate with auxiliary fields. For exam-
ple, the bosonic auxiliary fields (dimensionality 2) have to be related to D(o’zSTa(s)d(sfl))L

5There is also the superfield strength F(25) but because of dimensionality reasons we can not write the
action in terms of it.

5The Bianchi identities include the entire information about redundancy and therefore effectively they
make everything that could have been gauged away, if we had followed the WZ-gauge path, disappear.
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DTy (s)a(s—1)ls Ga(s Da(s—1)| and the fermionic ones (3/2, 5/2) will have to be related
to To(s)a(s—1) |, D2T, (s)a(s—1)|- So by just looking at the Bianchi identities we find for free
the spectrum of the auxiliary fields of the action and because they are gauge invariant we
can do a straightforward counting of their degrees of freedom. For the dynamical fields,
we can use the superfield strength F, o, to connect them with some components of the
superfields. Instead we will let the action, the equations of motion and their properties to
guide us to their definition.

But if the equations of motion are the proper objects to define the components and
we want to find the component action of the theory we must be able to express the action
in terms of the equations of motion. That can be easily done by using the definitions of T'
and G to rewrite the action in the following form

S = /d8 { ~ gl a(s_l)Ta(s)d(S_l) + c.c.
+2Va(s_l)d(s_l)Ga(s—l)d(s—l)}
/d4:1: D2D2 (‘I’a(s)d(s’l)Ta(s)a(sq)) Tee
+%D2D2 (V“(S‘1)d(5_1)Ga(5_1)d(3_1)> (4.17)
and now we distribute the covariant derivatives.

4.2.1 Fermions

Let us focus on the fermionic action first. After the distribution of D’s and the usage of
Bianchi identities we find for the fermionic Lagrangian:

LF — D2D2\I’a(s a(s 1)|T s a o 1)’

N2 Jrc(s)a(s—1 N2 (as1/7a(s—1))a(s—1 2
= <D pals)al )—QD Dlasyrats—1))a( >> D Tooyao)|

1 1 _ . 1 _
_—_ = plaspplesgals)als=1)__ = ‘ .
2 (s+ 1)!S!D T | (s + 1)!5!D(O‘S“D(%Ta(s))a(s_l))‘
1 S 1 Qg a(s—1)a(s—1 1 Qs T
+§s—|—713'D D grets—Hal ))|§D D (s, Ta(s)é(s—1))|
s—1 —2)a(s— «
- 25 D D’Yv’ya(s 2 1)’D SilGa(s—l)d(s—l)‘
+c.c. (4.18)

At this point we can show that T and G satisfy a few more identities:

1

(s + l)ls!D(

onp1 Diaa Ta()a(s—1)) =
e
Gl

d5+1

1 _ _
[(S F1yist D @siDias Vato- 1)))@(5))}
ic s

+(s+1)!s!s+1a(as+l(d8[ DD, Fas- ””WS”)}
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s+ 1,
a4 s @ Tasas-y)

s+1
+
s

-
a2 P Ta@as-1) =

D*To(s—1)a(s)

Z.C s s N T
— ma +1D(ds+1D(as\I]a(s—l))d(s))
ic 2s+1
 sls! (s +1)
ic s2—1
Coglgl s Nas—1(as D?D? Via(s—2))a(s—1))

D=1 Ga(s—l)d(s—l) = iaaklaSTa(s—l)d(s)

0% (4, D" D(a, a(s—1))3a(s-1))

1c . _
=597 DD Yaa(s-1a(s-1)

s — 1 g 219
0% (6, DD Va(s—1)50(s-2)

—1ic

o A
D™ Tos-naes) + 4 3 . Taa(s-1) = =0 <5D7D<a5‘1’a<s—1ma<s—1»

s‘s'
21247,
— DD (5 1)a(s)
5o
+ic O(ars1 (4 DD Vyn(s—2))a(s—1))

sls!

We notice that in all the above there are some combinations that appear repeatedly. So
let us define the following fields:

1 _
S+ 1) Dag1 Dia. Yais)as—1) | = N¥a(s+1)a(s)

1 a4, -
*D D(asq/a(s 1)) ’ = NQwa(s )a(s—1)

DQDQS lv(s 1a(s— 1’—N37/}a(s 1)a(s—2)

where N1, Ny, N3, N, are some overall normalization, to be fixed later as needed.

Putting everything together we find the fermionic terms of the Lagrangian

1 a(s)a(s—1 2 i
Lp == 5 T¥CD) <2D Tasyats—1) + 59 Tats-1)a(s) ) [+ ce
— iC‘Nl‘Q &a(s)o’z(s+l)aa5+1ds+1 wa(erl)d(S)

- + N1N2 wa(s'i'l)éé(s)aas+1dswa(s)d(s_1) 4+ c.c.

2s+1 |
(+1)2

N2N3 ¢a(8)d(s_1)aasds—1wa(s—l)d(s—Q) + c.c.

—1cC

+ic |2 ¢oz(s Dads 8a5d5¢a(s )a(s—1)

. S — Ta(s—2)a(s— Qg
+ic (S) |N3|2 (0 (s=2)a(s=1) ges 1éts—l¢C¥(s—1)0¥(3—2)

~ 14 -



The first term in the Lagrangian is the algebraic term of two auxiliary fields and the rest
of the terms have exactly the structure of a theory that describes helicity h = s+1/2 [23].7
For an exact match we choose coefficients

C:—l, N2:1

N =1, N3 = —
So the fields that appear in the fermionic action are defined as:

Pa(s)a(s—1) = Ta(s)a(s—1)|

2 i o T
Ba(s)a(s—1) = D To(s)a(s—1)| + ﬂa(as To(s—1))a(s)|

1 -
Pa(s+1)a(s) = mDmsHD(as‘Pa(s))a(s—l))!
Lo
Ya(s)a(s-1) = 5D Do, Ya(s—1))a(s)]
s—1_o—.
Va(s—1)a(s—2) = — . DD Vs 1ya(s— 1) (4.19)

The Lagrangian is

Lp = p*@¥B a1y + e

+i @a(s)d(sﬂ)@%*las+11/1a(s+1)a(s)

. S als a(s
+i [s—kl] AN, i a(s)ats—1) + cc.

| 2541 Ta(s—1)a(s) qas
B [(3+1)2] Pty és Pa(s)a(s—1) (4.20)

+i wa(s)d(S—l)ﬁasds_lwa(s_l)d(s_z) + c.c.
—1 77/_}&(8_2)06(8_1)8&5—1dsfﬂvba(s—l)d(s—Q)

and the gauge transformations of the fields are

1
0GPa(s)a(s—1) = 0, 0GVa(s+1)a(s) = ma(as+l(as§a(s))a(s—1))
1 o E
06 Ba(s)a(s—1) = 0, 0GVa(s)a(s—1) = _ga(as a(s—1))é(s)
s—1 s ls—
0GYa(s—1)a(s—2) = . 0 YEa(s)a(s—1)
with &o(s)a(s—1) = —1D*La(s)a(s—1)] (4.21)

"We are following the conventions of [24] which differ from the conventions used in [23].
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4.2.2 Bosons

For the bosonic action we follow exactly the same procedure as was presented for the
fermionic sector. The fields that appear in the action are defined as:
1
Ua(s+1)a(s—1) = WD(Q(SH)TQ(S))a@—lﬂ

1 .. _
Ua(s)a(s) = 5 Da, Ta(s)a(s—1)) — Do Ta(s—1))a(s) } |

1 — _
Va(s)a(s) = ~57 (D (@ Ta@a-1) T Doy Tags-1)a(s) } |

(D* Tosya(s—1) + D*Ta(s)a(s—1)) |

An(s—1)a(s—1) = Ga(s—1)a(s—1)| — 5 1 1

1 Qs s
Sa(s-1)a(s-1) = 3 {D* Ty (s)a(5—1) + DU To(s)a(s—1) } |

i Qg N Xs
Pa(s—l)o'c(s—l) = _5 {D Ta(s)d(s—l) -D Ta(s)d(s—l)} |

1 1 - 1._
ha(s)as) = 75 1 TP (es Yats—1))a(s) = P (as Yals)a(s—1))
V2 | 8! s!

