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1 Introduction

Quite generally, scattering amplitudes of quantum field theories have many different pre-

sentations (see e.g. [1] for a review) and each of them exposes different properties while

potentially obscuring others. For example, a Feynman graph presentation of amplitudes of

gauge theories manifests locality and (at tree-level) the poles on which they factorize but

obscures most symmetries (especially those that emerge only on shell), relations between

color-ordered amplitudes, etc.

In contrast, Witten’s twistor string formulation of tree-level N = 4 super-Yang-Mills

theory [2] in the connected prescription [3] makes manifest its super-conformal symmetry,

the U(1) decoupling identities and the Kleiss-Kuijff relations [4], while making their factor-

ization properties quite difficult to identify [5]. It also exposes new properties, such as the

localization on curves of a certain degree in the relevant supertwistor space.1 The discon-

nected formulation implies the existence of a recursive construction of amplitudes based on

maximally-helicity-violating building blocks [8]. The Grassmaniann presentation [9] of the

same amplitudes manifests their dual superconformal invariance (at tree-level and at the

level of the integrand at loop level) [10–12] while obscuring locality. Last but not least the

twistor string theory [2] and its open string formulation [13] suggest that there may exist a

formulation of N = 4 conformal supergravity whose action, differently from the standard

one [14], does not have a manifest SU(1, 1) global symmetry [15].

1A different localization of (s)YM amplitudes, valid in any number of dimensions, has recently been

proposed and discussed in [6, 7].
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The three-dimensional ABJ(M) theory [16] shares many of the properties of N = 4

sYM theory such as the integrability of the planar dilatation operator [17, 18] and invariance

of its tree-level amplitudes and of its loop integrands under the Yangian of the supercon-

formal group [19–21]. It was suggested that the scattering amplitudes of this theory have

a Grassmannian formulation [22] as well as a formulation [23] exhibiting holomorphic lo-

calization on curves of a certain degree in twistor space,2 which in turn suggests that a

twistor string theory may exist for this theory as well. Such a string theory would also con-

tain conformal supergravity.3 Unlike its four-dimensional counterpart, three-dimensional

conformal supergravity does not have any asymptotic states [27] and therefore does not

lead to factorization channels which are not present in the flat space theory. Consequently,

its presence can only be inferred either from off-shell data or from scattering amplitudes

which vanish in the absence of conformal supergravity interactions.

Generalizations of the ABJ(M) theory, to more general gauge groups [28–30] and to

lower numbers of supercharges [31–33] have been discussed extensively. Another interesting

question is whether there exist higher-dimensional theories from which the ABJ(M) theories

can be obtained by some truncation procedure, such as dimensional reduction.

In this paper we discuss the construction of a (twistor) string theory which has the

SU(N) × SU(M) N = 6 Chern-Simons theory (ABJ(M)) as a subsector to which it can

be consistently truncated; the resulting scattering amplitudes take the form given in [23].4

While this string theory appears to have infinitely many states, they combine into repre-

sentations of a larger symmetry group and thus may be interpreted as describing a higher-

dimensional field theory. This construction yields the scattering amplitudes of this theory

and some of its conservation laws without identifying the corresponding Lagrangian. It

also turns out that, within our construction, it is possible to identify tree-level S-matrices

of other consistent truncations of this putative higher-dimensional theory; they appear to

correspond to N = 6 superconformal field theories that are not immediately included in

the classification [30]. We shall also discuss the consequences of conformal supergravity

interactions: they generate tree-level multi-trace color-ordered amplitudes. For four-point

amplitudes we compare explicitly the string-theory-generated expressions with those fol-

lowing from the Lagrangian put forth in [26, 35, 36].

The crucial difference between the twistor space of the three and four-dimensional

Minkowski spaces is that, while the latter has a unitary symmetry group, the former has

only an orthogonal one. The orthogonality constraint may in principle be imposed at the

level of the worldsheet action at the expense of introducing ghost fields. Alternatively,

at tree-level it may also be imposed only as a choice of the kinematics determining the

scattering states. More precisely, the string theory we shall construct has SU(3, 2|4, 1)

2The analogous relation between the Grassmannian and twistor string formulation of N = 4 sYM tree-

level amplitudes was discussed in [24]. The ABJ(M) amplitude expression of [23] was recently shown to be

equivalent to an alternative integral formula which satisfies all factorization properties [25].
3The coupling of the ABJ(M) theory with N = 6 conformal supergravity was discussed from a field

theory perspective in [26].
4It may also be possible to construct a string theory whose amplitudes naturally take the form [25] along

the lines of [34].
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symmetry and restricting to a particular subset of states with vanishing charge under a

certain worldsheet global U(1) symmetry yields the tree-level scattering amplitudes of the

ABJ(M) theory.5 For general states, the amplitudes of this theory receive contributions

from worldsheet instantons of all degrees; upon restricting to states transforming only

under the expected SU(3) on-shell R-symmetry of the ABJ(M) theory the only contributing

instantons are those of degree equal to half the number of vertex operators, as suggested

by [23]. The localization on instantons of fixed degree is realized through holomorphic delta

functions [3, 37],6 in close similarity with the twistor string for the N = 4 sYM theory.

As in all theories with manifest symmetries, restriction to a subset of states which are

invariant under a subgroup of the symmetry group leads to singular or vanishing factors

in scattering amplitudes, depending on whether the inert generators are Grassmann-even

or odd, respectively. For example, in a four-dimensional field theory, restricting to three-

dimensional kinematics specified by e.g. the vanishing of the third component of the mo-

mentum yields a factor of δ(0) ≡ δ(
∑n

i=1 P
3
i ). Similarly, if the states are invariant under

some on-shell supersymmetry generator Q = mα
Aq

A
α with some fixed matrix m, one finds a

factor of 0 = δ(0) = δ(
∑n

i=1m
α
A(qi)

A
α )). Thus, to extract the scattering amplitudes of such

invariant states it is necessary to identify the generators leaving the states invariant and

extract the corresponding vanishing or singular factors.

This paper is organized as follows. In section 2 we discuss an embedding of the twistor

space of the three-dimensional Minkowski space into (a noncompact form of) CP4|5. In

section 3 we construct an open string theory on CP4|5 and its states and discuss the

truncation of its space of states to the ABJ(M) spectrum as well as the general structure

of scattering amplitudes of this theory, following closely [13]. In section 4 we construct

the scattering amplitudes of the constrained states and recover the expression of [23]. In

section 5 we discuss the contribution of conformal supergravity states to amplitudes and

illustrate it by computing the four-point amplitudes and comparing them with the ones

following from the Lagrangian proposed in [26]. We also discuss a similar comparison for

certain arbitrary-multiplicity amplitudes. We close in section 6 with remarks on various

extensions of our construction to gauge groups with more than two factors, the inclusion

of other states and the higher-dimensional interpretation of our construction as well as on

the possibility of enforcing the truncation to the ABJ(M) spectrum at the quantum level.

2 An embedding of the 3d twistor space

The supertwistors for the N -extended three-dimensional superconformal group

OSp(N|4,R) were discussed in detail in [39]; they are given by the pairs (ξµ, ηA) where

the two components transform in the fundamental representations of Sp(4) and SO(N ),

respectively. They are real and self-conjugate,

[ξµ, ξν ] = Ωµν , {ηA, ηB} = δAB ; (2.1)

5While this truncation is natural and consistent at tree level, loop amplitudes of chargeless states receive

contributions from charged states as well. We shall not discuss loop amplitudes in this paper.
6See [38] for a detailed discussion on holomorphic delta functions.
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From this perspective the twistor space may be interpreted as a phase space on which one

may choose Darboux-like coordinates, ξµ = (λa, µb) such that

[λa, µb] = ǫab . (2.2)

Thus, (wave) functions on this space depend only on half of the coordinates, e.g. λa. The

generators of OSp(N|4) are second-order differential operators [39]. Unlike the twistor

space of the four-dimensional Minkowski space, the properties of spinors make it difficult

to linearize the action of the (super)conformal group.7

To have more manifest symmetry we may relax the constraint (2.1) embed this space as

a hypersurface in a larger one; we subsequently impose this constraint on (wave) functions

defined on this larger space. Let us begin by discussing the bosonic coordinates and append

afterwards the Grassmann directions.

