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1 Beyond extra-dimensions

One of the most challenging areas of theoretical physics is the study of strongly coupled

systems. The most practical tool is often the use of effective lagrangians that describe the

interactions of light degrees of freedom in an energy expansion that is strongly constrained

by the underlying symmetries of the theory. In particular for Goldstone bosons (GBs)

arising from the spontaneous breaking of a global symmetry, the Callan-Coleman-Wess-

Zumino (CCWZ) construction [1, 2] provides a general parametrisation of the low energy

dynamics that makes the symmetries of the theory manifest.

While the CCWZ construction describes the most general interactions compatible with

the symmetries within a consistent effective field theory expansion valid up to a cut-off Λ,

no dynamical information on the theory is retained. For example extra-dimensional theories

such as [3] can be described using the CCWZ formalism but properties such a locality in

5D are completely hidden from this point of view. Related to this fact, observables not

constrained by the symmetries such as the Higgs potential, are not calculable. To make
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quantitative predictions one often needs to make extra dynamical assumptions on the size

of various operators. Moreover the CCWZ approach appears useful only if very few degrees

of freedom exist separated by a large gap from the rest of the dynamics, an assumption

that can be violated in practice.

In this paper we provide a different parametrisation of theories with spontaneous sym-

metry breaking that is well suited for composite models where the Higgs is a GB [4] or for

the pions in QCD. Our starting point is ref. [5] where a minimal framework to describe

the interactions of the lightest resonances with GBs was introduced (see also [6] for a re-

lated construction). The dynamical assumption made in [5] was the inclusion of only the

nearest-neighbour interactions. In the limit of a large number of resonances, this construc-

tion becomes indistinguishable from an extra-dimension. Indeed various predictions, such

as the Higgs mass [7, 8], turn out to be similar to the 5D theories even with a minimal

number of resonances.

We show that the most general effective lagrangian compatible with the symmetries

is obtained by adding terms “non-local” in theory space to the lagrangian of ref. [5]. We

will call these terms “non-minimal” since they allow to maximally deviate from an extra-

dimension.1 These terms were also explored in [10, 11] where general moose models were

considered for QCD. In its most general form our lagrangian is equivalent to the CCWZ

one but our construction allows to control in a systematic way deviations from nearest-

neighbour interactions. In particular the UV properties of quantities such as the Higgs

potential are completely transparent being related to the notion of distance in the moose.

For example we show that the Weinberg sum rules can be interpreted as constraints on the

“moose locality”.

We apply our formalism to the GB Higgs and to QCD. We derive in general inter-

actions of heavy resonances, low energy lagrangian and two-point functions of currents

and fermionic operators. We will show the impact of the non-minimal interactions on the

GB potential and discuss the relation with other effective lagrangians used to study these

models at the LHC. For the GB Higgs we show that the tree level contribution to the

S−parameter can be negative contrary to theories with nearest-neighbour interactions and

compatibly with calculability of the potential. For QCD we show that the electro-magnetic

splitting of pions and the KSRF relation [12] can be simultaneously reproduced with non

minimal terms. We also show that, with the leading derivative interactions, the parame-

ters of the chiral lagrangian obtained integrating out the resonances satisfy L9 ' −L10 as

suggested by experimental data.

The paper is organized as follows: in section 2 we introduce the general two derivative

effective lagrangian with non minimal interactions. We consider vector and fermion reso-

nances and show the equivalence of our theory with the CCWZ construction. In section 3

we present formulas for various observables of interest in composite models and QCD. In

section 4 we discuss various implications of non-minimal terms for the GB Higgs and in

section 5 for QCD. We conclude in section 6. In the appendices we present the rele-

vant formulas for composite fermions and a simplified model with non-minimal terms for

spin-1 resonances.

1Non minimal terms also arise from the discretization of 5D theories with higher derivatives with respect

to the fifth coordinate [9].
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2 General 4D Moose models

We start by briefly reviewing the construction of ref. [5] to add resonances in a theory with

a global symmetry G spontaneously broken to a subgroup H. For simplicity we focus on

the cosets SO(N)/SO(N − 1), relevant for composite Higgs models and low energy QCD

but our construction can be easily extended to general G/H as in [5].

The spontaneous breaking SO(N)/SO(N − 1) can be parametrised by a unit SO(N)

vector,2

Φ = U0Φ0 (2.1)

where Φ0 = (0, . . . , 0, 1)T and

U0 = exp i
Π(x)

f
, Π =

√
2 πâ(x)T â (2.2)

is the GB matrix of the broken generators. The two derivative effective lagrangian for the

GBs is just the kinetic term

L =
f2

2
∂µΦT∂µΦ (2.3)

where f is the GB decay constant.

2.1 Vectors

We introduce composite spin-1 resonances to the GB lagrangian as gauge fields. To

this aim we add K copies of non-linear σ-models, describing the spontaneous breaking

SO(N)iL × SO(N)iR/SO(N)iL+R. These are parametrised by orthogonal SO(N) matrices

transforming as

Ωi → giLΩi

(
giR
)T

, i = 1, . . . ,K (2.4)

while the unit vector Φ transforms as

Φ→ gK+1
L Φ (2.5)

and describes the spontaneous breaking SO(N)K+1
L /SO(N − 1). Next we gauge nearest-

neighbour diagonal subgroups SO(N)iR ≡ SO(N)i+1
L . The physical degrees of freedom are

K massive SO(N) gauge fields interacting with the uneaten SO(N)/SO(N − 1) Goldstone

bosons. Each gauge theory is associated with a site and the σ-models are described by

the link fields between nearest-neighbour sites. This scenario corresponds to the following

lagrangian:

L = −
K∑
i=1

1

4g2
i

Tr [Aµνi Aiµν ] +

K∑
i=1

f2
i

4
Tr
[
(DµΩi)

T DµΩi

]
+
f2
K+1

2
(DµΦ)T (DµΦ)

DµΩi = ∂µΩi − iAi−1
µ Ωi + iΩiA

i
µ , DµΦ = ∂µΦ− iAKµ Φ . (2.6)

2We adopt the normalization Tr[TATB ] = δAB for the generators in the vectorial representation of

SO(N). We denote with T a the unbroken generators and with T â the broken ones. The latter satisfy

ΦT0 T
âT b̂Φ0 = 1

2
δâb̂.
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Figure 1. Moose model with nearest-neighbour interactions described by the lagrangian (2.6).

Shaded (white) circles represent composite resonances (sources) while the GBs are the links between

site i and i+ 1. The spontaneous breaking G/H is depicted as a wall.

The non dynamical fields A0
µ are the sources of the global currents of the composite sector.

Setting them to zero, the action has manifestly a global symmetry SO(N) acting on the

first site. The sources will be useful later on to compute correlation functions and to

include elementary fields in the effective theory. For example in composite Higgs models

SM gauge fields are introduced adding kinetic terms for the SU(2)L ×U(1)Y sources. The

global spontaneous symmetry breaking SO(N)/SO(N − 1) is induced by the last σ-model.

The physical GB matrix can be identified with

U =

K+1∏
i=1

Ωi (2.7)

where ΩK+1 = U0. The orthogonal scalar degrees of freedom are the longitudinal com-

ponents of the massive spin-1 resonances. To make manifest the particle content of the

theory it is convenient to adopt the unitary gauge, where the GBs do not mix with the

gauge resonances. Parametrizing:

Ωi = exp

[
i
fΠ(x)

f2
i

]
, i = 1, . . . ,K + 1 (2.8)

and comparing with (2.3) one finds

1

f2
=

K+1∑
i=1

1

f2
i

. (2.9)

This construction naturally leads to the lagrangian with nearest-neighbour interactions

and it is represented in figure 1. We will denote it as the minimal moose. This is similar

to theories with one extra dimension and in fact the lagrangian (2.6) coincides with the

discretization of a gauge theory in five dimensions. Not surprisingly the physical results

resemble the ones found in 5D models even for a small number of sites.

