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1 Introduction

Inflation has become a standard paradigm for describing the origin of cosmological per-

turbations [1, 2]. In fact, current observational data is in good agreement with single field

models, with just one inflaton field [1]. On the other hand, it has been suggested that

inflation may be described holographically by means of a dual field theory at the future

boundary. According to the gauge/gravity correspondence, the strongly (weakly) cou-

pled phase of bulk gravity corresponds to the weakly (strongly) coupled phase of the dual

boundary theory. Because of that, holography may open up new insights on the study of
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the very early universe, near the Planck scale, where non-perturbative gravitational effects

may play a role.

The gauge/gravity duality was initially advocated for asymptotically anti-de Sitter

(AdS) space times [3–5]. Such duality cannot be immediately applied to inflationary cos-

mology, where the spacetime is similar to de Sitter (dS) rather than AdS. Nonetheless,

by analogy, there have been several suggestions that a (d + 1)-dimensional inflationary

evolution may be dual to a quantum field theory (QFT) on a d-dimensional space with Eu-

clidean signature. Following the work by Strominger [6, 7] and Witten [8], this possibility

has been further investigated in the context of dS [9–11] and quasi-dS spacetimes [7, 12].

In refs. [12–21], the duality was discussed by including cosmological perturbations. (See

also refs. [22, 23] and ref. [24].) The holographic description of inflation has also been

studied by using the so-called domain wall/cosmology correspondence, where cosmological

solutions are constructed by analytically continuing from domain wall solutions [25–30]

(see also ref. [31]).

The implementation of the duality requires a concrete dictionary, relating cosmological

observables in the bulk with field theory observables at the boundary. However, this relation

hasn’t been clearly understood, except perhaps in certain limits, such as the vicinity of a

dS fixed point. In particular, it is not clear which cosmological variable corresponds to the

renormalization scale µ. In refs. [30, 32–34], it was argued that for the case of dS spacetime,

µ should be proportional to the scale factor, µ ∝ a, but the relations suggested in these

references differ from each other when the solutions deviate from dS spacetime.

One may expect that in quasi-dS spacetimes the cosmological evolution in the bulk

will be still described by the renormalization group (RG) flow in the boundary. The pur-

pose of this paper is to examine this naive expectation, by computing the evolution of the

primordial curvature perturbation ζ. This plays an important role because in standard

cosmological perturbation theory (CPT) ζ is generically conserved for adiabatic perturba-

tions at large scales (this will be reviewed more precisely in section 5). If the time evolution

in the bulk consistently corresponds to the RG flow in the dual boundary QFT, the corre-

lators of ζ predicted in the boundary QFT should be independent of µ in the large scale

limit. In this paper, we examine whether the RG flow in the boundary QFT predicts that

the correlators of ζ become µ independent or not.

The outline of this paper is as follows. In section 2, after we describe our setup,

following ref. [18], we provide a way to calculate the correlators of ζ by using the wave

function of the bulk spacetime. To consider the boundary QFT which is dual to the

single field inflation, we introduce a single deformation term to the boundary action, which

lets the QFT deviate from the conformal field theory (CFT). In section 3, we discuss

the solution of the RG equation in the boundary theory. In section 4, using the gauge

transformation, we derive the relation between the correlators of ζ and the correlators of

the boundary operator. Then, in section 5, computing the correlators of ζ, we investigate

their µ dependence at large scales.
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2 Preliminaries

In this section, following ref. [18], we provide a way to compute the correlation function of

the curvature perturbation from the dual boundary theory.

2.1 Wave function

The cosmological spacetime metric can be given in ADM formalism as

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) . (2.1)

Here we shall restrict attention to the situation where the metric is asymptotically de Sitter

in the IR and (or) UV. In the semiclassical picture, this would correspond to the case a

period of slow roll inflation transits to Λ domination.

Our starting point is the assumption that the wave function of the bulk gravitational

field is related to the generating functional of the boundary QFT

ψbulk[h, φ] ∝ ZQFT[h, φ] , (2.2)

where the generating functional ZQFT is given by

ZQFT[h, φ] = e−WQFT[h,φ] =

∫

Dχ exp
(

− SQFT[χ, h, φ]
)

. (2.3)

(See ref. [12] and refs. [16, 17, 32, 33].) Here ψbulk denotes the wave function of the bulk

and χ denotes boundary fields, for which the metric hij and the inflaton φ act as sources

(the indices in hij will be omitted when unnecessary). Since the wave function ψbulk is

complex, WQFT will have real and imaginary part, and therefore the action SQFT cannot

be real. It was suggested in refs. [32, 33] that this local boundary action may actually be

purely imaginary at the fundamental level

SQFT = −iS , (2.4)

with real S. We shall nonetheless stick to the notation in (2.3) because it seems to be

widely used, and also to avoid the proliferation of factors of i in our formal equations, with

the understanding that SQFT is necessarily complex.

2.2 Correlators in the bulk

Once we are given the wave function ψbulk, we can compute the correlators for the bulk.

In single field models of inflation, the wave function of the scalar sector can be expressed

by the single gauge invariant variable ζ which is the curvature perturbation in the uniform

field gauge, where the inflaton becomes homogeneous. The wave function in the bulk is

then related to the generating functional of the dual quantum field as

ψbulk[ζ] = AZQFT[ζ] = Ae−WQFT[ζ], (2.5)

where we wrote a normalization constant A explicitly.

– 3 –
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Using the wave function ψbulk[ζ], the probability density function P [ζ] is given by

P [ζ] =
∣

∣ψbulk[ζ]
∣

∣

2
= |A|2 e−2Re[WQFT[ζ]] . (2.6)

Once we have the partition function P [ζ], we can calculate the n-point functions for ζ on

the boundary as

〈ζ(x1)ζ(x2) · · · ζ(xn)〉 =

∫

Dζ P [ζ] ζ(x1)ζ(x2) · · · ζ(xn) . (2.7)

Here and hereafter, we abbreviate the argument t = t(µ) if not necessary. The explicit form

of the integration measure Dζ is left unspecified for the time being. This information is not

contained in the boundary QFT, since the curvature perturbation ζ is the external field in

that context and hence some additional input may be necessary. Changes in the measure

can be usually represented by local terms in the integrand, which can be incorporated in a

redefinition of WQFT. (See also the discussion in ref. [18].) We determine the normalization

constant A, by adopting the normalization condition:
∫

Dζ P [ζ] = 1 . (2.8)

Eliminating the background contribution WQFT[ζ = 0] by the redefinition of A, the

partition function P [ζ] is given by

P [ζ] = |A|2e−δW [ζ], (2.9)

where we defined

δW [ζ] ≡ 2Re
[

WQFT[ζ]−WQFT[ζ = 0]
]

. (2.10)

We expand δW [ζ] as

δW [ζ] =
n
∑

n=1

1

n!