We interpret the bosonic coordinates ξµ = (λa, µb) as part of the coordinates of CP
2,2.8

The homogeneous coordinates,

yI = (λα, µȧ) , α = 1, 2, 3 ≡ (a, 3) , ȧ = 1, 2 , (2.3)

transform in the fundamental representation of SU(3, 2). The three-dimensional conformal

group, embedded as Sp(4,R) ⊂ SU(2, 2) ⊂ SU(3, 2), acts linearly on the first two and the

last two components of yI . We denote by zI the canonical conjugates of yI ,

f̃(zI) =

∫

d5y eiz
IyI f(yI) , zI = (µ̄α, λ̄ȧ) . (2.4)

In the phase space (y, z), the regular twistor space is obtained as the hypersurface identi-

fying µ and µ̄, i.e. as a representative of the solutions to the constraint

ǫȧaµȧµ̄a = 0 . (2.5)

located at a point in µ̄3. This identification, which breaks scale invariance of the complex

projective space to only a Z2, simply enforces eq. (2.2) which implies that λ and µ are

canonically conjugate to each other.9

From a bosonic point of view we shall construct a string theory with target space (z, y)

and impose the identification as a specific choice of asymptotic state kinematics. While

this string theory has the complete SU(3, 2) symmetry, vertex operators for the restricted

states do not as the additional µ̄3 direction is treated separately.

It is not difficult to include the Grassmann coordinates in this construction; we shall

focus on the case N = 6, for which the two types of supertwistor space wave functions are

Φ̂(λ, η) = φ(λ) + ψI(λ)η
I + φIJ(λ)η

IηJ + ψIJK(λ)ηIηJηK ,

Ψ̂IJK(λ, η) = ψ̄IJK(λ) + ηI φ̄JK(λ) + ηIηJ ψ̄K(λ) + ηIηJηK φ̄(λ) , (2.6)

7E.g. momenta are still bilinears in λ: Pαβ = λαλβ .
8One may in principle consider larger spaces, such as CP2+n,2 with n > 0. It is however not clear

whether this will make later considerations more natural.
9Since eq. (2.5) is homogeneous it only implies that µ is proportional to the canonical conjugate of λ.

This relative coefficient then appears on the right-hand side of eq. (2.2). When restricting the extental

states we shall pick the particular solution with unit relative coefficient, see eq. (2.9).
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with I, J,K = 1, 2, 3. We will denote the fermionic completion of y by η and that of z

by η̄; similarly to z and y, they are Fourier-conjugates of each other. To this end we

should embed SO(6) into a larger symmetry group and partially break it while preserving

the manifest SU(3) on-shell symmetry (of asymptotic states) as well as the non-manifest

SO(6) symmetry (of amplitudes). The suitable choice is coupled to the way it is broken

and the wave functions on the twistor space are recovered. Since the bosonic part of the

supertwistor space is obtained through an SL(2,R)-invariant constraint (2.5) we may con-

sider a similar constraint involving the Grassmann-odd coordinates, such as the vanishing

of a supermomentum component similar to eq. (2.5). It turns out that for our purpose it

is useful to choose

SU(4) ⊂ SU(4, 1) , (2.7)

such that the complete symmetry of the embedding space is SU(3, 2|4, 1). Then, we break

the SU(4, 1) to its SU(3) subgroup by identifying SU(1, 1) ⊂ SU(4, 1) with an SU(1, 1) ⊂

Sp(4,R) and imposing the vanishing of an SU(1, 1)-invariant supercharge,

µ1̇η̄
4 + µ2̇η̄

5 = 0 . (2.8)

It is in principle possible to choose a symmetry group larger than in eq. (2.7); however,

constraints breaking it to the requisite SU(3) R-symmetry of the three-dimensional N = 6

on-shell superspace appear to be less natural.

To summarize, we shall construct a string theory with target space CP2,2|4,1 and choose

to express the kinematic information of the vertex operators in terms of the coordinates

(µ̄, µ, η̄). We then obtain the states of a theory with OSp(6|4) symmetry by imposing the

following constraints on the external state kinematics:

1. We fix µ̄3 to some value and impose eq. (2.5) in the form

µ1̇ = µ̄1 , µ2̇ = µ̄2 . (2.9)

As discussed in the Introduction, such a kinematic configuration is quite singular.

Ignoring fermions, it is akin to setting to zero one component of all external momenta.

In the case at hand we expect the singular factor

δ(0) ≡ δ

(

∑

i

ǫȧaµiȧµ̄ia

)

, (2.10)

where the sum runs over all external states. We will be interested in the coefficient

of such a singular factor.

2. Impose the vanishing of the supercharge component (2.8). We will do this by applying

to the result of item 1) the projector

PF (•) =

∫

dη̄4dη̄5δ(µ1̇η̄
4 + µ2̇η̄

5)(•) . (2.11)
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Given a function G, PF (G) is a particular combination of ∂η̄4G|η̄4,5=0 and ∂η̄5G|η̄4,5=0.

The functions produced by this projector are charged under the U(1) that rephases

uniformly η̄4 and η̄5. While this projector preserves an SU(1, 1) symmetry, explicitly

solving the constraint imposed by it will break it; this is a reflection of the fact that

only one SL(2,R) ⊂ Sp(4,R) acts manifestly on functions on the three-dimensional

twistor space. The integration over η̄4,5 restores this symmetry, albeit non-manifestly.

Similarly to the bosonic constraint, we should expect that imposing the vanishing

of a component of the supercharge is a rather singular limit and that we should

find a Grassmann delta function δ(0) whose argument is in fact the corresponding

component of the supercharge; such a delta function vanishes due to its Grassmann

nature. Unlike the bosonic case however we impose the vanishing of a supercharge

components through the integral operator (2.11) which eliminates the constrained

Grassmann variables; we should therefore expect a different manifestation — though

similar in spirit — of the vanishing Grassmann delta function. The only possibility

that is independent of the number of vertex operators is

δ(0) →
∑

i

ǫȧaµiȧµ̄ia . (2.12)

We shall see that this expectation is indeed realized.

3 A string theory on CP2,2|4,1 and its truncation to ABJ(M) states

With the ingredients discussed in the previous section we now construct, following [13], an

open string theory10 on CP2,2|4,1 and its vertex operators that correspond to the ABJ(M)

states. The worldsheet fields and their conjugates,11

ZI(ρ) = (µ̄α(ρ), λ̄ȧ(ρ), ψ̄A(ρ)) , YI(ρ) = (λα(ρ), µȧ(ρ), ψA(ρ)) , (3.1)

transform in the fundamental representation of SU(3, 2|4, 1) (α = 1, 2, 3, ȧ = 1, 2, A =

1, . . . , 5.). Their dimensions are (0, 1) respectively and have a standard first-order action

S =

∫

d2ρ (YLI∇RZ
I
L + YRI∇LZ

I
R) + SG . (3.2)

Similarly to [13], the covariant derivative ∇ contains the connection for the local GL(1)

symmetry acting as Z → tZ, Y → t−1Y which relates the free fields (3.1) and the coordi-

nates on CP2,2|4,1.

The term SG in (3.2) is the action for a collection of two-dimensional fermions that

will be responsible for the target space gauge degrees of freedom. They consist of N

dimension-1/2 fields Ψ1 and M dimension-1/2 fields Ψ2 with a standard action

SG =

∫

d2ρ
N
∑

i=1

(

Ψ̄i
1,L∂RΨ1,iL + Ψ̄i

1,R∂LΨ1,iR +
M
∑

j=1

Ψ̄j
2,L∂RΨ2,jL + Ψ̄j

2,R∂LΨ2,jR

)

. (3.3)

10Presumably, a heterotic theory can also be constructed along the lines of [40].
11We shall use the same notation for the worldsheet fields as for external state kinematics. To avoid

potential confusion, we shall include explicitly the worldsheet position as argument of the worldsheet fields.
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Quantization of (3.2) yields the usual diffeomorphism ghosts b, c and GL(1) ghosts

u, v; the corresponding left-moving stress tensor and GL(1) current are

T0 = YLI∇LZ
I
L + TG + bL∂cL + ∂L(bLcL) + uL∂vL , JGL(1) = YLIZ

I
L . (3.4)

The equal number of bosonic and fermionic directions in the fundamental representation of

SU(2, 3|4, 1) guarantees that this current is non-anomalous and thus can be gauged. The

BRST operator takes the usual form:

Q =

∫

dρ
[

cT + cTuv + vJGL(1) + cb∂Lc
]

(3.5)

The (Y, Z) system has vanishing central charge; the central charge of the ghost systems is

−26− 2 = −28 and should be cancelled by the fermion system. Similarly to the discussion

in [13, 15], this restricts the possible gauge symmetry of the target space effective theory.

Classically however this cancellation is unimportant and we can pick any desired numbers

N/M of fermions.

