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ABSTRACT: We examine the possibility of a light (below 46 GeV) neutralino dark matter
(DM) candidate within the 19-parameter phenomenological Minimal Supersymmetric Stan-
dard Model (pMSSM) in the light of various recent experimental results, especially from
the LHC, XENON100, and Planck. We also study the extent of electroweak fine-tuning for
such a light neutralino scenario in view of the null results from the searches for supersym-
metry so far. Using a Markov Chain Monte Carlo likelihood analysis of the full pMSSM
parameter space, we find that a neutralino DM with mass 2 10 GeV can in principle still
satisfy all the existing constraints. Our light neutralino solutions can be broadly divided
into two regions: (i) The solutions in the 10-30 GeV neutralino mass range are highly fine-
tuned and require the existence of light selectrons (below 100 GeV) in order to satisfy the
observed DM relic density. We note that these are not yet conclusively ruled out by the
existing LEP/LHC results, and a dedicated analysis valid for a non-unified gaugino mass
spectrum is required to exclude this possibility. (ii) The solutions with low fine-tuning are
mainly in the 30-46 GeV neutralino mass range. However, a major portion of it is already
ruled out by the latest XENON100 upper limits on its spin-independent direct detection
cross section, and the rest of the allowed points are within the XENON1T projected limit.
Thus, we show that the allowed MSSM parameter space for a light neutralino DM below
the LEP limit of 46 GeV, possible in supersymmetric models without gaugino mass unifi-
cation, could be completely accessible in near future. This might be useful in view of the
recent claims for positive hints of a DM signal in some direct detection experiments.
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1 Introduction

Low-scale Supersymmetry (SUSY) (see e.g., [1, 2]) is one of the most attractive candidates
for New Physics beyond the Standard Model (SM). Apart from providing successful gauge
coupling unification and a solution to the gauge hierarchy problem, it offers a natural
candidate for Dark Matter (DM) in our Universe in the form of the lightest supersymmet-
ric particle (LSP). In the R-parity conserving Minimal Supersymmetric Standard Model
(MSSM), the lightest neutralino (X9) is one of the most viable Weakly Interacting Massive
Particle (WIMP) DM candidates (for a review, see e.g., [3, 4]). It can explain the observed
DM relic density, while predicting experimentally accessible direct and indirect detection
rates, over a wide range of supersymmetric model parameters, some of which are already
getting constrained from the ongoing direct searches for the supersymmetric particles at
the Large Hadron Collider (LHC), in combination with other low-energy data (for a review,
see e.g., [5]).

The recent hints of positive signals in three DM direct detection experiments, namely,
DAMA [6, 7], CoGeNT [8] and CRESST-II [9], have generated a lot of interest in light
WIMP candidates in the 5-50 GeV mass range. This interpretation is however challenged
by the null results from various other direct detection experiments, most notably the lat-
est XENON100 results [10], which provide the most stringent upper limits on the spin-
independent WIMP-nucleon scattering cross section for m, > 7 GeV.! Nonetheless, due to
the relatively poor sensitivity of the XENON100 experiment in the very low WIMP mass
regime, it is believed that an agreement between the positive and null sets of experimental
results could be possible, if at all, only in this low mass region. Hence, it might be worth-
while examining the allowed MSSM parameter space to see if there exists a lower bound
on the lightest neutralino mass irrespective of the direct detection results.

More recently, the TEXONO experiment [11] has achieved slightly better sensitivity than XENON100
for m, < 7GeV.



The neutralino mass eigenstates in the MSSM result from mixing of the neutral
bino (B), wino (WO) and higgsinos (ﬁg,flg). This mixing is determined by the MSSM
tan 8 parameter and the bino, wino and higgsino mass parameters M7, My and u, respec-
tively. In the SUSY models with gaugino mass unification at the Grand Unified Theory
(GUT) scale, a relation between the bino and wino mass follows at the electroweak scale:
My = %tan2 Ow Ms =~ 0.5M5 (see e.g., [12]) which, after mixing, translates into a chargino-
neutralino mass relation. Therefore, a lower limit on the lightest neutralino () mass of
about 46 GeV can be derived for these models from the Large Electron Positron (LEP)
chargino mass limit [13, 14], whereas in the constrained MSSM (¢cMSSM) [15] with both
gaugino and sfermion mass unification, this limit increases to well above 100 GeV from the
strong constraints set by the recent LHC data [5].

On the other hand, in a generic MSSM scenario without the assumption of gaugino
mass unification, there is no general lower limit on the lightest neutralino mass [16]. The
LEP limit on the invisible decay width of the SM Z boson applies to light neutralinos
with a mass below mz/2 = 45.6 GeV, but it depends on the Z )Z??? coupling which could
be small or even zero, depending on the higgsino component of the neutralino. In such
a case, light neutralinos are mainly constrained by the DM relic density measurement as
well as by the collider and flavor constraints on the SUSY parameter space. Assuming that
the lightest neutralino is non-relativistic and provides the entire cold DM content of the
Universe, while satisfying the LEP bounds on chargino and stau masses, ref. [17] obtained a
lower bound of mso 2 18 GeV. This was relaxed to about 6 GeV without violating the LEP
bounds and flavor sector constraints in SUSY models with a pseudo-scalar Higgs boson (A)
mass ma < 200GeV and a large tan 5 [18, 19]. This was even further lowered to about
3 GeV by allowing explicit C'P violation in the MSSM Higgs sector [20].

