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Abstract: We re-examine the predictiveness of single-field inflationary models and discuss

how an unknown UV completion can complicate determining inflationary model parame-

ters from observations, even from precision measurements. Besides the usual naturalness

issues associated with having a shallow inflationary potential, we describe another issue

for inflation, namely, unknown UV physics modifies the running of Standard Model (SM)

parameters and thereby introduces uncertainty into the potential inflationary predictions.

We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably

the most predictive single-field model on the market, because its predictions for AS, r

and ns are made using only one new free parameter beyond those measured in particle

physics experiments, and run up to the inflationary regime. We find that this issue can

already have observable effects. At the same time, this UV-parameter dependence in the

Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger

range of Higgs masses. We comment on the origin of the various UV scales that arise at

large field values for the SM Higgs, clarifying cut off scale arguments by further developing

the formalism of a non-linear realization of SUL(2) × U(1) in curved space. We discuss

the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling

to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we

briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario.
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1 Introduction

Recently, the LHC has discovered a Higgs-like boson [1, 2], and Planck [3] has reported

precise measurements of the properties of the Cosmic Microwave Background (CMB).1 In

both cases, simplicity apparently rules. The LHC results are consistent with the Standard

Model (SM), including the simplest linear realization of SUL(2)×UY(1) in the scalar sector,

and rule out many exotic alternatives. The properties of the CMB as inferred by Planck,

WMAP [5] and other ground based observations [6, 7] are consistent with the Gaussian,

adiabatic primordial curvature perturbations, typically predicted by single-field slow-roll

models. This seemingly rules out many more exotic inflationary scenarios.2

Both developments raise the stakes for the Higgs Inflation (HI) proposal [8–10] which

aspires to use the SM Higgs boson as the single-field inflaton. The idea is to do so by

adding the term δL = −ξ(H†H)R to the combined Einstein-Hilbert and SM Lagrangians

(where H is the Higgs doublet and R is the metric’s Ricci curvature scalar), thereby making

the Higgs sector into a non-minimally coupled inflationary model [11, 12]. This seems a

1While this paper was in press, the even more exciting announcement of a measurement of r was made

by the BICEP2 collaboration [4], we briefly comment on this development in the context of Higgs Inflation

in a note added in the conclusions.
2Although some of the apparently simplest scenarios, such as some power law single field models are

also disfavoured by Planck data.
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very benign, and arguably simple modification of known physics, since the new term is

proportional to a dimensionless coupling (ξ) that is allowed by the symmetries given the

SM field content.

At face value this model has many compelling features, no new fields are required

beyond those describing particles now known to exist. Furthermore, it seems extremely

predictive because all parameters except ξ are determined by non-cosmological physics,

and ξ ' 104 is fixed by requiring the amplitude of primordial scalar fluctuations agree with

CMB observations. Once this is arranged, the predictions for the scalar spectral index, ns,

and primordial tensor-to-scalar ratio, r, become parameter-independent at leading order

(other than the dependence on SM parameters arising in the reheating analysis that is used

to fix the number of inflationary e-foldings, Ne). Best yet, the predictions are successful:

ns ' 0.967 and r ' 0.0031 agree well with the Planck data.3 See [13] for a recent review

on this model.

This success, and the improved observational constraints, has led to a more systematic

assessment of inflationary models in view of the observations [14], with the HI model

used as the benchmark model against which others are assessed in a Bayesian comparison.

Indeed, such an analysis favours models for which inflation is not ruined by small parameter

changes, and whose ns and r predictions agree with the data as their parameters vary over

a wide range of values. This tends to reward models with exponential potentials, like

V (φ) = A − Be−λφ, for which the slow-roll condition requires only that φ be sufficiently

large. This includes both the HI model and R2 inflation [15].4 This result can also be

viewed to be consistent with many models where exponentials arise in higher-dimensional

theories, where the inflaton is a geometrical modulus (like the size, r, of an extra dimension)

given that the associated energies can arise as powers of 1/r and the canonical field for

such a quantity is φ ∼ ln r [17, 18]. In particular, ref. [19] advocated extra dimensional

models for exactly this exponential behavior far in advance of Planck data.

In this paper, we re-examine the predictiveness of single-field inflationary models, using

the HI model as their poster child. We revisit the issue of the sensitivity of inflationary

predictions to unknown UV physics, with the effects of this physics systematized within

an Effective Field Theory (EFT) framework [20, 21] for gravity. Beyond the ‘usual’ UV

sensitivity issues that are well known: the propensity of UV physics to ruin the flatness

of the inflaton potential; and the sensitivity of slow-roll parameters to ‘Planck slop’ —

i.e. 1/Mp suppressed higher-dimension effective interactions, we identify another issue of

UV sensitivity.5

The new issue we discuss first arises for inflationary models that are predictive in the

sense that HI models are: that is, there are fewer free parameters than there are inflationary

observables. In this case, the fact that the Renormalization Group (RG) running even at

3With the advent of BICEP2’s measurement of r = 0.20+0.07
−0.05 the later prediction is in conflict with the

data. But, the Higgs inflation paradigm has since been modified post-hoc to accommodate a larger r. See

the comments at the end of the paper regarding this development.
4See [16] for a study of their essential equivalence in the large field regime.
5Here Mp = 2.44 × 1018 GeV is the reduced Planck mass. We note that sensitivity to ‘Planck slop’ is

also called the η-problem in some literature.
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low energies required to relate inflationary predictions to other observables is UV sensitive

also introduces new parameters into the predictions for quantities like ns and r.6

1.1 UV issues

We here briefly describe in more detail, and contrast, the various kinds of UV sensitivity

that can arise, in order to set the context for the quantitative calculation in the next

sections of their effects in the minimal HI model.

An EFT analysis of inflation leads to the well-known observation that UV physics

generically tends to modify the inflaton potential so strongly that it ruins the flatness that

is responsible for the slow roll. It typically does so because integrating out UV physics at

a scale M contributes to low-dimension operators in the EFT — like corrections to the

vacuum energy or scalar masses, δL = −
√
−g
(
c0 + c2 φ

2
)

— that are generically large:

c0 ∝ M4 and c2 ∝ M2. This is the inflationary version of the standard ‘naturalness’

problems that make it challenging to have light scalars within a generic EFT.

On the other hand, it is also known that once the low-dimension interactions are under

control, UV physics can decouple from generic inflationary predictions [23, 24], just like it

does from other types of low-energy phenomena (provided the UV physics is adiabatic [25–

27]). This is because corrections to high-dimension interactions are suppressed, rather

than enhanced, by the large scale. If δL = −ck
√
−g φk then ck ∝ M4−k, which is

suppressed for large M if k > 4. Of course the effective interactions satisfying k ≤ 4 can

still be problematic.7

However even if such UV contributions are small in absolute size, they can still be

large enough to ruin (or strongly perturb) inflation, since inflation requires not just that

the inflaton mass be smaller than M ; it must also be smaller than the Hubble scale,

H ∼ V/M2
p � M . Because of this, interactions suppressed by powers of 1/M can still

contribute non-negligibly to slow-roll parameters — and so also to r and ns — even if they

do not ruin inflation. For instance, a c6 φ
6 contribution to the potential competes with

an m2φ2 term whenever c6 φ
4 ∝ φ4/M2 ' m2 <∼ H2. This can actually happen (even if

M 'Mp) because H is itself Planck-suppressed relative to the other scales in the potential.

For most inflationary models, however, the slow-roll parameters are not predicted in terms

of other observables, so the standard approach simply rolls all such UV contributions into

the uncertainty in the values of the slow-roll parameters, allowing them to be ignored

in practice.

Our focus in this paper is on a third way UV physics affects the low-energy inflation-

ary model, distinct from the above two well-understood issues. It first arises when the

inflationary model involves fewer parameters than there are inflationary observables, such

6The effect of UV physics, classified in terms of higher dimensional operators. modifying the running

of the SM parameters was recently completely calculated for the first time in ref. [22], for dimension six

operators. We will use these results extensively in this paper in this application to cosmology.
7In general the coefficient, cQ, of an operator Q in δL varies as M4−dQ , where dQ is the full scaling

dimension of Q (including anomalous dimensions). Note that a sensitivity of large-field models to higher-

dimensional Planck slop can be due to large field excursions generating large anomalous dimensions for

operators that were initially suppressed, potentially spoiling inflation as it progresses. See however ref. [28]

for a construction that avoids this.
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as in Higgs Inflation. For the HI model, one measures the couplings within the scalar

potential in particle physics experiments at comparatively low energy, and inflationary

predictions are then made in terms of these parameters. This raises a technical compli-

cation because the field values, (H†H)inf ∼ M2
p /ξ, associated with inflation are enormous

relative to those, (H†H)vac ∼ v2 ' (246 GeV)2, relevant to particle physics. The extrapo-

lation of the potential to fields this large involves large logarithms, whose leading behaviour

can be summed using Renormalization Group (RG) methods. This RG-based extrapola-

tion is an important step when relating the large-field/high-energy inflationary potential

to the small-field/low-energy parameters inferred from particle physics measurements at

electroweak (EW) energies [9, 10, 29].

Our main point is that this RG improvement of the potential is also sensitive to the

details of a host of higher-dimension effective interactions, most of which are not pure Higgs

field operators. For instance, by contrast with δL = −c6
√
−g φ6, an effective interaction

like δL = −1
4 cg
√
−g (H†H)FµνF

µν does not contribute at tree level to the scalar potential,

because of the presence of the gauge fields. However it does contribute at the quantum level

because this operator contributes to the running of the corresponding gauge coupling of

order δ(1/g2) ∼ cgm2
h/16π2 once the quantum fluctuations of the Higgs fields are calculated

at one loop. This modification in the running of 1/g2 also feeds into the RG evolution of

the other SM couplings at two loops, and this contributes to the running of the Higgs

coupling, λ [22]. As a consequence the value of the coupling cg can find its way into

inflationary predictions.