∫

ddx1 · · ·

∫

ddxnW
(n)(x1, · · · , xn)ζ(x1) · · · ζ(xn) , (2.11)

where

W (n)(x1, · · · , xn) ≡ 2Re

[

δnWQFT[ζ]

δζ(x1) · · · δζ(xn)

∣

∣

∣

∣

ζ=0

]

. (2.12)

Once we obtain W (n)(x1, · · · , xn), we can give the n-point functions, following the Feyn-

man rules [18]. In particular, the two-point function for ζ(x) is given by

〈ζ(x1)ζ(x2)〉 = W (2)−1(x1, x2) , (2.13)

where W (2)−1(x1, x2) denotes the inverse matrix of W (2)(x1, x2), which satisfies
∫

ddx′W (2)(x1, x
′)W (2)−1(x′, x2) = δ(x1 − x2) . (2.14)

In this paper, we consider only the tree-level diagrams, neglecting contributions from loop

diagrams, which are suppressed in the large N limit [18]. In ref. [18], it was shown

that the power spectrum and the bi-spectrum computed by using the vertex function

W (n)(x1, · · · , xn) agree with the ones obtained in ref. [30] by using the holographic renor-

malization method.

– 4 –
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3 Deformed conformal field theory

In this section, we describe the features of the d-dimensional field theory dual to the

(d + 1)-dimensional inflationary spacetime. For simplicity, we shall assume that d is odd

since in this case a conformal field theory (CFT) has no conformal anomaly. We consider

a local field theory where the the conformal symmetry is broken by the introduction of a

deformation operator:

SQFT[χ] = SCFT[χ] +

∫

dΩduO(x) . (3.1)

Here dΩd is the d-dimensional invariant volume and SCFT is the action at the UV or IR fixed

point (FP), which preserves the conformal symmetry, while u is a coupling accompanying

the deformation operator O. In this section, assuming the flat space, we solve the RG

flow. Then, the coupling constant u varies depending on the renormalization scale µ. The

µ dependence of u will be reinterpreted as the time dependence of the background scalar

field in the bulk.

3.1 Formulas

Before we solve the RG flow, we summarize the formulas for the CFT in the flat Rd. The

conformal invariance determines the two-point function and the three point function as

〈O(x)O(y)〉CFT =
c

|x− y|2∆
, (3.2)

and

〈O(x)O(y)O(z)〉CFT =
C

|x− y|∆|y − z|∆|z − x|∆
, (3.3)

with the constant parameters c and C. Here, ∆ is the scaling dimension of the operator

O. The operator product expansion (OPE) is then given by

O(x)O(y) =
c

|x− y|2∆
+

C

c

O(x)

|x− y|∆
+ · · · (3.4)

for |x − y| → 0 [35]. In eq. (3.4), we abbreviated the non-singular terms in the limit

|x− y| → 0.

3.2 RG equation

Following ref. [36], we study the RG flow for the local deformed CFT with the action (3.1).

The generating functional is given by

ZQFT =

∫

Dχ exp

(

− SCFT −

∫

ddxuO(x)

)

. (3.5)

First we consider the correlation functions with the UV cutoff scale µ0, which are given by

〈O(x1) · · ·O(xn)〉µ0
=

1

ZQFT

∫

DχO(x1) · · ·O(xn) exp

(

−SCFT−

∫

ddxu0O(x)

)

, (3.6)

where u0 denotes the bare coupling constants u at µ = µ0. Since we introduced the UV

cutoff at µ = µ0, all points xi with i = 1, · · · , n should be separated with the distance

– 5 –
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greater than 1/µ0. The correlation functions for the deformed CFT can be understood as

those for the CFT with the insertion

e−
∫
ddxu0O(x) = 1−

∫

ddxu0O(x) +
1

2

∫

ddx

∫

|x−y|>1/µ0

ddy u20O(x)O(y) + · · · . (3.7)

Integrating over the modes between µ and µ0 with the aid of the OPE (3.4), we find that

the integration of the modes 1/µ0 ≤ |x − y| ≤ 1/µ in the third term of eq. (3.7) can be

recast into

1

2

∫

ddx

∫

1/µ0<|x−y|<1/µ
ddy u20O(x)O(y)

=
1

2
u20

C

c

∫

ddxO(x)

∫

1/µ0<|x−y|<1/µ
ddy

1

|x− y|∆(µ0)
+ · · ·

= −
1

2
u20C̃

µλ − µλ
0

λ

∫

ddxO(x) + · · · . (3.8)

Here, we introduced

λ ≡ ∆(µ0)− d , (3.9)

and

C̃ ≡ Vol(Sd−1)
C

c
=

2πd/2

Γ(d/2)

C

c
, (3.10)

where Vol(Sd−1) is the integration of (d− 1)-dimensional sphere. Then, the integration of

these modes gives rise to the running of the coupling constant u as

u(µ) = u0 +
1

2
u20C̃

µλ − µλ
0

λ
+O(u30) . (3.11)

In the second and third lines of eq. (3.8), we included only the terms which contribute to

the running of the coupling constants u.

Let us now introduce the dimensionless coupling constants g as

g(µ) ≡ µλu(µ) . (3.12)

By using eq. (3.11), the running of g(µ) is given by

g(µ) = g0

(

µ

µ0

)λ

+
1

2
g20C̃

( µ
µ0

)2λ
−
( µ
µ0

)λ

λ
+O(g30) , (3.13)

where we defined g0 as

g0 ≡ µλ
0u0 . (3.14)

Using the dimensionless coupling constant g(µ), we introduce the beta function as

β(µ) ≡
dg(µ)

d lnµ
. (3.15)

Inserting eq. (3.13) into eq. (3.15), we obtain the RG equation as

β(µ) = λ g(µ) +
C̃

2
g2(µ) +O(g3) . (3.16)

– 6 –
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The second term stems from the quantum corrections, which lead to the deviation from the

classical scaling. This analysis is valid for small g, in which case the RG flow can be solved

perturbatively. Note that the beta function does not include the UV cutoff µ0 explicitly,

so we can send it to infinity.

3.3 Solving RG flow

In the previous subsection, we obtained the RG equation (3.16). Next, solving the RG

equation, we examine the evolution of g(µ) more explicitly. In the following, assuming

that the dimensionless coupling constant g(µ) is kept small everywhere along the RG flow,

we neglect the terms with O(g3) in eq. (3.16). Assuming the presence of the IR and UV

FPs, we request that in the vicinity of the UV FP, the operator should be a relevant one

and in the vicinity of the IR FP, should be an irrelevant one. Without loss of generality,

we can assume g > 0.

Equation (3.16) reveals that only when

λ

C̃
< 0 , (3.17)

the RG flow has two FPs at g(µ) = 0 and g(µ) = −2λ/C̃. In this case, the RG equa-

tion (3.16) can be solved as

g(µ) =
2

1 +
(µ
p

)λ

(

µ

p

)λ

g(p) , (3.18)

with

g(p) ≡ −
λ

C̃
, (3.19)

where a pivot scale p is introduced as an integration constant. In the case with λ < 0, the

coupling constant g(µ) flows from 0 in the UV to 2g(p) in the IR. On the other hand, in

the case with λ > 0, the coupling constant g(µ) flows from 2g(p) in the UV to 0 in the IR.

Figure 1 shows the evolution of g(µ) for both positive and negative values of λ.