Meanwhile, several new experimental results have been obtained at the LHC: (i) A new
Higgs-like neutral scalar particle has been discovered [21, 22] with mass around 125 GeV
which falls squarely within the MSSM-predicted range for the lightest C'P-even neutral
Higgs mass: my, € [115,135] GeV (see e.g., [23]); (ii) The rare decay B? — ptu~ was
observed with a branching fraction of B(B? — ptu~) = (3.27]3) x 107 [24] which is
in agreement with the SM expectation, B(B? — putpu~)sm = (3.23 £0.27) x 1079 [25];
(iii) The lack of a SUSY signal at the /s = 7 and 8 TeV LHC has pushed the lower
limits on the squark and gluino masses to about 1 TeV and beyond [26, 27]; (iv) Updated
bounds have been obtained for the MSSM Higgs sector [28-30]. All these new results
have profound implications for a light neutralino scenario within the MSSM, and some of
these aspects have already been investigated in a number of recent studies [31-45]. The
general conclusion is that light neutralino DM candidates with mass below about 15 GeV
are severely constrained in generic MSSM scenarios (without gaugino mass unification).

Another important issue to be addressed in the light of the recent LHC results is the
apparent “little hierarchy problem”, i.e., how does a multi-TeV SUSY particle spectrum
conspire to give a weak-scale Z-boson mass and also a Higgs boson mass of 125 GeV? One
way of analyzing this issue quantitatively is to evaluate the measure of electroweak fine-
tuning (EWFT) by examining the minimization condition in the MSSM Higgs potential
which determines the Z-boson mass [46, 47]. It is well-known that radiative corrections



must play a crucial role in determining the allowed SUSY parameter space necessary to gen-
erate a 125 GeV Higgs boson mass, much larger than its tree-level prediction of my < my.
This in general can lead to a large fine-tuning. In addition to this, the requirement of a
light neutralino DM will pose a challenge for any MSSM scenario, the severity of which
is however strongly model-dependent. The naturalness of various SUSY models with a
neutralino LSP has been analyzed in the literature (for an incomplete list, see [42, 48-61],
and references therein).

In this paper, we perform a dedicated study focusing on the naturalness of a light
neutralino, and also examining how light the neutralino could be, after taking into account
all the existing theoretical and experimental constraints. To perform such an analysis in
the full 124-parameter MSSM is quite unrealistic, and hence, we need to make some well-
motivated assumptions in order to reduce the number of parameters to a manageable level.
Most of the earlier studies on SUSY focused on the cMSSM having only 5 parameters,
assuming certain boundary conditions at the GUT-scale. However, in view of the latest
null results from SUSY searches at the /s = 8 TeV LHC, the cMSSM seems too restrictive
for low-scale SUSY phenomenology as the allowed cMSSM parameter space accessible to
the /s = 14 TeV LHC is rapidly shrinking (for the latest global status, see e.g., ref. [62—
64]). Therefore, in this paper we choose not to make any assumptions at the high scale,
and focus only on the low-scale MSSM parameter space from a phenomenological point of
view. More precisely, we consider a C'P-conserving MSSM (i.e., with no new C'P phases)
with Minimal Flavor Violation [65] and with first two generations of sfermions degenerate.
This is widely known as the phenomenological MSSM (pMSSM) [66] (also known as ‘SUSY
without prejudice’ [67]) with 19 free parameters at the electroweak scale. We also study
the level of fine-tuning for the light neutralino scenario in this context.

In order to efficiently explore the 19-dimensional pMSSM parameter space, we perform
a Markov Chain Monte Carlo (MCMC) likelihood analysis (for a review, see e.g., [68]), with
the priors chosen to focus on a light neutralino scenario with mass below the conservative
LEP lower limit of 46 GeV. We include in our analysis the latest experimental results for
SUSY searches from the LHC [26, 27] which now supersede the Tevatron results [69, 70], in
addition to the existing LEP limits [13, 14], wherever applicable. We also include the latest
astrophysical/cosmological constraints for a WIMP DM from the 9-year WMAP data [71]
as well as the very recently released Planck data [72]. We further examine the allowed pa-
rameter space in the light of various recent results for DM direct detection, most notably the
XENON100 limits [10], as well as the indirect detection results from Fermi-LAT data [73].

We find that a light neutralino DM with mass as low as 10 GeV is still allowed in
the pMSSM, while satisfying all the existing experimental constraints provided we only
take the model-independent analysis results from LEP. (Including the LEP limits strictly
applicable to gaugino-mass unification models allows only the solutions with mgo > 30GeV,
in agreement with previous results [33, 34].) However, such neutralinos which are required
to be mostly bino-like are severely fine-tuned and require the existence of light sleptons
below 100 GeV in order to provide an efficient annihilation channel to reduce the bino relic
density to be consistent with the observed limit. A dedicated analysis of the LEP data in the
context of a pMSSM scenario could eliminate this region completely. On the other hand, low



fine-tuning regions can be obtained around mge = 45 GeV where the resonant annihilation
via the s-channel Z-exchange is possible for the neutralino with a non-negligible higgsino
component. However, such regions are mostly excluded by the recent XENON100 limits on
the spin-independent DM-nucleon scattering cross section, and the remaining such points
are well within the reach of the XENONIT [74] and LUX [75] projected limits.

Our paper is organized as follows: in section 2, we briefly discuss the electroweak fine-
tuning measure. In section 3, we list all the pMSSM parameters and their scan ranges, and
also summarize all the relevant experimental constraints used in our numerical analysis. In
section 4, we present our scan results and discuss their implications for a light neutralino

DM. Finally, our conclusions are given in section 5.