This construction however does not reproduce the most general lagrangian compatible

with the symmetries even at two derivative order. Let us construct the products

Ωi,j ≡
j∏

k=i+1

Ωk , i < j = 1, . . . ,K + 1 (2.10)

and define

Ωj,i ≡ (Ωi,j)
T , Ωi−1,i ≡ Ωi , Ωi,i ≡ I . (2.11)
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The links Ωi,j transform under the symmetries of sites i and j allowing them to directly

communicate. At two derivative order we can write the following invariant terms:

L =
K∑

i,j=0

f2
ij

8
Tr [DµΩi,jD

µΩj,i] +
K∑
i=0

f2
iK+1

2
ΦT

0 DµΩK+1,iD
µΩi,K+1Φ0

−
K∑
i=1

1

4g2
i

Tr [Aµνi Aiµν ]−
K∑
i=1

1

2η2
i

ΦT
0 ΩK+1,iA

µν
i AiµνΩi,K+1Φ0 ,

(2.12)

with

DµΩi,j = ∂µΩi,j − iAiµΩi,j + iΩi,jA
j
µ . (2.13)

With this notation fij is symmetric and AK+1
µ = 0. The terms on the first line generate

mass terms for the gauge fields allowing to reproduce the most general mass spectrum

compatible with the symmetries. In the second line we wrote two possible invariants for

the kinetic terms. Notice that the second one changes the normalisation of the kinetic

terms of coset resonances and consequently their non abelian interactions. For simplicity

we do not include non minimal kinetic terms between site i and j that also modify the

non-abelian interactions of vector resonances. In this language the minimal model (2.6)

corresponds to the choice fi−1i = fi and ηi → ∞. From now on we will adopt the two

indices notation also for the parameters of the minimal lagrangian.

The total number of parameters of the two derivative effective lagrangian (2.12) with

K SO(N) resonances is:
K2

2
+

7

2
K + 1 . (2.14)

We can also obtain a theory with a different number of SO(N − 1) and SO(N)/SO(N − 1)

resonances for certain limits of parameters. In particular coset resonances can be decoupled

by taking fiK+1 to infinity.

Let us mention that the coset SO(5)/SO(4), the minimal choice relevant for composite

Higgs models, is special because the unbroken subgroup is not simple. In fact SO(4) '
SU(2)L × SU(2)R so that there are two multiplets of resonances in the unbroken group

transforming as (3,1)⊕ (1,3). In this case another structure can be written down that

distinguishes the two representations

εαβγδρAAµνi ABiµνT
A
αβT

B
γδ (Ωi,K+1Φ0)ρ . (2.15)

This term breaks the symmetry that exchanges SU(2)L with SU(2)R with interesting phe-

nomenological consequences [13]. Note that describing the resonances as gauge fields, no

mass term can be written that breaks the LR symmetry. For simplicity, we will not include

in our analysis non minimal terms that break LR symmetry, actually considering the coset

O(N)/O(N − 1).

The lagrangian (2.12) is the most general effective lagrangian up to two derivative

order, compatible with the symmetries. To show this property, it is useful to choose a

gauge where the GBs appear in the fist link:

Ω0,1 = U , Ωi−1,i = I , i = 2 , . . . K + 1 . (2.16)
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This naturally connects with the standard CCWZ parametrisation that makes manifest the

invariance under shift of the GB lagrangian. Indeed in this gauge the only non derivative

terms of the GBs appear in connection with the sources. Let us separate the SO(N − 1)

resonances from the coset ones, indicating them as ρµi and aµi respectively. In the gauge

above the lagrangian reads:

L =

K∑
j=1

f2
0j

4
Tr

[(
eµ − ρµj

)2
+
(
dµ − aµj

)2
]

+

K∑
i,j=1

f2
ij

8
Tr

[(
ρµi − ρ

µ
j

)2
+
(
aµi − a

µ
j

)2
]

+

K∑
i=1

f2
iK+1

4
Tr [aµi aiµ] +

f2
0K+1

4
Tr [dµdµ]

−
K∑
i=1

1

4g2
i

Tr
[
(∂µρνi − ∂νρµi − i [ρµi , ρ

ν
i ]− i [aµi , a

ν
i ])

2
]

−
K∑
i=1

1

4g̃2
i

Tr
[
(∂µaνi − ∂νaµi − i [ρµi , a

ν
i ]− i [aµi , ρ

ν
i ])

2
]

(2.17)

where we have defined 1/g̃2
i = 1/g2

i + 1/η2
i . The symbols eµ and dµ are defined as usual

from the Maurer-Cartan form

iU †
(
∂µ − iA0

µ

)
U = eaµT

a + dâµT
â = eµ + dµ . (2.18)

Diagonalizing the quadratic terms in ai and introducing kinetic terms for the elementary

fields, eq. (2.17) coincides with the lagrangian of ref. [14] apart from the following subtlety.

In ref. [14] vector resonances transforming in the adjoint of the unbroken subgroup are

introduced as gauge fields while coset resonances are described as matter fields filling the

fundamental representation of SO(N − 1) and their kinetic term are constructed with the

covariant derivative∇µ = ∂µ−ieµ. In our model instead, all the resonances are described by

gauge fields in the adjoint of SO(N) and therefore extra-interactions are included from the

non-abelian gauge interactions. Such interactions have important physical consequences

as we will see. We can recover the action of [14] integrating out the resonances of the

unbroken group. The equation of motion of ρi implies (to leading order for p2 � m2
ρ):

ρµi = eµ .

From the non-abelian interactions of the gauge theory one reconstructs the covariant deriva-

tive of aiµ. However a spectrum with coset resonances significantly lighter than vector ones

seems unlikely. For this reason we prefer to keep the ρ resonances integrated in. In this

way all the mathematics of non linear representation is encoded in the non abelian gauge

interactions.

2.2 Fermions

Composite fermions can be treated in a very similar fashion. At each site i we introduce

Dirac fields Ψi
r in a representation (in general reducible) of the local group. The reps r can

vary from site to site. Fields at different sites can communicate through the link fields Ωi,j .

– 6 –
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ΨL
2 ΨL

3

m1 m2

ΨL
K

mK

ΨR
2 ΨR

3 ΨR
K

m3

ΨL
1

ΨR
1

ΨL
0

ΨR
0

Figure 2. Minimal fermionic moose with nearest-neighbour interactions.

There are several ways to generalize the notion of minimal moose to fermions. In [5]

interactions with a chiral structure suggested by extra-dimension models were considered.

For the third generation quarks the model corresponds to a moose with two Dirac fermions

in the fundamental representation at each site. Each fermionic source is associated to a

composite fermion. The sources have a definite chirality and mix with fields with opposite

chirality at the first site. The minimal moose is obtained by treating the fields at site i as

sources for the fields at site i+ 1. This induces a left-right chiral structure that in fact can

be obtained by discretization of an extra-dimension.

For simplicity here we will consider a single irreducible representation at each site.

The minimal moose is characterized by only nearest-neighbour interactions and is depicted

in figure 2. As done for the vector resonances, we want to exceed this minimal picture,

introducing all the terms allowed by the symmetries. Bilinears require fermions at different

sites to belong to conjugate reps under the unbroken group. The number of invariants that

can be written is then equal to the number of reps under the subgroup SO(N − 1).

Let us specialize to fermions in vector reps of SO(N). Since there are 2 reps under

SO(N−1) (the vector representation and the singlet) the building blocks can be written as

Oij = Ψ̄i
LΩi,jΨ

j
R , O′ij = Ψ̄i

LΩi,K+1Φ0ΦT
0 ΩK+1,jΨ

j
R . (2.19)

To leading order, the fermionic lagrangian with non minimal interactions, in compact

notation, is the following:

L =

K∑
i=1

Ψ̄ii /D
AiΨi −

K∑
i,j=0

[
MijOij + YijO′ij + h.c.

]
(2.20)

where Ψ0
L and Ψ0

R are the sources of fermionic operators in the vector representation

of SO(N). We do not include for simplicity symmetry breaking kinetic terms. These are

however required to reproduce the most general effective lagrangian at two derivative order.

We note that non-minimal terms allow to interpolate between partial compositeness

and fermion masses á la technicolor. Partial compositeness corresponds to the hypothesis

that elementary fields acquire mass through the mixing to composite resonances. The term

O′00 = Ψ̄0
LΩ0,K+1Φ0ΦT

0 ΩK+1,0Ψ0
R (2.21)

instead couples directly the fermionic sources to the VEV that breaks the global symmetry.

Upon introducing elementary fermions this term generates fermion masses as in technicolor

theories where the SM fermions couple to the fermion condensate that breaks the electro-

weak symmetry.