4 Deriving the ζ correlators

In this section, we consider the boundary QFT in the presence of the curvature perturbation

ζ, playing the role of an external source. Then, using the generating functional for the

deformed conformal field theory, we will derive the relation between the vertex function

W (n)(x1, · · · , xn) and the correlation functions of the boundary operator O in flat space.

4.1 Gauge conditions

In cosmological perturbation theory, the freedom to choose coordinates is usually referred

to as gauge freedom. This corresponds to a choice of the time slicing, and with the choice of

spatial coordinates on each slice. In the holographic description, we may think of a constant

time slice as a holographic plane in which the QFT lives, while different times correspond

– 7 –
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IR UV

Figure 1. The evolution of the dimensionless constant g(µ) for λ = 1/50, 1/2,−1/2,−1/50.

to different values of the renormalization scale. Correlators of the gauge invariant variable

ζ should be independent of the gauge choice (see also the discussion in ref. [12]).

As the dictionary which relates the bulk and the boundary, in this paper, we assume

that the coupling constant g is related to the inflaton as

g(µ, x) = φ
(

t(µ), x
)

, (4.1)

where we set Mpl = 1. Since we assumed that the renormalization scale µ in the boundary

is associated with the time coordinate t in the bulk, we wrote the time coordinate of φ as

t(µ). Equation (4.1) does not provide any restriction on the bulk dynamics, since we are

not specifying the form of the kinetic term for φ, or its potential. One may be interested in

using more general function g[φ] instead of the linear one (4.1), but this can be understood

simply as a change of variable which should not change the physics.1

In the following, we compute the correlators of ζ, using two gauges. In one gauge, we

choose the holographic plane by requiring

δu(t, x) = δg(t, x) = δφ(t, x) = 0 , (4.2)

and the spatial coordinates by requiring that the spatial metric should be in the form:

hij = a2(t)e2R(t,x)δij , (4.3)

where R is the curvature perturbation. In this paper, the tensor perturbation will be

completely neglected. As in the standard CPT, we refer to this gauge as the uniform field

gauge. By definition, the curvature perturbation in the uniform field gauge gives the gauge

invariant perturbation ζ, i.e.,

ζ(t, x) = R(t, x)
∣

∣

δg=0
. (4.4)

1In fact, we can show explicitly that the power spectrum of ζ is independent of the functional form of

the local relation g(µ, x) = g[φ(t(µ), x)] (assuming that it is invertible).

– 8 –
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In the other gauge, we choose the slicing and the spatial coordinates, requesting

R(t, x) = 0 (4.5)

and

hij = a2(t)δij , (4.6)

respectively. We refer to this gauge as the flat gauge. In the flat gauge, the scalar per-

turbation is described solely by the fluctuation of the coupling constant δg(t, x). In the

following, we denote the fluctuation δg(t, x) in the gauge R(t, x) = 0 as

δgf (t, x) ≡ δg(t, x)
∣

∣

R=0
= δφ(t, x)

∣

∣

R=0
, (4.7)

which is also gauge invariant.

In the standard cosmological perturbation theory, performing the gauge transforma-

tion, we find that the curvature perturbation in the uniform field gauge, ζ, is related to

the fluctuation of the inflaton in the flat gauge δgf as (see e.g. [12, 37])

ζ = −
H

φ̇
δgf +

ε2
4

(

H

φ̇

)2

δg2f + · · · . (4.8)

Here we abbreviated the sub-leading terms at large scales, as well as higher orders in δgf ,

and we used the horizon flow functions, defined as

εn ≡
1

εn−1

d

d ln a
εn−1 (4.9)

for n ≥ 1, with

ε1 ≡
1

2

φ̇2

H2
. (4.10)

Notice that for the scalar field with the non-canonical kinetic term, our ε1 does not coincide

with the standard definition of the horizon flow functions, given by ε1 = −Ḣ/H2.

4.2 Renormalization and counterterms

To derive finite correlation functions, we need to perform renormalization. The studies

based on the holographic renormalization provide the necessary counterterms and renor-

malized action in the bulk (see, for instance, refs. [38–42]). Meanwhile, to derive the

renormalized correlation functions based on the boundary computation, we need to in-

troduce the counterterms and determine the renormalized action in the boundary theory.

One may expect that the introduction of the counterterms will alter the boundary theory

through the contributions of the following three different types:

1. Additive local contributions which are independent of the boundary operators. These

are made out of invariants constructed from the sources.

2. Contributions proportional to the boundary operator O.

3. Contributions proportional to new operators Oa with a = 1, 2, · · · .

– 9 –
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Here, we consider the counter terms which keep the boundary theory local. Contributions

of the second type will correspond to the renormalization of the coupling constant u or g.

Contributions of the third type will take us to the multi-field case. In this paper, we

disregard this possibility, concentrating in the one field case.

Choosing the uniform field gauge with δg = 0, the generating functional for the bound-

ary theory is expressed as

ZQFT[ζ] =

∫

Dχe−SQFT[ζ, χ] (4.11)

with the action for the boundary QFT given by

SQFT[ζ, χ] ≡ SCFT −

∫

ddxedζ(x)g(µ)O(µ, x) + Ssource[ζ] . (4.12)

For notational convenience, we introduced

O(µ, x) ≡ µ−λO(µ, x) . (4.13)

In the right-hand side of the action, we absorbed the scale factor which appears from the

invariant volume into g(µ). The third term in eq. (4.12) denotes the additive contributions

of the first type. Note that this term can be factorized in the generating functional WQFT =

− lnZQFT[ζ] as

WQFT[ζ] = − ln

[
∫

Dχe−SCFT−
∫
ddxedζgO

]

+ Ssource[ζ] . (4.14)

Therefore, when we derive the vertex function W (n) by taking the derivative with respect

to ζ as in eq. (2.12), the derivative which operates on Ssource[ζ] gives only the disconnected

product of the ultralocal term where all arguments xis coincide and the correlators of O

derived from the first term in the right hand side of eq. (4.14). Since we are interested in

connected diagrams, we focus on the contribution from the first term.

4.3 ζ correlators from gauge invariance

In this subsection, we will study the relation between the vertex function W (n) and the cor-

relators of O, focusing on the fact that in the single field model where the gauge invariance

is preserved, the gauge-invariant variable ζ can be expressed as a functional of the gauge

invariant variable δgf , i.e., ζ = ζ[δgf ] or inversely δgf = δgf [ζ]. For the time being, we

proceed our discussion without invoking the explicit form of ζ = ζ[δgf ]. Equation (2.12)

states that the vertex function W (n)(x1, · · · , xn) is given by the n-th derivative of the

generating functional WQFT = − lnZQFT. Recasting the derivative with respect to ζ into

the derivative with respect to δgf by using the schematic relation δgf = δgf [ζ], we obtain

δWQFT

δζ(x)
=

∫

ddy
δgf (y)

δζ(x)

δWQFT

δgf (y)
. (4.15)

When δgf (x) is locally related to ζ(x) as in the large scale limit as given in eq. (4.8),

using eq. (4.1), we find that δgf (x) is also related to ζ(x) locally. Then, we can rewrite

eq. (4.15) as
δWQFT

δζ(x)
= −B(x)

δWQFT

δgf (x)
, (4.16)

– 10 –
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where we introduced B(x) as

B(x) ≡ −
∂δgf (x)

∂ζ(x)
. (4.17)

Note that eq. (4.16) states that taking the derivative with respect to the gauge invariant

variable ζ is equivalent to taking the derivative with respect to δgf up to the factor −B(x).