2 Electroweak fine-tuning

To quantify the amount of fine-tuning in the electroweak symmetry breaking (EWSB) sec-
tor of the MSSM, it is sufficient for us to analyze the tree-level MSSM scalar potential.
Since it allows only charge-conserving vacua, we only have to minimize the scalar potential
for the neutral scalar fields [1]:

Vo= (miy, + p®)[Hy? + (i, + u?)|Hgl?

1
~Bu(H,Hy + H.c.) + g(g2 +9%)(|H,|* — |Hg|*)?, (2.1)

where p is the SUSY-preserving bilinear Higgs superpotential parameter, mg, , and B are
the soft scalar masses and the bilinear coupling in the SUSY-breaking sector respectively,
and g¢,¢" the SU(2); and U(1)y gauge couplings, respectively. After minimization, we
obtain the well-known relation for the Z-boson mass:

mQZ m%{d — m%{u tan? 3 )

2 tan? 3 — 1 e (2:2)

where tan 5 = v, /vy is the ratio of the vacuum expectation values (vevs) of the two Higgs
doublet fields H,, and H, respectively, It is clear from eq. (2.2) that a cancellation of the
terms on the right hand side (RHS) is required in order to obtain the measured value of
myz = 91.2GeV [5] especially if the mass parameters on the RHS are orders of magnitude
larger than the weak scale which indeed seems to be the case, given the current experi-
mental status of the direct SUSY searches [26, 27]. Thus naively speaking, the weak scale
value of |u| can be used as a measure of fine-tuning in the MSSM.

A more sophisticated way to quantify the degree of EWFT is by using log-
derivatives [47]:

dlnm%(pi) _ | i om?

Api = ‘ | (23

Olnp; m?% Op;
where p;’s are the parameters that determine the observable Z-mass at tree-level. From
eq. (2.2), we have p; = {y?,b,mp,, mg,} (with b = By), and the total measure of the

EWEFT is defined as

Aror = \/(Ar2)2 + (A2 + (Am3 )2 + (A, )2 (24)



with the individual Ap;’s given by [76]
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Here m% = Bu(tanp + cot3) is the MSSM pseudo-scalar Higgs mass, and we have
assumed tan 8 > 0. Values of Aty; > 1 indicate significant fine-tuning. Note that in the
decoupling limit with m4 > myz and with large tan 5, the quantities Am%{u and Am%{d in
eq. (2.5) are small, and ,
2 . A N dma
Ap® =~ m Ab ~ mZ tan? § (2.6)
Thus in the limit of large tan 3, we recover the naive result that fine-tuning increases with
increasing |p|.

We should note here that including loop corrections to eq. (2.2), one finds the largest
contribution to be coming from the (s)top loop which feeds into the soft mass of the
Higgs [12]: ,

omy; = —%(mg +m2 +|A*) log (ni) , (2.7)

tr, tr 7

where 1 is the top-quark Yukawa coupling, A; is the third-generation A-term in the SUSY-
breaking sector, and A is some high scale where the stop masses mg, , are generated from
the SUSY-breaking mechanism. Even for a low-scale SUSY-breaking scenario (such as
gauge mediation), this requires a fine-tuning of at least a few percent in order to get the ob-
served Z-mass and it becomes worse for heavy stop masses [77]|. A heavy physical stop mass
my 2, 500 GeV is anyway required to provide large enough radiative corrections to the light

C'P-even Higgs mass to raise it to the vicinity of 125 GeV from its tree-level value < my [12]:

2.9
3my my my X7 X?
5 2 — 7t 1 tL tR t 1 _ t 28
"Ttho 167202 log ( mj + my my 12mg my ’ (2:8)
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where X; = Ay — pucot 8 is the stop mixing parameter. A fine-tuning measure A,,, for the

Higgs mass can be defined analogous to eq. (2.3), and for a particular choice of some of the
SUSY parameters, it was found that A,,, > 75 (100) in order to achieve a Higgs mass of
124 (126) GeV and the corresponding stop mass is always heavier than 300 (500) GeV [78].
The fine-tuning due to eqgs. (2.7) and (2.8) could in principle be added in quadratures to
our “total” fine-tuning parameter defined by eq. (2.4), but since their specific values are
scale-dependent? and adds to some arbitrariness in its definition, we do not include them
in our analysis.

2The SUSY-scale by convention is usually taken to be the geometric mean of the two stop masses.



Parameter Description Prior Range
tan 3 Ratio of the scalar doublet vevs [1, 60]

1 Higgs-Higgsino mass parameter [—3, 3] TeV
My Pseudo-scalar Higgs mass [0.3, 3] TeV
M, Bino mass [—0.5, 0.5] TeV
My Wino mass [—1, 1] TeV
M Gluino mass [0.8, 3] TeV
mg, First/second generation @, squark [0, 3] TeV
M, First/second generation Ug squark [0, 3] TeV
mg. First/second generation D squark [0, 3] TeV
m; First/second generation Ly, slepton [0, 3] TeV
Mz, First/second generation Er slepton [0, 3] TeV

mg,, Third generation @, squark [0, 3] TeV
mg, Third generation Ur squark [0, 3] TeV
my Third generation Dp squark [0, 3] TeV
mg. Third generation Lj, slepton [0, 3] TeV
mz, Third generation Eg slepton [0, 3] TeV

Ay Trilinear coupling for top quark [—10, 10] TeV
Ay Trilinear coupling for bottom quark | [—10, 10] TeV
A Trilinear coupling for 7-lepton [—10, 10] TeV

Table 1. The pMSSM parameters and their range of values used in our numerical analysis.