– 7 –
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3 Physical observables

In this section we provide the formulas needed to extract quantities of phenomenological

relevance from the effective lagrangian (2.12). Our derivation generalizes the one in refs. [15,

16], in the context of moose models of QCD hadrons. Unless explicitly stated, we will

neglect non minimal kinetic terms (ηi →∞ or equivalently g̃i = gi).

3.1 Resonance couplings

We can parametrise the physical GB fields with

Ωi ≡ Ωi−1,i = exp [iωiΠ] , i = 1, . . . ,K + 1

K+1∑
i=1

ωi =
1

f
.

(3.1)

The coefficients ωi depend on the gauge. To extract couplings to heavy spin-1 resonances

it is convenient to choose the unitary gauge where the physical GBs do not mix with the

massive resonances. This implies K equations for K + 1 unknowns:

K+1∑
j=0

ωijf
2
ij = 0 , i = 1, . . . ,K (3.2)

where

ωij =

j∑
k=i+1

ωk , ωji = −
j∑

k=i+1

ωk = −ωij . (3.3)

The missing equation comes from the request that the kinetic terms of the GBs are canonical

1

2

K+1∑
i,j=0

f2
ijω

2
ij = 1 (3.4)

that determines the physical decay constant f in eq. (3.1).

In the spin-1 sector we define:

ρµk = gk

K∑
n=1

Sknρ̃
µ
n

aµk = gk

K∑
n=1

Tknã
µ
n (3.5)

where ρ̃µn and ãµn are the eigenstates with masses mρn and man respectively. Masses and

wave functions are determined by the eigenvalue problem

2Sinm
2
ρn =

K∑
j=0

f2
ijgi (giSin − gjSjn)

2Tinm
2
an =

K∑
j=0

f2
ijgi (giTin − gjTjn) + f2

iK+1g
2
i Tin (3.6)

– 8 –
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with i = 1, . . . ,K and g0 = gK+1 = 0. Substituting (3.1) and (3.5) into the lagrangian one

can extract the couplings between GBs and vector resonances. In particular we find

gρnππ =

K∑
i,j=0

f2
ij

2
ω2
ijgiSin +

K∑
i=0

f2
iK+1ω

2
iK+1giSin (3.7)

where we have defined gρnππ as the coefficient of the operator fab̂ĉρ̃aµn πb̂∂µπ
ĉ, with fab̂ĉ

structure constants of SO(N) algebra. Similar manipulations can be performed for the

fermions to determine their couplings to the GBs.

3.2 Form factors

For many purposes it is useful to perform the path integral over the composite sector fields

and write a 1PI effective action for the sources. This allows to compute the GB effective

potential generated by the coupling of elementary fields to the composite sector. In this way

the strong dynamics is encoded into a set of form factors that describe correlation functions

of operators of the composite sector. This is particularly simple at quadratic order in the

fields and in a constant GB background. This technique was originally developed in the

context of 5D theories [3] but it is completely general and can be applied in our non-minimal

case. Here we closely follow refs. [3] and [5], at which we refer for details.

Let us consider global symmetry currents. For SO(N)/SO(N − 1) in a constant GB

background and at quadratic order in the sources, the effective lagrangian takes the fol-

lowing form,3

L =
1

2
Pµνt

[
Π0

(
p2
)

Tr
[
A0
µA

0
ν

]
+ Π1

(
p2
)

ΦTA0
µA

0
νΦ
]
, (3.8)

where Pµνt ≡ ηµν − pµpν

p2
and Φ = eiΠ/fΦ0.

The form factors Π0 and Π1 are related to the correlation functions of the currents

associated to the unbroken and broken generators

Πa

(
p2
)

(Pt)
µν ≡ 〈Jµa (p)Jνa (−p)〉 (3.9)

Πâ

(
p2
)

(Pt)
µν ≡ 〈Jµâ (p)Jνâ (−p)〉. (3.10)

The relations between the form factors and the current correlators are the following

Π0

(
p2
)

= Πa

(
p2
)

(3.11)

Π1

(
p2
)

= 2
[
Πâ

(
p2
)
−Πa

(
p2
)]
. (3.12)

Πa,â(p
2) can be extracted integrating out at tree level the composite resonances from the

model lagrangian (2.12) evaluated on a vanishing GB background. As long as the sources

couple to the nearest resonance, one finds

Πa,â

(
p2
)

=
g2

1f
4
01

4

[(
p2I −Mρ,a

)−1
]

11
+
f2

01

2
(3.13)

3The formulas of this section and appendices A, B are properly defined in euclidean space. The analytic

continuation to Minkowski space is understood.

– 9 –



J
H
E
P
0
6
(
2
0
1
4
)
0
7
1

where Mρ, Ma are the squared mass matrices of vector and coset resonances that only

differ through the symmetry breaking terms fiK+1 on the diagonal, see eq. (3.6).

Using elementary properties of matrices one can write the following formula

Π1(p2) =
g2

1f
4
01

2

[(
p2I −Mρ

)−1 · (Ma −Mρ) · (p2I −Ma)
−1
]

11

=
N

Det [p2I −Mρ] Det [p2I −Ma]
=

N∏K
i=1

(
p2 −m2

ρi

) (
p2 −m2

ai

) (3.14)

where mρi and mai are the physical masses of vector and coset resonances (which are

functions of gi and fi). The numerator is expressed in terms of the cofactor matrices Cρ
and Ca built from the minors of

(
p2I −Mρ

)−1
and

(
p2I −Ma

)−1
:

N =
g2

1f
4
01

2
[Cρ · (Ma −Mρ) · Ca]11 . (3.15)

For the minimal moose, the squared mass matrices have the typical nearest-neighbour form

and [Ma −Mρ]ij =
f2KK+1g

2
K

2 δiKδjK , thus one finds

N =
f2
KK+1

4K

K∏
i=1

g4
i f

4
i−1i (3.16)

that is independent on momentum. With non minimal interactions a momentum depen-

dence appear in the numerator. A minor generalisation allows to consider interactions

between the sources and multiple resonances. In this case one finds,

Πa,â

(
p2
)

=
K∑

i,j=1

[
gigjf

2
0if

2
0j

4

[(
p2I −Mρ,a

)−1
]
ij

+
f2

0i

2
δij

]
. (3.17)

Formula (3.14) continues to hold with the numerator which is now momentum dependent.

To introduce elementary fields we simply need to set to zero the non-dynamical sources

and add kinetic terms for the remaining ones in eq. (3.8). The same technique can be

applied to the fermion sector, the main results are collected in appendix A.

3.3 Goldstone boson lagrangian

A related computation is the low energy lagrangian for the GBs including higher derivative

terms. This is again obtained integrating out the resonances but in a space-dependent

GB background. The effective lagrangian is then presented as an expansion in powers of

momentum

L =
f2

4
Tr[dµd

µ] +
∑
i

ciOi . (3.18)
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We will focus on the following operators that are generated integrating out the resonances

at tree level,4

O1 = (Tr [dµd
µ])2

O2 = Tr [dµdν ] Tr [dµdν ]

O+
4 = Tr

[
f+
µν i [dµ, dν ]

]
O+

5 = Tr
[(
f−µν
)2]

(3.19)

where fµν ≡ U †A0
µνU = (f+

µν)aT a + (f−µν)âT â ≡ f+
µν + f−µν .

In order to obtain the coefficients ci, let us integrate out the heavy vector fields from

the lagrangian (2.17). We need to solve the equation of motions for the resonances and this

can be done order by order in a p2 expansion. As customary in chiral perturbation theory,

the vector fields are treated as terms O(p), so the EOM solution can be expanded as

ρiµ = ρ
(1)
iµ + ρ

(3)
iµ

aiµ = a
(1)
iµ + a

(3)
iµ . (3.20)

The first terms are solution of the EOMs at zero momentum. In principle to obtain the

O(p4) lagrangian, we would need the solution to the second order. However as in 5D

theories [18] the O(p4) tree level effective lagrangian is obtained by plugging the solutions

at zero momentum in the kinetic terms. This is because O(p4) terms arising from the

product of O(p) and O(p3) solutions in the mass terms automatically vanish by the EOMs.