Next, using eq. (4.16), we derive the relation between the vertex function W (n) and

the correlators of O in the flat space. Taking the derivative of eq. (4.16) with respect to

ζ(x), we obtain

δ2WQFT

δζ(x1)δζ(x2)
= B(x1)B(x2)

δ2WQFT

δgf (x1)δgf (x2)
−

δB(x1)

δζ(x2)

δWQFT

δgf (x1)
. (4.18)

Using eqs. (2.12), (4.18), and

δnWQFT

δgf (x1) · · · δgf (xn)

∣

∣

∣

∣

δgf=0

= (−1)n+1〈O(x1) · · · O(xn)〉µ , (4.19)

we obtain

W (2)(x1, x2) = −2Re
[

B2
1〈O(x1)O(x2)〉µ

]

, (4.20)

where we set the renormalization condition such that the ultralocal term with δ(x1 − x2)

is canceled by the contribution from the quadratic term in Ssource[ζ]. Here, introducing the

µ dependent function Bn(µ) as

Bn(µ) ≡ −
∂nδgf (µ, x)

∂ζn(µ, x)

∣

∣

∣

∣

ζ=0

, (4.21)

we expressed B(x) as

B(x)
∣

∣

ζ=0
= B1(µ) . (4.22)

The vertex function W (n) with n ≥ 3 can be obtained similarly and we find that W (n) is

given in the form

W (n)(x1, · · · , xn) =

− 2Re

[

Bn
1 〈O(x1) · · · O(xn)〉µ

+B2B
n−2
1

{

δ(x1 − x2)〈O(x2) · · · O(xn)〉µ + (cyclic perms)
}

+ · · ·

+

[n/2]
∑

m=1

BmBn−m

{

δ(x1−x2) · · · δ(xm−1−xm)δ(xm+1−xm+2) · · · δ(xn−1−xn)

×〈O(xm)O(xm+1)〉µ + (cyclic perms)
}

]

, (4.23)

where [x] denotes the Gauss’s floor function. Here, the delta functions appeared by taking

the derivative of B(x) with respect to ζ(x), for instance, as

δB(x1)

δζ(x2)

∣

∣

∣

∣

ζ=0

= δ(x1 − x2)B2(µ) .
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In eq. (4.23), we again eliminated the ultralocal term, using the contribution from the n-th

term in Ssource[ζ]. Once the relation between δφ and ζ is given, using eq. (4.23), we can

express the vertex function W (n) by Bn and the correlators of O in the flat space. Namely,

when we use the relation (4.8), we can express Bn as

B1 =
φ̇

H
=

dφ

d ln a
, (4.24)

B2 = −
φ̇

H

ε2
2

= −
dB1

d ln a
= −

d2φ

d ln a2
. (4.25)

Thus, the relation between the vertex function W (n) and the correlators of O is specified by

invoking the relation between ζ and δgf , derived by performing the gauge transformation

in the cosmological perturbation theory. In appendix B, we seek for an alternative way

to relate W (n) to the correlators of O. The ambiguity discussed in appendix B.2 can be

eliminated by using the relation (4.8).

5 Conservation of the curvature perturbation ζ

In this section, after we overview the discussion about the conservation of the curvature

perturbation ζ based on the standard CPT, we address the conservation of the curvature

perturbation from holography.

5.1 Conservation in the standard cosmological perturbation theory

In cosmological perturbation theory (CPT) the conservation of the curvature perturbation

ζ holds in the large scale limit for the adiabatic time evolution, when the matter content

is dominated by a single species [43–47]. This is useful, for instance, in order to evolve the

predicted distribution function for ζ through the process of reheating, the details of which

are largely unknown. For a barotropic perfect fluid, the conservation of ζ at large scales

can be derived directly from the conservation of the energy momentum tensor, without

invoking the theory of gravity. In turn, the conservation of the energy momentum tensor

in a local theory just relies on the equivalence principle, usually implemented through

general covariance.

Since the validity of the conservation of ζ is so generic, any evidence that conservation is

violated can provide some useful insight on the nature of the underlying theory of inflation.

In the following subsection, we will study the validity of the conservation of ζ based on

the boundary computation. Before that, let us briefly summarize the discussion based on

the standard CPT. (The conservation of ζ has been mostly discussed for d = 3, so in this

section, we consider d = 3. However, it will hold also in other dimensions.)

In ref. [44], Wands et al. showed the conservation of ζ for the barotropic fluid, whose

energy density perturbation δρ is proportional to the pressure perturbation δp, at linear

order in perturbation. Using the energy conservation equation nνTµ
ν;µ = 0 with the unit

timelike vector nν :

δρ̇ = −3H(δρ+ δp)− 3Ṙ(ρ+ p) +O
(

(k/aH)2
)

, (5.1)
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where ρ and p are the background values of the energy density and the pressure, they

found that in the uniform density gauge δρ = 0, the curvature perturbation is conserved

in time at large scales. This argument was extended to the non-linear order by Lyth et al.

based on the gradient expansion in ref. [46] and also by Langlois and Vernizzi based on

the covariant approach in ref. [47]. Their arguments proceed independent of the theory of

gravitation in the bulk.

Note that when we consider the scalar field, the adiabatic condition, that states the

pressure is expressed only by the energy density, becomes less clear. In fact, even in the

single field case, the adiabatic condition is not necessarily satisfied. In ref. [48], Naruko

and Sasaki considered the Galileon-type scalar field whose equation of motion involves up

to the first derivative of the metric. Then, using the equation of motion with the aid of the

gradient expansion, they showed that in the attractor phase, during which the equation of

motion for φ becomes the first order as φ̇ = f(φ), the uniform field gauge can be chosen and

the curvature perturbation in this gauge, ζ, is conserved at large scales. (See also ref. [49].)

So far, we have summarized the discussions about the classical evolution which does not

include the loop corrections. The conservation of ζ is discussed also in the presence of

loop corrections [50, 51], but the validity of the conservation for the loop corrections is still

unclear [52, 53].

5.2 Conservation from holography?

In this subsection, we investigate the conservation of the gauge-invariant curvature pertur-

bation ζ based on holography. In holography, the conservation of ζ can be addressed by

studying the µ dependence, which is interpreted as the time dependence in the cosmological

evolution. Notice that since the renormalized theory, obtained after integrating out the

UV modes, consists only the wavenumber k with k < µ, the correlators of ζ given by the

renormalized boundary theory will describe the evolution of ζ at large scales.