3 Parameters and constraints

We consider the pMSSM with 19 free parameters at the SUSY scale, as shown in table 1.
We further assume that the lightest neutralino is the LSP, and our goal is to examine how
light and natural the neutralino could be while satisfying all the existing theoretical and
experimental constraints on the MSSM parameter space. In particular, we focus on the
lightest neutralino masses below the LEP limit of 46 GeV [13, 14] which is strictly valid
assuming gaugino mass unification at the GUT-scale. We perform a numerical scan over
the 19-dimensional pMSSM parameter space using a MCMC-based likelihood analysis
for a light neutralino with the prior ranges given in table 1. These particular ranges are
chosen in order to economize the scan time and to focus only on the SUSY parameter
space not yet disfavored by the combined direct search results from the LEP [13, 14], Teva-
tron [69, 70] and LHC [26, 27], as discussed later in this section. For the SM parameters
as(mz), dem(mz), my, m; and my, we use the standard values as given in ref. [5].
Apart from the direct collider constraints on the sparticle masses, there exist various
theoretical and experimental constraints which must be imposed on the pMSSM parameter



space in our analysis. As a standard theoretical requirement, our sparticle spectrum
for each allowed point in the parameter space must be tachyon-free and should not lead
to color- and charge-breaking minima in the scalar potential [79]. We also require that
the scalar potential is bounded from below and is consistent with electroweak symmetry
breaking. From the radiative electroweak symmetry breaking arguments, we can restrict
the tan # parameter to be roughly between 1-60, as given in table 1.

The various experimental constraints from direct collider searches, Higgs and flavor
sectors, and astrophysical/cosmological data used in our analysis are summarized below.

Invisible Z-decay width

The precise measurement of the Z-boson decay width at LEP: T'%" = 2495.2+2.3 MeV [30]
puts severe constraints on light neutralinos and charginos with mass < mgz/2. From
the LEP measurements of the invisible decay width of the Z-boson: TV = (499.0 &
1.5) MeV [80], the parameter space for the lightest neutralino in our case is restricted to
mostly gaugino-like scenarios (|u| > M; 2) since the neutralino coupling to Z is only via its
higgsino component. The allowed fraction of the higgsino component for a given neutralino
mass can be calculated using the following expression for the partial decay width of the
Z-boson to neutralinos [81]:

I'(Z = xixY) 4m?€? v m?i? L2 R\2 Gm% L AR
— o =2|1-—= 1-— [(011) +(011) }+7m2 011013 (3.1)
Z

INZ — vD) my,

where I'(Z — vv) = (501.62+£0.10) MeV is the SM contribution to its invisible decay width
(for 3 neutrino species). The components OiLj’R are defined as

1 1 *

with V;; measuring the gaugino-Higgsino mixing:

4
2? - ZNZk{/;lgv where {/;O = (anoaﬁg?ﬁg) (33)
k=1

Using the LEP measurement of the invisible Z-decay width, the following constraint
can be derived:

INZ — )2?)?9) <3 MeV if (my, +my;) <mgz (3.4)

Note that this constraint should apply to all light neutralinos satisfying this condition, not
just the LSP (i = j = 1 in eq. (3.4)). However, it is unlikely that decays such as Z — X5
will be kinematically allowed, and in such cases, X3 will mostly decay to visible final states.
Similarly, the decays Z — v;v; are not kinematically allowed for the parameter space exam-
ined here, and hence, they do not contribute to the purely invisible width of the Z-boson.



Exclusion limits from collider searches

The experimental lower limits on the sparticle masses are usually quoted assuming gaugino
and/or sfermion mass universality at the GUT scale. In a generic MSSM setup, most of
these constraints can be relaxed, or even circumvented, for example in case of small mass
splitting with the LSP or in case of small couplings to the SM vector bosons. Since we
are interested in light neutralino LSPs here, we must carefully interpret the direct search
limits in order to be able to include all the allowed pMSSM parameter space.

Neutralino. As already mentioned in section 1, there are no rigorous lower limits on the
neutralino masses in the MSSM from direct collider searches. The LEP limits [13, 14, 82]

mgo > 46 GeV,mge > 62.4 GeV,mso > 99.9 GeV,mso > 116.0 GeV (3.5)
1 X2 X3 X4

were derived assuming gaugino mass unification at the GUT scale, and hence, relating
the neutralino mass to the chargino mass. Moreover, for a (mostly) bino-like neutralino,
which is required to be the case for mzo < Mz /2 in order to avoid the Z-width constraint,
its production via s-channel exchange of Z/~4* is (negligible) absent. The ¢-channel
production cross-section via selectron exchange is also expected to be small for selectron
masses above the LEP limit (see below). Thus, we can easily satisfy the LEP upper limits
on the neutralino pair-production cross sections o(ete™ — )Z?SZ?) [82, 83] for a mostly
bino-like neutralino LSP. Similarly, the Tevatron [84] and LHC [85] SUSY searches for
final states involving Z-bosons cannot constrain a bino-like neutralino.