The solutions at zero momentum are

ρ
(1)
iµ = eµ

a
(1)
iµ = αidµ, i = 1, . . . ,K (3.21)

where the coefficients αi are obtained from the linearized EOMs at zero momentum

K+1∑
j=0

f2
ij (αi − αj) = f2

0i , i = 1, . . . ,K . (3.22)

Plugging them into the kinetic terms we find the coefficients of the operators given in (3.19)5

c1 = −c2 = −
K∑
i=1

[
1− α2

i

]2
8g2
i

c+
4 = −2c+

5 = −
K∑
i=1

[
1− α2

i

]
2g2
i

. (3.23)

4For SO(5)/SO(4) the complete O(p4) lagrangian made of 11 operators can be found in [17]. In that

case the operators can be classified according to their parity with respect to the discrete symmetries of the

theory. The formulae presented here hold in that case provided that the symmetry breaking term (2.15) is

set to zero.
5Useful identities can be found in [17]. In particular we used eµν = i[dµ, dν ] + f+

µν and f−
µν = ∇[µdν]

with ∇µ = ∂µ − ieµ and Tr
(
T âT b̂T ĉT d̂

)
= 1

4
Tr

(
T âT b̂

)
Tr

(
T ĉT d̂

)
+ 1

4
Tr

(
T âT d̂

)
Tr

(
T ĉT b̂

)
.
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The non-abelian gauge interaction are crucial to obtain these identities. A different result

would be obtained for example in the formalism of ref. [14]. We note that the inclusion

of non minimal kinetic terms (2.12) for the resonances eliminates correlations between the

last two coefficients:

c+
4 = −

K∑
i=1

[
1− α2

i

]
2g2
i

c+
5 =

K∑
i=1

1

4

[
1

g2
i

− α2
i

g̃2
i

]
. (3.24)

As we will see in 5.2 these relations have interesting implications for the O(p4) QCD chiral

lagrangian.

4 Application to the Goldstone boson Higgs

We now discuss some physical consequences of the non-minimal terms in the context of

composite Higgs models where the Higgs is a GB. We will then consider the standard

pattern SO(5)/SO(4) that produces 4 GBs with the quantum numbers of the Higgs doublet.

4.1 The potential

The Higgs potential arises entirely from the couplings that explicitly break the global

symmetry of the theory. Minimally these are the SM Yukawa and gauge couplings. From

the low energy point of view, the contributions to the potential are divergent but they

can become finite due to the presence of resonances. This happens in 5D theories, and

can be understood in terms of 5D locality. Since the Higgs potential corresponds to a

non-local operator in 5D and all UV divergences are local in a local quantum field theory

the potential ought to be finite. This property of 5D theories is also valid for their 4D

avatars with nearest-neighbour interactions. In fact as discussed in [5, 14, 19] a single G

gauge field is sufficient for the convergence of the effective potential at 1-loop order. We

now generalize those results to non-minimal interactions.

The gauge contribution to the 1-loop effective potential (neglecting hyper-charge for

simplicity), is given by [3]:

V (h)gauge =
9

4

∫
d4Q

(2π)4 log

[
1 +

1

4

Π1(Q2)

Π0 (Q2)
s2
h

]
(4.1)

where sh ≡ sin h
f and Q2 = −p2 is the euclidean squared momentum. To account for the

kinetic term of the elementary gauge bosons we have made the replacement in eq. (3.11),

Π0

(
Q2
)
→ Q2

g2
0

+ Π0

(
Q2
)
. (4.2)

The convergence of the integral depends on the UV asymptotics of the form factors (IR

divergences are instead regulated by the finite SM masses). Π0

(
Q2
)
∼ Q2/g2

0 in the UV
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therefore finiteness of the potential requires that Π1

(
Q2
)

goes to zero faster than 1/Q2.

This implies two conditions:

Π1

(
Q2
) Q2→∞−→ 0 (I), Q2Π1

(
Q2
) Q2→∞−→ 0 (II) . (4.3)

The first constraint eliminates the leading quadratic divergence from gauge loops (analo-

gous to the SM one) while the latter removes the residual logarithmic divergence. In QCD

like theories the equations above can be translated into a relation between the masses and

decay constants of the mesons of the theory. These are known as Weinberg sum rules.

Finiteness of the potential and the Weinberg sum rules can be translated into a state-

ment on the “locality” of the moose interactions, i.e. the notion of distance between different

sites. Let us begin considering nearest-neighbour interactions. From eqs. (3.14) and (3.16)

we can immediately extract the leading order contribution to Π1

(
Q2
)

in the UV

Π1

(
Q2
)
∼ f2

KK+1

∏K
i=1 g

4
i f

4
i−1i

4KQ4K
. (4.4)

It follows that the 1-loop potential is finite for K ≥ 1.

It is illuminating to derive this result diagrammatically. For this purpose it is conve-

nient to choose a gauge where the GBs appear on the last link, that is

Ωi−1,i = I (i = 1, . . . ,K) , ΩK,K+1 = U . (4.5)

In a constant GB background the only term that contains the GBs is the mass term,

g2
Kf

2
KK+1

2
(ΩK,K+1Φ0)T AKµA

µ
KΩK,K+1Φ0 . (4.6)

The effective action can be written in terms of the two point functions of Aµ1 . Writing this

as
∫

1/2AA0µΣµν
ABA

B
0ν we have

Σµν
AB = −g

2
1f

4
01

4
〈Aµ1AAν1B〉+

f2
01

2
ηµνδAB. (4.7)

The correlator Π1(Q2), defined in (3.8), can be extracted from the transverse part of

〈Aµ1AAν1B〉 proportional to the group structure ΦTTATBΦ (Φ = ΩK,K+1Φ0). To determine

the UV behavior of this correlator, we can work in the mass insertion approximation. In

the gauge (4.5) the Feynman rules extracted from the lagrangian (2.6) are the following

(we are here adopting the two indices notation):

AAiµ

×
ABiν

= ηµν

[(
−g2

i

f2
i−1i+f

2
ii+1

2
+g2

K

f2
KK+1

2
δik

)
δAB−g2

Kf
2
KK+1δikΦ

TTATBΦ

]

AAiµ

×
ABi+1ν

= gigi+1
f2
ii+1

2
δABηµν

µ,A ν,B

Ai,T
=

1

Q2
(PT )µνδ

AB .
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G HG1 Gi Gi+1f01 f12 fi−1i

g1 gi

fiK+1

GK

Figure 3. Moose model with the non minimal link between the resonance i and the symmetry

breaking wall. The deep UV behaviour of the Higgs potential can be extracted from the minimal

moose identified by the shortest path that includes the breaking. The dashed sites do not contribute

to the UV leading order contribution on Π1(Q2).

All terms are diagonal in the global symmetry indices except for the one induced by

eq. (4.6). Obviously to generate contributions to the form factor Π1 it is necessary to

consider diagrams that include the symmetry breaking vertex above. Since each propaga-

tor contributes with 1/Q2, the leading order contribution in the UV is generated by the

diagram with the minimum number of insertions. This is obtained moving along the moose

from the first site to the symmetry breaking wall and then going back to the first site:

A1
×

A2
. . .

AK
×

AK
. . .

A2
×

A1
.

Using the Feynman rules above, we obtain that the UV leading contribution to Π1(Q2) is

given by (4.4). The power of Q2 is equal to the number of resonances encountered along

the path that starts from the source site, touches the breaking wall once and goes back to

the sources. The number of resonances can then be defined as the length of the path along

the moose. For the minimal moose dAA = 2K so that Π1(Q2) ∼ 1/Q2dAA .

This result is immediately generalised to non-minimal terms that do not involve the

sources. These terms, connecting non nearest-neighbour sites, reduce the distance between

the sources and the symmetry breaking wall. As a consequence it is always possible to

identify a shorter path inside the original moose that gives the leading contribution to

Π1(Q2). Eq. (4.4) still holds for the minimal moose identified by the shortest path that

goes from the source site to itself touching the breaking wall once. It is interesting to note

that in order to study the UV convergence of the potential, it is always possible to reduce

any moose to a nearest-neighbour one, as shown for example in figure 3.

When the sources couple to more than one resonance, we have to be a little bit more

careful. Consider for example a link between the source and the site j. Formula (4.7) is

modified in

Σµν
AB=−g

2
1f

4
01

4
〈Aµ1AAν1B〉−

g2
j f

4
0j

4
〈AµjAAνjB〉−

g1gjf
2
01f

2
0j

2
〈Aµ1AAνjB〉+

f2
01 + f2

0j

2
ηµνδAB . (4.8)

It is not difficult to realize that the leading contribution comes from the diagram

Aj
×

Aj+1
. . .