Apart from the symmetries acting on Y and Z, the action (3.2) and (3.3) is also

invariant under unitary transformations acting independently on Ψ1 and Ψ2. As usual, the

traceless part of the corresponding left-moving currents have no anomalous term in their

OPE with the stress tensor and thus imply that correlation functions are SU(N)×SU(M)-

invariant. Of the remaining U(1) currents, their difference

JF = q

(

1

N
Ψ̄1Ψ1 −

1

M
Ψ̄2Ψ2

)

(3.6)

also has vanishing mixed anomaly and thus require that nonvanishing correlation functions

have vanishing charge.

On this theory we impose open-string boundary conditions,

YL = YR , ZL = ZR , Ψi,L = Ψi,R , (3.7)

and thus vertex operators depend on a single set of variables which we call Z = ZL = ZR.

Before choosing external states to lie in the three-dimensional twistor space (and thus

choosing to treat the pair (λ3(ρ), µ3̇(ρ)) differently) the theory — and its amplitudes —

are invariant under SU(3, 2|4, 1). The Ψi-independent part of vertex operators have the

same structure as in [13, 41], which is determined by Q-closure and dimension constraints.

The ones to be dressed with various combinations of Ψ are12

U =

∫

dξ

ξ
δ3(µ̄− ξµ̄(ρ))eiµiȧξλ̄

ȧ(ρ)δ0|5(η̄A − ξψ̄A(ρ)) , (3.8)

Vij(ρ) = U(ρ)Jij , Ja
ij = Ψ̄iT

aΨj , (3.9)

12The numerical matrices T a generate SU(N +M) and the Ψ-dependent currents written here generate

the same algebra; for later purposes we write it here in an SU(N)× SU(M) decomposition.
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while those that do not require such dressing and thus describe a sector of gauge-singlet

states13 are14

Vf = f I(Z(ρ))YI(ρ) Vg = gI(Z(ρ))∂Z
I(ρ) . (3.10)

Vf and Vg are primary operators if the functions f I and gI solve the constraints

ZIgI = 0 ∂If
I = 0 , (3.11)

as discussed in [15, 37].

The scattering amplitudes of this string theory are given by the standard construction,

An(1 . . . n) = 〈cV1(ρ1)cV2(ρ2)cV3(ρ3)

∫

dρ4V4(ρ4) . . .

∫

dρnVn(ρn)〉 ; (3.12)

as in the case of the similar open string theory describing the tree-level N = 4 sYM

theory [13], they break up into a sum over sectors labeled by the GL(1) instanton number.

While the complete tree-level S-matrix of this theory can easily be written down, it is not

clear what quantum field theory it corresponds to. It would be interesting to analyze their

structure and understand whether or not it is a standard field theory.15

3.1 Vertex operators with reduced symmetry

Treating differently the target space kinematics corresponding to the pair (λ3, µ̄
3) and

(ψ4, ψ5) breaks the SU(3, 2|4, 1) symmetry (to SU(2, 2|3)) and introduces a few more possi-

bilities for vertex operators, akin to vertex operators for Kaluza-Klein states. It also implies

that, apart from the GL(1) current (3.4) it makes sense to consider a current constructed

from these fields,

J ′(ρ) = qBµ̄
3λ3(ρ) + qF

5
∑

A=4

ψ̄AψA(ρ) . (3.13)

Its mixed anomaly vanishes if

qB = 2qF ; (3.14)

for such a choice of qB and qF non-vanishing correlation functions have vanishing charge

q′ with respect to the current J ′.

Breaking SU(3, 2) to SU(2, 2) allows us to construct a family of dimension-zero

operators

Un(µ̄a, µȧ, η̄; ρ) =

∫

dξ

ξ
(ξµ̄3(ρ))nδ2(µ̄− ξµ̄(ρ))eiµȧξλ̄

ȧ(ρ)δ0|5(η̄A − ξψ̄A(ρ)) , (3.15)

13In theories for which a target space Lagrangian is known such states describe conformal supergravity;

in the following we shall generically refer to them as “conformal supergravity-like states” even though a

target space Lagrangian may not be known.
14One can eliminate ξ and express U in terms of ratios µ̄2(ρ)/µ̄1(ρ), etc. [13].
15The strange signature of the target space can be undone through appropriate Wick rotations.
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which are to be dressed with the Ψ-dependent dimension-one currents Ja
ij defined in

eq. (3.9). These operators may be interpreted as being the Kaluza-Klein modes of the

operator U(ρ) in eq. (3.9). The external kinematics is specified by µ̄a, µȧ and η̄.

A further vertex operator may be obtained by localizing (3.9) on the point µ̄3 = 0:

Uδ(µ̄a, µȧ, η̄; ρ) =

∫

dξ

ξ
δ2(µ̄− µ̄(ρ))δ(ξµ̄3(ρ))eiµȧξλ̄

ȧ(ρ)δ0|5(η̄A − ξψ̄A(ρ)) .

This operator carries charge (−qB) with respect to the bosonic part of the current in

eq. (3.13) and may be interpreted e.g. as a (singular) limit of a superposition of the operators

in eq. (3.15), using a limit representation for the Dirac δ function. Thus, we may trade U−1

for this operator. It may also be possible to interpret it as a twisted sector vertex operator

for a Z2 orbifold acting as Z2 : µ̄3 7→ −µ̄3; such an orbifold would project out U−1. While

potentially interesting and useful, we shall not pursue this interpretation here.

In addition, there are vertex operators which do not depend on Ψi and are analogous

to those in eq. (3.10) apart for the dependence on µ̄3 which is taken as above.

Since the SU(4, 1) symmetry is unbroken at this stage, the target space Grassmann

coordinates η enter only in the combination δ0|5(η̄A − ξψ̄A(ρ)). To project the fermionic

kinematics onto the desired one corresponding to states depending on three Grassmann

variables we act with the projector PF introduced in eq. (2.11); for all of the operators

above their fermionic part becomes

u(η̄, ξψ̄) = PF δ
0|5(η̄A − ξψ̄A(ρ)) = δ0|3(η̄A − ξψ̄A(ρ))δ(ξψ̄4(ρ)µ1̇ + ξψ̄5(ρ)µ2̇) . (3.16)

We notice that it carries nontrivial charge under the current J ′ defined in eq. (3.13) and

thus, since after projection all vertex operators depend on ηA through u(η̄, ξψ̄), they are

all charged under J ′.

To understand some of the consequences of the conservation of this current we list the

charges q′ of the vertex operators thus constructed:

q′(u(η̄, ξψ̄)) = qF q′(PFVg) = q′(PFVf ) = qF

q′(PFUn) = nqB + qF = (2n+ 1)qF q′(PFUδ) = −qB + qF = −qF . (3.17)

An interesting class of correlators are those containing an equal number of PFU−1 and

PFU0; it turns out that it is possible to consistently truncate the theory to only the states

described by them. We shall revisit this truncation in section 6; to justify it we examine

the new current

JU(1) = J ′ + JF . (3.18)

For a particular choice of q charge for the fermions Ψi,

q = −
NM

N +M
qF , (3.19)

the appropriately-dressed operators PFU−1 and PFU0,

V−1,12(µ̄a, µȧ, η̄; ρ) =J12 PFU−1(µ̄a, µȧ, η̄; ρ) V0,21(µ̄a, µȧ, η̄; ρ) = J21 PFU0(µ̄a, µȧ, η̄; ρ) ,

(3.20)
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have vanishing charge with respect to it. All other vertex operators that can be constructed

have nonzero qU(1) charge. Therefore, from the perspective of the target space effective

action for this theory it is possible to consistently truncate it at tree level to the states (3.20).

Indeed, introducing charged operators in a correlation function of chargeless operators

requires in fact the introduction of two operators of opposite charges and thus no chargeless

source can appear in the equations of motion for charged fields; thus, the former can be

consistently truncated away. We shall comment in section 6 on the possibility of truncating

to chargeless states at higher orders in perturbation theory.

We also note that the chargeless states described by the vertex operators (3.20) can be

put in one to one correspondence with the states of the two ABJ(M) multiplets (2.6). The

absence of vertex operators that are independent of Ψi is consistent with the expectation

that the only asymptotic states of this theory correspond to fields transforming nontriv-

ially under the gauge group. To construct these operators we have chosen the perhaps

unorthodox choice of labeling the external kinematics with half the coordinates and with

the momenta conjugate to the other half of the coordinates. This choice makes it straight-

forward to impose on these operators the constraint in eq. (2.9), enforcing the fact that

the twistor space is a phase space. We shall not do this here, but rather include it in their

correlation functions.

3.2 The general structure of scattering amplitudes

Color-dressed amplitudes are computed in the usual way, from disk correlation functions

of integrated and unintegrated vertex operators. As in the case of the N = 4 open string

as well as in the case of amplitudes (3.9) with SU(3, 2|4, 1) symmetry, due to the presence

of the GL(1) gauge field, correlation functions are given by sums over sectors labeled by

the instanton number [13, 41],

A2n(1 . . . 2n)=〈cV−1(ρ1)cV0(ρ2)cV−1(ρ3)

∫

dρ4V0(ρ4) . . .