1 _
= Salsl [D(a.Da.] Va(sl))d(sl))} |

1 s—1

ha(s-2)a(s—2) = o 2 [D*1, D% 1] Vis—1)a(s—1)| (4.22)

the gauge transformations are

0cUn(s+1)a(s—1) = 0, dcAa(s—1)a(s—1) =0
0GUa(s)a(s) = 0s 0GSa(s—1)a(s—1) =0
0GVa(s)a(s) = 0; 06 Po(s—1)a(s—1) =0
1
dcha(s)a(s) = @a(as((iSCa(s—l))o}(s—l))
s—1 .
5Ghoe(s—2)d(s—2) = 52 8(}5710‘871(&(5—1)@(8—1) (423)

where
i _
a(s—Da(s—1) — T /= DaSLasdsf _DasLasf as
Cae=nate-1) = 575 (D Lagsate-) (s-1)a(s))
and the Lagrangian is

1 .
Lp=— 3 Ua(5+1)a(8_1)Ua(s+1)d(s_1) +c.c.

+ a0 g 4

+ 00y 4
—25 + 1 a(s—1)a(s—
} AN AL s

4s

- 82 .
s | cals—Das-1) .

| (25 + 1)(s + 1)] 5 Sa(a=1)a(s—1)
2

s+ 1

:| Pa(sfl)o'z(sfl)PQ(é}il)d(Sil)
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+ ha(s)a(s)Dha(s)d(S)
S 1 a(s)a(s )
— 2 B0, 4,8 b (e ryia(e
S — ) S)a(S)aOésdsaOés 105 — lha(s 2)a(872)

(
8(28 has 2)a(s— 2)Dhoz(s 2)i(s—2)

S(S a(s— s§— )
[ ]h D00, a6.20" hoa(s-3)3a(s-3)

4.2.3 Off-shell degrees of freedom

Let us count the bosonic degrees of freedom of the theory:

fields d.o.f redundancy net
ha@ats) | (s+1)° 2 249
Ra(s—2)a(s—2) | (s — 1)
Un(s5)i(s) (s+1)2 0 (s+1)2
Va(s)a(s) (s +1) 0 (s +1)?
An(s—1)a(s—1) 52 0 52
Ua(s+1)a(s—1) | 2(s +2)s 0 2(s +2)
Sa(s—1)a(s—1) s 0 52
Po(s—1)a(s—1) s 0 52
Total 852 +8s+4

and the same counting for the Fermionic degrees of freedom:

fields d.o.f redundancy net
Ya(s+1)a(s) | 2(s +2)(s +1)
Va(s)a(s—1) 2(s+1)s 2(s+1)s | 4s® +4s+4
Va(s—1)a(s—2) 2s(s — 1)
Pa(s)c(s—1) 2(s+1)s 0 2(s+1)s
Ba(s)a(s—1) 2(s+1)s 0 2s+1)s

Total 8s2+8s+4

4.2.4 SUSY-transformation laws

The last thing left to do is to find explicit expressions for the SUSY-transformation laws
of the fields. The transformation under susy can be easily calculated by the action of the
SUSY-generators on the specific component. In terms of the covariant derivatives D(D)
we see that

d0sComponent = — (eﬁDg + EBDB> Component| .
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But not all the fields are on equal footing. The dynamical ones (€ D) are treated as
equivalence classes, in other words they have a gauge transformation of the form {D} ~
{D}+ 0 (¢). Hence when we apply the susy transformation they will possess an extra term
in the gauge parameter space

0s{D} ~ 6s{D} + 9 (6s()

This says that we must identify these two classes as well, therefore we can ignore any
terms in the transformation law of the dynamical fields that have the same structure as

their gauge transformation.

With all that in mind we find for the transformation of the fermionic fields:

08Pa(s)a(s—1) = — € Un(s41)a(s—1)
S .
+ (3 1)1l [Sas—1)a(s—1) T Pa(s-1))a(s—1)]
— € [Ua(a(s) T a(s)as)] (4.24)
05Ba(s)a(s—1) = — iéﬁaas“gUa(sH)a(s_l)

v _a, s T
_278!6 a, Ua(s—1))a(s+1)

W] 00, [Ugaa-1))a(s) — Wsa(s-1)ate)]

1 4,
o€ AasesAa(s-1)a(s-1)

2 |(s+1)(2s+1) slgl ¢ Ylas(@sPa(s—1)a(s-1))
1[2s2—2s—1] 1 .
3 3—1—1] a1C e Pats=1)a(s-1)
i[(s—1) 1 _ .
2 |s(s+ 1)] sl(s — 1)!e(ds_l8(%75&(5_1)”@(5_2))
1 [(s—1)(3s + 1) 1 .
*3 s(s+1) sl(s — 1)!E(dS*a(aSWPa(S—l))W(S—%)
- \@Easmha(s)d(s)
s 1 s
+ E Is | a(as(ozsa h'ya(s 1))ya(s—1))
s(s—1) 1 4,
B V2 Slsl€ s (cvs Oeva—16va1 Pra(s-2))a(s—2) (4.25)
1_
05%a(s+1)a(s) = — CS Ua(s4+1)é(s—1))
1 .
T o g e [Manat) ~ Pag)a)]
V2
T T Ve phatonats) (4.26)

(s+1)!
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05%a(s)a(s—1) =€ [Ua(s)a(s) + Wa(s)a(s)]
1 s
92511 16(%5@(3_1))@(5_1)

18
- Ee(aspa(s—l))d(s—l)

1s+1
o1 9 Glasfals—1))a(s—1)
i s—1
1
V2
.(5 + 1)8(5 — 1)
+ ZWE(QS 8‘3‘8—1((5‘6—1ha(572))d(372))

1(s—1)(2s+1) e
05%a(s—1)a(s—2) = 5 a2 ¢ "An(s—1)a(s—1)

¢’ aﬁas ha(s)d(s)

S
i (s—1)2 1
V2 s (s—1ne° 'Oy (ds—1Pa(s—2))a(s—2))

s(s=1)2 1 Goo1 2
—iV2— 5= es " e hags-2)a(-2)

The SUSY-transformation laws for the bosonic fields are:

1
0sUq(s41)é(s—1) Zme(as+15a(s))a(s—1)

? 1 e~
_§m€(as+1aas Pa(s—1))a(s)

—
s+ 1)1° YaupPa)it-1)

1
(s+1)!
.S 1 .

B mee a(aerl(dswa(s))d(s—l))

€ Nargyr “ Pa(s))als 1)

) ! Qg Qg
95 (ta(s)ats) + a@a() = gy awn ™ Yatatery

S
Y1l
Y s 1

— =
s+1(s+1)ls!

2541 1

Zm@6(%m(ds‘bw(s—l))a(s—l))

o1 _
+ Z@e(as 6045—1(645 77/}04(5_2))@(5_1))

8”‘5‘”11%(1(3—1))54(5“)

€as+1 8(a5+1 (ds Qz)a(s))d(s—l))

1 _
+ 1aPat-1)ac)

i1
+ 5 a6 07 (65 Prafs-1))a(s-1))
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(4.28)

(4.29)

(4.30)



1 s Ao
C2s+1 +1s!
(s=1(s+1) 1 _ s
! s(2s+1) (s— 1)!6(%718 'Wpa(s)wa(s_g)) + c.c.

s . o
-+ 228 1 gls §Qs Qs 1 wa(s)o‘z(s+1) 4 ce

7 1
s+1s'

55140‘(3*1)0.‘(5*1) (éesPa(s)a(s—1) +c.c

ﬂs H%s

(ésVa(s)a(s—1)) T c-C.