Naively the size of any such contributions to δλ would be expected to be very small.

After all, if the effective interaction arises from integrating out a particle at mass M , then

cgm
2
h ∝ m2

h/M
2, rapidly becomes very small for M � mh ' 125 GeV. Further, the specific

example mentioned in the previous paragraph is a two loop effect. However, there are also

one loop effects of this form. Further, in the HI model, because inflation takes place at

large values of the Higgs field, H ∼Mp/
√
ξ, and mh is itself proportional to H, the effective

Higgs mass can also be very large. Restricting to the contributions of operators of the form

δL ∼ H2F 2, one finds a contribution to the running of λ at one loop [22]

δ

(
µ
dλ

dµ

)
⊃

m2
h

16π2

[
9 g2

2 CHW + 3 g2
1 CHB + 3g1 g2CHWB

]
∼

g2m2
h

16π2M2
, (1.1)

where the final relation indicates the order of magnitude with g generically representing g1

and g2, the couplings of the SUL(2)×UY(1) EW gauge bosons. See ref. [22] for details on

the operator notation used here. This correction need not be inordinately small if mh ∼M
at the values of H of interest, even if M itself is very large.

There are principally two kinds of uncertainty in this kind of expression. The first is

what value to use for the mass, M , of any new threshold. Part of the framework of minimal

HI is the assumption that there are no new heavy particles beyond the SM between EW

and inflationary energies, because any such thresholds generically could introduce effective

couplings — like (H†H)3/M2, for example — whose appearance within the potential could

disturb the dynamics enough to destroy the inflationary slow roll.
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Figure 1. The potential effect of the unknown UV completion on the expectation for CMB pa-

rameters in the Higgs inflation scenario. The red dot is the prediction in HI for the scalar to tensor

ratio r, and the spectral index ns, without the effect of higher dimensional operators modifying the

RG running. See section 3.2 for the details of how this prediction is obtained. The black line is

the span of expected values for these parameters when the higher dimensional operators are also

marginalized over. (The thickness of the line in the direction of r is exaggerated so that the line

is visible.) The figure also shows the one and two sigma regions of Fig 4 of ref. [3]. The larger

red regions are Planck and WMAP data + BAO + ΛCDM + r allowing running of dns/dk. The

smaller blue regions are Planck and WMAP data + BAO + ΛCDM + r not allowing a running

of dns/dk.

However the mass, M , of the lowest new particle cannot be arbitrarily high. M cannot

be much larger than ∼ Λ, where Λ is the ‘unitarity scale’, or the upper limit of the domain of

validity of the semi-classical approximation [30]. Λ = Λ(H†H) is Higgs-field dependent [31],

and arises because the coupling to gravity is not renormalizable, and so the size of quantum

effects can only be quantified within an EFT framework. Within this framework (as we

review below) Λ ∼Mp/ξ for the small fields, H �Mp/ξ, relevant to particle physics; while

Λ ∼ Mp/
√
ξ for the larger fields, H ' Mp/

√
ξ, relevant to inflation. If we conservatively

use M ∼ Λ ∝Mp/
√
ξ ∼ H in the inflationary regime, and that mh ∝ H there, we see that

the correction in eq. (1.1) can be comparable to one-loop contributions computed within

the SM. Effects such as this can be large enough to visibly change the implications for HI

in the ns − r plane, as is illustrated in figure 1.

The other uncertainty in these estimates is whether or not all other higher dimensional

operators in the non-renormalizable EFT actually vanish. They do not for any known pro-

posals for weakly coupled physics beyond Λ (such as string theory, or higher-dimensional

gravity, for example). All of the higher dimensional operators will be generated by renor-

malization, so any vanishing of all these terms, if accomplished, will necessarily only occur

at one scale. Further, one need not consider this question to be an exotic one purely in the

– 5 –
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context of gravity. We discuss in section 2.3 how attempts to banish these operators can be

mapped to analogous statements on unitarity violation involving massive spin one states

in an EFT, with no need to invoke gravity. Attempts to argue away these operators would

in this manner have broader implications for our understanding of unitarity violation and

renormalization in many EFTs.

But these strong arguments, and the absence of examples, does not remove the logical

possibility that such physics might exist; sufficiently suppressing all dangerous dimension-

six interactions at the scale Λ. It is difficult to say more without a specific and precise

proposal for what the UV physics is that must enter at scale Λ,what the coefficients of the

operators will be.8 Given our current lack of knowledge of physics beyond the Standard

Model, our own point of view is that these unknown order-unity coefficients are likely to

be nonzero and so represent intrinsic theoretical uncertainties that must be propagated

through to low energy observable quantities in EFT’s, such as CMB observables in HI.9

The importance of these threshold-like terms within RG equations was recently empha-

sized for non-cosmological applications in ref. [22], as part of a systematic renormalization

program of the SM EFT (with full flavour structure) completely carried out in refs. [22, 37–

39]. In ref. [22] the complete modification of the running of the parameters present in the

renormalizable SM Lagrangian due to dimension six operators was explicitly calculated.

In what follows we use these results to illustrate how the running of SM parameters can

be modified in the case of HI. We discuss how this impacts attempts to predict ns and r

in this model, and derive the results illustrated in figure 1.

Our broader lesson is this: although we discuss in detail HI, similar issues should

arise within the SM RG in any attempts to link EW scale physics with the higher scales

involved in inflationary (and other cosmological) scenarios.10 UV sensitivity is a many-

headed hydra, and it is only with the development of more predictive models that this

latest version has become potentially relevant.

The outline of this paper is as follows, in section II we discuss HI and the cut off scales

present in theories of this form. In section III, we discuss the RG evolution used in these

theories, and we outline the contributions to the RG equations that we include that were

previously neglected. We then demonstrate how these corrections impact predictions in

these theories based on EW scale measurements. Finally, in section IV, we conclude.

2 Higgs inflation and UV physics

In this section we will review the Higgs inflation framework. We discuss some of the issues

that arise from its treatment within an EFT framework and present how the HI gravity-

Higgs mixing modifies the RG evolution of effective operators within the EFT.

8See for instance refs. [32, 33] for a classification of the operators that might appear in the context of

the MSSM. See also ref. [34] for a study of Higgs inflation embedded in the MSSM. We also note that some

simple models have also been proposed to UV complete Higgs inflation and avoid the unitarity bound, see

for example [35].
9In a similar spirit, see [36] for a discussion of the sensitivity of the stability of the EW vacuum to new

physics.
10Any complete account of reheating into some sector that contains the Standard Model seems to force

this issue upon us by directly or indirectly coupling the SM degrees of freedom to the inflaton, for example.
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2.1 The model

The HI model [8] proposes to use the SM Higgs field as a single-field inflaton, with the

Higgs playing the (particularly economical) role of a non-minimally coupled inflaton, along

the lines studied in [11, 12]. The theory is defined by the Lagrangian density

LHI = LSM −
√
−ĝ

[
M2
p

2
+ ξ (H†H)

]
R̂ , (2.1)

where LSM is the usual Standard Model Lagrangian density with the flat metric replace by

a general ‘Jordan-frame’ metric, ĝµν , whose Ricci scalar is denoted R̂.

The idea is to use the SM Higgs as the inflaton, and because the SM potential is not

particularly flat the inflationary slow roll is sought at large Higgs field values. This turns

out to be possible when H ∼ Mp/
√
ξ. Primordial fluctuations are then assumed to be

generated from quantum fluctuations in the usual way, and their amplitude can be made

to agree with CMB observations by choosing ξ ' 104.11

The theory is easiest to analyze in the Einstein frame, with the metric canonically

normalized. To do so use the Weyl transformation ĝµν → gµν given by

ĝµν = f gµν with f =
[
1 + 2 ξ(H†H)/M2

p

]−1
. (2.2)

After making this replacement the terms of particular interest in HI are given by

LHI√
−g

= −1

2
M2
p R− VEF (H†H)− gµν

[
f(DµH)† (DνH) +

3 ξ2f2

M2
p

∂µ(H†H) ∂ν(H†H)

]
,

where R is the Einstein-frame Ricci scalar built using gµν , and the Einstein-frame Higgs

potential is

VEF = f2 VSM = λf2

(
H†H − v2

2

)2

. (2.3)

HI exploits the fact that f ∝ (H†H)−1 for large enough expectation value of H†H, and so

because VSM ∝ (H†H)2 for large H†H, VEF becomes flat enough to inflate in the large-field

regime. More quantitatively the potential flattens once H†H >∼ M2
p /ξ � v2 and so this

defines the inflationary regime.

It is most efficient to move to unitary gauge,
√

2H = (0, v + h)T and then perform

the field redefinition h → χ(h) that puts the scalar kinetic energy into canonical form:

−1
2

√
−g gµν∂µχ∂νχ. The required redefinition satisfies

dχ

dh
=

[
1 + (ξ + 6 ξ2) (h/Mp)

2
]1/2

1 + ξ (h/Mp)2
, (2.4)

which for large ξ is easily integrated. In the small-field regime, where both h and χ are

much smaller than Mp/ξ, it integrates to

h ' χ− ξ2χ3

M2
p

+ · · · (when h, χ�Mp/ξ and ξ � 1) ; (2.5)

11Recent versions of Higgs inflation tune the top and Higgs mass and consider much smaller ξ ∼ 10. See

the comments at the end of the paper.
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and in the large-field regime, h�Mp/ξ, we instead find

h2 '
M2
p

ξ

(
eβχ − 1

)
(when h�Mp/ξ, and so βχ� O(1/ξ)) , (2.6)

where the parameter in the exponent is

β =
1

Mp

√
2

3
. (2.7)

In both cases we choose integration constants to ensure h = 0 corresponds to χ = 0.