∫

dρ2nV0(ρ2n)〉 =
∞
∑

k=1

An,k (3.21)

A2n,k=〈cV−1(ρ1)cV0(ρ2)cV−1(ρ3)

∫

dρ4V0(ρ4) . . .

∫

dρ2nV0(ρ2n)〉k . (3.22)

The currents J12 and J21 in the definition of V−1 and V0 in eq. (3.20) introduce the alternate

ordering used here. The integration over the auxiliary ξ variable in each vertex operator

effectively imposes a gauge-fixing of GL(1). In the sector with instanton number k − 1, Z

has k zero modes; since there is no non-trivial OPE between the U0 and U−1 factors, their

correlation function is solely given by an integral over these zero modes. The expression of

Z at the position of each vertex operators is,

µ̄α(ρi) =
k
∑

m=1

zα(m)ρ
m−1
i , λ̄ȧ(ρi) =

k
∑

m=1

zȧ(m)ρ
m−1
i , ψ̄A(ρi) =

k
∑

m=1

zA(m)ρ
m−1
i ; (3.23)

and the integration measure over the k collective coordinates (zα(m), z
ȧ
(m), z

A
(m)) is

∫ k
∏

m=1

dz
5|5
(m) • . (3.24)
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To completely define the integral it is necessary to also specify the integration contour; we

will take it such that it instructs us to sum over the zeroes of the arguments of the delta

functions and requires use of Cauchy’s theorem for the other singularities of the integrand.

A similar contour is chosen if Vδ is used instead of V−1.

A common part to all correlation functions determining scattering amplitudes of fields

charged under the gauge group is the correlator of currents Jij (3.9). They determine

the various trace structures of amplitudes. We will be interested mainly in the vertex

operators (3.20), so we sketch here the structure of the correlator of n J12 and n J21
currents. Since 〈ΨiΨj〉 ∝ δij , the insertion points of the operators J12 and J21 alternates

on the boundary of the disk. Thus,

〈Ja1
12 (ρ1) . . . J

a2n
21 (ρ2n)〉=

∑

S1

Tr[T a1T a2 . . . T a2n ]

cyc(1, . . . , 2n)
+

n−1
∑

l=1

∑

Sl
2

Tr[T a1 . . . T a2l ]Tr[T a2l+1 . . . T a2n ]

cyc(1, . . . , 2l)cyc(2l+1, . . . , 2n)

+triple-traces + . . . ,

cyc(ρl, . . . , ρm) = (ρm − ρl)
m−1
∏

i=l

(ρi − ρi+1) (3.25)

where the sums run over the permutations of even and odd labels up to cyclicity:

S1 =
(

S(1, 3, . . . , 2n− 1)× S(2, 4, . . . , 2n)
)

/Z2n (3.26)

S l
2 =

(

S(1, 3, . . . , 2n− 1)× S(2, 4, . . . , 2n)
)

/Z2l × Z2(n−l) etc.

Inclusion of J11 and J22 factors is trivial, albeit somewhat cumbersome to write out in

general. While from a field theory perspective amplitudes with a single-trace color structure

are expected to receive contributions only from fields transforming nontrivially under the

gauge group, the amplitudes with a multi-trace structure receive contributions from the

exchange of gauge-singlets, such as perhaps conformal supergravity. In the case of the

ABJ(M) theory it was argued [19] that the entire tree-level S matrix has only the former

color structure; thus, all contribution to the latter structures necessarily comes only from

such singlet states.

4 ABJ(M) amplitudes from the truncated CP2,2|4,1 string theory

Let us now restrict ourselves to the vertex operators (3.20) and evaluate the integrals

over moduli of the fields ψ̄4(ρ), ψ̄5(ρ), µ̄3(ρ) and λ̄ȧ(ρ) which correspond to the directions

of CP2,2|4,1 that are orthogonal to the hypersurface representing the three-dimensional

twistor space.

The integral over the moduli of ψ̄4,5 constrains the degree k of the instanton and

relates it to the number of vertex operators. Indeed, the only part of the vertex operators

containing these moduli is the result (3.16) of the projection operator. For a fixed number

2n of vertex operators there are 2n such delta functions. Since they are linear in the

2 × k fermionic moduli (k for each one of the two fermionic directions), the only nonzero

contribution to their correlation function comes from instantons with degree

k = n . (4.1)
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Thus, the 2n-point amplitude is

A2n,k = δk,nA2n,n with (4.2)

A2n,n =

∫
∏2n

i=1 dρi
VolGL(2)

k
∏

m=1

d5|5dzI(m)

∏

i∈{V−1}

U−1(ρi)
∏

j∈{V0}

U0(ρj) 〈J12(ρ1) . . . J21(ρ2n)〉 ,

where {V−1} ≡ {1, 3, 5, . . . } and {V0} ≡ {2, 4, 6, . . . } stand for the set of labels of operators

of type V−1 and V0, respectively, and 〈J12(ρ1) . . . J21(ρ2n)〉 is given by (3.25). In the

following we continue to denote the instanton degree by k.

Next, we impose the kinematic restrictions and evaluate the integrals over the variables

that do not appear in the three-dimensional twistor space. To this end we parametrize

A2n,n as

A2n,n =

∫
∏n

i=1 dρi
VolGL(2)

dξi
ξi

k
∏

m=1

d2|3dzI(m) I3IexpI4,5

2n
∏

i=1

δ0|3(η̄Ai − ξiψ̄
A(ρi))〈J12(ρ1) . . . J21(ρ2n)〉

(4.3)

where I3 contains the integral over the µ̄3(ρ) moduli, Iexp contains the integral over the λ̄

moduli in the presence of the kinematic constraint (2.9) (that half of the three-dimensional

twistor space directions are to be interpreted as the conjugates of the other half) while I45
is the result of the integration over the ψ̄4 and ψ̄5 moduli in the presence of the kinematic

constraint (2.9) as well as of the constraints generated in the evaluation of Iexp. We shall

evaluate the various factors in this order.

The integral I3 over z3(m) moduli parametrizing µ̄3(ρ) is trivial because the only de-

pendence on these variables is due to the (ξiµ̄
3(ρi))

−1 factors in V−1. Since there are as

many moduli as such factors (cf. eq. (4.1)) we can simply change variables to decouple the

integrals:

I3 =

∫ k
∏

m=1

dz3(m)

∏

i∈{V−1}

1

ξiµ̄3(ρi)
=

1

deti∈{V−1}(ξiρ
m−1
i )

∫ k
∏

m=1

dz3(m)

z3(m)

. (4.4)

In general, the k × k matrix in the denominator is non-singular. We also notice that for

this choice of vertex operators we must choose the integration contour for z3(m) to enclose

the origin of the µ̄3 moduli space. Thus, the integral over the µ̄3 moduli is16

I3 =
1

deti∈{V−1}(ξiρ
m−1
i )

. (4.5)

To evaluate the remaining integrals we first examine the consequences of the special

kinematic configuration (2.9). As discussed in the Introduction and in section 2, to extract

16We note that the analogous integral appearing if we choose to trade V−1 for Vδ has the same value.

Indeed, in this case I3 is replaced with

I ′3 =

∫ k
∏

m=1

dz3(m)

∏

i∈{Vδ}

δ(ξiµ̄
3(ρi)) =

1

deti∈{Vδ}(ξiρ
m−1
i )

.
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a physically-meaningful amplitude it is necessary to strip off the singular and vanishing

factors (2.10) and (2.12), respectively. It is not difficult to see that the factor (2.10) appears

quite naturally. Indeed, evaluating the integral over the λ̄ moduli without imposing this

restriction and carrying out manipulations similar to those in [3] it is possible to extract

an overall factor of

δ4
( 2n
∑

i=1

µ̄ai µiȧ

)

; (4.6)

Then, the constraint (2.9) sets to zero the antisymmetric part of the argument of the delta

function and thus it yields (2.10). If the constraint (2.9) is imposed strictly before the

integration over moduli is carried out it yields a divergence proportional to the volume

of some integration variable. We will therefore first isolate the origin of this singularity,

which may be identified as the appearance of a shift symmetry, and account for the Jacobian

relating it to (2.10).

The relevant integral is

Iexp =

∫ k
∏

m=1

d2zȧ(m)

2n
∏

i=1

δ2(µ̄i − ξiµ̄(ρi))e
iµiȧξiλ̄

ȧ(ρi) . (4.7)

In the presence of eq. (2.9) the integrand is invariant under the shift transformations

λ̄1̇(ρ) 7→ λ̄1̇(ρ) + aµ̄1(ρ) λ̄2̇(ρ) 7→ λ̄2̇(ρ) + aµ̄2(ρ) ; (4.8)

This symmetry allows one to set to zero one of the integration variables.