Here, we note that the n-point function of ζ is described solely in terms of the vertex

functions W (m) with m ≤ n. For instance, as is shown in ref. [18], the power spectrum of

ζ is given by

〈ζ(x1)ζ(x2)〉conn = W (2)−1(x1, x2) , (5.2)

with the inverse matrix of W (2)(x1, x2), and the bi-spectrum is given by

〈ζ(x1)ζ(x2)ζ(x3)〉conn = −

∫ 3
∏

i=1

ddyiW
(2)−1(xi ,yi)W

(3)(y1, y2, y3) . (5.3)

To make the power spectrum of ζ conserved, the vertex function W (2) should be indepen-

dent of µ. Given that the power spectrum is conserved, to further make the bi-spectrum of

ζ conserved, the vertex function W (3) should be also independent of µ. Thus, to make all

the m-point functions of ζ with m ≤ n conserved, the vertex functions W (m) with m ≤ n

should be totally independent of µ. Therefore, in the following, we study the µ dependence

of the vertex function W (n).

In this subsection, we study whether the correlators of ζ become µ independent or not

under the following two assumptions:
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• The gauge invariant variables ζ and δgf are locally related schematically as

ζ(x) = ζ[δgf (x)] . (5.4)

• The dual boundary theory can be renormalized by using the wave function renormal-

ization Z(µ) as

Z−n/2(µ)〈O(x1) · · · O(xn)〉µ = Z−n/2(µ0)〈O(x1) · · · O(xn)〉µ0
. (5.5)

The first assumption will hold generally at large scales (see for instance eq. (4.8)), unless a

non-local operator, which typically gives rise to the singular pole in the limit k → 0, shows

up in the relation between ζ and δgf .

In section 4.3, using eq. (5.4), we derived the vertex function W (n) as in eq. (4.23).

First, we consider the power spectrum, given by the inverse matrix of

W (2)(x1, x2) = −2Re
[

B2
1(µ)〈O(x1)O(x2)〉µ

]

. (5.6)

Inserting eq. (5.5) into eq. (5.6), we find that to make W (2) independent of µ, the wave

function renormalization Z(µ) should satisfy

d

dµ

[

B1(µ)
√

Z(µ)
]

= 0 . (5.7)

Next, we consider the bi-spectrum of ζ, expressed by W (2)−1 and

W (3)(x1, x2, x3) = −2Re
[

B3
1(µ)〈O(x1)O(x2)O(x3)〉µ

+B2(µ)B1(µ)
{

δ(x1−x2)〈O(x2)O(x3)〉µ + (cyclic perms)
}]

.

(5.8)

When the condition (5.7) is fulfilled, the first term in the right-hand side of eq. (5.8)

becomes µ independent. In addition, to make the terms in the third line of eq. (5.8)

independent of µ, B2(µ) should be given as

B2(µ) = s2B1(µ) (5.9)

with a constant parameter s2. Note that using eq. (4.25), we can express the parameter

s2 as

s2 = −
d

d ln a
lnB1 . (5.10)

Repeating a similar argument, we find that only if the condition (5.7) is satisfied and Bm(µ)

with m ≤ n is given as

Bm(µ) = smB1(µ) (5.11)

with a constant parameter sm, the vertex function W (n) becomes independent of µ, imply-

ing the conservation of ζ.
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Next, we examine whether the conditions (5.7) and (5.11) can be fulfilled, solving

the RG flow explicitly. In appendix A, following ref. [30], we computed the renormalized

correlators of O and then the wave function renormalization is given as

√

Z(µ) = µ−λ

[

1 +

(

µ

p

)λ]2

= 4p−λ β(p)

β(µ)
. (5.12)

(The wave function renormalization is discussed from a different perspective in ref. [54].)

On the second equality, we noted that using eqs. (3.15) and (3.18), the beta function is

given as

β(µ) =
4

[

1 +
(µ
p

)λ]2

(

µ

p

)λ

β(p) =
λ

1 +
(µ
p

)λ
g(µ) , (5.13)

with

β(p) ≡
λ

2
g(p) . (5.14)

Using eq. (5.12), we find that the condition (5.7) implies

B1(µ) = Cβ(µ) , (5.15)

where C is a constant parameter. When we use the relation (4.8) derived by performing

the gauge transformation, the µ dependent functions B1 and B2 are given as in eqs. (4.24)

and (4.25). Using eqs. (3.15), (4.24), and (5.15), we find that the renormalization scale µ

should be related to the time coordinate in cosmology as

ln(µ/µ0) = C ln(a/a0) , (5.16)

where a0 denotes the scale factor at the time associated with µ0. When the RG flow has

the conformal FP, since µ is proportional to a near the FP [30, 32–34], C should be set to 1.

On the other hand, we find that in general the second condition (5.11) cannot be

fulfilled. In fact, using eqs. (5.15) and (5.16), we obtain

s2 = −C
d

d lnµ
lnβ , (5.17)

which can be solved as

β(µ) = β0

(

µ

µ0

)λ

, (5.18)

with the constant λ = ∆− d given by

λ = −
s2
C

. (5.19)

Therefore, unless we consider the RG flow which has the constant scaling dimension as in

eq. (5.18), the condition (5.15) cannot be fulfilled along the entire RG flow. It is clear that

the beta function for the RG flow with the two FPs (5.13) deviates from eq. (5.18) once

away from the FPs and then we find eq. (5.15) cannot be satisfied except for the vicinities

of the IR and UV FPs. When the right hand side of eq. (5.17) ceases to be constant, the
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bi-spectrum of ζ, namely the terms in the last line of eq. (5.8), can evolve even at large

scales, contradicting the prediction of the CPT for the single field models of inflation.

Several comments are in order regarding the RG flow whose beta function is given

by eq. (5.18). This RG flow has at most one FP: not having any FP or having only one

FP either in the IR or UV. Using eq. (5.16), we can rewrite eq. (5.18) in terms of the

cosmological quantities as

β(a) =
1

C

dφ

d ln a
= β0

(

a

a0

)−s2

. (5.20)

Notice that eq. (5.20) restricts the evolution of φ(a) and also the potential V (φ), indicating

that the conservation of ζ can be verified only for the specific single field model of inflation.

When β(µ) is given by eq. (5.18), β(µ) yields the RG equation (3.16) with λ = −s2/C

and C = 0. In this case, the two-point function of O is simply given by

〈O(x1)O(x2)〉µ =

(

µ

µ0

)−2λ c0

|x1 − x2|2(λ+3)
, (5.21)

where c0 is a constant parameter. Inserting eqs. (5.18) and (5.21) into eq. (5.6), we obtain

the vertex function W (2) as

W (2)(x1, x2) = −
2C2β2

0c0

|x1 − x2|2(λ+3)
. (5.22)

Using eqs. (5.2) and (5.22), we obtain the power spectrum of ζ as

Pζ(k) = −
6

π2

1

C2β2
0c0

1

k3+2λ
. (5.23)

Thus, the amplitude and the spectral tilt of ζ are expressed by β0, C, and λ = −s2/C.

Notice that eq. (5.23) states that to provide a red-tilted spectrum which is consistent with

the observation of the cosmic microwave background, λ = −s2/C should be positive. In

that case, the beta function blows up in the UV, causing the breakdown of conformal

perturbation theory at sufficiently short distances.