It is the large-field form of the potential that is relevant to inflation,

VEF (χ) '
λM4

p

4 ξ2

(
1− e−βχ

)2
, (2.8)

which is exponentially flat deep within the large-field region. For cosmological applications

this translates into the following χ-dependent Hubble scale and slow-roll parameters,

H2 '
λM2

p

12 ξ2

(
1− e−βχ

)2
, ε ' 4

3

(
1

eβχ − 1

)2

, η ' −4

3

[
eβχ − 2

(eβχ − 1)2

]
, (2.9)

in terms of which the spectral index, ns, and the tensor to scalar ratio, r, are given by the

standard formulae [40],

ns = 1− 6 ε∗ + 2 η∗ and r = 16 ε∗ , (2.10)

where the subscript ‘*’ indicates evaluation at the epoch of horizon exit. Inflation ends when

βχ ' O(1), when the slow-roll parameters are not small, if one assumes Ne ' 57.7 ± 0.2

e-folds of inflation [13] then βχ∗ ' 4 at horizon exit, giving the successful predictions

ns ' 0.967 and r ' 0.0031, which, at leading order depends only on the SM parameters

through the Higgs self-coupling, λ (other than the implicit dependence on SM parameters

in the reheating analysis that is used to fix the value assumed for Ne).

2.2 Embedding into an EFT

Because the HI model includes gravity its semiclassical expansion is not renormalizable,

even though the coupling ξ is dimensionless. As such, the only known way to systematically

calculate its quantum properties is to interpret it as an EFT, regarding eq. (2.1) as the

leading terms in a low-energy expansion (see, for example, [20, 21] for an introduction

within a gravitational context),

LEFT = LSM −
√
−ĝ

[
M2
p

2
+ ξ (H†H)

]
R̂+

√
−ĝ
∑
i

CiQi , (2.11)

where the operators Qi consist of all possible interactions built from the given fields con-

sistent with the low-energy gauge symmetries. Their effective couplings, or Wilson coeffi-

cients, Ci, are generically suppressed by powers of the large scale, M , of the massive states

that were integrated out to generate L in the first place.

– 8 –
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The scale M need not be Mp. Generally it is the smallest mass scale appearing in

a denominator that usually dominates. Further, the scales suppressing different fields, or

derivatives, need not coincide in general, see refs. [41–43] for some discussion on power

counting. In the discussion that follows, for simplicity, we will assume that the suppression

scale is generically M . Also note that curvature-squared terms need not be suppressed by

M , but in four dimensions curvature-squared terms can be eliminated using an appropriate

field redefinition, and so are redundant interactions.

There are an infinite number of potential operators, Qi, but only a finite number that

are suppressed by less than a specific power of 1/M . It is by organizing calculations in

powers of 1/M that calculations become predictive, if only finite accuracy is demanded.

Terms in L involving the fewest powers of 1/M are expected to dominate at low energies

if M is very large.

EFT makes two of the choices made by HI appear very natural. First, part of what is

attractive about the HI model is that its only new interaction has engineering dimension

of (Energy)4, and so its coupling is unsuppressed by 1/M . Furthermore, it is the only such

term possible that involves SM fields and that is not already included within LSM . This is

attractive because such terms might plausibly dominate in the EFT at low energies when

M is large.

Second, the 1/M expansion has two logically distinct parts: expansions in powers of

derivatives; and expansions in powers of fields (like H). An EFT reproduces the same S

matrix elements as the full theory in some momentum regime of validity. Although this

requires derivatives be small, it need not also require small fields, unless the scalar potential

is such that large fields also imply large energy. For potentials like eq. (2.8), large fields do

not imply large energies and so nothing in the EFT a-priori requires h be small, even in

comparison with Mp.

On the other hand, nothing seems to require that large values of h must correspond

to low energies, and so it would be natural to expect the sum over Qi to include terms like

(H†H)n/M2(n−2), with n > 2, or (H†H)nR/M2(n−1), with n > 1. Such operators would

be dangerous for inflation to the extent that they ruined the property that f2VSM becomes

constant at large fields.

In HI such higher powers of H†H are assumed not to arise, and this is an implicit con-

dition on the kinds of UV completion for which LHI can be the low-energy limit. One way

this might happen is if no heavy particles were present at all with masses below the fields

needed for inflation, such as if the smallest such UV mass satisfies M � Mp/
√
ξ. Alter-

natively one might hope for some sort of strong UV dynamics that provides an anomalous

dimension for H†H that suppresses the dangerous terms more than they would naively be.

Or one can hope the UV theory has a symmetry, like scale invariance, that can suppress

such terms. Unfortunately, to our knowledge, no precisely defined candidate theory exists

that accomplishes any of these hopes in detail.

Further, integrating out heavy particles also normally contributes corrections to the

Higgs mass that are δm2
h ∼M2; the usual EW hierarchy problem. Since this only becomes

a problem once a heavy particle is integrated out, this problem can also be pushed up to

very high energies if it is assumed that no new particles exist beyond the SM at lower
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energies. HI assumes (as do most other inflationary models) that somehow the unknown

UV physics does not generate these dangerous effective interactions when integrated out.

For the purposes of our later arguments, we follow suit in the rest of this paper and assume

the required type of UV physics exists.

In the next sections we describe another way that UV physics can complicate the low-

energy inflationary story, where we focus on a different set of operators, Qi. We consider in

detail the subset of dimension six operators constructed purely of the SM field content and

consistent with (linearly realized) SUc(3) × SUL(2) × UY(1) gauge invariance. The list of

possible dimension six operators has been known for some time [44], and the minimal basis

with redundant operators eliminated using lower-order field equations — or, equivalently,

using appropriate field redefinitions is now known12 [45]. We use this operator basis in

what follows to characterize how the unknown UV completion can effect the running of the

SM parameters below the scale Λ.

Because the size of these (and other) operators are controlled by 1/M , we first pause

to review the argument that there is an upper bound to how big the mass, M , of the UV

threshold can be.

2.3 The unitarity scale and the nonlinear realization

The only known systematic way to incorporate quantum effects in non-renormalizable field

theories is to interpret them as an EFT, within an implicit low-energy expansion. If mistak-

enly this expansion is used at too high an energy, the low-energy expansion breaks down,

leading to a loss of predictiveness. This problem is often cast in terms of unitarity viola-

tion,13 with the scale, Λ, above which the low-energy theory fails called the unitarity scale.

For HI the scale Λ is of interest because it provides an upper limit to the energy range

over which the theory can apply without modification. As such it provides an upper bound

on the mass scale, M , of the first new UV state not already contained within HI itself.

The HI unitarity scale. Because the coupling ξ is large, it exacerbates the breakdown

of the low-energy approximation, and as a result lowers Λ relative to its naive value, Mp,

associated with pure gravity. It does so in a way that depends on the size of the background

Higgs field [31] with

Λ ' Mp

ξ
when h <∼

Mp

ξ
, and Λ ' Mp√

ξ
when h >∼

Mp√
ξ
. (2.12)

Why these results are obtained will be reviewed in detail below. The cut off scale depends

on the channel considered, see ref. [46] for a recent discussion of various channel cut off

scales. The overall cut off scale quoted for the effective theory depends on the lowest cut off

12There are 59 operators neglecting flavour indicies, or 2499 unknown parameters characterizing beyond

the SM physics in this case, when flavour indicies are not neglected [39].
13Typically the Hamiltonian constructed from a real Lagrangian density is Hermitian, and if so the

theory must be unitary. Yet unitarity is inconsistent with cross sections that rise too quickly with energy,

so if such a cross section is found it implies an approximation has failed in the derivation. The offending

approximation is usually the low-energy approximation implicit in using the non-renormalizable theory in

the first place.
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scale found. The low-field value for Λ was determined in ref. [30] by using powercounting,

to systematically identify the lowest cut off scale present. In our detailed numerics we use

the lowest cut off scale given by eq. (3.17). The cut off scale can be easily discovered in the

theory in some particular cases. Expanding the ξ(H†H)R̂ term about Minkowski space,

using ĝµ ν = ηµν + hµ ν/Mp and tracking the metric-scalar mixing in the Jordan frame,

we have

−
√
−ĝ ξ(H†H) R̂ ' ξ

Mp
h2 ηµν ∂2 hµν + · · · , (2.13)

showing the explicit dependence on the scale Mp/ξ. This scale was also shown to be present

in the explicit expansion of the potential [47] at small field values.14 Further, this scale is

also found in any gauge (including unitary gauge), and in both the Jordan and Einstein

frames [49], when calculating in the EW vacuum. Note that the cut off scale being the

same in the Jordan and Einstein frames, and in unitary gauge, is in conflict with some

claims in the literature, see however [49] for clarifications on both of these points.

Once h climbs above Mp/ξ the scale Λ also climbs due to the suppression of the physical

Higgs interactions due to its mixing with the metric in eq. (2.13) [13, 29]. It is because Λ

rises to Mp/
√
ξ within the inflationary regime that it can be consistent to consider Hubble

scales as large as H ∼Mp/ξ without invalidating the semiclassical approximation [31].

The nonlinear realization. The SM Higgs couplings are the unique ones that allow

unitarity to be valid at scales far above the Higgs vev, h̄, in the presence of massive spin

one states whose mass is generated by the scale h̄. Once the Higgs couplings become

modified (as they are by mixing with the metric) there is generically a unitarity problem

at scales of order 4π h̄ c. Here c is a schematic coefficient that indicates the degree of

deviations in the effective Higgs couplings from the SM values. An example in appendix A

gives an illustrative toy description of this mixing, and gives some intuition for why the

problems at the scale Mp/ξ do not dominate once 4πh̄c becomes the larger scale of the two

unitarity limits in the peculiar case of HI.