.S .
+ 276(%_18%5ww(s—z))d(s) + c.c.
.s+1 1
)
25 +1(s—1)ls!

.os—1
— Zme(as—la’y(ds—lw7a(3—2))d(3—2)) + c.c. (431)

ds (Sa(s—l)d(s—l) +Z'Pa(s Da(s—1)) =

€ 0ay 1 (6s Va(s—2))a(s—1)) + C-C.

/Basas 1)

8+1
P ﬂgﬁas e

+

? _

= 51" o Patenace)
s—11
"T2s5 sl
S — 1 = sy

i 80197 Pas)racs-2)

— Q€% 0™ 0 (g a(s11)
2s+1 1

) s(s+1)s!

s+1 1 _a, _
+ti— me a1 (cs Var(s—2))a(s—1)) (4.32)

gds Qs

(ésPa(s)a(s—1))

ﬂsaas aswa (s)a(s—1)

dsh Y(s :Leaﬁ s—1))a(s) T ¢-C
a(s)a(s) \ES! (asPa(s—1))a(s)

1 .
+ =€ M g (s)a(s+1) T C-C

V2

1 1
et + OO 4.33
V2(s+1) € (@ Y 1) (4.33)
1
05ha(s-2)a(s-2) = — @Easfl%(s—l)a(s—m + c.c. (4.34)

5 Half odd integer superhelicity theories

Now we repeat the entire procedure for the half odd integer superhelicity irreducible repre-

sentations. Unlike the integer case we will see that there are two different classes of theories

that describe this type of physical systems. For this case the action will be constructed by

equivalence class of [Ho(g)a(s)]-
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5.1 The superspace action

Superfield H must have mass dimension zero® and the action must involve four covariant
derivatives. The most general action we can write is

S = / d*2a1 H*OYODID2D, H o 5)(s)

_|_a2Hoz(s)dc(s) {DQ7 DQ} Ha(s)d(s)
+a3Ha(s)d(S)DQSDZD'YHWQ(S,U@(S) + c.c.
+ag H* YD, Dy, DDV H o5 1)54(s—1) + C-C- (5.1)

The deformation of the action under the redundancy is:

S

6aS = / a8z [( —oa, 427 1@3 + 2a4) D?Dg, HO#)4()
s+ 1
_|_

(—2&3 -

a4)D°‘S D;YD’YHva(s—l)"yd(s—l):| (DQLa(s)o'z(s—l)

+ DU A (st 1)a(s—1))
+2a2Ha(S)d(S)D2D2DaS Ea(s—l)d(s)

—2a4DBD7f)7H7a(S_1)5%‘(5_2) [DdS_IDQSLa(S)d(S—l)
s—1 _ .
+ s DasDas*lLa(s)d(s—l)

+]3ds_2=7a(s1)a(s3)]

+c.c. (5.2)

Notice that because of the D-algebra we have the freedom to add terms like
D+ A g (s41)a(s—1) and Dd572Ja(S_1)d(s_3) which identically vanish and they don’t effect
the result.

Obviously we can not set the variation of the action to zero just by picking values for
the a’s without setting them all to zero, but we can introduce compensators with proper
mass dimensionality and index structure. There are two different ways to do that

e (I) Choose coefficients to kill the last two terms (a2 = a4 = 0) and introduce a
compensator that cancels the first term

e (II) Choose coefficients to kill the first two terms (—2a; + 25tlag + 244 = 0,

—2a3 — %m, az = 0) and introduce a compensator to cancel the last term

These two different approaches will lead to the two different formulations of half-integer
super-helicity, mentioned above.

8Tts highest spin component is a propagating boson.
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5.1.1 Case (I) — transverse theory

For case (I) we find

a2:a4:0

6aS = / a3z K—zal Lot 1a3> D2Dg, HO#)4(5)

S

+ —2a3DasD;YDWH'YQ(SilHd(Sil)} (D*Las)a(s—1)
+ Das+1Ao¢(s+l)d(s—1)) (53)

This suggests us to introduce a fermionic compensator Xq(s)a(s—1) Which transforms
like 0 Xa(s)a(s—1) = DQLQ(S)d(S,l) + D%+ Ay (s41)a(s—1)- S0 in order to obtain invariance
we add to the action two new pieces: the coupling term of H with y and the kinetic energy
terms for y. The full action takes the form

S = / d*2a1 H*OYODTDZD, H o 5)(5)

+azH*DYD, DXDVH, (5 1)a(s) + C-C-

1 o
- (2@1 - 28 + a3> Ha(s)a(s)DdsDQXQ(S)d(S_l) + c.c.
S

+2a3 H*®*D, D DY\ (s-1)a(s—1) + C-C.
+ 61Xa(s)d(s’l)DQXa(s)d(s,l) + c.c.

+ bax DDy a1y + cc

+ b3x*@EIDY Dy, Yo 1yacs)

+ b ETID L D Y- 1)acs) (5.4)
and it has to be invariant under
1 _ 1_
dcHu(s)a(s) = QD(asLa(sq))a(S) - QD(asLa(s)d(sq)) (5.5a)
56 Xa(s)a(s—1) = D*La(s)a(s—1) T D¥* Ag(st1)a(s—1) (5.5b)

The equations of motion of the superfields are the variation of the action with respect
the superfield
65 6S

Ta(s)d(s) = SH)al(s)’ Ga(s)d(s—l) = 5Xa(s)a(371) (56)
and the invariance of the action gives the following Bianchi Identities
D* Ty s)a(s) — D*Gas))a(s—1) =0 (5.7a)
1
(s + 1)!D<as+1Ga(s>>a<s—1> =0 (5.7b)
The Bianchi identities fix all the coefficients
az = O, b3 =0
1
blz—s+ aiy, by = 2a;
S

by =0
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and the final form of the action is:
S = /dgz {c HOOYIDIDXD Hoy04(5)
—2c HQ(S)Q(S)DQSD2xa(s)d(s_1) + c.c.
_s+1, NWHEID2y e
+ 2c XQ(S)d(S_l)DastSXa(s—l)d(s)} (5.8)
The expressions for the equations of motion are:

n2
To(s)a(s) = 2¢D"D" Dy Hyg)a(s)

2c —5 _ )
+—7 (D@.D*Xa(s-1))a(s) ~ D(@. D Xa(s)a(s-1))) (5.92)
27és s+1 .,
Ga(s)d(s—l) = —2cD"D Ha(s)d(s) —2c D Xa(s)a(s—1)
2c = e
1P D" Xa(s-1)acs) (5.9b)

where c is a free overall parameter that can be absorbed in the definition of the superfields
but for the moment we’ll leave it as it is and fix it later when we define the components.

The above action is the same as the transversely-linear theory presented in [22] if
we solve the constraints and express it in terms of the prepotential, but now we have an
alternate understanding why we have to consider these types of superfields in order to
construct the action and why they have these gauge transformation.

To prove that indeed this action describes the desired representation, using the equa-
tions of motion we can now show that a chiral superfield F,(2541) exists and satisfies the
following Bianchi identity

1 1 ; ;
Da2s+1Fa(2s+1) e %@a((leas e aas+1a1Ta(5))d(S)
. 7 S B 1
2c2s+ 1B+ A (2s)!
1 s 1 9 &s 5 GG
+270287+1(TS)!D(0425 azs—1 - Yas Ga(s_l))d‘(s)
T S A 1
2c2s + 1 B+ A (2s)

D(Oé2s]3280425—1d571 s aOz.s-;_ldlGa(s))c’y(s—l)

!D(a2SDdsaa2571d5’1 c 8as+1d1Ta(s))d(s) (5.10)

where

L = s &
Fo@si1) = WD D(ages10a2." - Oagir ™ Ha(s))as)

On-shell where T4 (5)a(s) = Ga(s)a(s—1) = 0, we find the desired constraints to describe
a super-helicity Y = s + 1/2 system. The constants B and A are only constrained by
B+ A #0.