To isolate the problem we trade the integral over one modulus (which we set to zero

using the shift transformation) to an integral over the collective coordinate a. The integral

becomes

Iexp =

∫

(

k
∏

m=1

2
∏

ȧ=1

)′

dzȧ(m)

2n
∏

i=1

δ2(µ̄i − ξiµ̄(ρi))e
iµiȧξi

ˆ̄λ
ȧ
(ρi)

∫

(z1(1)da)e
ia

∑n
i=1 µ̄

a
i µiȧδ

ȧ
a (4.9)

where ˆ̄λ = λ̄|
z1̇
(1)

=0
and the prime in the measure of the first integral signals that one is not

supposed to integrate over z1̇(1). The second integral gives the delta function (2.10) which

is responsible for the singularity mentioned above and the Jacobian factor from the change

of variables from z1̇(1) to a.

In the first integral we can safely impose the projection (2.9):

2n
∏

i=1

δ2(µ̄i−ξiµ̄(ρi))e
iµiȧξi

ˆ̄λ
ȧ
(ρi)

eq. (2.9)
−−−−→

2n
∏

i=1

δ2(µ̄i−ξiµ̄(ρi))e
iξ2i

∑k
m,l=1(z(m)1ẑ

1̇
(l)

+z(m)2ẑ
2̇
(l)

)ρm+l−2
i ,

(4.10)

where ẑȧ(l) = zȧ(l) unless ȧ = 1 and l = 1 when it is zero. As mentioned earlier, the

identification (2.9) breaks the manifest SL(2,R) × SL(2,R) of (3.9) to a single (diagonal)
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SL(2,R) which is manifest in the 3d twistor space. This breaking is manifest in the equation

above; we shall use the shorthand notation (z(m)1ẑ
1̇
(l) + z(m)2ẑ

2̇
(l)) ≡ z(m)aẑ

ȧ
(l)δ

a
ȧ .

To carry out the integral over the moduli ẑȧ(m) it is useful to change variables to

αw =
k
∑

m=1

k
∑

l=1

δaȧz(m)aẑ
ȧ
(l)δm+l−1,w ; (4.11)

the Jacobian of this transformation is

det
∂αw

∂ẑȧ(l)
= det

k
∑

m=1

z(m)aδm+l−1,w = det w×(l,a)(z(w−l+1)a) , (4.12)

where we indicated the indices of the matrix whose determinant is to be evaluated. Their

range is w = 1, . . . , 2k− 1, l = 1, . . . , k, a = 1, 2 and the pair (l, a) = (1, 1) is not included.

The entries of the matrix corresponding to unphysical values of w − l + 1 are zero. The

exponents in eq. (4.10) are linear in αw and thus the αw-integrals yield only delta functions;

Iexp becomes

Iexp =
z1(1)

detw×(l,a)(z(w−l+1)a)

2k−1
∏

w=1

δ

( 2n
∑

i=1

ξ2i ρ
w−1
i

)

δ

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

) 2n
∏

i=1

δ2(µ̄i − ξiµ̄(ρi)) . (4.13)

The last component of A2n,k is the integral over the fermionic moduli z4(l) and z
5
(l):

IexpI4,5 = Iexp

∫ k
∏

l=1

dz4(l)dz
5
(l)

2n
∏

i=1

δ(ξiψ̄
4(ρi)µi1̇ + ξiψ̄

5(ρi)µi2̇) . (4.14)

We included Iexp because the delta functions present in it are relevant for the proper-

ties of the integrand. We note that, similarly to Iexp, in the presence of the kinematic

constraint (2.9) this integrand acquires the fermionic shift symmetry

ψ̄4 7→ ψ̄4 + ηµ̄1 , ψ̄5 7→ ψ̄5 + ηµ̄2 . (4.15)

Thus, one modulus can be set to zero and consequently I4,5 vanishes identically (since

it is a Grassmann integral). To extract this zero we carry out similar manipulations as

for Iexp and isolate the integration variable that disappears should we impose the strict

identification (2.9). First we trade the integral over z4(1) for an integral over η = z4(1)/z
1
(1)

IexpI4,5 = Iexp

∫

dη

z11

k
∏

l=2

dz4(l)

k
∏

m=1

dz5(m)

2n
∏

i=1

δ(ξi
ˆ̄ψ
4
(ρi)µi1̇ + ξiψ̄

5(ρi)µi2̇ + ηµ̄ai µiȧδ
ȧ
a) . (4.16)

Carrying out the integration over all fermionic moduli except η leads to a determinant

IexpI4,5 = Iexp det
∂(ξi(µi1̇

∑k
m=2 z

4
(m)ρ

m−1
i + µi2̇

∑k
m=1 z

5
(m)ρ

m−1
i ))i=2,...,2n

∂zA(m)|A=4,5
(4.17)

×

∫

dη

z1(1)
δ

(

η
2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

,
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while the η-integral produces a regularized zero and the corresponding Jacobian factor:

IexpI4,5 = Iexp det(ξiµi1̇ρ
m−1
i |m=2,...,k; ξiµi2̇ρ

m−1
i |m=1,...,k)

1

z1(1)

( n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

. (4.18)

Here i takes 2n− 1 values as one fermionic delta function was treated separately. We have

therefore extracted the origin of the zero value of the integral in the limit (2.9) and it is

parametrized by the same quantity leading to the divergence of the naive bosonic moduli

integral in the same limit. For the remaining determinant we can enforce (2.9) and find

IexpI4,5 = Iexp det

(

ξ2i

k
∑

l=1

ρm+l−2
i z1(l)|m=2,...,k; ξ

2
i

k
∑

l=1

ρm+l−2
i z2(l)|m=1,...,k

)

1

z11

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

.

(4.19)

The z1(1) factor cancels a similar factor in Iexp; moreover the dependence on the za(m) moduli

cancels between the determinant in Iexp and the one that appeared from the fermionic

integration. To see this one simply changes the summation index to w = l +m − 1 with

the appropriate upper bound on its range; the result of this cancellation is:

IexpI4,5 = det w×i(ξ
2
i ρ

w−1
i )

2k−1
∏

w=1

δ

(

2n
∑

i=1

ξ2i ρ
w−1
i

)

2n
∏

i=1

δ2(µ̄i − ξiµ̄(ρi)) (4.20)

×

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

δ

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

where i = 2, . . . , 2n and w = 1, . . . , 2k − 1 = 1, . . . , 2n− 1.

Putting together eqs. (4.2), (4.3), (4.4) and (4.20) we find that the scattering ampli-

tudes of qU(1) = 0 states in the string theory constructed in section 3 are

A2n,n =

∫
∏n

i=1 dρi
VolGL(2)

dξi
ξi

n
∏

m=1

d2|3dzI(m)

det w×i(ξ
2
i ρ

w−1
i )

det (i∈{V−1})×m(ξiρ
m−1
i )

2k−1
∏

w=1

δ

(

2n
∑

i=1

ξ2i ρ
w−1
i

)

×
2n
∏

i=1

δ2|0(µ̄i − ξiµ̄(ρi))δ
0|3(η̄Ai − ξiψ̄

A(ρi)) 〈J12(ρ1) . . . J21(ρ2n)〉

×

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

δ

( 2n
∑

i=1

µ̄ai µiȧδ
ȧ
a

)

. (4.21)

Upon dropping the factors on the third line (or, alternatively, defining the kinematic con-

straints to also include the integral operator
∫

d ln(
∑2n

i=1 µ̄
a
i µiȧδ

ȧ
a)), focusing on the single-

trace component of the current correlator, making the change of variables ξi = ξ̃k−1
i , slightly

reorganizing the integration variables and Fourier-transforming (µ̄ai , η̄
A
i ) to Λi = (λia, ηiA),
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eq. (4.21) becomes17

T2n,k(Λ)

(k − 1)2n
= δk,n

∫

d2×2nσ

vol[GL(2)]
J ∆ 〈J12(σ1) . . . J21(σn)〉

k
∏

m=1

δ2|3(Cmi[σ]Λi) ,

Cmi[σ] = ak−m
i bm−1

i , σi = (ai, bi) = ξ̃i(1, ρi) , 〈Ψp(σi)Ψ̄q(σj)〉 =
δpq
(i, j)

∆ =
2k−1
∏

j=1

δ(
∑

i

a2k−1−j
i bj−1

i ) , J =
Num

Den
, (i, j) = aibj − ajbi (4.22)

Den =
∏

1≤i<j≤k

(2i− 1, 2j − 1) , Num = det
1≤i,j≤2k−1

(a2k−1−j
i bj−1

i ) =
∏

1≤i<j≤2k−1

(i, j) ,

i.e. the expression proposed in [23] for the tree-level scattering amplitudes of the ABJ(M)

theory. The change of variables ξi = ξ̃k−1
i maps directly the various factors in eq. (4.21)

into ∆, Num and Den.