It can be convenient not to use unitary gauge and instead to rewrite the theory to

display explicitly the would-be Nambu-Goldstone bosons of EW symmetry breaking, and

how these interact with the scalar Higgs singlet [13, 29]. For later convenience we summarize

these couplings here, and show how they also can be used to infer the size of Λ in different

regimes. Consider a general EFT with a nonlinearly realized SU(2) × U(1) in the scalar

sector, massive vector bosons due to a classical background field vev, and a scalar singlet

with general couplings.15 In recent years, this EFT formalism is under intense development

as an alternative EFT description of the observed boson at LHC, see refs. [51–56]. (See [57]

for a similar unitary gauge formulation of Higgs properties.) We write the theory in the

frame where the scalar field and graviton have been canonically normalized i.e. using χ in

the Einstein frame, and the Nambu-Goldstone bosons eaten by the W± and Z bosons are

denoted by πa where a = 1, 2, 3. The Nambu-Goldstones are grouped together as

Σ(x) = eiσa π
a/χ̄ , (2.14)

14See ref. [48] for scattering results that support this point.
15For an introduction to the concept of a nonlinearly realized symmetry, see ref. [50].
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with χ̄ the background χ vev. The Σ(x) field transforms linearly under SU(2)L × SU(2)R

as Σ(x) → LΣ(x)R† where L,R indicate the transformation on the left and right under

these groups. The diagonal subgroup of SU(2)L × SU(2)R is called the ‘custodial’ group,

and the physical Higgs, χ, is a singlet under this group.

The leading terms in a derivative expansion are given by

LHI√
−g

= −1

2
(∂µχ)2 − V (χ)− 1

2
F 2(χ)Tr(DµΣ†DµΣ)

− 1√
2

(ūiLd̄
i
L) Σ

(
yuij u

j
R

ydij d
j
R

)
Y (χ) + h.c. , (2.15)

where the potential is given by eq. (2.3), or equivalently eq. (2.8) in the large-field limit.

Similarly the functions F 2 and Y are given by

F 2(χ) =
1

2
f [v + h(χ)]2 and Y (χ) = f1/2[v + h(χ)] . (2.16)

Scattering amplitudes. A virtue of explicitly using a chiral EW lagrangian is that one

can make direct contact with many previously obtained results in the literature, and frame

questions about unitarity violation in HI, in terms of equivalent questions and claims for

the scattering of massive spin one vectors. For example, arguments that higher dimensional

operators will not be present suppressed by the scale ∼Mp/ξ are related, in this formalism,

to claims about solving the unitarity violation problems of the SM, with no Higgs particle,

and no higher dimensional operators. The later physics is more familiar to many, so this

can be advantageous. As gravity is then no longer essential to the discussion, this has

the potential to clarify claims in the literature about the nature of unitarity violation in

HI, and possible solutions to this problem. An example is the scattering amplitudes for

particles computed in a semiclassical expansion around the classical background field,

χ = χ̄+ χ̂. (2.17)

Strictly speaking this scattering is normally computed when χ̄ = 0 takes its vacuum value,

but it can also be done for more general χ̄, even if these are not at extrema of the classical

potential. Scattering can be computed provided the quanta involved are energetic enough

that the background evolution is effectively adiabatic. In much the same way that we

compute scattering in the present epoch despite the overall cosmological expansion of

the universe.

To this end we expand F 2, Y and V as follows

F 2(χ̄+ χ̂) = χ̄2

[
1 + 2 a

χ̂

χ̄
+ b

χ̂2

χ̄2
+ b3

χ̂3

χ̄3
+ · · ·

]
, (2.18)

Y (χ̄+ χ̂) = χ̄

[
1 + c

χ̂

χ̄
+ c2

χ̂2

χ̄2
+ · · ·

]
, (2.19)

and

V (χ̂) =
1

2
m2
χ χ̂

2 +
d3

6

(
3m2

χ

χ̄

)
χ̂3 +

d4

24

(
3m2

χ

χ̄2

)
χ̂4 + · · · . (2.20)
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Here we use the notation of ref. [52], suitably modified. Scattering in theories of this form

was reveiwed, for example, in ref. [58] (and references therein). The parameters in eq. (3.2)

in the SM, with no non-minimally coupled term, are (a, b, b3, c, c2)sm = (1, 1, 0, 1, 0). The

scattering of the would-be goldstone bosons is given in terms of these parameters by

A(σi σj → σk σl) =
(
1− a2

) [s δij δkl + t δik δjl + u δil δjk

χ̄2

]
, (2.21)

where s, t and u are the Mandelstam variables. Scattering into fermion final states (gen-

erally denoted ψ) similarly go as

A(σi σj → ψ̄ ψ) = δij
yψ
√
s

χ̄
(1− a c). (2.22)

Using the chiral EW Lagrangian formalism, we can apply these results directly to the small-

and large-field limits of LHI , we can thereby read off the scale Λ in these limits.

Small-field limit. Specializing to the small-field form for h(χ), the shifts in these chiral

EW parameters, due to the non-minimally coupled gravitational interaction, at low field

values are

δ (a, b, b3, c, c2) = −ξ
2 χ̄2

M2
pl

(
1,−12 ξ χ̄2

M2
p

+
6 χ̄2

ξ M2
p

, 2,−3 ξ3χ̄4

2M4
p

+ 3ξ
χ̄2

M2
p

− 3

2 ξ
,−3 ξχ̄2

2M2
p

+
3

2 ξ

)
.

In the large ξ limit, when considering field values around Mp/ξ one can simplify this

result to

δ (a, b, b3, c, c2) = −ξ
2 χ̄2

M2
pl

(1, 0, 2, 0, ) . (2.23)

The Higgs mass is also redefined, as m2
χ ' 3λ χ̄2. The values of the couplings in the

potential become d3,4 ' 2/3 in the large ξ limit, for field values ∼ Mp/ξ. Now consider

the effect of these modifications of the SM couplings. The Nambu-Goldstone scattering is

given by

A(σi σj → σk σl) =
(
1− (asm + δa)2

) s δij δkl + t δik δjl + u δil δjk

χ̄2
, (2.24)

=
2 ξ2

M2
pl

(
s δij δkl + t δik δjl + u δil δjk

)
,

in terms of the Mandelstam variables s, t, u. The scattering involving fermion fields, gen-

erally denoted ψ, and the singlet scalar go as

A(σi σj → ψ̄ ψ) = δij
yψ
√
s

χ̄
(1− (asm + δa) (c+ δc)), (2.25)

' ξ2

M2
pl

δij yψ χ̄
√
s. (2.26)

It is again established that the cut off scale in the EW vacuum is set by the scale

Λew ' Mpl/ξ. The background field dependence cancels in an interesting manner in pure
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Nambu-Goldstone scattering. The independence of Λew on the background field value is

due to the modifications of the Higgs couplings being a perturbation ∝ χ̄2. This is due to

the fact that this modification is proportional to the background field value in the kinetic

mixing of the singlet Higgs with the graviton. This makes clearer why the scale of unitarity

violation at low field values does not depend on χ̄, contrary to the case of large field values.

Now consider the case where there is only a single scalar field that gets a vev, S,

which generates a a massive vector through the Higgs mechanism. It is known in explicit

calculations of non-minimally coupled scalar fields to gravity, that in the case of a singlet

scalar field, some of the scattering amplitudes that lead to unitary violation in the case of

multiple scalars, do not lead to unitarity violation [59, 60]. The exact same conclusion is

obtained in eq. (2.28), when all the Nambu-Goldstone indicies coincide, as i = j = k = l,

and the Mandelstam relation on s+ t+ u =
∑

im
2
i cancels the high energy growth. This

analogy has been noticed before, see ref. [61], but the exactness of the correspondence is

made clear with the non-linear chiral Lagrangian formalism.

As one approaches the scale Λew, the arguments of refs. [30, 49] establish that the cut

off scale remains at Λew, although a small field perturbative expansion into the non-linear

EW chiral Lagrangian begins to fail.

Large-field limit. Switching to the large-field form for h(χ), eq. (2.6), we read off pa-

rameter values χ̄2 'M2
p /ξ and

a =
1√
6ξ
e−βχ̄ , b = − 1

3ξ
e−βχ̄ , b3 =

1

9ξ

√
2

3ξ
e−βχ̄ , (2.27)

where we focus on the regime of inflationary interest where e−βχ̄ � 1. For these values

a� 1 and so the rising cross sections of eqs. (2.28) become

A(σi σj → σk σl) =
ξ

M2
p

[
s δij δkl + t δik δjl + u δil δjk

]
, (2.28)

showing that unitarity problems arise once energies reach the scale s ∼ Λ2 ∼ M2
p /ξ.

Between the scales Mp/ξ and Mp/
√
ξ the cut off scale rises as ∼ 4πχ̄, essentially as a

theory with un-Higgsed massive spin one fields, whose mass is set by the scale χ̄ [13, 29].

Non-linearities in the SM. It is interesting to note that the physics discussed in the

previous sections is clearly present in the SM, at least to some degree. Even at low field

values, once the Higgs gets a vev and breaks the SU(2) × U(1) symmetry, a non-minimal

gravitational coupling term leads to a non-canonical theory. Canonically normalizing re-

flects the symmetry breaking back to a shift in the couplings of singlet χ, compared to the

SM value. This effect can be incorporated by expressing the the EFT as a non-linear real-

ization of SU(2)×U(1). So long as the Higgs gets a vev and the theory is written in curved

space, a non-linear realization results, in the sense that the couplings of the canonically nor-

malized scalar field deviate from the value expected in a linear realization of SU(2)×U(1).

This is true even when higher dimensional operators are allowed, as the SUL(2) symmetry

that relates these scalar couplings to the couplings of the eaten Nambu-Goldstone boson
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modes is broken.16 Renormalizing the SM in curved space generates H†HR [63], so this

physics is present in the SM in our spacetime. The small corrections O(v2/M2
p ) that in-

troduce the non-linearity, due to the non-minimally coupled gravitational interaction, are

implicitly always neglected when a linear EFT is used. This is manifestly a good approx-

imation for almost all applications, but it is amusing to note that the Higgs part of the

SM EFT is always fundamentally non-linear in this manner. The main distinction in HI,

is that one takes the expected coupling to not be of loop size, ∼ 1/16π2, or of the order

expected in a conformal theory, 1/6, but instead ξ ∼ 104, and studies the resulting theory

at very large background field values.