Like in the integer super-helicity case, this action and superfield configuration are not
unique, but a simple representative of a two parameter family of equivalent theories. To
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see that we perform redefinitions of the superfields. Dimensionality and index structure

allow us to do the following redefinition of x
Xa(s)d(s—1) = Xa(s)a(s—1) + 2D Hy(s)a(s) (5.11)

where z is a complex parameter. This operation will generate an entire class of actions and
transformation laws which all are related by the above redefinition.

The generalized action is

8 a(s)a(s N2
S = /d we H () ()D’YD DWHa(s)d(s)

s+1

—2c |:1 + Z:| Ha(s)d(s)]jdsD2Xa(s)d(s_1) + c.c.

—2cz Ha(s)d(s)Da_SDdsD’yx,ya(s_l)d(s_l) + c.c.

s+1_ a(s)a(s D
z] H*®¥D,, DXDVH, o (—1)4(s) + C-C-

—2cz [1 +
s

7C|Z|2 HQ(S)d(s)DasDdsD’yDﬁHwa(s—l)’yd(s—l) +c.c

1 .
s+ c Xa(S)a(S_l)D2Xa(s)o'z(5—1) Lee

+2¢ x*@DD L DY Yoo 1)a(s) (5.12)

and the generalized transformation laws are

1 - 1 -
06 Ha(s)a(s) = P (asLats—1)ats) = D6 La(s)ats—1)) (5.13a)

s+1

—9 Z =4, _
0G Xa(s)a(s—1) = [1 + Z} D*Lo(s)a(s—1) — QD D(a, La(s—1))a(s)
FDU A (4 1) (s—1) (5.13b)

5.1.2 Case (II) — longitudinal theory
For case (II) we obtain the conditions

ay =c, as =0

s(s—l—l)c w5
25+1 1T T 2s 41

2

as

and we have to introduce a fermionic compensator X (s—1)a(s—2) Which transforms like

s—1

0GXa(s—1)a(s—2) =D DY Ly (g)a(s—1) + DYDY Ly(5)a(s—1)

+ Dd572 Ja(sfl)d(sfS)

and couples with the term D DVDVHW(S_I)BW(S_Q)
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So in order to achieve invariance we add to the action two new pieces, the coupling
term of H with y and the kinetic energy terms for y. The full action takes the form

8 a(s)a(s N2
5= / d*ze H*O*IDID?D, Ho )4

s(s+1)
2s+1
2s+1
252
2s+1
by TPy s + e
Fhox VAP s + e
by ETVAETIDAD L Y 9)ats1)

+b4Xa(S_1)d(S_2)Dozsf1 Dds*lia(s—?)d(s—l) (514)

c Ha(s)d(s)DasDQDWHWCM(S*D@(S) Tee.

c Ha(s)d(s)DasDQSD’YD;YH,YOC(S_U;YO'[(S_U + c.c.

c Ha(s)é‘(s)ljasDasDo'cleoc(s—l)d(S—?) Tec

and it has to be invariant under

1 - 1 -
0GHo(s)a(s) = D (asLats—1)a(s) = D6 La(s)ats—1)) (5.15a)

s—1

0GXa(s—1)a(s—2) = DY D Ly (g)a(s—1) + DD Ly(s)a(s—1)

+Ddsf2Ja(571)o’z(573) (515b)

The equations of motion of the superfields are

68 S
To(s)a(s) = SHA®)a() Ga(s—1)a(s—2) = Sy a2 (5.16)
and satisfy the Bianchi Identities

. 1 _
D™ T + i Z i Dl Diges Gats-1ac-2)

s—1 1 _

1 T 1)!D(as,lD(aSGa(s—n)a(S_Q)) =0 (5.17a)
D%2Gy(s—1)a(s—2) = 0 ~ D*Gy(s—1)a(s—2) = 0 (5.17b)

which fix all free coefficients to the following values:

s2(s+1)
L 2 (28+1)(8—1)C
252
b — b =
41 =0, 3 951 1°
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The superspace action takes the final form

S = / d*zc H*¥DYD?D Hy 5)4(s)

[s(s+1) olS)'s _,
+ 2541 ] e HeG)a( )DaSD DY H o (s—1)(s) + C-C-
i 82 a(s)a(s ™ = A
_ 55 1] c g4 )DasDdSD’YD’yH’YQ(S—l)"yd(s—l) tee.
- 282 a(s)a(s)T =
o 1] ¢ H*9¥I)Dy Dy, De,_, Xa(s—1)a(s—2) + C-C.
[ s (s+1) . _
I S S a(sfl)a(sf2)D2 .
+ _(25 —+ 1)(5 — 1):| ¢X Xa(s—1)a(s—2) + c.c.
I 2
+ . ¢ Xa(s_l)d(s_mljdsle Xa(s—2)é(s—1 (5.18)
_28 +1 as—1 Xa(s—2)a(s—1)

and the equations of motion are

N2
Ta()ats) =2eD7D Dy Hos)a(s)

2¢ [s(s+1) _
5! [ 25 +1 } D0, DD Hya(s-1)acs)
2¢ [s(s+1)] = -
T [ 25+ 1 } D@, DD Ha(syia(s-1)
2¢ [ % ] _ _
~ ol |25 11| PeP@ D D gt 1)sa-1)
2¢ [ s 7= o
o @ 2s+1 D(dsD(OésD D H’ya(sfl))‘yd(sfl))
2¢ [ s 7= _
= sl |25 11| P@s P DaciXats-1)a-2)
2¢ [ s% ] _ -
~ ot |25 11 | PP PaciXa(s-2)a(s-1) (5.19)
2 _ . — .
Ga(s—1)a(s—2) =2¢ [25+1] DHHIDED™ Haoacs)
s*(s +1) 52
2¢c| ————| D .
+2c |:(28 i 1)(8 — 1):| Xa(s—1)a(s—2)
26 82 _ds—l =
oo a1 D Pl Xae-2at (5.20)

Using the equations of motion we can now prove that a chiral superfield Fy, (9,1 exist
and satisfies the following identity

D Fooei1) = o (215)!8(%@5 Oy M Tia(s))er(s) (5.21)

where
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and on-shell theory we obtain the desired constraints to describe a super-helicity Y = s+1/2
System.

Unlike the previous theories of half-integer and integer super-helicity, we can not per-
form any local redefinitions of the superfields because of the difference in their index struc-
ture. So the above action is unique.

5.2 Component structure of transverse theories (I)

The superspace actions derived above in terms of unconstrained objects will be the starting
point for our component discussion. We will use the method described before in order to de-
rive the field structure of the theory, the component action and their SUSY-transformations
laws. We start with the component structure of transverse theories.