AK
×

AK
. . .

Aj+1

×
Aj

.
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G HG1

gj

Gj−1 fjj+1
GKfK−1K fKK+1

f0j

gK

Gj

Figure 4. Moose model with the non minimal link between the source and the resonance j. The

UV behaviour of the Higgs potential is determined by the shortest path involving f0j .

corresponding to the shortest path along the moose that involves the breaking, with length

dAA = 2(K − j + 1). Also in this case formula (4.4) is valid with the shortest path defined

by a linear moose (see figure 4). Finally we note that the link f0K+1 trivially modifies

Π1(Q2)→ Π1(Q2) + f2
0K+1, so that it goes to a constant at large momenta. Again we can

interpret this result in terms of the shortest path along the moose, that doesn’t intersect

any internal site and has vanishing length.

Keeping all the results together, we can conclude that

Π1(Q2) ∼ 1

Q2dAA
(4.9)

where the length dAA is defined as the number of resonances encountered along the shortest

path that realizes the symmetry breaking. The effective potential (4.1) is always UV

convergent except for the case dAA = 0, corresponding to the most non local interaction

associated to f0K+1 that causes a quadratic divergence in the potential.

Let us now briefly consider models with incomplete SO(5) multiplets. These can be

recovered by taking the limit fiK+1 → ∞. For nearest-neighbour interactions, using the

explicit formulas (3.14), (3.16) and taking fKK+1 →∞, one finds:

Π1

(
Q2
)
∼ 2

∏K
i=1 g

4
i f

4
i−1i

4Kg2
KQ

4K−2
(4.10)

i.e. the power is reduced by a factor Q2 due to the decoupling of the last coset resonance.

This result can be extended to non-minimal terms. In this case we can conclude that if the

shortest path includes the link fiK+1 →∞, the UV behaviour of Π1(Q2) is modified in

Π1

(
Q2
)
∼ 1

Q2dAA−2
. (4.11)

Thus a path of unit length can lead to a logarithmic divergence in the effective potential.

An explicit example is considered in appendix B. Another possible source of logarithmic

divergences comes from non minimal kinetic terms. In this case the diagrammatic argument

can still be applied, noting that they contribute with Q2ΦTTATBΦ.

These results can be translated into the Weinberg sum rules (4.3). The first constraint

requires f0K+1 = 0, i.e. the most non-local interaction in the moose should vanish. The

second condition can be violated if incomplete SO(N) multiplets are included or in the

presence of non-minimal kinetic terms. Let us also note that in some physical theories the
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second sum rule can be violated. This is the case of conformal technicolor [20] where a

non-integer power is obtained. This could be reproduced with our non local interactions

but would require an infinite number of resonances.

Let us briefly discuss fermions. The effective action for composite fermions in the 5

rep of SO(5) (CHM5) in a constant GB background, takes the following form

LCHM5
eff = Ψ̄α

0L/p
(
δαβΠ̂qL

0

(
p2
)
+ΦαΦβΠ̂qL

1

(
p2
))

Ψβ
0L

+Ψ̄α
0R/p

(
δαβΠ̂uR

0

(
p2
)
+ΦαΦβΠ̂uR

1

(
p2
))

Ψβ
0R

+ Ψ̄α
0L

(
δαβM̂u

0

(
p2
)

+ ΦαΦβM̂u
1

(
p2
))

Ψβ
0R

+ h.c. . (4.12)

We can follow exactly the same technique used for the gauge resonances to study the UV

behaviour of the form factors appearing in the effective lagrangian (4.12). For the minimal

moose the effective lagrangian can be written in terms of two point functions of Ψ1L and

Ψ1R. The form factors Π̂qL
1 (p2), Π̂uR

1 (p2), M̂u
1 (p2) can be extracted as the coefficient of

the two point functions 〈Ψ1
LΨ̄1

L〉, 〈Ψ1
RΨ̄1

R〉 and 〈Ψ1
LΨ̄1

R〉 respectively, proportional to ΦαΦβ.

From lagrangian (2.20) specialized to nearest-neighbour interactions and with the GBs

rotated in the last site, we obtain the Feynman rules (Φ = ΩK,K+1Φ0):

Ψ̄α
iL

×
Ψβ
iR

= −imiδ
αβ − iYKKδiKΦαΦβ

Ψ̄α
i−1L

×
Ψβ
iR

= −iMi−1iδ
αβ

α β

Ψi

=
i

/p
δαβ .

As we review in appendix A, the convergence of the potential implies the following

constraints

Q4Π̂qL
1

(
Q2
) Q2→∞−→ 0 , Q4Π̂uR

1

(
Q2
) Q2→∞−→ 0

Q2|M̂u
1

(
Q2
)
|2 Q2→∞−→ 0 ,

(4.13)

with Q2 = −p2. Analogously to the spin-1 sector, to obtain contribution to the form factors

above, it is necessary to consider a diagram that involves the symmetry breaking terms on

the last site. The UV leading order contribution to the form factors is given as before by

the shortest path along the moose that connects the sources, touching at least once the

breaking wall. It is easy to obtain

Π̂qL
1

(
Q2
)
∼ 1

QdLL+1

Π̂uR
1

(
Q2
)
∼ 1

QdRR+1

M̂u
1

(
Q2
)
∼ 1

QdLR
(4.14)
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where we introduced the fermionic distances as the number of chiral fermions encountered

along the shortest path. Note that this distance depends on the chirality. Finiteness of the

potential then translates into the following requirements on the distances in fermionic sector

dLL,RR > 3 dLR > 1 , (4.15)

meaning that we need two Dirac composite fields (four chiral components) to make the

potential finite.

4.2 Simplified model

To elucidate the role of non-minimal terms we now consider a simplified model with just a

single multiplet of resonances, fermionic and bosonic. This model essentially captures all

the relevant features that could be accessible at the LHC.

The composite degrees of freedom are a Dirac fermion in the 5 rep and a complete

SO(5) gauge multiplet. For the bosonic sector the lagrangian is

Lgauge =
f2

01

4
Tr
[
(DµΩ0,1)T (DµΩ0,1)

]
+
f2

12

2
(DµΩ1,2Φ0)T (DµΩ1,2Φ0)− 1

4g2
1

Tr [A1µνA
µν
1 ]

(4.16)

while the fermionic lagrangian reads (see figure 5):

LCHM5 = −M01Ψ̄0
LΩ0,1Ψ1

R −M∗10Ψ̄0
RΩ0,1Ψ1

L + h.c.

+ Ψ̄1

(
i /D

A1 −m1

)
Ψ1 − Y11Ψ̄1

LΩ1,2Φ0ΦT
0 Ω2,1Ψ1

R + h.c.

− Y01Ψ̄0
LΩ0,2Φ0ΦT

0 Ω2,1Ψ1
R − Y ∗10Ψ̄0

RΩ0,2Φ0ΦT
0 Ω2,1Ψ1

L + h.c. .

(4.17)

In the last line we have written non-minimal terms that connect directly the elementary

fields with the symmetry breaking. We have not included, for fermions and bosons, the

direct coupling between the sources that would violate the hypothesis of partial compos-

iteness. For Y01 = Y10 = 0 the fermionic distances are

dLL = dRR = 3 dLR = 2 . (4.18)

It follows from the discussion above that the potential has a logarithmic divergence due

to the LL and RR contributions. On the contrary, the contribution to the potential pro-

portional to the top Yukawa arising from the LR contribution, remains finite. With non-

minimal terms the fermionic distances dLL and dRR are reduced by two units leading to

quadratically divergent contributions to the potential. On the other hand the LR distance

remains unchanged so that the contribution to the potential controlled by the top Yukawa

coupling is still finite (this contribution becomes quadratically divergent only in the pres-

ence of the interaction Y00 in eq. (2.20) connecting left-handed and right-handed sources).

Note that in this case light fermionic partners are not sufficient for naturalness since the

potential is not saturated by the lighter resonances.