2.4 RG running in HI

The one loop corrections to the usual Coleman-Weinberg (CW) potential [64] are incorpo-

rated in Higgs inflation as a perturbative correction to VE . The leading corrections to the

effective potential are

δV =
6mW (h̄)4

64π2

[
log

mW (h̄)2

µ2
− 5

6

]
+

3mZ(h̄)4

64π2

[
log

mZ(h̄)2

µ2
− 5

6

]
(2.29)

−
∑
f

3mf (h̄)4

16π2

[
log

mf (h̄)2

µ2
− 3

2

]
,

in the MS scheme [64]. These logarithmic corrections can be large. Their size depends

on the masses present in the theory, which depend on the background field value, h̄. In

HI, the SM parameters are run up from the scale ∼ h̄ew, where they are measured in the

EW vacuum, to the scale ∼ Mp/
√
ξ, where inflation occurs. This minimizes these large

logarithmic corrections. The running is accomplished using the SM RG equations, which

are defined for running the Lagrangian parameters in energy. The choice of a background

field dependent renormalization scale µ2 = κ(h̄2), used to minimize these logarithmic

corrections, relates the running in energy to running in the background field value. The

trajectory that the theory takes in (h̄, E) space (were E is the energy of the fluctuations

of modes expanded around the background field value) depends on the choice of κ(h̄2).

The discussion in section 2.3 makes clear that the interactions of the theory, and thus

the RG equations, depend in a nontrivial manner on the background field.17 In ref. [12] it

is argued that by introducing the factor s into the commutation relations of h as

[
h(x), ḣ(y)

]
= is ~ δ3(x− y), s =

1 + ξ h̄
2

M2
p

1 + (1 + 6ξ) ξh̄
2

M2
p

, (2.30)

this effect can be incorporated. The form of s is dictated by the kinetic mixing term,

and the field redefinition to take the theory to its canonical form. This factor is ∼ 1 for

h̄ � Mp/ξ and the usual commutation relations are present. For Mp/ξ ≤ h̄ . Mp/
√
ξ,

16See ref. [62] for some recent discussion on the differences between a linear and non-linear Higgs EFT.
17It is interesting to note that this is always the case, and standard RG analyses that are running in

energy alone implicitly assume that the background field is constant.
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s suppresses quantum loops involving h by powers of ∼ 1/ξ. The dependence on the

background field, when s is used to modify the SM RG’s, includes corrections of order

O(ξ h̄2/16π2M2
p )

Formally, the SM RG equations should be modified to include the background field

dependence. This background field dependence is approximated in HI studies by using two

separate sets of RG equations. Below the scale Λew, the SM running with the addition of a

non-minimal coupling term is used. Above the scale Λew, the non-linear chiral lagrangian

with a decoupled scalar singlet is used. This is a reasonable (although inexact) method

to approximate the background field dependence. We use this method in our numerical

analysis in section 3.18

Recently ref. [22] calculated, the running of the SM parameters in the presence of higher

dimensional operators, and noted that the running of the SM parameters themselves are

modified by a background field dependent term. To date, this fact been neglected in studies

of HI. This difference is quadratically dependent on the background field value, and appears

at one loop. Schematically the corrections are of the form

µ
dc4

dµ
=
λ h̄2

Λ2

1

16π2

∑
i

ci6. (2.31)

Here c4 stands in for a parameter in LSM , while the sum over i represents the sum over a

subset of the dimension six operators, characterizing the degrees of freedom integrated out.

h̄ is a parameter, not a field in this equation. See the appendix where the exact results for

eq. (2.31) of ref. [22] are reproduced for completeness. These corrections scale as the ratio

of the dimensionfull parameters in the SM EFT, m2
h(h̄)/Λ2, where m2

h(h̄) = 2λh̄2.

When running the theory in background field space, these corrections should be in-

cluded. Note that this modifies the running of the SM parameters below the scale present

in unitarity violation arguments, which we take as proximate to the scale Λ. Interestingly,

around the scale h̄ ∼ Λew these corrections dominate over the background field dependence

incorporated in HI analyses to date, so long as

λ(Λew)� 1

ξ(Λew)
. (2.32)

The values of Λ and ξ at the scale of inflation are related through the WMAP normalization

condition, which gives

λ(h̄inf )M4
p

4 ξ2(h̄inf ) ε(h̄inf )
' (0.0274Mp)

4 , ξ(h̄inf ) ' 47000
√
λ(h̄inf ). (2.33)

These corrections should be included if the h̄ dependence of the RG equations is being

approximated as in refs. [13, 29]. This is another manner in which the scale Λew introduces

UV sensitivity into the HI scenario.

It is easy to understand where these modifications of the SM RG equations originate.

For example, loop diagrams with an internal Higgs field lead to a modification of the gauge

18For some other recent numerical approaches see ref. [65].
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field propagators. One finds [22] a modification of the strong coupling running

µ
dg3

dµ
= −

g3m
2
H

4π2Λ2
CHG (2.34)

due to the operator QHG = H†H Gµ ν G
µ ν .19 Corrections of this form are also generated

in an indirect manner, in re-normalizing the SM EFT, when the classical Higgs field EOM

D2Hk =
λ v2

2
Hk − 2λ(H†H)Hk − qj Y †u u εjk − d Yd qk − e Ye lk. (2.35)

is used to map obtained divergences to the retained EOM reduced operator basis. Here

j, k are SU(2)L indices, and the remaining notation is consistent with ref. [22]. When we

take the classical EOM for the Higgs field H, generalized to be the fluctuation around the

classical background expectation value 〈H†H〉 = h̄2, the sign of the leading term is flipped

in the EOM above. An example of a term that receives such corrections is the running

of λ, which receives one-loop contributions to its running from sixteen higher dimensional

operators, see ref. [22]. Not all of these operators are pure Higgs field operators. If one

grants the assumption that some unknown mechanism controls the Higgs potential, as in

HI, there are still unknown corrections of this form that modify the running of the SM

parameters, and introduce UV sensitivity.

As the SM parameters run from the scale ∼ v to the scale Mp/
√
ξ, the relative size of

the neglected corrections compared to the SM one loop RG terms varies. Using the cut off

scale determined in ref. [30], in the low field regime h̄�Mp/ξ, this correction scales as

ξ2h̄2

M2
p

≤ 1, (2.36)

and is largest as h̄→Mp/ξ. In fact at this scale, the power counting of the theory fails, in

that, the higher order terms of the form (ξ2h̄2/M2
p )n that also modify the running of the

SM parameters, are no longer suppressed. This indicates the clear UV sensitivity that this

scale introduces. In the intermediate field region Mp/ξ � h̄ � Mp/
√
ξ, using the cut off

scale determined in ref. [31], this correction scales as

m2
H(h̄2)

∑
i ci

Λ2
∼
∑

i ci/g
2
?

16π2

λM2
p

ξ2 3

1

χ̄2
, (2.37)

as the scale of unitarity violation is expected to be M? ∼ 4π g? h̄ with g? < 1, in this region.

Here g? is a general parameter that is determined by the exact spectrum and dynamics

of the UV theory. In particular, the lightest state integrated out that contributes to a

particular operator can determine g? in some scenarios. Note that these RG corrections

are suppressed in the chiral phase at large ξ. In the numerics presented in section 3.2 we

will neglect this further UV sensitivity.

The systematic renormalization results of refs. [22, 38, 39] are calculated for the SM

with a linear realization of SUL(2) × UY(1), and performed in flat space, where h̄ew = v.

19Here we have modified the notation of ref. [22] to extract the factor of 1/Λ2.
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Figure 2. (Left) The initial conditions that separate λ > 0 from λ < 0 at the scale Mpl/
√
ξ,

taken as a proxy for whether or not Higgs inflation can connect to the EW vacuum once it ends.

Above the line λ > 0. Also shown is the one sigma error bar range for the top quark mass and the

Higgs mass. For the later we use the number reported in ref. [1], for the former we use the PDG

number. (Right) The spread in the values for the quartic coupling induced by the RG corrections

given mt = 170.95 GeV,mH = 125.66 GeV.

Here we have taken the classical EOM for the Higgs fieldH, generalized to be the fluctuation

around the classical background expectation value h̄. There are further corrections to the

renormalization of the SM EFT, due to the coupling of the theory to gravity, and when

renormalizing the theory in curved space. Further, the EOM are also modified, with the

non-minimal coupling leading to extra terms20 ∝ Ḣ+ 3H2. As our purpose is just to show

the explicit UV sensitivity introduced in the RG evolution by the effects we retain, we

neglect these further modifications.21

3 Perturbations, linear and nonlinear

One of the challenges to HI, is the measured Higgs mass. Taking the central value of the

Higgs mass, and the central value for mt and αs, the parameter λ runs negative far before

the scale at which inflation occurs.

A shift in the SM parameters at either the EW scale or at intermediate scales can allow

HI to occur, as illustrated in Fig 2. We have checked that the effect discussed in this paper,

the modification of the running of the SM parameters due to dimension six operators, does

not significantly expand the range of allowed Higgs masses that allow sucessful inflation,

assuming the top quark mass takes on its central value shown in figure2. The shift in the

allowed Higgs for λ > 0 at the scale of inflation is . 1 GeV.