The two superfields Ti(s)a(s)s Ga(s)a(s—1) 0 (5.9a) have mass dimensionality
[Ta(s)a(s)} = 2, [Ga(s)d(s—l)] = 3/2 and satisfy the Bianchi identities and their conse-
quences:

DdSTa(s)d(S) — D2Ga(s))0'é(s—1) =0~ D2Ta(5)d(s) =0 (522)
DQTQ(S)Q(S) = 0 reality
1 2
(s + 1)!D(as+1Ga(s>)a(s—1> =0~ D*Gy(s)a(s—1) = 0 (5.23)

These identities constrained must of the components of superfields 7" and G and only few
of them remain to play the role of off-shell auxiliary components. So just by looking at
them we immediately see the structure of auxiliary fields:

D Gospats—1)ls Dia,Gasas—1)h Ta)as |, D.aSGa(s)d(s_lﬂ for bosons
Ga(s)a(sq)’a D(aSDO‘SGa(S,l))d(S)\ for fermions

The next step is to express the action in terms of 7" and G

S — /d8 { Ha )d(S)Ta(s)d(s)

+2Xa(s)a(s DG&(S)d(S,l) + C.C.}

/ d' 2D2D2 (HOOT, 4

1= a(s)a(s—
—|—§D2D2 (X (s)é( I)Ga(s)d(s—l)) + c.c. (524)

and then to distribute the covariant derivatives.
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5.2.1 Fermions

After the distribution of D’s and the usage of Bianchi identities we derive for the fermionic
Lagrangian:

1

Lr = Lp2psen ga()ats), 1
2

mﬁ(as+1Ta<s>a<s>)\

1 s)ya(s—1 2. a(s)a(s—1) Qs
+2< P (36071 4 P2yl >’D Tos)a(s)|
1

2s +1
1s—1_-
25 +1

1 .
+§D2D2Xa(s)a(s—1) ’Ga

1.

a(s—1)a(s—1 Xs
) Xv( )a( )|§D(a5D Ga(s)a(s—1))]
2Dyl G2 Dl DGy ]

(s)a(s—1) ‘
+c.c. (5.25)
T and G satisfy a few more identities:

1 = 2ic - —
)@ Tawae) = e @ D Do Haat) (5.26)

2ic S — o
RS L CRCH {D DV Ho(s—1))a(s)) ~
s+1

8+ ]. =2 —
D*Xa(s—1)a(s)

Dds—lDasGa(S)d(s_l) =3 s Gs—1 [Ga(s)d(s_l)) + QCDQDdsHa(s)d(S)

s+1
+2c s DQXa(s)d(s—l):|
2ic s —1 . .
o m8726(045—1as_lD’yD’yX'ya(s—Q)"yd(s—l) (527)
2ic (=
D™ Tatoats) = (s+ 1)!8a DD Has)ats)
% 2s =+ 1 s+ 1_ B

& |2 )
o s(s 1) s [D DV H i (s-1))as) — D Ya(s—1))(s)

2ic -1

i sl(s—1)! 82 Das(@s-1 DD Xra(s-1)36(s-2))

1 e
+ PP Gai-1)ac)
RS

sl s

A0, Ga(s—1))als) (5.28)

We observe that in all the above expressions and in the fermionic Lagrangian there are
some specific combinations that appear repeatedly. So let us define
1
(s+1)!

_ . s+1
{D2D SHa(s)d(s) + S D2Xa(s)c'x(s—1)} | = N2¢a(5)d(5—1)

D 1D X (s)a(s—1)| = Nsta(s—1)a(s—2) (5.29)

N2 _
D™D, Ho(s)as)] = N1¥a(s+1)a(s)
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where Ny, Ns, N3 are normalization constants to be fixed later. Putting everything to-
gether we have for the Lagrangian

. 1 s 1 = s A
a(s)a(s—1 As
Lr =G (s)a )‘ (_268+ 1§D(Q5D Ga(s—l))d(s)

11 :
tearde” sGa(s—1>>a<s>> | +cc.
+2ic| Ny | wa(s)d(s+l)8as+lds+1wa(erl)o'z(s)
- S a(s+1)a(s
_2ZCS 1 N1 Noyp (st )aas+lds¢0é(8)d(8—1) +c.c.
. 2s+1 a(s—1)a(s) as.
220( ¥ 1)2 ’N ’ w 0 wa (s)a(s—1)
+2ie2— N2N3¢a(s)d(s_1)aasds_1¢a(s—1)a(s—2) +cc
. s—1 2 Ta(s—2)a(s— fe%
_220< s ) ‘N3|2¢ (s=2als=lg a1 Va(s—1)a(s—2) (5.30)

The first term in the Lagrangian is the algebraic kinetic energy term of two auxiliary
fields and the rest of the terms are exactly the structure of a theory that describes helicity
h = s+ 1/2. To have an exact match we choose coefficients

1
c=1, Ny = ——
T2
1 1
Ny = N3 = — 5

V2 Va2s—1

So the fields that appear in the fermionic action are defined as:

Pa(s)a(s—1) = Ga(s)d(s—l) |

1 S =y A 1 o /A
Ba(s)a(s—1) = ~ 34l {SJFID((XSD Ga(s—1))a(s) — 53(% Ga(s—l))d(s)} |

V2 o
¢a(s+1)d( ) = ( 1 )'D D(as+1 a(s))a(s)|

s+1

s 2
¢a(s)o’z(s—l) \/5 D*D% Ha(s )a(s) + D Xa(s)d(s—l)} |

S —
Va(s—1)a(s—2) = \/5( D - "D Xa(s)a(s—1)| (5.31)
The Lagrangian is
Lp = p" DB o) + e

+1 @Za(s)d(s+1)aa5+l Gst1 ¢a(s+1)d(s)

. S als s
+1 |:3 T 1:| ¢ ( +1) ( )aas+1a51[}a(5)d(s_1) + c.c.

- 2S+1 T a(s—1)a(s) qas
- [W] PTG L i has1)

+i PO, 6 Ya(s1as2) e
—t &a(372)d(871)8a571o'cs_ld)a(sfl)d(sz) (532)
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and the gauge transformations of the fields are

1
0GPa(s)a(s—1) = 0, 0GVa(s+1)a(s) = ma(as+l(as§a(s))a(s—1))
1 o E
06 Ba(s)a(s—1) = 0, 0GVa(s)a(s—1) = _ga(as a(s—1))é(s)
s—1

5G¢o¢(s—1 ¥(s—2) — s

with €o¢ (s)a(s—1) — _Z\[ 2 D’ L, s)d(sfl)‘

5.2.2 Bosons

Y1 E (g a(s—1)

(5.33)

For the bosonic action we follow exactly the same procedure. The fields that appear in the

action are defined as:

Ua(s)a(s—2) = D 1 Go(s))a(s—1)]

1 _ _
Ua(s)ils) = 5 D(a, Ga(s—1))a(s) — D(a. Gas)as—1) | |
i _ _
Va(s)a(s) = _278' D(asGa(s—l))d(s) + D(dsGa(s)d(s—l))} ‘
1

Aa(s)ats) = a(s a5 25 151 (PeaCGags-1as) = Dia.Cagspats—1) |

Sa(s—)a(s—1) = 3 {D%Ga(s)a(sq) + D% Go(s)a(s—1) |

i Qg M s /Y
Pa(s—l)d(s—l) = _§ {D Ga(s)d(s—l) -D Ga(s)d(s—l)} |

1 1
hasnas+1) = 5 (57 p [Dasi1 Didess] Hats)atsn|
1 S 0 Tolts
hoc(s—l)d(s—l) = 5(84— 1)2 [D ;D ]Ha(s )e( s)|
1 «@ M s —
T (D Xa(s)a(s—1) + DY Xa(s—1)a(s)) |

the gauge transformations are

0cUq(s)a(s—2) = 0, dcAa(s)a(s) =0
dcua(s)as) = 0, 0GSa(s—1)a(s—1) = 0

dcVa(s)as) = 05 0 Pa(s—1)a(s—1) =0

1
dcha(s+1)a(s+1) = ma(as+1(as+lCa(s))a(s))

S s
5Gha(s—1)d(s—l) = (S T 1) 0% <oe(s )é(s)
where

1

Ca(s)ats) = 557 (Dia La(s-1)a(s) + Dige La(sa(s-1) |
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and the Lagrangian

1

-1
ﬁB:[S

s+1
3} u()a(s)

:| Ua(s)d(s—Q) Ua(s)d(s—Q) + c.c.