6 Discussion

In this paper, we examined whether the curvature perturbation ζ is conserved under the

change of µ in a local boundary theory with the action (4.12). This corresponds to a generic

CFT with a single deformation operator.

In order to relate the boundary correlators to the correlators of the gauge invariant

curvature perturbation ζ, we have assumed that ζ is locally related to the scalar field

perturbation in the flat gauge, δφf (or equivalently the perturbation of the coupling δgf ) as

in eq. (5.4). This assumption certainly holds in standard cosmological perturbation theory

at large scales. Also, we have assumed that the boundary operator O is renormalized

multiplicatively as in eq. (5.5). Solving the RG flow, we found that the power spectrum of

ζ is conserved if we identify the renormalization scale µ with the scale factor a in the bulk,
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as in eq. (5.16). But then, it follows that the bi-spectrum of ζ cannot be conserved along

the entire RG flow. The only exception is the particular case where the scaling dimension

is constant, as given in eq. (5.18). This special case leads to an exact power law spectrum

of the form (5.23).

In order to have conservation of ζ along a generic RG flow, we need to abandon at

least one of the following three assumptions: the local relation eq. (5.4), the multiplicative

renormalization eq. (5.5) or the assumption of a local boundary theory with the single

deformation operator.

The local relation eq. (5.4) follows from eqs. (4.1) and (4.8). Instead of imposing

eq. (4.1), one may need to seek for a more non-trivial relation between g and φ (this issue

has been discussed in AdS/CFT. See, for instance, ref. [55]). A simple generalization to

the local function g(µ, x) = g[φ(t(µ), x)] is just a change of variable describing the field,

and will not help to preserve the conservation. The second and third assumptions are

concerned with renormalization. In this paper, we assumed that the boundary QFT can

be renormalized by introducing the counterterm and the wave function renormalization as

in eqs. (4.12) and (5.5), respectively. Nevertheless, in general, one may need to introduce

more than one deformation operator to perform the renormalization. In addition, the QFT

may become non-local after the renormalization. These cases were not addressed in the

present paper. When the boundary theory contains more than one deformation operator,

the corresponding cosmological evolution will be governed by several scalar fields. Notice,

however, that in this case the standard CPT does not predict the conservation of ζ any

longer. The possibility of generalizing the duality to the case of a non-local boundary

theory is at present not very well understood. In particular, it is not clear whether the

locality (non-locality) in one side of the duality implies the locality (non-locality) on the

other side. A relevant discussion can be found in ref. [56], but to our knowledge this issue

has not been fully resolved, at least in the case when the deviation from dS spacetime

becomes important (even in the large N limit). If a non-local boundary theory can be dual

to a local bulk theory with a single field, the conservation of ζ should be predicted also

from the boundary computation. We leave this issue for future research.

In this paper, we discussed the asymptotically dS spacetimes and the dual boundary

QFT. Since the asymptotically dS spacetimes which we have considered can be transformed

into the asymptotically AdS spacetime by analytic continuation, the analog of ζ will be

conserved along the holographic direction also in the case of asymptotically AdS spacetimes.

Possible implications of our results in this broader context are currently under investigation.
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A Correlators of the boundary operator O

In this section, we compute the renormalized n-point functions of O. Following ref. [30], we

perform the renormalization in the conventional way, introducing the UV cutoff. Expanding

the n-point function regarding the deformation term
∫

ddxuO as

〈O(x1) · · ·O(xn)〉µ=
∞
∑

m=0

1

m!
(−u)m

∫

ddy1 · · ·

∫

ddym〈O(x1) · · ·O(xn)O(y1) · · ·O(ym)〉µ, 0 ,

(A.1)

we express the n-point function as the summation of the correlators for the “CFT” with

the cutoff at µ (here we put the quotes since the theory cannot be the exact CFT due to

the presence of the cutoff), which we denote as 〈· · · 〉µ, 0. We first compute

I(n)m (x1, · · · , xn, µ) ≡

∫

ddy1 · · ·

∫

ddym〈O(x1) · · ·O(xn)O(y1) · · ·O(ym)〉µ, 0 . (A.2)

Note that since this is the correlators with the cutoff µ, all the points z and z′ which are

either xi with i = 1, · · · , n or yi with i = 1, · · · , m should satisfy

|z − z′| ≥ 1/µ . (A.3)

First, we compute I
(n)
1 , which is given as

I
(n)
1 (x1, · · · , xn, µ) =

∫

ddy〈O(x1) · · ·O(xn)O(y)〉µ, 0

n
∏

i=1

θ
(

|xi − y| − 1/µ
)

, (A.4)

beginning at µ = µ0 as in section 3.2. Here, using the Heaviside function, we explicitly

described the condition (A.3). Then, changing the cutoff from µ0 to µ, we obtain the

change of I
(n)
1 as

∆I
(n)
1 (x1, · · · , xn, µ) = −

∫

ddy〈O(x1) · · ·O(xn)O(y)〉µ, 0

n
∑

i=1

δ
(

|xi − y| − 1/µ
)

∆

(

1

µ

)

,

(A.5)

where we replaced the remaining Heaviside functions which we didn’t take differentiation

with 1. Taking the infinitesimal limit, we obtain

µ
d

dµ
I
(n)
1 (x1, · · · , xn, µ) = µ−1

∫

ddy〈O(x1) · · ·O(xn)O(y)〉µ, 0

n
∑

i=1

δ
(

|xi − y| − 1/µ
)

.

(A.6)

Using the OPE, given in eq. (3.4), we rewrite the right-hand side as

〈O(x1) · · ·O(xn)O(y)〉µ, 0 δ
(

|x1 − y| − 1/µ
)

=

C

c

1

|x1 − y|∆0
〈O(x1) · · ·O(xn)〉µ, 0 δ

(

|x1 − y| − 1/µ
)

+ · · · , (A.7)

where the first term in the OPE (3.4) should be eliminated by introducing the counter

term and the ellipsis denotes the non-singular terms in the limit |x1 − y| → 0. Here, ∆0

denotes the scaling dimension at µ = µ0. Then, integrating about y, we obtain

µ
d

dµ
I
(n)
1 (x1, · · · , xn, µ) = nC̃µλI

(n)
0 (x1, · · · , xn) + · · · , (A.8)
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where we introduced C̃ ≡ Vol(Sd−1)C/c, λ ≡ λ(µ0), and

I
(n)
0 (x1, · · ·xn) ≡ 〈O(x1) · · ·O(xn)〉0 . (A.9)

Note that the non-singular terms in the OPE will be written in the form |xi−y|p with

a non-negative real number p, which will be replaced with µ−p after integrating about y.