20See ref. [66] for a discussion of these terms in the context of singlet scalar non-minimally coupled

to gravity.
21Note that we have also neglected corrections of the form considered in this section to the running of

ξ. The complete renormalization of the SM EFT in curved space is beyond the scope of this work. This is

potentially of interest as the running of ξ can be related to the running of λ due to the requirement that

the effective potential at its extremum being renormalization scale independent. The numerical sensitivity

to higher dimensional operators in HI is still present even if the effect of the higher dimensional operators

on the running of ξ is assumed to cancel the running of λ. We have explicitly checked this is the case.
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In the following sections, we first consider small linear perturbations to understand

how the CMB parameters scale with changes in the effective parameters at ∼Mp/
√
ξ. We

then consider the full non-lineary perturbed renormalization group running to illustrate the

UV sensitivity with numerical results. Due to the non-linear nature of the RGE evolution

(and the secular growth of small perturbations in the parameters from running over many

orders of magnitude), the latter approach is necessary. The linear perturbation results are

only presented to offer some limited analytic intuition on the UV sensitivity.

3.1 Linear perturbations

Assume that their exists a set of parameters ξ, λ that allow inflation to occur, and ε, η the

parameters that characterize the resulting slow roll phase:

ε =
M2
p

2

(
U,χ
U

)2

=
M2
p

2

(
U ′

U

)2 1

χ′2
(3.1)

η = M2
p

U,χχ
U

= M2
p

U ′′

U

1

χ′2
−M2

p

U ′

U

χ′′

χ′3
(3.2)

where these parameters are defined with respect to the canonically normalized field, which

we express in terms of the singlet h̄ through the change of variable χ′ = dχ/dh̄, primes

denoting derivatives w.r.t. h̄.

Label the parameters that correspond to successful inflation as ε0, η0. Now consider a

perturbation of these parameters in the semi-classical analysis. Assume the changes in the

CMB parameters can be approximated by a linear perturbation, neglecting higher order

terms, then

δns = −6
δε

ε0
+ 2

δη

η0
, δr = 16

δε

ε0
. (3.3)

We will restrict ourselves to the case where ξ � 1. This allows some simplification of the

resulting equations. Let µ2 = κ(h̄2), but the specific choice of κ(h̄2) will be left unfixed.

Two possible choices are [13]

κ(h̄2) =
y2
t

2
h̄2, κ(h̄2) =

y2
t h̄

2

2
(
1 + ξh̄2/M2

p

) . (3.4)

Which correspond to minimizing the logarithms in eq. (2.29) due to the top quark mass,

in the Jordan or Einstein frames. The potential in the Einstein frame, with the scale µ

chosen so that corrections to the CW potential are suppressed, is given by

VE(χ) = V0

[
1− e

−βχ
Mp

]2

+ · · · , V0 =
λ(κ(χ2))M4

p

4 ξ2(κ(χ2))
. (3.5)

The field derivative of µ in the large ξ limit, for large field values during inflation is given by

d logµ

dχ
' κ′(χ̄)

κ(χ̄)

β C
3/2
χ

4
√
ξ

(3.6)
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where Cχ = −1 + eβχ̄/Mp . The slow roll parameters are given by

ε

β2
' 2

C2
χ

+

[
Mp

V0

dV0

d logµ

]
κ′

2κ
√
ξ
C1/2
χ +

M2
p

32V 2
0

[
dV0

d logµ

]2( κ′

κ
√
ξ

)2

C3
χ,

η

β2
' 2(Cχ − 1)

C2
χ

+

[
M2
p

V0

d2V0

d log2 µ

] [
κ′

4κ
√
ε

]2

C3
χ −

[
M2
p

V0

dV0

d logµ

] √
ξ

[
κ′

κ
√
ξ

]2 C
3/2
χ

4β
,

+

[
Mp

V0

dV0

d logµ

] [
κ′′

4κ
√
ξ

]
C

3/2
χ

β
+ (7 + 3Cχ)

[
Mp

V0

dV0

d logµ

] [
κ′

4κ
√
ξ

]
C1/2
χ . (3.7)

These expressions can be simplified somewhat. Take the large ξ limit, assuming the scaling

κ′

κ
∼
√
ξ,

κ′′

κ
∼ ξ, (3.8)

which is consistent with the choices for f in eq. (3.4). Further, in perturbation theory

d2V0

d log2 µ
� dV0

d logµ
,

(
dV0

d logµ

)2

� dV0

d logµ
(3.9)

so that the leading corrections are given by

ε

β2
' 2

C2
χ

+

[
Mp

V0

dV0

d logµ

]
κ′

2κ
√
ξ
C1/2
χ , (3.10)

η

β2
' 2(Cχ − 1)

C2
χ

+
C

3/2
χ

4β

[
1

V0

dV0

d logµ

] [
Mp κ

′′
√
ξ κ
− 1√

ξ

(
Mp κ

′

κ

)2
]

(3.11)

Also we note that

1

V0

dV0

d logµ
=
βλ
λ
− 2

βξ
ξ
. (3.12)

The effect of the RG corrections that we include is to introduce extra terms in the β

functions. The change in the running of ξ can be (mostly) absorbed into this parameters

normalization. This simple analysis indicates that δε/ε0 ∼ δη/η0. In the detailed numerics

presented in the next section, we find this is the case. Due to the fact that η0 � ε0, for the

plots shown, the smearing out of the prediction is mostly for ns while leaving r essentially

unchanged. These results also indicate that the effect should be quite small, where the

simple linear perturbation theory considered here is not breaking down.

3.2 Renormalization group running

In what follows, we implement the prescription laid out in ref. [29] to compute the renor-

malization group improved potential during inflation. In order to do so, we must first

run the standard model parameters up to the scale Mp/ξ to two loop order, with initial

couplings defined at top pole mass, whose values at NNLO have recently been computed
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in ref. [67] in the MS scheme:22

yt(µ = mt) = 0.93558 + 0.00550

(
mt

GeV
− 173.1

)
± 0.00050th

g1(µ = mt) = 0.35761 + 0.00011

(
mt

GeV
− 173.1

)
g2(µ = mt) = 0.64822 + 0.00004

(
mt

GeV
− 173.1

)
(3.13)

g3(µ = mt) = 1.1666− 0.00046

(
mt

GeV
− 173.1

)
λ(µ = mt) = 0.12711 + 0.00206

(
mh

GeV
− 125.66

)
−0.00004

(
mt

GeV
− 173.1

)
± 0.00030th

As discussed in the previous sections, at the scale Mp/ξ, the singlet component of the Higgs

starts to effectively decouple from all other fields, leaving us with the non-linearly realized

chiral EW theory plus the singlet scalar, our inflaton. We compute this field’s effective

CW potential (also evaluated at top pole mass so as to minimize the logarithms) at the

scale of inflation. We follow ref. [29] and use the one-loop expression for the CW potential.

We run the couplings of the tree level part of the potential at one loop up to the scale of

inflation, with the modified beta functions of the chiral EW theory.23 The result will be

the Einstein frame RG improved effective potential

VE(φ̄) =
λ(µ(h̄))h̄4(

1 + ξ(µ(h̄))h̄2

M2
p

)2 + · · · (3.14)

where through either choice in eq. (3.4) for the renormalization scale µ itself depends on

h̄. From this, deriving CMB observables uses eqs. (3.1), (3.2) and (3.4). (We choose

the renormalization scale consistent with perscription one in ref. [29], which corresponds

to the Right hand Equation in eq. (3.4).) Inflation is taken to end when ε = 1 and all

CMB observables are to be evaluated at the time at which the COBE normalization scale

k = 0.002Mpc−1 exits the horizon, some Ne e-folds before the end of inflation, where

Ne =
1√

2Mp

∫ h̄f

h̄i

χ′√
ε
dh̄ (3.15)

22Here {λ, yt, g1, g2, g3} are the quartic self-coupling of the Higgs, the top quark yukawa and the SU(2),

U(1) and SU(3) gauge couplings, respectively. The value of α3(mZ) is held fixed at 0.1184 as is the pole

mass of the W boson.
23Where the running of the couplings relative to the SM case differs due to the absence of any off-shell

Higgs propagators in the loops. We refer to ref. [29] for the one-loop beta functions in the chiral phase.
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The only difference in our implementation is that we now include the corrections to the

RG running in the standard model phase of the theory, schematically denoted as

µ
dgi
dµ

:= ∆βgi = − λ h̄2

2π2 Λ2
giC(i) ,

µ
d

dµ
λ := ∆βλ =

λ h̄2

16π2Λ2

∑
j

C(j) , (3.16)

µ
d

dµ
yt := ∆βyt =

λ h̄2

16π2 Λ2
yt
∑
k

C(k)

where i runs over 1 ≤ i ≤ 3, while and C(j,k) are a sum over other couplings and their

respective Wilson coefficients (see appendix A). We include a profile function for the cut-off

Λ that depends on h̄

Λ2(h̄) =
(M2

p + ξh̄2 + 6ξ2h̄2)2

ξ2(M2
p + ξh̄2)

, (3.17)

This is consistent with the cut off scales discussed in the previous sections, and

eq. (2.12) [31]. Note that the cut off scale quoted above, obtained in the Jordan frame, is

consistent with an asymptotic constant value in terms of planck mass units as described

in section 2. We scan over various values of C(i,j,k) consistent with variations of the con-

stituent Wilson coefficients ranging over values of order unity, where for example Cj being

an aggregate of several independent co-efficients (B.3), we scan over a range that is the

root mean square of the individual variations. The UV dependent terms in the RG give

the differential equations a “kick” just around the scale Mp/ξ, which effectively serves to

smear out the initial conditions for the running of the couplings in the chiral phase, whose

RGE’s we patch to at h̄ = Mp/ξ and run up to the scale of inflation. This spread in the

possible initial values for the couplings at the commencement of the chiral phase represents

the irreducible theoretical uncertainty associated with not knowing the UV completion of

the SM non-minimally coupled to gravity, which then propagates into an uncertainty in

our computation of cosmological observables.