+
[

Ua(s)a(s)

. 2:} PUCLIOF I
_% ('551)2] PtV P (pag-n)

+ ha(s+1)d(s+1)Dha(s+1)d(s+1)

5 Qs 10s+1 awhva(SWd(S)

+ [8(8 + 1)] ha(s+1)d(s+1)aas+lds+laasds hOA(S*l)d(S*l)
—[(s+1)(2s + 1)) h*EDD0R (e

_ [3 + 1} pals+Da(s+1) g

5 Yé(s—2)

(S+1)(S_ 1)2 a(s—1)a(s— )
— |: h (s=1)&( 1)8a5,1d5718,y,yh'y0¢(5—2)
gives rise to the theory of helicity h = s + 1 as expected.

5.2.3 Off-shell degrees of freedom

The bosonic degrees of freedom are:

fields d.o.f redundancy net
ha(s+1a(s+1) (s +2)° (s+1)2 s2+2s+3
ha(s—1)a(s—1) s?
Un(s)i(s) (s+1)2 0 (s+1)2
Vo(s)i(s) (s+1)? 0 (s +1)?
Au(s)a(s) (s+1)2 0 (s+1)2
Uas)as—2) | 2(s+1)(s —1) 0 2(s+1)(s—1)
Sa(s—1)a(s—1) s? 0 s?
Po(s—1)a(s—1) 52 0 s?
Total 852 +8s+4
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and the fermionic degrees of freedom are:

fields d.o.f redundancy net
Va(st)a(s) | 2(s+2)(s+1)
Va(s)a(s—1) 2(s+1)s 2(s+1)s | 45> +4s+4
Va(s—1)a(s—2) 2s(s — 1)
Pas)a(s—1) 2(s+1)s 0 2(s+1)s
Ba(s)a(s—1) 2(s+1)s 0 2s+1)s
Total 852 4 8544

5.2.4 SUSY-transformation laws

The SUSY-transformation laws for the fermionic fields are:

s 1 .
08 Pa(s)é(s—1) =1l [Sa(s—1)a(s—1) + iPa(s—1))a(s-1))]

+ e [ua(s)d(s) - iva(s)d(s)]
s—1 1 _
5 (s =1 @1 Uatac-2)
s 1 :
s+1 56(045877147&(871))%(871)
2s  q :
mae(%awuw(s—l)w(s—l)

2s .
e Oy
e

05 Ba(s)a(s—1) =

ya(s—1)fa(s—1)
17 .
= 1€ Oas  Mas-1)a(s-1)

1 .
+ € 0o Vra(s-1)ia(-1)

2'23—1_,~y

551 dasy [Sats-1))ats-1) = iPags-1)a(s-1)]

1 s—1_

+ S!(S — 1)! s+ 16((515—18(045’y [Sa(s—l))"yd(s—Z))

~iPo(s—1))ia(s-2)))
21 s—1

G o s 1o ? @ Uat-)ae-2)
1 s—1 .
0 Ces0aii Ua(s-2)a(s-1)
2s g
55 ,
T €as 970 Ng (s -1)) B3(s-1)
2(s —1)*

o m (o Doy (Gs—1 o hwa(s—Q))*/o'z(s—Q))
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V2i :
O5Va(s+1)a(s) = G 1)!673<as+17hm<s>>wa<s>

i .
me(a”lmwhva(s»ws)

1 2s+1 1
22 s+1 (s+ 1)!E<as+1Aa<8>>d(8>

1 Sgds

0sYa(s)a(s—1) = — astl Aa(s)al(s)
1 s+1 _,

+ \ﬁ 25 + 16 ua(s)d(S)
s+1_.
-1 \/E e Va(s)a(s)
1 s—1_
T 5 s s Vaat-2)

(5.39)

1S 4. oy
Vo O hya(s)iacs)

5 € dasshate-1)ae-1) (5.40)

1 s—1
551%(5—1)@(5—2) = 7 s+ 16

1 s—1 g ;
VAT [Sa(s=1)a(s—1) ~ Pa(s—1)a(s—1)]

1
+iv2e

s Ua(s)d(s—Q)

T 00, hags-1)acs-1) (5.41)

and the SUSY-transformation laws for the bosonic fields are:

Z\/i —Ots Qs
Osdaraty = = i€ O @ Yatsrnat) T

Z\/§ 52
sl (2s+1)(s+1)

€00 Vra(s)a(s-1)) T C-C
7

5 4. B
Cosl(s+ 1125+ 1° 00 (6511 Pa(s—1))a(s)) T C-C.

- L—E(d A0 Pa(s—1))3a(s—1)) T C-C.
s2(2s4+1)(s+1) %

V2 5 4. _
m s+1 +18(0¢s(d¢s+1'¢a(8—1))a(5) 4+ c.c.
w2 s -
ﬁmﬁ(as3(0457%(371))@(371)) +cc.
2 s
— 2 25 5 1@ danaa Yats-1)ac—2) T ec (5:42)
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iv?2

05 (ta(s)a(s) + Wa(s)a9) = = 1 €(@:0" Pra(s-1))ia(s)
3 25+ 1
5!2 s(s1) s (Ge Vra(s—1))a(s—1))
ivV2s+1 _
+ g GesOae 1 (65 Va(s-2))a(s-1))
2s+1 _

S, o ClasPats—1)a(s)

asﬁa (s)a(s—1))
1 s+1
~ o gy G dPra(s-1)a(s-1)

— éeﬂs-‘rla

S5+ 1) (0s (a1 Par(s—1))i(s)

+ 3?22<Ss__i_11)E(dsa(as;yﬁa((?—l))"yd(s—l)) (5.43)
05U (s)a(s—2) =1V2EX10%H % 1)a(s)
z\‘f23+1 laaa1/1a51) o
sl s(s+ 1) s
+i6< O M0 1))56(5-2)
+ Z;fe(ocsaas L 0 (s-2))a(s-1)
B s!é{n. 2 D1y Ve )2
- S%S i 16007 Pra(s—1)3i(s-2)
T s i 1! 1€ 00,1 Y Pags)as—1)
- 55;1% 1O, " Pals—1))a(s)
_oft ' Ba(s)a(s—1) (5.44)
65 (Sa(s—1)a(s—1) T1Pa(s—1)a(s—1)) = — 97 JSF L & Ba(s—1)a(s)
B 81!5;;1;@33% (és Pa(s)a(s—1)) (5.45)
G . 1! - 1225 L T T
_ (Sz':le - (s — 12 gs +1) €1 0 (s 1)3(5-2)
(s Z'—\/15)!2 - 1i§8 s Wte-yrao-2)
05ha(s4+1)a(s+1) Zme(asﬂ%(s))a(sﬂ) + c.c. (5.46)
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1
V2(s +1)2
1
2(s+1)
1 1

0ha(s—2)a(s-2) = € Ya(e)a(s—1) T CC.

e Pa(s)a(s—1) +c.c.

T R £ 1) (5 - DI Yal-na-2)

5.3 Component structure for longitudinal theories (II)

(5.47)

We repeat the same steps for the second formulation of half-integer super-helicity theories.

The superspace action (5.18) can be expressed like

S = /dS { _H® s)a(s) a(s)d(s)

+2on(s 1a(s— Z)G a(s—1)d(s— 2)+CC}

1 .. .
4 212 a(s)a(s
- /d 250D (H (s) ()Ta(s)d(s))

+%DQD2 (Xa(s_l)d(s_z)Ga(s_l)d(s_g)) + c.c. (5.48)
where T', G are defined by (5.20)
5.3.1 Fermions
For the fermionic Lagrangian we have
Lp = ;(S—il)'DQD(ds-&-lHW(S)d(S))‘ e j Al D1 Tats)a(s))

. (; DD, e % (51_ T

- §7D(a55 oAt 1)> S!(sl_l)!D(aSD(as_lGa(s—n)a(s—z))!