In the next section we will explore the double-trace structures included in (4.21) and

interpret them as the contribution of intermediate N = 6 conformal supergravity states.

5 ABJ(M) coupling to conformal supergravity

Conformal supergravity (CSG) in three dimensions has no propagating degrees of freedom;

as discussed in earlier sections, this is mirrored in our construction by the fact that there are

no vertex operators that do not carry gauge indices. Thus, in three dimensions, the presence

of conformal supergravity is observed in the existence of tree-level multi-trace amplitudes of

colored fields. These amplitudes are given by the multi-trace color structures that appear

in the current correlator (3.25) entering eq. (4.21). In this section we present evidence

that they are the same as the multi-trace amplitudes following from the Lagrangian of the

ABJ(M) theory coupled to N = 6 conformal supergravity constructed in [26, 35, 36].

The relation between single-trace and multi-trace amplitudes follows quite straightfor-

wardly from the structure of current correlator; in the variables of the eq. (4.21), breaking

one trace into two traces at positions i and j

Tr[T a1 . . . T aj . . . T ai . . . T a2n ] −→ Tr[T aj . . . T ai ]Tr[T a1 . . . T aj−1T ai+1 . . . T a2n ] (5.1)

is reflected at the kinematic level by the appearance of the multiplicative factor

Fij =
(ρi − ρi+1)(ρj−1 − ρj)

(ρi − ρj)(ρj−1 − ρi−1)
, (5.2)

or, in the variables of eq. (4.22),

Fij =
(i, i+ 1)(j − 1, j)

(ij)(j − 1, i+ 1)
. (5.3)

17A numerical factor similar to the one on the left-hand side exists also in the relation between the

different formulations of the tree-level amplitudes of N = 4 sYM theory.
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The notation18 we will use for multi-trace color-stripped amplitudes is

A(n1,n2,... ),k(1, . . . , 2n) where k is the instanton degree that determines it and ni are

the numbers of gauge group generators in each trace. Let us discuss first the case of the

four-point amplitudes; this is the simplest example, in that the entire super-amplitude is

determined by a single component amplitude.

5.1 The four-point amplitudes

The single-trace four-point superamplitude arising from (4.22) was computed in [22] and

shown to agree with the ABJ(M) four-point superamplitude. Its double-trace version can

be easily reconstructed from the details of that solution after the factor (5.3) is included.

We will choose to consider the single- and double-trace structures Tr[T a1T a2T a3T a4 ] and

Tr[T a1T a2 ]Tr[T a3T a4 ] (i.e. we choose i = 1 and j = 2). Gauge fixing GL(2) as in [22]

C11 = c12 , C12 = 1 , C13 = c32 , C14 = 0 , (5.4)

C21 = c14 , C22 = 0 , C23 = c34 , C24 = 1 , (5.5)

implies that the relevant multiplicative factor (5.3) is

F12 =
(C14C21 − C24C11)(C12C23 − C22C13)

(C14C23 − C24C13)(C12C21 − C22C11)
=
c12c34
c32c14

. (5.6)

Using the solution to the bosonic part of the delta-function constraints,

c12 = −
〈32〉

〈31〉
, c32 = −

〈21〉

〈31〉
, c14 = −

〈34〉

〈31〉
, c34 = −

〈41〉

〈31〉
, (5.7)

we find that the Tr[T a1T a2 ]Tr[T a3T a4 ] superamplitude is

A(2,2),2(1, 2; 3, 4) = −
〈23〉〈14〉

〈12〉〈34〉
A(4,0),2(1, 2, 3, 4) = −

〈14〉

〈34〉3
δ3

(

4
∑

i=1

pi

)

δ6

(

4
∑

i=1

λαi η
A
i

)

. (5.8)

The presence of the high power of 〈34〉 in the superamplitude above can be understood

as being due to the higher-derivative action of the conformal graviton. For component

amplitudes having other intermediate fields the power of 〈34〉 is lowered by the contributions

of the fermionic delta function.

Let us consider the four-scalar double-trace amplitude A(2,2),2(p
φ
1 , p

φ̄23

2 , pφ23
3 , pφ̄4 ) as it

is the easiest to calculate from the Lagrangian and probes the couplings of the conformal

supergravity and ABJ(M) fields. From (5.8) we can extract its expression:

A(2,2),2(p
φ
1 , p

φ̄23

2 , pφ23
3 , pφ̄4 ) =

∫ 4
∏

i=1

d3ηi η
1
2(η

2
3η

3
3)(η

1
4η

2
4η

3
4)A(2,2),2(1, 2; 3, 4) = −

〈23〉〈31〉

〈12〉
. (5.9)

Inspecting the Lagrangian in ref. [26] it is not hard to see that this amplitude should

be generated by a single Feynman graph with the exchange of the Chern-Simons vector

18This notation does not uniquely specify a general multi-trace amplitude; it will however be sufficient

for the purpose of our discussion.
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field BIJ
µ (the SO(6) R-symmetry gauge field) in

L = −eDµφ̄
i
AD

µφAi + . . . (5.10)

Dµφ
A
i =

(

∂µ +
1

2
iBµ

)

φAi −
1

4
BIJ

µ φBi (Σ
IJ )B

A − φAj Ãµ
j
i ,

where I and J are SO(6) indices in the fundamental representation, A and B are SU(4)

fundamental indices and (ΣIJ )B
A are the SO(6) generators in the spinor representation.

The relation of the scalar fields carrying the scalar fields SU(4) indices [26] and the fields

in the on-shell multiplets (2.6) follows from the embedding of the manifest SU(3) on shell

R-symmetry group in SU(4):

(φ1, φ2, φ3, φ4) ∼ (φ23, φ31, φ12, φ) , (φ̄1, φ̄2, φ̄3, φ̄4) ∼ (φ1, φ2, φ3, φ123) . (5.11)

Using the Chern-Simons propagator and the standard current interaction Feynman

rules following from eq. (5.10) is it not difficult to find

A(2,2),2(p
φ4

1 , p
φ̄1
2 , p

φ1

3 , p
φ̄4
4 ) = (p1 − p2)

a ǫabc(p1 + p2)
b

(p1 + p2)2
(p3 − p4)

c = −
〈23〉〈31〉

〈12〉
, (5.12)

matching the result above. Supersymmetry then guarantees that the other components of

the superamplitude (5.8) follow from the same Lagrangian.19

5.2 CGS interactions for any number of external legs

For a more systematic comparison with the amplitudes following from the Lagrangian

of [26] a different approach, which avoids the direct computation of amplitudes, is more

efficient. To this end let us examine again the four-point amplitudes, determined by an

k = 2 instanton, and notice that certain single- and double-trace component amplitudes

with different external states have the same expression. For example, the following integrals

with different integration measures and integrand denominators are equal:

∫

dη11dη
1
2dη

2
3dη

2
4

∏2
m=1 δ(

∑4
i=1Cmiη

1
i )δ(

∑4
i=1Cmiη

2
i )

(12)(21)(34)(43)
∝

1

(12)(34)
(5.13)

∫

dη21dη
1
2dη

1
3dη

2
4

∏2
m=1 δ(

∑4
i=1Cmiη

1
i )δ(

∑4
i=1Cmiη

2
i )

(12)(23)(34)(41)
∝

1

(12)(34)
.

They represent contributions to different double-trace Tr[T a1T a2 ]Tr[T a3T a4 ] and single-

trace Tr[T a1T a2T a3T a4 ] amplitudes, respectively. The denominators included above are the

only differences between the two superamplitudes; thus, by choosing external states with

the same η31, η
3
2, η

3
3 and η34 content, the resulting single-trace and double-trace amplitudes

are equal.

19It is also easy to check that the four-fermion amplitude
∫
∏4

i=1 d
3ηi (η

1
1η

2
1η

3
1)(η

2
1η

3
1)η

1
3 A(2|2),2(1, 2; 3, 4)

matches as well. This amplitude is determined by the minimal coupling

DµψAi =

(

∂µ +
1

4
ωµ abγ

ab +
1

2
iBµ

)

ψAi +
1

4
BIJ

µ (ΣIJ )A
BψBi − ψAjÃµ

j
i

of ABJ(M) fermions with the same CSG R-symmetry gauge field.