Figure 3 shows how these corrections can effect the effective potential and the predic-

tions for the spectral tilt and the scalar to tensor ratio. In each run over a particular set

of Wilson coefficients, we set Ne = 57.7 and require that the effective potential thus com-

puted be COBE normalized at k = 0.0002Mpc−1, tuning the initial value of ξ accordingly.

It is possible to visually identify that although COBE normalization partly nullifies the

dependence of the spectral properties of the CMB on the value of potential during inflation

(depending as it does only on Vinf/ε), the precise shape of the potential is affected by the

kicks in the RG running induced by the unknown UV dependent dimension six operators.

The smearing of the running further towards the red (lower values of ns) can be readily

understood from the fact that the shape of the effective potential is typically made steeper,

rather than shallower once one scans over the unknown Wilson coefficients. The tensor to

scalar ratio also ranges over O(10−3) to O(10−4) as you scan over the Wilson coefficients,

though at the scale of the plot this is essentially degenerate with the axis.
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Figure 3. RG improved potential and spectral index vs. r for mt = 170.95 GeV,mH = 125.66 GeV.

On the right plot r ranges from r = 1×10−3 to 3×10−5 as the spectral index changes from ns = 0.957

to 0.885, essentially indistinguishable from the x-axis. The red dot represents the prediction with

no corrections terms in the RG equations due to Higher D operators, with ns = 0.955. On the left

plot, the effective potential is plotted for the two outliers of the scan over Wilson co-efficients, along

with the RG improved potential for the case of no higher D operator effects in the RG equations.

4 Conclusions

We have re-examined the issues of UV sensitivity in inflationary single field models, focus-

ing on the interesting case of Higgs Inflation. The effect of unknown higher dimensional

operators were shown to have an observable impact on CMB predictions in this case. This

is an irreducible theoretical uncertainty (in our view) until the exact UV that completes

the theory is specified. It is not sufficient to banish higher dimensional operators that are

composed only of Higgs fields in models of this form to maintain predictivity. The higher

dimensional interactions of the same dimension extensively mix, at sufficient loop order.

Further the higher dimensional operators mix down and modify the SM parameter running

in a manner that depends on the background field value. This introduces UV sensitivity

at the scale Mp/ξ through the RG equations, in an interesting manner. The requirement

of an exponentially flat potential makes some inflationary models particularly sensitive to

these effects.

Note added on recent developments: the recent BICEP2 measurement [4] of a compar-

atively large primordial tensor fluctuation, r = 0.20+0.07
−0.05, puts some pressure on the Higgs

Inflationary scenario which predicts smaller r for inflation driven by the exponential rollout

from the asymptotically constant Einstein-frame potential at large fields. (See ref. [68], for

example, for a recent discussion). Other recent works [69, 70] counter this with ways to

evade the problem in special parts of parameter space. (For instance one can choose special

values for mt and mh — though not within the one-sigma measured values — such that

the critical point in the SM Higgs potential occurs at scales similar to those required by the

BICEP2 measurements.) Once this is done a larger value of r can be obtained, potentially

consistent with the BICEP2 results.

While we are willing to take these claims at face value, we would make the following

comment: the larger value of r so obtained comes at the expense of a much smaller value
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of ξ: ξ ∼ 10 rather than ∼ 104. This is worrisome for the control of approximations used,

the point initially raised in ref. [30], since it is precisely the large value of ξ that provides

the hierarchy between the Planck scale Mp, the large-field unitarity scale, Λ ∼ Mp/
√
ξ,

and the inflationary Hubble scale H ∼ Mp/ξ. For ξ of order 10 the unitarity scale is only

3 times larger than the Hubble scale during inflation, and both are uncomfortably close to

the Planck scale. The effects of higher-dimension operators emphasized in this article are

also a concern in this case; with the range of predicted values for both r and ns being much

larger than their measured errors. In general, smaller ξ implies close proximity to the UV

‘Planck wall’, thereby sharpening all issues associated with the unknown UV completion

at these scales.
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A Higgs-axion and Higgs-graviton mixing

A toy model for Higgs-graviton mixing is the case of Higgs-axion kinetic mixing, with

Lagrangian density

L = −1

2
(∂h)2 − 1

2
m2 h2 − 1

2
(∂a)2 − v

f
h�a (A.1)

= −1

2
(∂h)2 − 1

2
m2 h2 − 1

2
(∂a)2 +

v

f
(∂µh)(∂µa) . (A.2)

Here the axion’s shift symmetry, a→ a+f , keeps it massless (much like general coordinate

invariance keeps the graviton massless). In the Higgs-inflation story f is the analogue of

Mp/ξ, since 4πf would be the unitarity scale for the axion alone. . .

This is diagonalized by taking

a = ψ +
hv

f
, (A.3)

so that

L = −1

2

(
1− v2

f2

)
(∂h)2 − 1

2
(∂ψ)2 − 1

2
m2 h2 , (A.4)

and so, canonically normalizing gives h = χ/
√

1− v2/f2 gives

L = −1

2
(∂χ)2 − 1

2
(∂ψ)2 − m2

2(1− v2/f2)
χ2 . (A.5)
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This shows the physical Higgs mass gets increased to

m2
h =

m2

1− v2/f2
, (A.6)

and all h couplings with SM matter similarly get increased, e.g.

− 1

2
g2(v + h)2W ∗µW

µ = −M2
W

(
1 +

χ√
1− v2/f2

)2

W ∗µW
µ . (A.7)

Notice one would never be tempted to entertain the regime v > f in this model.

Graviton-Higgs mixing is very similar, but with two important changes. First, the

metric trace, h, has negative kinetic term, L ∼ −1
2 h�h, and this turns the factors of

1 − v2/f2 into 1 + v2/f2, thereby suppressing the couplings and allowing us to believe

the v � f limit. Second, gauge invariance allows the nominally unstable mode, h, to be

gauged away.

B Dimension six operator corrections

In the basis of (non-redundant) operators defined in ref. [45], the mixing of all dimension

six effective operators, including non trivial flavour structure, into the running of dimension

four operators has been calculated at one loop in refs. [22, 37–39]. The beta functions that

determine the running of the SM gauge couplings are modified as [22]

µ
dg3

dµ
=

λ h̄2

2π2 Λ2
g3CHG,

µ
dg2

dµ
=

λ h̄2

2π2 Λ2
g2CHW , (B.1)

µ
dg1

dµ
=

λ h̄2

2π2 Λ2
g1CHB.

The notation for the operators differs from ref. [22] in that an explicit factor of 1/Λ2 has

been factored out of the Wilson coefficients Ci. Also the sign of the contribution has been

flipped, as we expand around the large classical background field, not the EW vev. The

corrections to the SM running of the quartic coupling and the Yukawa matrices are given

by [22]

µ
d

dµ
λ = − λ φ̄2

16π2Λ2

[
Aλ +Bλ +Dλ

]
, (B.2)

µ
d

dµ
[Yu]rs = − λ φ̄2

16π2 Λ2

[
Ayurs +Byu

rs

]
.

The parameters Ai, Bi, Di depend on the UV completion and are given by a straightforward

modification of the results in ref. [22]. Here the number of colours is Nc = 3, yH = 1/2

and cF,3 = 4/3, cF,2 = 3/4 and cA,2 = 2. The contributions that come from diagrams with

no internal Higgs fields in the loop are grouped into the Aa coefficients, whereas those that
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contain one and two internal Higgs fields are grouped into the Bi and the Di coefficients

respectively. See refs. [22, 45] for more details on the operator basis used. The Ai, Bi, Di

are given in terms of the unknown Wilson coefficients Ci as [22]

Aλ = −3 g2
2 CHD + 4 η1 + 4η2 + 24 g1g2yHCHWB

−6CA,2 g
3
2 CW +

8

3
g2

2C
(3)
Hl
tt

+
8

3
g2

2NcC
(3)
Hq
tt

, (B.3)

Ayurs = −4

(
C

(1)∗
qu
sptr

+ cF,3C
(8)∗
qu
sptr

)
[Yu]tp − 2C

(1)∗
lequ
ptsr

[Y ∗e ]tp

+2NcC
(1)∗
quqd
srpt

[Yd]
∗
tp +

(
C

(1)∗
quqd
prst

+ 2 cF,3C
(8)∗
quqd
prst

)
[Yd]

∗
tp, (B.4)

Bλ = 24CH + 24

(
g2

2cF,2CHW + g2
1y

2
HCHB −

1

2
g1g2yHCHWB +

1

4
CA,2 g

3
2 CW

)
(B.5)

−8λCHbox + 4
(
λ+ 3 g2

1y
2
H

)
CHD,

BmH = −16CHbox + 8CHD,

Byu
rs = 6C∗uH

sr
− (2CHbox − CHD) [Yu]rs − 2[Yu]rt

(
C

(1)
Hq
ts

+ 3C
(3)
Hq
ts

)
(B.6)

+2CHu
rt

[Yu]ts − 2CHud
rt

[Yd]ts,

Dλ = −56CHbox + 20CHD, (B.7)

η1 =

(
1

2
NcCdH

rs
[Yd]sr +

1

2
NcCuH

rs
[Yu]sr +

1

2
CeH
rs

[Ye]sr

)
+ h.c. , (B.8)

η2 = −2NcC
(3)
Hq
rs

[Y †uYu]sr − 2NcC
(3)
Hq
rs

[Y †d Yd]sr +NcCHud
rs

[YdY
†
u ]sr

+NcC
∗
Hud
rs

[YuY
†
d ]rs − 2C

(3)
Hl
rs

[Y †e Ye]sr.