Therefore, the contributions from the non-singular terms will be suppressed by (rµ)−(∆0+p)

compared with the first term in eq. (A.8), where r is a scale associated with I
(n)
1 , and hence

we can neglect them in the large scale limit. Noticing the fact that I
(n)
0 is the correlator

for the CFT, which does not vary in the change of µ, we can solve eq. (A.8) as

I
(n)
1 (x1, · · · , xn, µ) = nC̃

µλ − (fr)−λ

λ
I
(n)
0 (x1, · · · , xn) , (A.10)

where f is a dimensionless constant. Since the two-point function for the “CFT” with the

cutoff µ should agree with the one for the exact CFT, when the distance x12 ≡ |x1 − x2|

is much bigger than 1/µ, the dimensionful parameter r in I
(2)
1 should be x12, which is the

only dimensionful quantity included in the two-point function for the CFT. Then, we can

determine I
(2)
1 (x1, x2, µ) up to the constant parameter f as

I
(2)
1 (x1, x2, µ) = 2C̃

µλ − (fx12)
−λ

λ
I
(2)
0 (x1, x2) . (A.11)

By contrast, for n ≥ 3, I
(n)
1 can depend on all the distances xij ≡ |xi − xj | with

i, j = 1, · · · , n and hence we cannot determine the term (fr)−λ only from the dimen-

sional analysis. In the following, simply assuming that (fr)−λ should be expressed by a

product of xijs, we use the formal expression (A.10).

Next, we compute I
(n)
m (x1, · · · , xn, µ). Following a similar argument, we obtain

µ
d

dµ
I(n)m (x1, · · · , xn, µ) = µ−1

∫

ddy1 · · ·

∫

ddym〈O(x1) · · ·O(xn)O(y1) · · ·O(ym)〉µ, 0

×

[ n
∑

i=1

m
∑

j=1

δ
(

|xi−yj |−1/µ
)

+
∑

j, j′

δ
(

|yj−yj′ |−1/µ
)

]

,

(A.12)

where the second term in the last line represents all the combinations about j and j′ with

j, j′ = 1, · · · , m. Then, using the OPE (3.4) and integrating about one of yj or yj′ which

appears in each accompanied delta function, we obtain

µ
d

dµ
I(n)m (x1, · · · , xn, µ) = B(n)

m C̃µλ I
(n)
m−1(x1, · · · , xn, µ) , (A.13)

where we again neglected the non-singular contributions in the OPE and B
(n)
m denotes the

number of terms with the delta functions in the last line of eq. (A.12), given by

B(n)
m ≡

m

2
(2n+m− 1) . (A.14)
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Introducing y(µ) which satisfies
dy(µ)

dµ
= C̃µλ−1, (A.15)

we rewrite eq. (A.13) as

d

dy
I(n)m (x1, · · · , xn, y) = B(n)

m I
(n)
m−1(x1, · · · , xn, y) . (A.16)

Operating dm−1/dym−1, we obtain

dm

dym
I(n)m (x1, · · · , xn, y) =

m
∏

m′=1

B
(n)
m′ I

(n)
0 (x1, · · · , xn) . (A.17)

Note that, since I
(n)
0 is the n-point functions for the CFT, we can solve this equation as

I(n)m (x1, · · · , xn, y) =
1

m!

m
∏

m′=1

B
(n)
m′ I

(n)
0 (x1, · · · , xn)y

m +

m−1
∑

m′=0

dm′ym
′

, (A.18)

where dm′ is constant in y, but can depend on xi with i = 1, · · · , n. Inserting this solution

into eq. (A.16), we obtain

m−2
∑

m′=0

(m′ + 1)dm′+1y
m′

= B(n)
m

m−2
∑

m′=0

dm′ym
′

. (A.19)

Comparing the coefficients of χm′

, we obtain

dm′ = B(n)
m

dm′−1

m′
=

{

B(n)
m

}m′ d0
m′!

. (A.20)

Inserting this expression into eq. (A.18), we can solve

I(n)m (x1, · · · , xn, y) =
(2n+m− 1)!

(2n− 1)!
I
(n)
0 (x1, · · · , xn)

(

y

2

)m

+ d0

m−1
∑

m′=0

1

m′!

{

B(n)
m y

}m′

,

(A.21)

where we used
m
∏

m′=1

B
(n)
m′ =

m!

2m
(2n+m− 1)!

(2n− 1)!
. (A.22)

Solving eq. (A.15), we obtain

y(µ) = C̃
µλ − (fr)−λ

λ
, (A.23)

where again we introduced (fr)−λ as an integration constant.

In the following, we set the integration constant d0 to d0 = 0, which leads to dn = 0

with n ≥ 1. Then, inserting eq. (A.21) into the n-point function of O, we obtain

〈O(x1) · · ·O(xn)〉µ ≡
1

(2n− 1)!
I
(n)
0 (x1, · · · , xn)

∞
∑

m=0

(2n+m− 1)!

m!

(

−
uy

2

)m

. (A.24)
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Using the negative binomial formula

∞
∑

m=0

(l +m)!

l!m!
Xm = (1−X)−(l+1), (A.25)

which is valid for a real number l and |X| < 1, we obtain

〈O(x1) · · ·O(xn)〉µ = I
(n)
0 (x1, · · · , xn)

[

1 +
u(µ)y(µ)

2

]−2n

. (A.26)

Using the solution of g(µ), given in eq. (3.18), we can rewrite the µ dependent term in

the square brackets as

u(µ)y(µ)

2
=

g(µ)µ−λy(µ)

2
=

(fpr)−λ −
(µ
p

)λ

1 +
(µ
p

)λ
, (A.27)

and hence we obtain

〈O(x1) · · ·O(xn)〉µ = I
(n)
0 (x1, · · · , xn)

[

1 +

(

µ

p

)λ]2n
[

1 + (fpr)−λ
]−2n

. (A.28)

Since the boundary operator O(x) is related to O(x) as O(x) = µ−λO(x), the correlator

of O(x) is given as

〈O(x1) · · · O(xn)〉µ = I
(n)
0 (x1, · · · , xn)µ

−nλ

[

1 +

(

µ

p

)λ]2n
[

1 + (fpr)−λ
]−2n

. (A.29)

B Vertex function from Ward-Takahashi identity

In section 4.3, we derived the expression for the vertex function W (n)(x1, · · · , xn) written

by the n-point functions of O(x) in the flat space, using the relation (4.8). In this section,

we address this relation in an alternative way.