– 18 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
8

From a Lagrangian perspective this equality is a consequence of the existence of similar

terms with and without conformal supergravity interactions, as detailed below:

∫

dη31dη
3
2dη

3
3dη

3
4 η

3
3η

3
4

Tr
(

φ̄1(1)ψ1(2)
)

Tr
(

ψ̄1(3)φ1(4)
)

Tr
(

φ̄2(1)ψ1(2)ψ̄
2(3)φ1(4)

)

Contact term

−3
8geψ̄

AiψBjφ̄
j
Aφ

B
i − 1

8geψ̄
AiψAj

(

φ̄φ
)j

i
−2ef ijklψ̄

AkψBiφ̄
l
Aφ

B
j

∫

dη31dη
3
2dη

3
3dη

3
4 η

3
2η

3
4

Tr
(

φ̄1(1)φ
2(2)

)

Tr
(

φ̄2(3)φ
1(4)

)

Tr
(

φ̄2(1)φ
2(2)φ̄1(3)φ

1(4)
)

Exchange of spin-1 Chern-Simons field with q = p1 + p2

−eDµφ̄
i
AD

µφAi −eDµφ̄
i
AD

µφAi

DµφAi = · · · − 1
4B

IJ
µ φBi (Σ)

A
B DµφAi = · · · − φAj Ã

j
µ i

∫

dη31dη
3
2dη

3
3dη

3
4 η

3
1η

3
3

Tr
(

ψ̄2(1)ψ1(2)
)

Tr
(

ψ̄1(3)ψ2(4)
)

Tr
(

ψ̄1(1)ψ1(2)ψ̄
2(3)ψ2(4)

)

Exchange of spin-1 Chern-Simons field with q = p1 + p2

− e
2

(

ψ̄AiγµDµψAi −Dµψ̄
AiγµψAi

)

− e
2

(

ψ̄AiγµDµψAi −Dµψ̄
AiγµψAi

)

DµψAi = · · ·+ 1
4B

IJ
µ (ΣIJ) B

A ψBi DµψAi = · · · − ψAjÃ
j

µ i
∫

dη31dη
3
2dη

3
3dη

3
4 η

3
1η

3
4

Tr
(

ψ̄2(1)ψ1(2)
)

Tr
(

φ̄2(3)φ
1(4)

)

Tr
(

ψ̄1(1)ψ1(2)φ̄1(3)φ
1(4)

)

Contact term and exchange of spin-1 Chern-Simons field with q = p1 + p2

−eDµφ̄
i
AD

µφAi −eDµφ̄
i
AD

µφAi

DµφAi = · · · − 1
4B

IJ
µ φBi (Σ)

A
B DµφAi = · · · − φAj Ã

j
µ i

− e
2

(

ψ̄AiγµDµψAi −Dµψ̄
AiγµψAi

)

− e
2

(

ψ̄AiγµDµψAi −Dµψ̄
AiγµψAi

)

DµψAi = · · ·+ 1
4B

IJ
µ (ΣIJ) B

A ψBi DµψAi = · · · − ψAjÃ
j

µ i

1
4geψ̄

AiψBi(φ̄φ)
B

A −2ef ijklψ̄
AkψBi(φ̄

l
Aφ

B
j − 1

2δ
B
A φ̄

l
Cφ

C
j )

(5.14)

This comparison probes only the matter interactions of conformal supergravity fields; while

it does not probe the self-interactions of the latter, they should be uniquely determined by

superconformal symmetry.

The discussion above can be extended to a comparison of single- and double-trace

amplitudes with any number of external legs. The one potential difficulty is that, since

the instanton degree is larger than k = 2, it is not obvious that simply interchanging two

Grassmann coordinates has the same effect as in eq. (5.13); a judicious choice of external

states addresses this issue. As in the beginning of this section, let i and j be the states that

are non-adjacent in the single-trace but are adjacent in the double-trace amplitudes. In

the double-trace case we choose i and j to contain the Grassmann variables η1i and η1j and

the states i+1 and j−1 to contain η2i+1 and η2j−1 and any other state k either contains the
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product η1kη
2
k or is independent of η1 and η2. In the single-trace case we interchange the 1

and 2 indices of ηj and ηi+1 while leaving unchanged all the other dependence on η1 and

η2. This choice of η-s implies that the fields (i, i+ 1, j − 1, j) are either (ψ̄2, ψ2, ψ̄
1, ψ1) or

(φ̄1, φ
1, φ̄2, φ

2) in the double-trace amplitude while in the single-trace amplitude the fields

(i, i+ 1, j − 1, j) are either (ψ̄2, ψ1, ψ̄
1, ψ2) or (φ̄1, φ

2, φ̄2, φ
1). By explicitly evaluating the

integrals analogous to (5.13) it is not difficult to see that they are equal.

To figure out the gauge-singlet fields that can be responsible for these amplitudes we

follow the SU(4) indices. Since the two traces transform nontrivially under SU(4) the fields

exchanged between them must carry such indices; this excludes several fields, including the

(conformal) graviton. The (conformal) gravitino as well as some auxiliary fields interact

through vertices which are antisymmetric in their SU(4) indices; this interaction is forbid-

den because of our assumption that both particles i and j appear together with η1 in their

respective multiplets. Thus, apart from contact terms in the ABJ(M)-coupled conformal

supergravity Lagrangian, the only fields that can yield a double-trace structure for the field

configuration described above are the spin-1 Chern-Simons fields BIJ
µ . Inspecting the field

configuration in the single-trace amplitude it is not difficult to conclude that the interac-

tion between the fields which belonged to the two different traces can be mediated either

by a contact term or by an SU(4)-neutral field; the only such option is the spin-1 Chern

Simons field Aµ. These interactions are the same as those leading to the correspondence of

four-point single- and double-trace amplitudes, as expected from the equality of amplitudes

following from our construction.

6 Outlook

In this paper we have shown that a particular truncation of an open string theory on

CP2,2|4,1 reproduces the tree-level amplitudes of the ABJ(M) theory in the form proposed

in [23].20 The spectrum of this string theory contains a finite number of states and the

truncation can be interpreted as dimensional reduction; thus, our construction suggests

that the ABJ(M) theory can be interpreted as the dimensional reduction of a higher-

dimensional (perhaps non-unitary) field theory. It would be interesting to find a Lagrangian

interpretation of the latter; the S matrix following from the vertex operators (3.9) implies

that it should conserve the six-component matrix µ̄αµȧ. Since CP2,2|4,1 is a Calabi-Yau

space, this theory can also be described as the string field theory of the topological B-model

on this space.

The string theory also contains states carrying no gauge group indices. Upon trunca-

tion to a three-dimensional theory with the ABJ(M) field content such asymptotic states

disappear from the spectrum. They survive, however, from an off-shell perspective and

affect the S matrix by generating multi-trace scattering amplitudes at tree level. By com-

puting double-trace amplitudes in this string theory we have shown that their interactions

20It may be possible to extend this construction to mass-deformed Chern-Simons-matter theories by

considering two copies of CP2,2|4,1, in close analogy to the ambitwistor space which is a subspace of two

copies of the super-twistor space.
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with the gauge-nonsinglet fields is given by the Lagrangian of the ABJ(M) theory coupled

to N = 6 conformal supergravity proposed in [26].

An important step in our construction, which led to a spectrum containing only the

multiplets (2.6), was the truncation to the zero-charge states with respect to the current

JU(1) defined in eq. (3.18). While, as discussed in section 3, this truncation is consistent

at the classical level, quantum mechanically it requires that this current be gauged. To

this end there should be no second order pole in the JU(1)(ρ1)JU(1)(ρ2) OPE, such that

inclusion of JU(1) in the BRST operator with the corresponding ghost field w keeps Q

nilpotent. Using eq. (3.14), absence of such a pole requires that

0 = q2B − 2q2F −
N +M

NM
q2 = 2q2F −

N +M

NM
q2 . (6.1)

Thus, with the choice (3.19) for the Ψ1,2 charge, the gauge anomaly cancels only for

2(N +M) = NM → (N,M) ∈ {(4, 4), (6, 3)}. (6.2)

It may be possible to accommodate such values of N and M while also cancelling the

central charge c = cbc + cuv + cws = −30.

Gauging this symmetry requires that the fermion action be covariantized with respect

to the new gauge field. As with the GL(1) gauge field, it may be gauged away except

for topologically-nontrivial sectors. Thus, the correlation functions of the fermion currents

Jij (3.9) breaks up into a sum over instanton sectors, with the zero-instanton sector re-

producing the amplitudes (4.21). Nontrivial instantons will modify the fermion two-point

function and thus the current correlators. It would be interesting to understand if such

additional terms can be given an interpretation from a field theory perspective. Such a

framework, in which both the kinematic and color part of an amplitude are treated symmet-

rically (and are given by instanton sums), is reminiscent of color/kinematics duality [42].