The net result of the h̄ dependence of Λ (3.17) results in h̄2/Λ2 having the profile of a ‘kick’

that attains its maximum just before the Higgs decouples from all other SM fields. One

might then imagine that processes that resulted in the terms in (B.5) and (B.7) might start

to drop out of the running as h̄ → Mp/ξ. Following ref. [9], one can roughly model this

behaviour by multiplying each term containing an internal Higgs propagator by a factor of

s(h̄), thus multiplying the Bi by s and the Di by s2 in the above. (The factor s(h̄) should

only really be applied to the singlet Higgs field.) The net effect of doing this, compared

to simply scanning over the Ai (i.e. ignoring the effects of terms with internal Higgs lines

altogether) turns out to be negligible once we’ve scanned over the Wilson coefficients. This

shouldn’t be too surprising over the short range over which the RG effect we include has

any support, the net effect of the Bi and the Di can evidently simply be absorbed in to

the Ai Wilson coefficients.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 26 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
6
(
2
0
1
4
)
0
1
0

References

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on

inflation, arXiv:1303.5082 [INSPIRE].

[4] BICEP2 collaboration, P.A.R. Ade et al., BICEP2 I: detection of B-mode polarization at

degree angular scales, arXiv:1403.3985 [INSPIRE].

[5] WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19

[arXiv:1212.5226] [INSPIRE].

[6] Z. Hou et al., Constraints on cosmology from the cosmic microwave background power

spectrum of the 2500 square degree SPT-SZ survey, Astrophys. J. 782 (2014) 74

[arXiv:1212.6267] [INSPIRE].

[7] Atacama Cosmology Telescope collaboration, J.L. Sievers et al., The Atacama

Cosmology Telescope: cosmological parameters from three seasons of data, JCAP 10 (2013)

060 [arXiv:1301.0824] [INSPIRE].

[8] F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys.

Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

[9] A. De Simone, M.P. Hertzberg and F. Wilczek, Running inflation in the standard model,

Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

[10] F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard model Higgs boson mass from

inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [INSPIRE].

[11] B.L. Spokoiny, Inflation and generation of perturbations in broken symmetric theory of

gravity, Phys. Lett. B 147 (1984) 39 [INSPIRE].

[12] D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing density fluctuation spectra in

inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].

[13] F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001

[arXiv:1307.0708] [INSPIRE].

[14] J. Martin, C. Ringeval, R. Trotta and V. Vennin, The best inflationary models after Planck,

JCAP 03 (2014) 039 [arXiv:1312.3529] [INSPIRE].

[15] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys.

Lett. B 91 (1980) 99 [INSPIRE].

[16] A. Kehagias, A.M. Dizgah and A. Riotto, Comments on the Starobinsky model of inflation

and its descendants, Phys. Rev. D 89 (2014) 043527 [arXiv:1312.1155] [INSPIRE].

[17] C.P. Burgess, M. Cicoli and F. Quevedo, String inflation after Planck 2013, JCAP 11 (2013)

003 [arXiv:1306.3512] [INSPIRE].

[18] D. Roest, Universality classes of inflation, JCAP 01 (2014) 007 [arXiv:1309.1285]

[INSPIRE].

– 27 –

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://arxiv.org/abs/1303.5082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5082
http://arxiv.org/abs/1403.3985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3985
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5226
http://dx.doi.org/10.1088/0004-637X/782/2/74
http://arxiv.org/abs/1212.6267
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6267
http://dx.doi.org/10.1088/1475-7516/2013/10/060
http://dx.doi.org/10.1088/1475-7516/2013/10/060
http://arxiv.org/abs/1301.0824
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0824
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://arxiv.org/abs/0710.3755
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3755
http://dx.doi.org/10.1016/j.physletb.2009.05.054
http://arxiv.org/abs/0812.4946
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4946
http://dx.doi.org/10.1016/j.physletb.2009.03.035
http://arxiv.org/abs/0812.4950
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4950
http://dx.doi.org/10.1016/0370-2693(84)90587-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B147,39
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://inspirehep.net/search?p=find+J+Phys.Rev.,D40,1753
http://dx.doi.org/10.1088/0264-9381/30/21/214001
http://arxiv.org/abs/1307.0708
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0708
http://dx.doi.org/10.1088/1475-7516/2014/03/039
http://arxiv.org/abs/1312.3529
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3529
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B91,99
http://dx.doi.org/10.1103/PhysRevD.89.043527
http://arxiv.org/abs/1312.1155
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1155
http://dx.doi.org/10.1088/1475-7516/2013/11/003
http://dx.doi.org/10.1088/1475-7516/2013/11/003
http://arxiv.org/abs/1306.3512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3512
http://dx.doi.org/10.1088/1475-7516/2014/01/007
http://arxiv.org/abs/1309.1285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1285


J
H
E
P
0
6
(
2
0
1
4
)
0
1
0

[19] C.P. Burgess, P. Martineau, F. Quevedo, G. Rajesh and R.J. Zhang, Brane-anti-brane

inflation in orbifold and orientifold models, JHEP 03 (2002) 052 [hep-th/0111025]

[INSPIRE].

[20] J.F. Donoghue, Introduction to the effective field theory description of gravity,

gr-qc/9512024 [INSPIRE].

[21] C.P. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory,

Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

[22] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard

model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087

[arXiv:1308.2627] [INSPIRE].

[23] N. Kaloper, M. Kleban, A. Lawrence, S. Shenker and L. Susskind, Initial conditions for

inflation, JHEP 11 (2002) 037 [hep-th/0209231] [INSPIRE].

[24] C.P. Burgess, J.M. Cline and R. Holman, Effective field theories and inflation, JCAP 10

(2003) 004 [hep-th/0306079] [INSPIRE].

[25] U.H. Danielsson, A note on inflation and trans-Planckian physics, Phys. Rev. D 66 (2002)

023511 [hep-th/0203198] [INSPIRE].

[26] J. Martin and R.H. Brandenberger, The trans-Planckian problem of inflationary cosmology,

Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].

[27] C.P. Burgess, J.M. Cline, F. Lemieux and R. Holman, Are inflationary predictions sensitive

to very high-energy physics?, JHEP 02 (2003) 048 [hep-th/0210233] [INSPIRE].

[28] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation,

Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

[29] F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two

loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

[30] C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical

approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

[31] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency

and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

[32] I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM Higgs with

dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [INSPIRE].

[33] I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Beyond the MSSM Higgs with

D = 6 effective operators, Nucl. Phys. B 848 (2011) 1 [arXiv:1012.5310] [INSPIRE].

[34] A. Chatterjee and A. Mazumdar, Tuned MSSM Higgses as an inflaton, JCAP 09 (2011) 009

[arXiv:1103.5758] [INSPIRE].

[35] G.F. Giudice and H.M. Lee, Unitarizing Higgs inflation, Phys. Lett. B 694 (2011) 294

[arXiv:1010.1417] [INSPIRE].

[36] V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett.

111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

[37] C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of

Higgs operators and Γ(h− > γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

– 28 –

http://dx.doi.org/10.1088/1126-6708/2002/03/052
http://arxiv.org/abs/hep-th/0111025
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111025
http://arxiv.org/abs/gr-qc/9512024
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9512024
http://dx.doi.org/10.12942/lrr-2004-5
http://arxiv.org/abs/gr-qc/0311082
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0311082
http://dx.doi.org/10.1007/JHEP10(2013)087
http://arxiv.org/abs/1308.2627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2627
http://dx.doi.org/10.1088/1126-6708/2002/11/037
http://arxiv.org/abs/hep-th/0209231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209231
http://dx.doi.org/10.1088/1475-7516/2003/10/004
http://dx.doi.org/10.1088/1475-7516/2003/10/004
http://arxiv.org/abs/hep-th/0306079
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306079
http://dx.doi.org/10.1103/PhysRevD.66.023511
http://dx.doi.org/10.1103/PhysRevD.66.023511
http://arxiv.org/abs/hep-th/0203198
http://inspirehep.net/search?p=find+EPRINT+hep-th/0203198
http://dx.doi.org/10.1103/PhysRevD.63.123501
http://arxiv.org/abs/hep-th/0005209
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005209
http://dx.doi.org/10.1088/1126-6708/2003/02/048
http://arxiv.org/abs/hep-th/0210233
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210233
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1088/1126-6708/2009/07/089
http://arxiv.org/abs/0904.1537
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1537
http://dx.doi.org/10.1088/1126-6708/2009/09/103
http://arxiv.org/abs/0902.4465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4465
http://dx.doi.org/10.1007/JHEP01(2011)016
http://arxiv.org/abs/1008.5157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5157
http://dx.doi.org/10.1016/j.nuclphysb.2010.01.010
http://arxiv.org/abs/0910.1100
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1100
http://dx.doi.org/10.1016/j.nuclphysb.2011.02.005
http://arxiv.org/abs/1012.5310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5310
http://dx.doi.org/10.1088/1475-7516/2011/09/009
http://arxiv.org/abs/1103.5758
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5758
http://dx.doi.org/10.1016/j.physletb.2010.10.035
http://arxiv.org/abs/1010.1417
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1417
http://dx.doi.org/10.1103/PhysRevLett.111.241801
http://dx.doi.org/10.1103/PhysRevLett.111.241801
http://arxiv.org/abs/1307.5193
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5193
http://dx.doi.org/10.1007/JHEP04(2013)016
http://arxiv.org/abs/1301.2588
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.2588


J
H
E
P
0
6
(
2
0
1
4
)
0
1
0

[38] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard

model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035

[arXiv:1310.4838] [INSPIRE].

[39] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of

the standard model dimension six operators III: gauge coupling dependence and

phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

[40] A.R. Liddle and D.H. Lyth, COBE, gravitational waves, inflation and extended inflation,

Phys. Lett. B 291 (1992) 391 [astro-ph/9208007] [INSPIRE].

[41] A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B

234 (1984) 189 [INSPIRE].

[42] E.E. Jenkins, A.V. Manohar and M. Trott, Naive dimensional analysis counting of gauge

theory amplitudes and anomalous dimensions, Phys. Lett. B 726 (2013) 697

[arXiv:1309.0819] [INSPIRE].
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