Chargino. Charginos can be pair-produced at LEP via s-channel exchange of Z/~* or t-
channel exchange of electron-sneutrino, with destructive interference It dominantly decays
to v, if kinematically allowed. If not, the three-body decay to ff'x v1a virtual W-boson or
sfermions becomes important in which case, the final state fermlons (f, f) are dominantly
leptonic (hadronic) if the sleptons are light (heavy). From the combined searches in fully-
hadronic, semi-leptonic and fully-leptonic decay modes, LEP has derived a general lower
limit of 103.5 GeV [13, 14] which is valid for pMSSM as well, except in corners of phase space
where (i) the detection efficiencies are reduced, e.g., when the mass differences Am, =
Mgt — Mg OF Am, = Mgk — My are very small (below a few GeV); or (ii) the chargino
production cross section is suppressed, e.g., when the electron sneutrino mass is small,
thus leading to a destructive interference between s- and t-channel Feynman diagrams.
Dedicated searches for such scenarios have also been performed. For instance, for small
Amy < 3GeV but with large sneutrino mass, the limit becomes Mgx > 91.9 GeV for degen-
eracy in the gaugino region (|Mi| ~ |Ms| < |u|) while Mgt > 92. 4GeV for degeneracy in
the higgsino region (|u| < | M|, |Ma|) [13, 14]. Without assumlng gaugino mass unification,
a lower limit of Mg > 70 GeV was set for any Am, and my > 300 GeV. For smaller sneu-
trino masses, the sensitivity decreases due to the reduced pair production cross section and
also due to reduced selection efficiency. In such situations where none of the above mass lim-
its can apply, the generic lower limit of approximately 45 GeV, derived from the analysis of
the Z-width, is still valid since this is independent of the field composition and of the decay
modes of the charginos. Note that unlike neutralinos which couple to the Z-boson only via



their higgsino component, the charginos couple to Z via both their gaugino as well as hig-
gsino components; so it is not possible to avoid the Z-width constraint for a light chargino.

Sneutrino. Light sneutrinos can only decay invisibly to vX} unless the decays to
charginos and heavier neutralinos are not kinematically suppressed. The invisible width
of the Z-boson puts a lower limit on the left-sneutrino mass of 43.7 GeV, which improves
slightly to 44.7 GeV if all three sneutrinos are mass-degenerate. Note that the lightest
left-sneutrino by itself cannot be a cold DM candidate [86, 87], and we must introduce
a mixing with a SM singlet sneutrino to make it a viable DM candidate (see, e.g., [88-
94]). Since we are dealing here only with the MSSM field content and do not have a
right-sneutrino component, we discard those points for which the sneutrino is the LSP.

Slepton. Studies of the Z-boson width and decays put a lower bound on the slepton

masses m; > 40 (41) GeV, independently of the decay modes for individual sleptons (Z =

lr
€, i, T). TilLlS limit improves to 43 GeV if all the three slepton flavors are mass-degenerate.
Tlghter limits can be obtained assuming that sleptons are pair-produced at LEP, and each
slepton dominantly decays to £X9, thus leading to two back-to-back leptons and missing
transverse momentum. These limits are valid for a mass splitting Am, = my — mgo >
15 GeV so that the final state leptons are not too soft. Moreover, the LEP results are in-
terpreted assumlng that only l, R€ r production contributes, and hence, the limits are usually
quoted for 1 R, since it is typically lighter than l, 1 in most SUSY models, and has a weaker
coupling to the Z-boson so that the limits are more conservative. This is a good approxima-
tion for selectrons and smuons, but not for staus which can have significant mixing between
the flavor eigenstates 77, and 7z. The most conservative limit on the mass of the lightest
stau is obtained with a mixing angle 6> ~ 52° which minimizes the production cross section.
The slepton mass limits of O(100) GeV quoted in ref. [13, 14] were derived under
the assumption of gaugino mass unification at the GUT scale which was used to fix the
masses and composition of neutralinos. It was also assumed that the slepton branching
ratio to £ is nearly 100% which is a good approximation if the second lightest neutralino
is heavy enough to suppress the cascade decay into £x3 followed by X5 — ffX) or X{v.
For smuons and staus, the LEP limits are independent of the MSSM parameters [95],
and hence, directly applicable to our case. However, the selectron mass limit will be
different if we do not assume gaugino mass unification due to a different production cross
section involving the t-channel neutralino exchange, in addition to the usual s-channel
~v*/Z exchange. Since there is no dedicated analysis of the LEP data addressing this issue
available in the literature and this is beyond the scope of our present work, we only use
the generic lower bound for € derived from the Z-width in our numerical analysis, but will
also comment on the implications of the tighter selectron mass bound from LEP on our
light neutralino scenario. We will also include the latest 95% C.L. LHC exclusion limits for
slepton pair production interpreted in the slepton-neutralino mass plane of pMSSM [96]
which are applicable to both left- and right-handed selectrons and smuons.

Gluino and squarks. The current LEP limits on the squark masses are similar to
the slepton mass limits of O(100) GeV. However, since squarks are colored objects, their



production cross sections are much higher at hadron colliders. The highest sensitivity on
squark and gluino production now comes from the LHC experiments. The generic lower
limit on the first/second generation squark masses is 600-750 GeV and on the gluino mass
is 700-900 GeV, as set for simplified SUSY models by the ATLAS analysis of the 8 TeV
LHC data [26]. The corresponding CMS limits are very similar [27]. However, from the
latest global fit of pMSSM after the LHC results [60] (see also ref. [97, 98] for an earlier
global fit of pMSSM), the corresponding lower limit on squark mass is mg 2 500 GeV, and
hence, we use this value to constrain our pMSSM parameter space.

The LHC and Tevatron limits on the third generation squarks are usually weaker since
the amount of bottom and top quark content in the proton is negligible, and hence, the
direct production of bottom and top squark is suppressed with respect to the first/second
generation squarks. The current exclusion limit for top squarks is between 300-600 GeV
from the LHC data, depending on the decay channel [26, 27]. Similar limits have been
derived for the bottom squark as well. Following the latest global fit of pMSSM [60], we
set the lower limits for light top squark and sbottom masses at 400 GeV and 300 GeV,
respectively. Note that these limits are applicable as long as the light stop/sbottom is
not highly mass degenerate with the lightest neutralino (with Am < 10 GeV or so) which
always turns out to be the case for our light neutralino solutions satisfying all the other
constraints. Thus we do not have any light sbottom solutions as considered in ref. [39)].