N (;8_3,1(3—11)!]3’7])(@“ \1als=2a(s-2)

+ %S - 1D63WH’BW(82W(“)> \(s — D* D4, _, Ga(s—1)a(s-2))|

+ <—;z;13asdle2DdsHa(s)a(s)

+ 1D2D2Xa(s_l)d(5_2)> |G a(s—1)a(s—2)]

+ D2 als=Da=2)p2G a(s—1)a(s—2)]

+ c.c. (5.49)
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We can prove the following identities for 7" and G:

1 _ 2ic 1
[ . . — _ — — A%s+1,, .
(S + 1)!D(0‘s+1T0‘(5)O¢(5)) (S 4 1)' (Ozs+1 { (S + 1)‘

2ic 52 — o
- . v .
(s+1)!s! (25 +1)(s+ 1)8(0‘5(0‘3+1 {D D Hya(s-1))é(s))
i(s+1)

s!

s+1 = B
+S!(S_1)!D(dsD(a51Xa(s—2)))d(s—1)))} (5.50)

m 2
D D(asHHa(s))a(s»}

D, 0" Hoya(s—1))(s—1)))

1 _
)!D(asD(ds_1Ga(sfl))d(372)) =

2

2ic s . _
= as JDDYH .
sl (2s+1)(s+ 1)8(0‘5 { ya(s—1))d(s)

i(s+1)
|

+ D(o’zsawHw(s—l)wa(s—n)

S

s+1 - B
+S!(S_1)!D(o'st(a31Xa(s2)))d(s1))}

. 82 o & 1 2
— 22623 T 18 s+1s {(S i 1>|D D(O‘s+1Ha(S))d(S)}

2ic  s(s—1) =B s
TG D 25 1 et {ZD O H (51 B3(5-2)

1 - )
+(S_1)!D’7D(065_1X04(s2)))&&(52))} (5.51)

1
(s—1)!

2
=T 5F [P Gats—1a(s-2)
i s(s—1)

T e D s 02 e

Dé‘S‘lD(as_l@a(s_z))a(s—n =

ot Ga(s—?))d(s—l)

2
-9 - Qgis—1 2 7*&/ .
2ic (2s+1)(s+1) 0 {D D Ha(s)ﬁa(s—l)
i(s+1) .
+ = D, 0" Hyas-1))ia(s-1)

s+1 _
+s!(s_l)[D(OésD(O'és—1Xa(S—l))d(s—Q))}

Cs(s—1) 1 et | ~
+ 2ic 5+ 1)2 (s = 1)!8(%7104 1 {2D587’7Hﬂ7a(8_2))1d(s_1)
1

+(S_1)!D’YD(O.451X'YCV(82))O'((52))}

(5.52)
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Let us define the following fields

1 — B
P Plesi Hawan] = N1 Yateenac
276 i(s+1) .
s+1 _
+S!<3_1)!D(OC.SD((jés—lX(X(S—l))o‘é(s—z))} ’ = N2 wa(s)d(s_l)

{zDﬁa7

ya(s—1)B4c(s—2)

1
+WDQS lD(ozé 1Xa(s 2))a(s—1 }’ = N3 ¢a(s 1)a(s—2)
Putting everything together, the component Lagrangian takes the form

L = 2ic|Np[? @D, as)
2 .
_QwWNlNQ wa(s+1)a(5)aas+1dswa(s)o'¢(sfl) + e
S 2 Ja(s—1)a(s) qas

(28+1)( ) |N2| (0 (s=1) ()8 dswa(s)d(s—l)

9 M a(s)d(s_l) ) .
2ZC (23 + 1)( + 1) N2N3 w 8asasflwoé(s—1)a(s—2) + c.c.

. s — 2 Ja(s—2)a(s—1) qas—
—21c ((g—}—]_) |N3’ ’l/} ( ) ( )8 ldsflwa(k@fl)d(SfQ)

1(28+1)(3_1) a(s)a(s—1 2
EWG (= (D Ga(s—1)a(s—2)

t1s—1 1 Gt
7584_1(5_1)!8(% 4G a(s—2))a(s—1 ) | +cc (5.53)

—21c

The last term in the Lagrangian is the algebraic kinetic energy term of two auxiliary
fields and the rest of the terms are exactly the struc- ture of a theory that describes helicity
h = s+ 1/2. To have an exact match we choose coefficients

1 2 1
CIl, N2:_7 s+
V2 s
1 1 s+1
Ny = —, N3y = —

So the fields that appear in the fermionic action are defined as:

Pa(s—1)a(s—2) = Ga(s—1)a(s—2)|
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S

Vo(s)a(s—1) = —V2 75+ 1

i(s+1)
s!

s+1 _
+s!<s_1)!D(o¢sD(ds1Xa(s—1))o'c(s—2))} |

s—1
Vo(s—1)a(s—2) = V2 o]

1
(s —1)!

271 Cs
{D D™ Ho(s)a(s)

+

D0, 0" Hya(s—1))7a(s—1)

6 o977 )
{ZD O H, (s 1)pia(s—2)

+

Dds_lD(ozs_1on(52))d(sl)} | (5.54)
The Lagrangian is

Lp = p*@DTDB a1 + e

+i 77/_}(1(8)0.((8+1)60¢s+1 d5+1¢a(5+1)d(s)

. S a(s a(s

+i [8 n 1] PG, o Yas)ae-t) F
. 2S+1 Ta(s—1)a(s) qas

- |:(S+1)2:| (0 (s=1) ()a dswa(s)d(s—l)

+i wa(S)d(571)aasdsf1wa(sfl)d(sz) + c.c.

—i DA TDGU1 o 1ags—2) (5.55)

and the gauge transformations of the fields are

0GPa(s)a(s—1) = 0, 0GVa(s+1)a(s) = wamsﬂmsﬁa(s))a(s—l))
06 Ba(s)a(s—1) = 0, 0GYa(s)a(s—1) = _ia(asdsga(s—l))d(s)
06 Va(s—1)a(s—2) = > ; laasds’lfa(s)a(s_l)
with &u(s)a(s—1) = —1V2 D? Lo (s)a(s—1)| (5.56)

5.3.2 Bosons

For the bosonic Lagrangian we do the same. The fields that appear in the action are
defined as:

An(syats) = Ta(s))as)l
1

Ua(s)a(s-2) = 5D (as Gals-1)a(s-2)|

1 _ _
U (s—1)a(s—1) = 1) {D(4, 1 Gas—1)a(s-2)) — Diae_r Ga(s—2)a(s—1) } |

2 — _
Va(s—1)a(s—1) = A1) {D4, 1 Gas—1)a(s-2)) + Diaer Ga(s—2))ats—1) } |

1 Qg— _dés— e
Sa(s—2)a(s—2) = 3 {D* Gy (s—1)a(s—2) + D Go(s—2)a(s—1) } |
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i as— N&s—1
Po(s—2)a(s—2) = —3 {D* Gy s—1)a(s—2) — D Ga(s—2)a(s—1) } |

ha(stnats+1) = ;(Hll).z [Dass1: Diasin] Ha(s)acs]
ha(s-1a(s-1) = ;(25 - 1)8(5 Tz [0 D%] Haacs|
- (2s+ 1;(8 +1) (s —1 1)! (D(asflia(‘q_m)d(s_l)
—Da,_, Xoc(s—l)d(s—Z))) | (5.57)
the gauge transformations are
0cUq(s)a(s—2) = 0, dcAa(s)a(s) =0

dGUa(s—1)a(s—1) = 05 06 Sa(s—2)a(s—2) = 0

0GVa(s—1)a(s—1) = 0, 06 Pa(s—2)a(s—2) =0
1
dcha(s+1)a(s+1) = ma(as+1(as+lCa(s))a(s))