B.1 Ward-Takahashi identity

To derive the expression of the vertex function, following ref. [18], we derive the Ward-

Takahashi identity associated with the Weyl scaling which changes the spatial metric as

hij(x) → e−2α(x)hij(x) . (B.1)

In the gauge with eq. (4.3), the Weyl transformation of the metric renders the curvature

perturbation shifted as

ζ(x) → ζα(x) ≡ ζ(x)− α(x) . (B.2)

The Ward-Takahashi identity stems from the following identity

∫

Dχe−SQFT[ζα, χ] =

∫

Dχαe
−SQFT[ζα, χα], (B.3)
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which states that the generating functional ZQFT[ζ] should be independent of a choice of

integration variable. Here, we express the field χ after the dilatation scaling as χα. Assum-

ing that the integration measure Dχ is invariant under the Weyl scaling, we consider the

case with J [α] = 1, where J [α] is the Jacobian, Dχα = J [α]Dχ. (This case corresponds

to the case without the trace anomaly.) We will show that once we provide

δSα[ζ, χ] ≡ SQFT[ζα, χα]− SQFT[ζ, χ] , (B.4)

which describes the change of the action SQFT due to the Weyl scaling, we can determine

WQFT[ζ]. Operating δn/δα(x1) · · · δα(xn) on the both sides of eq. (B.3), dropping the

contributions from disconnected diagrams, and setting all α(x) and ζ(x) to 0, we obtain

δn lnZQFT[ζ]

δζ(x1) · · · δζ(xn)

∣

∣

∣

∣

ζ=0

= (−1)n
〈

δn

δα(x1) · · · δα(xn)
e−δSα[ζ, χ]

∣

∣

∣

∣

α=0

〉

µ

, (B.5)

where we introduced

〈X[χ]〉µ ≡

∫

DχX[χ]e−SQFT[ζ=0, χ]

∫

Dχe−SQFT[ζ=0, χ]
. (B.6)

In deriving eq. (B.5), we noted that since the left hand side of eq. (B.3) includes α(x)

only in the combination of ζα(x) = ζ(x)− α(x), a derivative with respect to α(x) can be

replaced with a derivative with respect to ζ(x) as

δ

δα(x)
(· · · ) = −

δ

δζ(x)
(· · · ) .

Inserting the Ward-Takahashi identity (B.5) into eq. (2.12), we can express the vertex

function W (n)(x1, · · · , xn) in terms of the m-point functions with m ≤ n for O(x). For

n = 1 and n = 2, we obtain

W (1)(x) = −2Re
[

〈δ1Sα(x)〉µ
]

, (B.7)

and

W (2)(x1, x2) = −2Re
[

〈δ1Sα(x1) δ
1Sα(x2)〉µ − 〈δ2Sα(x1, x2)〉µ

]

, (B.8)

where we introduced the abbreviated notation

δnSα(x1, · · · , xn) ≡
δnSα[ζ, χ]

δα(x1) · · · δα(xn)

∣

∣

∣

∣

ζ=α=0

. (B.9)

An extension to a general n proceeds in a straightforward manner and gives

W (n)(x1, · · · , xn) = −2Re
[

〈δ1Sα(x1) · · · δ
1Sα(xn)〉µ

−
{

〈δ2Sα(x1, x2)δ
1Sα(x3) · · · δ

1Sα(xn)〉µ + (cyclic perms)
}

+ · · ·+ (−1)n−1〈δnSα(x1, · · · , xn)〉µ
]

. (B.10)
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B.2 Boundary theory

It will be useful to point out that the generating functional WQFT[ζ] can be described also

by using the energy momentum tensor in the curved background. Actually, we can obtain

the derivative of lnZQFT[ζ] = −WQFT[ζ] with respect to ζ, as

δ lnZQFT[ζ]

δζ(x)

∣

∣

∣

∣

ζ=0

= −〈T (x)〉µ , (B.11)

δ2 lnZQFT[ζ]

δζ(x1)δζ(x2)

∣

∣

∣

∣

ζ=0

= 〈T (x1)T (x2)〉µ

− d δ(x1 − x2)〈T (x1)〉µ −

〈

δT (x1)

δζ(x2)

∣

∣

∣

∣

ζ=0

〉

µ

, (B.12)

and so on and using these expressions, we can express the perturbative expansion of

WQFT[ζ] regarding ζ. Here, T (x) denotes the trace part of the energy momentum ten-

sor T (x) ≡ hij(x)Tij(x). Namely, comparing the expression of lnZQFT described by the

correlators of the energy momentum tensor to eq. (B.5), we find

T (x) = −δ1Sα(x) . (B.13)

In general, to obtain the generating functional WQFT[ζ], which gives the wave function

ψ[ζ], we need to specify the boundary QFT in the presence of the external field ζ or more

explicitly we need to specify the energy momentum tensor of the corresponding QFT.

Meanwhile, the Ward-Takahashi identity (B.5) shows that when the change of the action

δSα[ζ, χ] under the Weyl scaling is specified, without consulting the detail of the boundary

theory, we can derive the generating functional WQFT[ζ] described by the n-point functions

of O(x) in the flat space. That is to say, the ambiguity in extending the QFT to include

the non-vanishing external field ζ can be attributed to the ambiguity in δSα[ζ, χ].

B.3 Vertex function in a local boundary theory

When we consider a local theory as the boundary QFT, we can naturally assume that in

the limit ζ goes to 0, δnSα(x1, · · · , xn) are expressed by the boundary operator O as

δ1Sα(x) = β1(µ)O(x) (B.14)

and for n ≥ 2 as

δnSα(x1, · · · , xn) = (−1)n−1βn(µ) δ(x1 − x2) · · · δ(xn−1 − xn)O(x1) (B.15)

with the µ dependent coefficient βn. Here, we noted that since the boundary theory is

local, taking the derivative of the boundary action SQFT with respect to both α(x1) and

α(x2) will give the delta function δ(x1 − x2). In addition, after we set ζ to 0, the x

dependent variable is only χ and hence the x dependence should be described by the

boundary operators O which is the composite operators of χ. Then, inserting eq. (B.15)
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into eq. (B.10), we obtain

W (n)(x1, · · · , xn) = −2Re
[

βn
1 〈O(x1) · · · O(xn)〉µ

+ β2β
n−2
1

{

δ(x1 − x2)〈O(x2) · · · O(xn)〉µ + (cyclic perms)
}

+ · · ·+ δ(x1 − x2) · · · δ(xn−1 − xn)βn〈O(x1)〉µ
]

, (B.16)

which is in the same form as eq. (4.23). In section 4.3, the parameters βn are determined

by using the relation between ζ and δgf , (4.8).

It will be instructive to observe how the function βn is given in a simple example. As

such example, here, we consider the boundary theory whose action is given by

SQFT[ζ, χ] = SCFT[ζ, χ]−

∫

ddxedζ(x)g(µ)O(x) , (B.17)

where the first term preserves the invariance under the Weyl transformation which changes

χ(x) into

χα(x) = e∆χα(x)χ(x) , (B.18)

with the scaling dimension ∆χ i.e., the action SCFT satisfies

SCFT[ζ, χ] = SCFT[ζ − α, e∆χαχ] . (B.19)

For simplicity, we consider the case where ∆χ remains constant (at least at the energy scale

µ we are concerned), and the boundary operator O is a power of χ as O ∝ χp. Then, the

change of the boundary operator is given by

O(α)(x) = e∆α(x)O(x) , (B.20)

with ∆ ≡ p∆χ and the change of the boundary action is given by

δSα[ζ, χ] =

∫

ddxedζ(x)
[

e(∆−d)α(x) − 1
]

g(µ)O(x) . (B.21)

In this simple example, βn, introduced in eq. (B.15) is given by

βn(µ) = (−1)n−1(∆− d)ng(µ) . (B.22)

Inserting this expression into eq. (B.16), we can express the vertex function

W (n)(x1, · · · , xn) by the m-point functions with m ≤ n of O at the flat spacetime. In

this case, without consulting the relation (4.8), we can derive the expression of the vertex

function.
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