The lower limits on the sparticle masses derived from the above discussion are summa-
rized in table 2. We emphasize here that for a light neutralino DM with mge < mgz /2 as
considered in our case, the dominant annihilation channels will be the ¢-channel processes
mediated by light sfermions unless the s-channel Z-resonance or co-annihilation are
effective. Hence, the lower limits on the chargino and sfermion masses as given in table 2
are crucial ingredients in our numerical analysis.

B, — ptp~

The rare decay Bs — pp~ is known to be a sensitive channel for new physics since its
SM predicted rate is small due to helicity suppression. Recently, the first evidence for this
decay was observed by the LHCD collaboration with the measured branching ratio: B(Bs —
ptu~) = (3.2713) x 1079 [24] which is in excellent agreement with the SM prediction of
(3.2340.27) x 1079 [25], thus raising some concerns for the “health” of SUSY. However, it
must be noted that the upper limit derived from the latest LHCb result is actually slightly
weaker than the earlier upper limit of < 4.5 x 1079 [99]. The effect of the new results is
mostly felt in the large tan 8 > 50 regions of the MSSM parameter space [100] which are
also strongly constrained from direct SUSY searches and the MSSM Higgs searches.

b— svy

We have also included the constraint from the radiative B-meson decay branching ratio,
B(b — sv) = (3.55 £ 0.24 £ 0.09) x 104 [101] which is somewhat higher than the SM
prediction of (3.15 4 0.23) x 10~* [102]. Thus large SUSY corrections are preferred which
mainly occur for light chargino and top squarks and for large tan 5 [103].
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Particle | Mass limit (GeV) Validity Condition
%11 103.5 Mgt — Mg > 3GeV, my > My
70 my > 300 GeV, |u| > |Ms]
45 generic LEP bound
IR 88 Mg, — Mg > 15GeV, BR(z — px3) =1
T 76 mz — mge > 15 GeV, BR(71 — X)) =1
€Rr 95 My — Mgo > 15GeV, BR(€ — ex}) = 1,
= —200GeV, tan g = 2
ZR (L) 40 (41) generic LEP bound
v 43.7 generic LEP bound
7 800
q 500
t 400
by 300

Table 2. The lower limits on the sparticle masses used in our numerical analysis. The chargino and
slepton mass limits are derived from the LEP data [13, 14] while the squark and gluino mass limits
are derived from the LHC data [26, 27] which now supersede the LEP as well as the Tevatron [69, 70]
limits.

(9—2)u

Another important constraint comes from the muon anomalous magnetic moment a,, = (g—
2),,/2 which gives a more than 3o discrepancy with the SM prediction: da, = (26.148.0) x
10719 [104]. The SUSY contribution to da, can explain this discrepancy with relatively
light smuons and/or large tan 8 [105-107], and g < 0 region of the SUSY parameter space
is strongly disfavored (unless the electroweak gaugino masses My, My < 0).

Higgs sector

For the light C'P-even Higgs mass, we have chosen the value of m; = (125 £ 2) GeV,
following the latest best-fit mass measurements of the Higgs-like particle discovered at the
LHC: (125.2 £ 0.3 £ 0.6) GeV (ATLAS) [108] and (125.8 £ 0.4 £+ 0.4) GeV (CMS) [109].
For the other MSSM Higgs bosons, we ensure that all our allowed points satisfy the latest
LHC constraints on the m4 — tan 8 plane [110, 111] and on the MSSM charged Higgs
mass [112, 113] which are related to each other at tree-level by m?,.. = m?% + m¥,. Note
that the non-decoupling region with light m4 ~ 95 — 130 GeV, almost mass-degenerate
with the light C'P-even Higgs, and with the heavy CP-even Higgs SM-like, is disfa-
vored [114, 115] by the latest LHC Higgs data and flavor constraints, especially the
Bs — ptp~ and b — sv. Hence, we work in the decoupling region with m > 300 GeV
with the light C'P-even Higgs SM-like with mass in the vicinity of 125 GeV, and with the
heavy C P-even Higgs nearly mass-degenerate with the C'P-odd Higgs. Also note that for
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a mostly bino-like neutralino, the h)???(l) coupling is small enough to satisfy the current
global limit on the Higgs invisible decay branching ratio: BRj,y < 0.28 at 95% CL [116].

Dark matter constraints

The latest results from Planck give the current relic density of the cold dark matter
content in our universe to be 2, h? = 0.1199 £ 0.0027 at 68% CL [72]. The corresponding
value from the 9-year WMAP data is Q,h% = 0.1148 £0.0019 [71]. For the relic density of
the neutralino DM in our case, we only require it to satisfy the WMAP 20 upper bound
combined with 10% theoretical uncertainty: Q%?hz < 0.138 which also encompasses the
latest observed value from Planck. The cases where the neutralino relic density is below
the corresponding WMAP lower bound, Qgg h? < 0.091, could account for the correct relic
density by alternative mechanisms of regeneration (see e.g., [117-119]), or by invoking a
multi-component DM scenario (see e.g., [120-129]).