Let us now discuss the limit where the fermionic resonances are lighter than the spin-1

resonances. This configuration is often motivated by the naturalness of the theory even
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ΨL
0

Ψ1
R

ΨL
1

ΨR
0

m1

Figure 5. Schematic picture of the fermionic interactions in lagrangian (4.17), where red lines

represent non minimal links.

though the presence of non minimal terms weakens the connection between light top part-

ners and naturalness of the electro-weak scale. In this situation we can integrate out the

spin-1 resonances. This is conveniently performed in the CCWZ gauge (2.16). To leading

order,

ρ1µ = eµ , a1µ =
f2

01

f2
01 + f2

12

dµ . (4.19)

Substituting into the lagrangian (4.16) we obtain

L =
1

4

f2
01f

2
12

f2
01 + f2

12

Tr[dµd
µ] (4.20)

so that the physical decay constant of the GBs is f2 =
(
f2

01f
2
12

)
/
(
f2

01 + f2
12

)
. For the

fermions we get

L = −M01

(
Ψ̄0LU

)
α
Qα1R − (M01 + Y01)

(
Ψ̄0LU

)
5
S1R + h.c.

−M∗10

(
Ψ̄0RU

)
α
Qα1L − (M∗10 + Y ∗10)

(
Ψ̄0RU

)
5
S1L + h.c.

+ Q̄1 (iγµ∂µ − γµeµ −m1)Q1 + S̄1 (iγµ∂µ − (m1 + Y11))S1

+
i√
2

f2
01

f2
01 + f2

12

Q̄α1 γ
µdαµS1 + h.c.

(4.21)

where we distinguish between fourplet Qα1 , α = 1, . . . , 4, and singlet S1. This lagrangian is

equivalent to the one considered in [21] where the most general lagrangian of singlet and

fourplet were studied, see also [22]. Note that in our formalism the last term, that induces

an interaction between the fourplet and the singlet, mediated by the dµ symbol, originates

from the covariant derivatives with the coset resonances. The coefficient

c =
1√
2

f2
01

f2
01 + f2

12

=
1√
2

m2
ρ

m2
a1

(4.22)

is tunable but is always positive in our setup. In the minimal moose it is smaller than

1/
√

2, but can be made larger adding the non-local term that connects the sources,

f2
02

2
(DµΩ0,2Φ0)T (DµΩ0,2Φ0) . (4.23)

In this case in fact the coset resonances can be made lighter than the vector ones so that

c > 1/
√

2.
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The typical size of the coefficient (4.22) agrees with the partial UV completion criterion

advocated in ref. [17]. Various limits considered in the literature can be recovered. For

f12 →∞ the coset resonances are decoupled and c = 0. This is equivalent to the two site

model in [6]. For f01 → ∞ all the vector resonances acquire infinite mass and one finds

c = 1/
√

2. This corresponds to the model of ref. [23] also considered in [21].

4.3 S-parameter

A severe constraint on theories where strong dynamics breaks the electro-weak symmetry

arises from electroweak precision tests, in particular the S-parameter. In this section we

will focus on the tree-level contribution arising from spin-1 resonances. The NDA estimate

is given by

∆S ∼ 4πv2

m2
ρ

(4.24)

where mρ is the scale of vector resonances. In extra-dimensional theories one can prove

that the tree level contribution to S is always positive [24] and of the order above. Recently

it was pointed out that sizable negative contributions can originate from fermions [13, 21].

The general expression of ∆S at tree level can be conveniently extracted from the

two-point functions of the currents of the composite sector [3],

∆S = 4π
v2

f2

d Π1

dp2

∣∣∣
p2=0

= 4πv2d logΠ1

dp2

∣∣∣
p2=0

, (4.25)

where we used the fact that Π1(0) = f2. From eq. (3.14) it follows

∆S = 4πv2
K∑
i=1

(
1

m2
ρi

+
1

m2
ai

)
+ 4πv2 d

dp2
log N

∣∣∣
p2=0

. (4.26)

With nearest-neighbour interactions N is momentum independent. In this case the second

term is zero so that ∆S is always positive and at least as big as (4.24), in agreement with

the results in extra-dimensional theories. Note that its expression only depends on the

masses of the resonances. This is a special feature of the GB Higgs that would not apply

to a generic composite state (see for example [25]).

Let us now turn to non minimal interactions where N is momentum dependent and

interesting effects can be obtained. Indeed introducing the most non-local term one finds,

∆S = 4πv2
N∑
i=1

(
1

m2
ρi

+
1

m2
ai

)
f2 − f2

0K+1

f2
(4.27)

that is the generalization of the result of ref. [5]. According to this formula ∆S can have any

value for appropriate choices of f2
0K+1. However in this case the potential is quadratically

divergent and the resonances not even partially unitarize the scattering of Goldstone bosons

unless |f2
0K+1| � f2.

Next we consider other non-minimal terms. The result is more involved than the

previous one because all non minimal terms except f0K+1 enter in the mass spectrum in a

non trivial way.
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To be concrete we include in our theory only two vector resonances (ρ1,2) and one coset

resonance (a1). This model is described in detail in appendix B. Allowing for a logarithmic

divergence in the potential there are two non-minimal interactions f02 and f13. For f13 = 0

one can write a simple analytical formula

∆S = 4πv2

(
1

m2
ρ1

+
1

m2
a1

+
1

m2
ρ2

− 2f2
02

f2m2
a1

)
. (4.28)

This shows that the contribution to the S-parameter can be reduced and can even become

negative by properly choosing f02. Differently from the result of ref. [5] obtained for a

single level of resonances, in this case negative contribution to ∆S does not correspond

necessarily to ma1 < mρ1 .

More in general we have performed a scan over the parameters of the model to de-

termine the allowed values for ∆S and plotted it as a function of the mass of the lightest

resonance m∗. In the minimal case ∆S is minimized by the curve 4πv2/m2
∗. Turning on

the f02 interaction, we get lower and even negative contributions to ∆S, in agreement with

the analytic formula (4.28). Performing the same analysis for f13, we get that small value

of ∆S are allowed, but not negative ones. These results are reported in figure 6.

We conclude that non minimal interactions can potentially lower the constraints on

composite Higgs models coming from electroweak precision tests. We should mention

however that this might come at the price of lowering the cut-off of the effective theory [11].

5 Application to QCD

The formalism developed in this paper can be applied to describe in the most general way

the interaction of hadrons in QCD. The symmetry breaking pattern of QCD with two

massless flavour is SU(2)L × SU(2)R/SU(2)L+R with a discrete symmetry that exchanges

L ↔ R. This is locally equivalent to SO(4)/SO(3) so that the formulas presented in the

previous sections also apply to this case.

We will here consider pions and vector mesons. Our approach is closely related to

the one of AdS/QCD [26, 27]. We will follow and extend ref. [16] where 4D models with

nearest-neighbour interactions were studied, analyzing the physical consequences of non

minimal terms. Related work can be found in [10].

5.1 Electromagnetic splitting of pions and the KSRF relation

Experimentally the mass difference between charged and neutral pions is

(mπ+ −mπ0) |EXP ' 4.6 MeV . (5.1)

This difference is due to the explicit breaking of the global symmetry generated by the

gauging of electromagnetism (the effect due to different quark masses being subleading).

The potential takes the form,

V (π+π−)em =
3

2

∫
d4Q

(2π)4
log

[
1 +

Π1(Q2)

Π0(Q2)
sin2 π

fπ

π+π−

π2

]
(5.2)

where Π1 and Π0 are defined as in (3.8) and fπ ' 92 MeV is the pion decay constant.

To extract a quantitive prediction we have to resort to a specific model. A simple option
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Figure 6. Tree level contribution from gauge resonances to S in the model with two vector

resonances and a coset one with non minimal interaction f02 (left) or f13 (right). The plots are

obtained by scanning f201, f212 and f202 or f213 in the range [−25, 25] TeV2 and g1 and g2 in the range

[2, 10] requiring that f ' 1 TeV. The curve 4πv2/m2
∗ that minimizes ∆S with nearest-neighbour

interactions is drawn in red. In the left plot lower and even negative values of ∆S are allowed and

correspond to f202 > 0. In the right plot ∆S can be smaller than in the nearest-neighbour case when

f213 > 0, but never negative.

is to consider the theory with one multiplet of gauge resonances with nearest-neighbour

interactions, as in ref. [5]. This corresponds to an effective theory of QCD mesons, including

only the lightest vector (ρ(770)) and axial (a1(1260)) resonances. This is the minimal set

of degrees of freedom that generates a finite potential. One finds,

m2
π+ −m2

π0 '
3αEM

4π

m2
ρm

2
a1

m2
a1 −m2

ρ

log

(
m2
a1

m2
ρ

)
(5.3)

in agreement with eq. (5.1) within about 25%.