S

S " 5.58
(S T 1) <o¢(s )a(s) ( )

0Gha(s—1)a(s—1) =
where
) _ _
Ca()a(s) = 5 (D(ay La(s—1))a(s) + Dias La(s)as—1)) |

and the bosonic Lagrangian is
1[(2s+1)(s—1)

e =g | Ty | U e +ee
+é _2:4_: 11_ A Ay 4
_% 28;1 uCDAE Dy gy
_% 28;1 v DAy o)
_% :(2s+1i§s—1)2] SR g
+% (8;51)2] PRCT2DP, (i)
n h°;<5+1)‘5‘(5+1)Dha(s+1)a(s+1)
- [5; 1} RN, G 0 hea(s)5a0s)

[S(S + 1)] h* S+1)a(s+1)8as+1ds+1aaédshoz(s 1a(s—1)
S+ 1)(28+1)] ha(s Dé(s— 1)\:|h a(s—1)a(s—1)

—[(
s+1) 3—1 “Dé(s— j
[( } pelsDaE=0g, a0 ha(s2)ia(s—2)

and gives rise to the theory of helicity h = s + 1 as expected.
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5.3.3 Off-shell degrees of freedom

Let us count the bosonic degrees of freedom

fields d.o.f redundancy net
ha(s+1a(s+1) (s +2)° (s+1)2 s2+2s+3
ha(s—1)a(s—1) 5°
Ug(s—1)a(s—1) s? 0 52
Va(s—1)é(s—1) s? 0 s?
An(s)als) (s+1)? 0 (s +1)?
Ua(s)é(s—2) 2(s+1)(s—1) 0 2(s+1)(s—1)
Se(s—2)é(s—2) (s —1)? 0 (s —1)?
Po(s—2)a(s—2) (s — 1) 0 (s —1)?
Total 8s2 44
and the same counting for the fermionic degrees of freedom
fields d.o.f redundancy net
Va(s+1)as) | 2(s+2)(s+1)
Va(s)a(s—1) 2(s+1)s 2(s+1)s | 4s® +4s+4
Ya(s—1)a(s—2) 2s(s — 1)
Pa(s—1)é(s—2) 2(s —1)s 0 2(s —1)s
Ba(s—1)a(s—2) 2(s —1)s 0 2(s—)s
Total 8s% +4

5.3.4 SUSY-transformation laws

The explicit expressions for the SUSY-transformation laws of the fields can be found in the
same way as for case (I). For the fermionic fields:

05Pa(s—1)a(s—2) = — € Un(s)a(s—2)

s—1 1 -
: [] syt [Sat-2pa(e-2) + Fae-2)s0-2)

S

_ gdsfl [Ua(sfl)d(sfl) +wa(s—1)a(371)] (559)

/l: 82 =51 HQsQs

Osbati-nat-a =5 70 Aataty

82 & Qsp1C fo s

ot OO ha(s et

o 2S€d571|jha(s—1)d(s—2)

sV 1 4 88

B 25+ 1 (s — 1)!26 1a(a5*1(0“sfl8 hﬁa(s—Q))Bd(s—2))
/) v 1 A

Teon e Vaat)
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531#(1(371)0'[(572) —_
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°oe gl 8p3 .
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1s—1 7 e .
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(s —2)(s+2) 1 o
2s(s+1) (s—2)!(s—1)! (¢s—29(as_1
1s—1 7 s

Sp

T F Ao Ao a2t
1s—1 1 .
T 25+ 1(s— 1)!65‘9(%4 "VBa(s—2))a(s—1)
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1 s 1 .
T Va2l nen? ey
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925+ 10 T
1S .
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we Va(s—1)é(s—1)

(s —1)%(2s + 1) 1 ;

_ ﬁ 32(5 + 1) (S — 1)!6115,1 a(s—2))d(s—2)

i

(s+1)a(s+1)

-5l %

(s—1)2 1 .
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and the SUSY-transformation laws for the bosonic fields are:

Z\/§ _Olés Qg
05 Aa(s)a(s) = — G LY
iv2 52
sl (s+1)(2s+1
(s+Dlsls+1
w2 s -
ﬁme(ds8(057¢a(371))’yd(371)) + c.c.
sls! 2s +1
_ts—1
slsls+1 ©(as
1
5SUa(S)d(S—2) :Qe(asﬁa(s—l))a(s_g)

dapr Yals+1)a(s)) T C-C.

)E(ds a’ww'yoz(s)‘yd(sfl)) +c.c.

6153-&-18

+

(as(ds+1 @a(sq))a(s)) + c.c.

(s a(asd5,1¢a(s—1))d(s_2)) + c.c.

arsérs—1Pa(s—1))a(s—2)) T C-C. (5.64)

¢ 6
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) § Qs Qs110s
— V25— @O gy myagy
2 s s Gis T
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0s (ua(sfl)d(sfl) + Z'voz(sfl)o'z(sfl)) =
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=iV2 ° easa@s+1aswa(s+1)d(s)

2s+1
\/* S 1 as g G T
te 28 +1 ae (as wa(s—l))d(s)

. =s(s+1) 1 o
— V2 A= destasi¥as-1)at-2))

G D 1) (s - Dy Pt 2itey
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25+ 1(s—1)!° e Pa(s-2)d
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— me 57180{571(dsilpa(s_l)d(S_Q))
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1 o
Tl)ge Ya(s)a(s—1) T C-C.

1 1 -
ﬁ (s+1)(s— 1)!€(a5_1¢a(5_2))d(8_1) + c.c.

6%565715(1(5—2)0'4(5_1)

€19 (4 Va(s—1)a(s—2)) (5.67)
55ha(s+1)a(s+1) =

5Sha(s—1)o'z(s—1) =

w
|
—_
—_

1 —
5 8(8 + 1)2 (8 _ 1)|6(Ols—1pa(8—2))d(s—1) + c.c. (569)

6 Map of superhelicity theories and hints for N/ = 2

To summarize the results, the landscape of the massless irreducible representations that
describe the highest superhelicity supermultiplets is shown in figure 1.

There are three infinite towers of theories, one for the integer superhelicity and two
for the half-integer superhelicity. A solid line represents the corresponding theory for that
value of s. The corresponding theory for integer and half odd integer (I) is a two parameter
family of actions, but for half odd integer (II) it is a unique action. At the bottom, the
superfield structure of the action and the number of degrees of freedom involved are being
displayed. For the s = 0 case of the integer tower, there is a gap. The reason is that for
s = 0 there is no superfield ¥ and the tower starts from s = 1. The Y = s = 0 theory is
being generated by a chiral superfield ®. Similarly the s = 1 case of the half odd integer
(IT) theories, where its place takes a triplet of theories, the old minimal, the new minimal
and the new-new minimal. The dash line represent theories that don’t fall in the pattern.
These are low helicity ‘accidents’ that don’t generalize to arbitrary s.

A very intriguing observation is that the number of off-shell degrees of freedom for
integer superhelicity and half odd integer superhelicity (I) theories is the same. That
means that for every boson in one theory there is a fermion in the other. So if we add
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Old/New/
1 Ogievetsky non-minimal New-New Minimal
‘; - T T . s = - .. T ST T T T T
Sokatchev supergravity supergravity
s=0 --------
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(Y =3s) (Y =s5+41/2)

Figure 1. Free massless highest superhelicity irreducible representations.

these two theories together we can have a second direction of supersymmetry. Therefore
we can construct an irreducible representation of 4D, N = 2 Super-Poincaré group. Also
in the same manner we can understand why a possible pair of integer theory with half odd
integer (II) theories can never work. This has been confirmed by trial an error in [29] where
the second supersymmetry was realized non-linearly in terms of the covariant derivatives
of the first supersymmetry.
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