As far as the DM direct detection constraints are concerned, since there is no unani-
mous upper bound on the direct detection cross section, we do not put this constraint a
priori on the model parameter space. However, as we will see later, most of the allowed
parameter space satisfying the other constraints also satisfy the most stringent upper limit
on the spin-independent DM-nucleon scattering cross section set by the XENON100 exper-
iment [10]. Note that for m, > 10 GeV, the spin-independent direct detection constraints
are more stringent than the collider constraints from mono-jet [130, 131] and isolated mono-
photon [132, 133] searches at the LHC as well as from the LEP mono-photon data [134].

Complementary to the direct detection constraints, there exist indirect detection con-
straints which are mostly sensitive to light WIMPs annihilating to SM fermions which
eventually lead to gamma-ray signals. A lower limit of mso 2 10 GeV was derived from the
CMB constraints [135-140]% for DM candidates with a velocity-independent annihilation

3 .57, Under the same assumption, the Fermi-LAT

cross section of (o,v) = 3 x 10726cm
data put lower bounds of mso > 27 GeV for annihilation to bb channel and mso 2 37GeV
for 7777 channel [142]. However, these bounds can be relaxed if we include the velocity-
dependent contributions, as shown for pMSSM in ref. [143]. In our numerical analysis, we
include the latest Fermi-LAT 95% CL upper limit on the integrated «-ray flux from spec-
tral line searches in the Milky Way galaxy: ¢, < 4 x 1071%m~2-s7! [73] for high latitude
(|b| > 10°) plus a 20° x 20° square at the galactic center and for 7-200 GeV energy range.

The various experimental constraints discussed above and used in our numerical anal-

ysis, in addition to the sparticle mass limits listed in table 2, are summarized in table 3.

4 Results

In order to scan the 19-dimensional pMSSM parameter space more efficiently while
satisfying all the constraints listed in tables 2 and 3, we have performed a MCMC analysis
using a Gaussian distribution of likelihood function: f(z, o, o) = exp[—(z — z0)?/20?] for

3Similar limits have also been derived from BBN constraints [141].
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Parameter Constraint

mp (125 £2) GeV

Fiélvisible < 3MeV
Qgoh? <0.138
1
o <4x10719 em=2.571
B(Bs — put ™) (3.2713) x 107°

B(b — sv) (3.55 4 0.26) x 10~*

bay, (26.1 +8.0) x 10710

Table 3. The relevant experimental constraints used in our analysis, in addition to those listed in
table 2.

all the observables, with a preferred value xg + 0. We have used CaclHEP2.3 [144] and
micrOMEGAs2.4 [145-147] to compute all the observables, together with SoftSUSY [148]
for calculating the particle spectrum.

First we discuss our MCMC scan results for the relic density of a light neutralino DM
candidate as shown in figure 1, which was obtained by numerically solving the Boltzmann
equation using micrOMEGAS [145]. We require all the allowed points (shown as circles)
to satisfy the experimental constraints given in table 3, along with the LEP limits on
sparticle masses given in table 2. The latest LHC results put much tighter bounds on the
strongly interacting squarks and gluinos and further eliminate some of these otherwise
allowed parameter space, as shown by the starred points in figure 1. The WMAP-9 2¢
band is shown in grey, whereas the latest Planck result is shown as dark shaded region. We
find that light neutralinos with mass as low as 10 GeV are still allowed, though severely
fine-tuned with the electroweak fine-tuning measure defined by eq. (2.4): Agot > 1. This
can be understood as follows by analyzing the gaugino and higgsino components of the
lightest neutralino as well as its dominant annihilation channels.

The bino, wino and higgsino fractions of the lightest neutralino for all the allowed
points in our pMSSM parameter space are shown in figure 2. We reproduce the well-known
result that the lightest neutralino is mostly bino-like for masses below my/2, mainly due
to the invisible Z-decay width constraint in eq. (3.4). However, a purely bino DM tends
to overclose the universe unless it has an efficient annihilation channel to reach up to the
thermal WIMP annihilation rate of 3 x 10726 e¢m? - s!. One possibility is to consider
a “well-tempered” neutralino [149] which corresponds to the boundary between a pure
bino and a pure higgsino or wino. Another possibility to reduce the bino relic density
is by annihilation via the t-channel slepton exchange (the so-called “bulk region”) which
is efficient for light sleptons, or by using co-annihilation with a light slepton, squark,
chargino or second-lightest neutralino in configurations where such light sparticles are not
yet excluded by experimental searches. We find that most of the points with mso close
to 45 GeV can have either slepton co-annihilation or a resonant Z-annihilation due to a
non-negligible higgsino component, and hence, can easily satisfy the WMAP upper limit
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Figure 1. The relic density of a light neutralino DM in pMSSM satisfying all the experimental con-
straints discussed in section 3. The color-coding denotes the fine-tuning measure defined by eq. (2.4).
The points denoted by circles satisfy all the experimental constraints, except that the squark masses
are only required to satisfy the LEP lower limits. For the starred points (a subset of the circled
points), the corresponding squark masses satisfy the latest LHC constraints. The top (bottom) grey
horizontal line shows the 20 upper (lower) limit of the cold dark matter relic density from WMAP-9
data, whereas the black (shaded) region shows the 1o allowed range from the recent Planck data.
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Figure 2. The gaugino (f?, Wo) and higgsino (ﬁ& I:TS) components of the lightest neutralino in
our pMSSM parameter scan.

on the relic density. These points are also less fine-tuned. On the other hand, the light
neutralino DM points in the 10-30 GeV range as shown in figure 1 have to be mostly
bino-like and lie in the bulk region, thus leading to significant fine-tuning. Note that
in the latter case, the next-to-lightest supersymmetric particle (NLSP) masses are much
higher than the LSP mass, thus eliminating the possibility of a co-annihilation.