A certain tension however exists between this result and other observables in low energy

QCD. One can parametrise,

m2
ρ = a g2

ρππf
2
π , (5.4)

where gρππ is the coefficient of the operator εijkρiµπ
j∂µπk. Experimentally a ' 2 and

the relation (5.4) is known as the KSRF relation, see [12]. In the model above that well

reproduces the electro-magnetic splitting of pions, one finds

g2
ρππ =

m2
ρ

(
m2
a1 −m2

ρ

) (
m2
a1 +m2

ρ

)2
4f2
πm

6
a1

(5.5)

corresponding to a ' 3.4 for the physical values of the masses (or 4 in the limit ma1 →
∞ [28]). Moreover the value a ' 2 cannot be reproduced with any number of resonances

when only nearest-neighbour interactions are included. Indeed one can prove the following

sum rule [16]

f2
π

K∑
n=1

g2
ρnππ

m2
ρn

=
1

3
− 1

12

K+1∑
i=1

f6
π

f6
i−1i

− 1

4

f6
π

f6
KK+1

(5.6)

implying a > 3 for nearest-neighbour interactions.
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This suggests that non minimal interactions should be relevant for hadrons. Adding the

non-minimal term to the model above with a single SO(4) multiplet eq. (5.5) is modified into

g2
ρππ =

(
f2
π − f2

02

)
m2
ρ

(
m2
a1 −m2

ρ

) (
m2
a1 +m2

ρ

)2
4f4
πm

6
a1

(5.7)

and the phenomenological value a ' 2 can be reproduced with f2
02 ' −0.65f2

π (f2
02 = −f2

π

in the limit ma1 →∞ considered in ref. [28]). As explained in section 4.1 the non-minimal

interactions generates in this case a quadratically divergent potential

m2
π+ −m2

π0 =
3αEM

4π

f2
02

f2
π

Λ2 . (5.8)

Physically we expect the integral to be cut-off by the heavier resonances. Since the next

lightest vector resonance that could play a role is the ρ′(1450) with mass roughly twice mρ,

this spoils the agreement with (5.1).

Our result is that with more resonances it is possible to simultaneously reproduce both

the electro-magnetic splitting of pions and the KSRF relation. We here present the simplest

possibility where we include ρ(770), a1(1260), ρ′(1450). An effective description of these

resonances is given by the model of appendix B. We include two non-minimal terms f02

and f13 setting f03 to zero. The first term leads to a mild logarithmic divergence in the

potential that we can assume to be cut-off by the heavier resonances. With a numerical

analysis we find that (5.1) and the KSRF relation can be reproduced for a reasonable

choice of parameters. For example, the following choice of parameters roughly reproduces

the phenomenology

f2
01 ∼ 5f2

π , f2
12 ∼ f2

π , f2
02 ∼

3

2
f2
π , f2

13 ∼ −
3

2
f2
π , g1 ∼ 9, g2 ∼ 8 . (5.9)

In fact, with a cut-off Λ ∼ 2 GeV, we get a ' 2 and mπ+−mπ0 ' 4 MeV and we also verify

that gρππ ∼ gρ, where gρ is the trilinear self-coupling between the ρ(770). This respects

the coupling universality hypothesis of QCD but does not follow in general for different

choices of parameters in our lagrangian. A detailed study of the other observables in low

energy QCD will appear elsewhere.

5.2 L9 vs. L10

Let us finally discuss the pion chiral lagrangian. The effective lagrangian for pions, up to

fourth order in derivatives is customarily parametrised as follows6

Lp2 =
f2
π

4
Tr
[
(DµΣ)†(DµΣ)

]
, (5.10)

Lp4 = L1Tr
[
(DµΣ)†(DµΣ)

]2
+ L2Tr

[
(DµΣ)†(DνΣ)

]
Tr
[
(DµΣ)†(DνΣ)

]
(5.11)

+ L3Tr
[
(DµΣ)†(DµΣ)(DνΣ)†(DνΣ)

]
− iL9Tr

[
lµν(DµΣ)(DνΣ)† + rµν(DµΣ)†(DνΣ)

]
+ L10Tr

[
Σ†lµνΣrµν

]
,

6For the case SU(2)× SU(2)/SU(2) one combination of L1, L2 and L3 is not independent [29]. We use

this redundant notation as the final formula holds in general for SU(N)× SU(N)/SU(N).

– 22 –



J
H
E
P
0
6
(
2
0
1
4
)
0
7
1

where Σ is a unitary matrix and the covariant derivatives with respect the sources lµ and

rµ are defined as

DµΣ ≡ ∂µΣ− ilµΣ + iΣrµ . (5.12)

The coefficients obtained by integrating out the resonances can be determined as in

section 3.3. With the leading non-minimal interactions one finds,7

L1 =
1

2
L2 = −1

6
L3 =

K∑
i=1

[
1− α2

i

]2
16g2

i

L9 = −L10 =
K∑
i=1

[
1− α2

i

]
2g2
i

,

(5.13)

where αi are defined as in eq. (3.22). This implies the relations

2L1 − L2 = 0 , 3L2 + L3 = 0

L9 + L10 = 0
(5.14)

valid at tree level. Experimentally [29]:

L9 + L10

L9 − L10
= 0.1± 0.1 (5.15)

in good agreement with eq. (5.14). The other relations in (5.14) are also satisfied with

similar accuracy. L9 +L10 ' 0 is spoiled by non minimal kinetic terms in our description.8

In this case the tree level contribution from the exchange of axial resonances violates the

last relation in eq. (5.14), see eq. (3.24). If the resonances are weakly coupled one could

however expect such terms to be suppressed for the consistency of the effective theory.

This generalises the result found in theories with nearest-neighbour interactions [16,

18]. For large N theories with weakly coupled 5D duals one can prove that the corrections

to the relations above are small and in fact vanish in the large N limit. In general confining

gauge theories it is not a priori clear that spin-1 resonances should be described as gauge

fields and therefore L9 + L10 ' 0 may not follow [30].

6 Conclusions

In this paper we have presented a new parametrisation of composite resonances in theo-

ries with spontaneously broken global symmetries. The construction generalizes nearest-

neighbour interactions reminiscent of extra-dimensional theories to reconstruct the most

general lagrangian compatible with the symmetries. Our approach allows to systematically

characterize the deviations from extra-dimensional theories. This can be encoded into the

notion of locality in theory space: nearest-neighbour interactions maximize the distance

between elementary fields and the dynamics that breaks spontaneously the symmetry while

non-minimal terms shorten this distance.
7The coefficients can be extracted from eqs. (3.23) using the identities in the appendix of [17]. One finds

L1 = −c1/2 , L2 = c2 , L3 = −3c2 , L9 = −c+4 , L10 = −2c+5 .
8Higher derivatives terms such as Tr[ρµνi[dµ, dν ]] would also modify this relation, see [13, 17].
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The physical motivation for this work was two-fold. On one hand we wanted to explore

the most general possibilities allowed by strong dynamics in the context of composite Higgs

models where the Higgs is a Goldstone boson. These models have been mostly studied

in the context of 5D realizations or in the extreme limit where only one multiplet of

resonances is light and one considers the most general effective lagrangian compatible with

the symmetries. As we have seen the presence of non-minimal terms allows to interpolate

between these descriptions. Indeed we recover as special limits various effective descriptions

considered in the literature. We also show that non-minimal terms have important physical

consequences affecting the calculability of the GB potential and the UV behaviour of the

theory. They also allow to deviate from results in extra-dimensional theories where for

example the tree level contribution to the S-parameter is always positive and typically large.

In our more general setup any small or even negative values of ∆S could be reproduced.