The kinematic part however exhibits localization on instantons of fixed degree; since a

similar localization does seem to occur for the color-fermions, this may be a possible expla-

nation for the absence of the duality for ABJ(M) amplitudes [43]. It would be interesting

to explore whether the duality is restored if one restricts the “color instantons” to have the

same degree as the “kinematic instantons”.

A feature of the construction discussed in the previous sections is that, in all trace

structures of eq. (4.21), all vertex operators of type V0 or V−1 are inserted at alternating

points. This was, of course, a consequence of their Jij content and mirrors the fact that

in the N = 6 super-Chern-Simons theories no two adjacent external states in a color-

stripped amplitude belong to the same multiplet. For product gauge groups with specific

ratios of the rank of the factors it is possible to change this pattern while preserving the

truncation to qU(1) = 0 states at the expense of introducing further fermion fields. For

example, with four fermions (Ψ1,Ψ2,Ψ3,Ψ4) with multiplicities (5N,N,N,N) and charges

q = (−1/2,+1/2,+3/2,+1/2),21 the currents (J21, J12, J14, J43, J32) have qF charges qF =

21These charges and multiplicities ensure that there is no anomalous term in the OPE of the analog of

the current JF and the stress tensor.
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(−1,+1,+1,+1,−1). Defining the operators V0,ij = PFU0Jij and V−1,ij = PFU−1Jij , the

correlators

〈V0,21(ρ1)V−1,12(ρ2)V0,21(ρ3)V−1,12(ρ4)〉 and 〈V0,21(ρ1)V−1,14(ρ2)V−1,43(ρ3)V0,32(ρ4)〉 (6.3)

are nonvanishing. The former leads to the four-point version of eq. (4.21). In the latter

the current correlator has a single trace structure which requires that two multiplets of the

same type are adjacent. Moreover, the correlator

〈V0,21(ρ1)V−1,12(ρ2)V0,21(ρ3)V−1,14(ρ4)V−1,43(ρ5)V0,32(ρ6)〉 (6.4)

appears to also be nonvanishing and has the correct color structure for the corresponding

amplitude to factorize into the product of amplitudes related to eq. (6.3). This example

appears to describe a product gauge group with one SU(5N) and three SU(N) factors and

matter in bifundamental representation.

Since the kinematic part of vertex operators is the same as for the ABJ(M) theory, the

poles of the four-point amplitudes (6.3) are the same as the poles of the four-point ABJ(M)

amplitudes. The general structure of color-ordered four-point amplitudes following from

N = 6 superconformal symmetry is

A4 = δ6(Q)f(〈ij〉) (6.5)

where Q are on-shell supersymmetry generators and f(〈ij〉) is a function of dimension (−2)

which thus necessarily has nontrivial s− and t-channel factorization poles [39]. These poles

may arise either from the exchange of a Chern-Simons-like gauge field (if the uncontracted

fermions between two adjacent vertex operators transform under the same gauge group

factor), a bi-fundamental field with no asymptotic degrees of freedom (if the uncontracted

fermions between two adjacent vertex operators transform under different gauge group

factors)22 or from a non-local contact interaction term.23 For the first amplitude (6.3) we

see that the uncontracted fermions between the first two vertex operators are of type Ψ2

and thus both transform under SU(N) while the uncontracted fermions between the second

and third vertex operators are of type Ψ1 and thus both transform under the first SU(5N)

factor; thus, the s- and t-channel poles of this amplitude may potentially be related to the

exchange of Chern-Simons field for these two gauge group factors, respectively. Similarly

we see that, for the second amplitude (6.3), the s- and t-channel uncontracted fermions

transform under different gauge-group factors and thus suggest that it is either due to the

exchange of a bi-fundamental unphysical field or it is due to a non-local quartic Lagrangian

term. It would be interesting to explore the factorization properties of these and higher-

point amplitudes (as well as in more general constructions of a similar type), identify the

states they factorize on and understand whether there exists a standard quantum field

theory with this tree-level S-matrix.

22While this may appear strange at first sight, such fields are on the same footing as regular Chern-Simons

gauge fields, for which no physical vertex operator can be constructed in our formalism.
23It appears difficult to rule out on general grounds the appearance of such terms in the effective field

theory Lagrangian.
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Similarly, by including fermions of different charges it is possible to include states

created by a finite number of vertex operators containing factors of PFUk with k 6= 0,−1

while continuing to truncate the spectrum to states with vanishing qU(1) charge.24 For

example, two pairs of fermions with charges ±q1 and ±q2 can be used to construct currents

with charges ±2q1, ±2q2, ±(q1 + q2) and ±(q1 − q2). For suitable choices the relation

between q1,2 and qF it may be possible to construct a theory with four gauge groups (of

unrelated ranks) and eight matter multiplets in the bi-fundamental representation. The

tree-level scattering amplitudes of such theories can be constructed following the analysis

in this paper; the high degree poles in the Un factors with n ≤ −2 as well as the potential

zeroes in the Un factors with n ≥ 1 suggest that such amplitudes are very constrained.

In both constructions above it appears that the S-matrix — and therefore the field

theory generating it — may have N = 6 superconformal symmetry; if so, it would be

interesting to understand how it evades the arguments of [29–31].
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[38] F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory,

PoS(RTN2005)004 [hep-th/0504194] [INSPIRE].

[39] Y.-t. Huang and A.E. Lipstein, Amplitudes of 3D and 6D Maximal Superconformal Theories

in Supertwistor Space, JHEP 10 (2010) 007 [arXiv:1004.4735] [INSPIRE].

[40] L.J. Mason and D. Skinner, Heterotic twistor-string theory, Nucl. Phys. B 795 (2008) 105

[arXiv:0708.2276] [INSPIRE].

[41] N. Berkovits and L. Motl, Cubic twistorial string field theory, JHEP 04 (2004) 056

[hep-th/0403187] [INSPIRE].

[42] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[43] Y.-t. Huang, H. Johansson and S. Lee, On Three-Algebra and Bi-Fundamental Matter

Amplitudes and Integrability of Supergravity, JHEP 11 (2013) 050 [arXiv:1307.2222]

[INSPIRE].

– 25 –

http://dx.doi.org/10.1007/JHEP10(2013)123
http://arxiv.org/abs/1308.3960
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3960
http://dx.doi.org/10.1103/PhysRevLett.62.2905
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,62,2905
http://dx.doi.org/10.1088/1126-6708/2008/11/043
http://arxiv.org/abs/0807.4924
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
http://dx.doi.org/10.1088/1126-6708/2008/09/002
http://arxiv.org/abs/0806.4977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4977
http://dx.doi.org/10.1007/JHEP09(2010)103
http://arxiv.org/abs/0807.1102
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1102
http://dx.doi.org/10.1007/JHEP06(2010)097
http://arxiv.org/abs/0804.2907
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2907
http://dx.doi.org/10.1088/1126-6708/2008/07/091
http://arxiv.org/abs/0805.3662
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3662
http://dx.doi.org/10.1088/1126-6708/2004/11/078
http://arxiv.org/abs/hep-th/0411077
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411077
http://arxiv.org/abs/1311.2564
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2564
http://dx.doi.org/10.1007/JHEP06(2010)057
http://arxiv.org/abs/0906.1655
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1655
http://dx.doi.org/10.1007/JHEP04(2011)040
http://arxiv.org/abs/1012.5969
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5969
http://dx.doi.org/10.4310/ATMP.2004.v8.n5.a1
http://arxiv.org/abs/hep-th/0403199
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403199
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RTN2005)004
http://arxiv.org/abs/hep-th/0504194
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504194
http://dx.doi.org/10.1007/JHEP10(2010)007
http://arxiv.org/abs/1004.4735
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.4735
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.010
http://arxiv.org/abs/0708.2276
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2276
http://dx.doi.org/10.1088/1126-6708/2004/04/056
http://arxiv.org/abs/hep-th/0403187
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403187
http://dx.doi.org/10.1103/PhysRevD.78.085011
http://arxiv.org/abs/0805.3993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
http://dx.doi.org/10.1007/JHEP11(2013)050
http://arxiv.org/abs/1307.2222
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2222

	Introduction
	An embedding of the 3d twistor space 
	A string theory on CP*(2,2 |4,1) and its truncation to ABJ(M) states 
	Vertex operators with reduced symmetry
	The general structure of scattering amplitudes

	ABJ(M) amplitudes from the truncated CP*(2,2|4,1) string theory  
	ABJ(M) coupling to conformal supergravity 
	The four-point amplitudes
	CGS interactions for any number of external legs

	Outlook 