Secondly our approach is suitable for a general parametrisation of hadrons. In the last

ten years it has been shown that extra-dimensional theories approximate reasonably well

several low energy QCD data [26, 27]. This is remarkable because QCD is not a conformal

field theory where the AdS/CFT correspondence can be applied. Some observables however

are not reproduced with good accuracy. For example the KSRF relation appears in tension

with the nearest-neighbour interactions hypothesis. We have shown that non-minimal

terms are relevant in this regard to reproduce the KSRF relation compatibly with the

electro-magnetic splitting of pions in QCD. We have also shown that the experimental

relation L9 ≈ −L10 among the parameters of the chiral lagrangian follows in general if

the resonances are treated as gauge resonances with the leading interactions. We hope to

return to a systematic study of these and related questions in the near future.
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A Fermionic form factors

In this appendix we collect the relevant formulas for the fermionic sector, following

closely [5] to which we refer for details. The effective lagrangian for composite fermions in

the 5 rep of SO(5) (CHM5) in a constant GB background, takes the form

LCHM5
eff =Ψ̄α

0L/p
(
δαβΠ̂qL

0

(
p2
)
+ΦαΦβΠ̂qL

1

(
p2
))

Ψβ
0L

+Ψ̄α
0R/p

(
δαβΠ̂uR

0

(
p2
)
+ΦαΦβΠ̂uR

1

(
p2
))

Ψβ
0R

+ Ψ̄α
0L

(
δαβM̂u

0 (p2) + ΦαΦβM̂u
1 (p2)

)
Ψβ

0R
+ h.c. (A.1)

where Ψ0
L,R are the sources of fermionic operators in the 5 rep. The form factors can

be written in terms of the correlation functions of the fermionic fields. The fundamental

representation of SO(5) decompose under SO(4) in the fundamental and a singlet, i.e.
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5 = 4 ⊕ 1. The sources Ψ0
L,R decompose in fourplets and singlets, so we can define six

correlation functions: Π4
LL,RR, Π1

LL,RR and Π4
LR, Π1

LR. The relations between the form

factors that appear in (A.1) and the fermionic correlation functions are

Π̂qL
0 = Π4

LL , Π̂uR
0 = Π4

RR

Π̂qL
1 = Π1

LL −Π4
LL , Π̂uR

1 = Π1
RR −Π4

RR

M̂u
0 = Π4

LR , M̂u
1 = Π1

LR −Π4
LR . (A.2)

For simplicity we consider the case when the sources couple to the nearest resonance.

Integrating out the composite fermions, we obtain

Π4
LL

(
p2
)

= −|M01|2
[(
p2I −M†QMQ

)−1
]

11

Π4
RR

(
p2
)

= −|M10|2
[(
p2I −MQM†Q

)−1
]

11

Π4
LR

(
p2
)

= −M01M10

[(
p2I −M†QMQ

)−1
M†Q

]
11

(A.3)

while the correlators Π1
LL, Π1

RR, Π1
LR can be found by replacing MQ → MS , M01 →

M01 + Y01 and M10 →M10 + Y10.

Finally, we can write explicitly the effective lagrangian that describes the coupling of

the SM fermions to the Higgs:

L = q̄L /p

(
Πq

0

(
p2
)

+
1

2
s2
hΠq

1

(
p2
)
ĤcĤ

†
c

)
qL + t̄R /p

(
Πt

0

(
p2
)

+
1

2
s2
hΠt

1

(
p2
))

tR

+
shch√

2
M t

1

(
p2
)
q̄LĤctR + h.c.

(A.4)

where sh = sinh/f and ch = cosh/f . We recall also that Ĥc = iσ2Ĥ
∗ and

Ĥ = 1/h
(
h2 + ih1, h4 − ih3

)T
. The form factors that appear in the effective La-

grangian (A.4) are related to those of Lagrangian (A.1) by

Πq
0 =

1

y2
tL

+ Π̂qL
0 , Πt

0 =
1

y2
tR

+ Π̂uR
0 + Π̂uR

1

Πq
1 = Π̂qL

1 , Πt
1 = −2Π̂uR

1 , M t
1 = M̂u

1 (A.5)

where ytL,R come from adding the kinetic terms for the elementary fermions. The fermionic

contribution to the Higgs potential, derived from the Lagrangian (A.4), is
(
Q2 = −p2

)
:

V (h)top = −2Nc

∫
d4Q

(2π)4
log

[(
1 +

Πq
1

2Πq
0

s2
h

)(
1 +

Πt
1

2Πt
0

s2
h

)
+
|M t

1|2
2Q2Πq

0Πt
0

s2
hc

2
h

]
. (A.6)

The form factors Πq
0 and Πt

0 are dominated in the UV by the kinetic terms for the elementary

fermion fields, see eq. (A.5). Using this fact, one derives the condition (4.13) for the

convergence of the potential.
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B An explicit example

In this appendix we collect some explicit formulas valid for the model (2.12) with K = 2

and f23 → ∞. The model with K = 2 describes two complete multiplets of SO(N)

resonances. In the f23 →∞ limit, the last coset resonance decouples and the model is an

effective description of two resonances in the adjoint of SO(N − 1) and a coset resonance

transforming as the fundamental of SO(N − 1). Neglecting non minimal kinetic terms, the

Lagrangian can be easily written in the CCWZ gauge starting from (2.17):

L =
f201
4

Tr
[
(eµ − ρµ1 )2

]
+
f202
4

Tr
[
(eµ − ρµ2 )2

]
+
f201
4

Tr
[
(dµ − aµ1 )2

]
+
f212
4

Tr
[
(ρµ1 − ρµ2 )2

]
(B.1)

+
f212+f213

4
Tr
[
(aµ1 )2

]
+
f202 + f203

4
Tr
[
(dµ)2

]
− 1

4g21
Tr
[
(∂µρ1ν−∂νρ1µ−i [ρ1µ, ρ1ν ]−i [a1µ, a1ν ])2

]
− 1

4g22
Tr
[
(∂µρ2ν−∂νρ2µ−i [ρ2µ, ρ2ν ])2

]
− 1

4g21
Tr
[
(∂µa1ν−∂νa1µ−i [ρ1µ, a1ν ]−i [a1µ, ρ1ν ])2

]
.

Integrating out the resonances, we obtain the form factors

Π0(p2) = −p
2

g2
0

+
p2
(
2p2

(
f2

01+f2
02

)
−
(
g2

1 + g2
2

) (
f2

01

(
f2

02 + f2
12

)
+ f2

02f
2
12

))
−2p2

(
g2

1

(
f2

01+f2
12

)
+g2

2

(
f2

02+f2
12

))
+g2

1g
2
2

(
f2

01

(
f2

02+f2
12

)
+f2

02f
2
12

)
+4p4

(B.2)

Π1(p2) = − 2p2
(
2p2

(
f2

01 + f2
02

)
−
(
g2

1 + g2
2

) (
f2

01

(
f2

02 + f2
12

)
+ f2

02f
2
12

))
−2p2

(
g2

1

(
f2

01 + f2
12

)
+ g2

2

(
f2

02 + f2
12

))
+ g2

1g
2
2

(
f2

01

(
f2

02 + f2
12

)
+ f2

02f
2
12

)
+ 4p4

− f4
01g

2
1

g2
1

(
f2

01 + f2
12 + f2

13

)
− 2p2

+ f2
01 + f2

02 + f2
03 . (B.3)

The GB decay constant is

f2 = Π1(0) = f2
01 + f2

02 + f2
03 −

f4
01

f2
01 + f2

12 + f2
13

(B.4)

while the poles of Π1(p2) give the masses of the physical resonances

m2
ρ1,2 =

1

4

(
g2

1f
2
01 + g2

2f
2
02 + g2

1f
2
12 + g2

2f
2
12 (B.5)

∓
√
g4

1f
4
01+2g2

1f
2
01

((
g2

1−g2
2

)
f2

12−g2
2f

2
02

)
+g4

2f
4
02+2g2

2

(
g2

2−g2
1

)
f2

02f
2
12+

(
g2

1 +g2
2

)2
f4

12

)

m2
a1 = g2

1

(
f2

01

2
+
f2

12

2
+
f2

13

2

)
. (B.6)

Let us now consider the integral ∫ Λ

d4Q
Π1

(
Q2
)

Π0 (Q2)
(B.7)

that controls the GB potential due to gauge loops. It is easy to verify that the terms f03

and f02 cause a quadratic and logarithmic dependence on the cut-off, respectively. This can
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be shown by following the argument of section 4.1. Consider the model with f23 finite. The

link f03 identifies a path with vanishing length corresponding to the quadratic dependence

on the cut-off . The links f02 and f13 both identify a path of unit length leading to a

cut-off independent result. Since the path defined by f02 includes the last link, in the limit

f23 →∞ it leads to a logarithmic dependence on the cut-off.
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