This is further clarified in figure 3 where we show the various NLSPs and their
masses as a function of the lightest neutralino mass. We see that all the allowed points
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Figure 3. The various NLSP masses as a function of the LSP mass for the allowed points (circles)
shown in figure 1. The LEP exclusion regions strictly applicable for fig (red shaded) and 71 (green
shaded) and the LHC exclusion region for ¢ (I = e, u) (blue shaded) are also shown.

with mzo < 30 GeV have a charged slepton NLSP with mass below 100 GeV. Especially
the points with a light stau are severely fine-tuned since they usually require a mass
suppression by the off-diagonal elements in the slepton mass matrix, or a large u-term.
We also show in figure 3 the LEP exclusion regions in the charged slepton-neutralino mass
plane, derived under the assumption of gaugino mass unification [13, 14]. The limits for
light smuons and staus are still applicable to the pMSSM case as long as Amy > 15 GeV,
but not directly to light selectrons if we assume non-universal gaugino masses, and hence,
can still allow the low neutralino mass regime. The latest 95% C.L. ATLAS exclusion
limits [96] are also shown in figure 3 which were derived from searches for direct slepton
(selectron and smuon) pair production and interpreted in the pMSSM. A similar dedicated
analysis of the LEP data is required in order to completely rule out the light selectrons,
and hence, the lightest neutralino DM mass below 30 GeV for the pMSSM scenario.

The neutralino DM-nucleon spin-independent scattering cross-sections for the allowed
points is shown in figure 4. The points corresponding to the observed relic density within
the WMAP band in figure 1 are encircled. As mentioned earlier, the remaining points can
also account for the correct relic density if we assume 100% regeneration at late times (see
e.g., [117-119]). Another possibility is to invoke a multiple DM scenario (see e.g., [120—
129]) in which case the neutralino DM considered here will only constitute a fraction of the
total observed DM density, and we must scale the neutralino DM density appropriately in
order to calculate the neutralino-nucleon scattering cross section. Since the cross section
depends linearly on the DM density, we use a rescaling factor of r, = Q%(f /Qobserved, Where
for concreteness, we take the Planck central value for Qupserveah’ = 0.12. For the DM
density distribution in the galactic halo, we have used the NFW profile [150, 151], as
implemented in micrOMEGAs_2.4 [146]. The results with and without rescaling of the DM
density are shown for comparison in figure 4. A comparison of the two panels in figure 4
shows that the light neutralino solutions (with large fine-tuning) are mostly unaffected by
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Figure 4. The spin-independent direct detection cross-section values for the allowed points in our
pMSSM scan. The color-coding and labeling of the points are same as in figure 1. The circled
points correspond to those within the WMAP allowed band in figure 1. The left (right) panel
shows the cross section without (with) rescaling of the DM density. The current upper limit from
the XENON100 experiment and the projected limits from LUX and XENONIT experiments are
shown as solid lines. The 20-preferred range of CRESST-II is shown as the shaded region.

the rescaling since these points yield a relic density value more than 10% of the observed
value (see figure 1). It is interesting to note that most of the allowed region in figure 1
with low fine-tuning lead to a higher scattering cross section via Z-boson exchange and
are already ruled out, even after rescaling, by the latest XENON100 data [10] or will be
ruled out by the projected limit of XENONIT experiment [74] (and also LUX [75]) if
they still get a null result. The points which survive with rescaling must be part of some
multi-component DM scenario. In the light of the recent claims for positive hints of a light
DM from some experiments, it is worth mentioning here that a few of our solutions with
51 ~ 1077 pb are in the vicinity of the 20 preferred range of the CRESST-II results [9],
but not compatible with the favored regions of DAMA [6, 7] or CoGeNT [8].

Figure 5 shows the integrated photon flux from spectral lines due to neutralino DM
annihilation in the galactic halo. We have assumed the NFW profile for the DM density
distribution, as implemented in micrOMEGAs 2.4 [147]. We do not consider galactic
sub-structures or clumpy DM configurations since a proper analysis of these effects would
require a detailed numerical simulation well beyond the scope of this work. As in figure 4
for scattering cross-section, we have shown the fluxes for both the cases — without and
with scaling of the neutralino DM density. In the latter case, we have used the scaling
factor 7")2( for the thermally-averaged annihilation cross section (o,v) when the neutralino
DM relic density is below the observed value. The light neutralino solutions with a relic
density more than 10% of the observed value (cf. figure 1) are mostly unaffected by the
rescaling. Note that since the LSP in our case is mostly bino-like with heavy squarks
and higgsinos and the charginos are not mass-degenerate with the LSP, the annihilation
to photons is loop-suppressed, and hence, the photon line emission will be small. It is
clear from figure 5 that the current sensitivity of Fermi-LAT [142] still leaves all of our
allowed parameter space untouched. The future data from ongoing Fermi-LAT and next
generation gamma-ray searches might be able to probe our allowed parameter space with
a photon line signal [152].
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Figure 5. The integrated photon flux from annihilation of the neutralino DM as a function of its
mass. The color-coding and labeling of the points are same as in figure 4. The solid horizontal line
shows the current upper limit from the Fermi-LAT data.
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Figure 6. The allowed parameter space for some of the relevant pMSSM parameters consistent
with a light neutralino DM. The color-coding and labeling of the points are the same as in figure 1.

For completeness, we also show in figure 6 some other relevant pMSSM parameters
with respect to the lightest neutralino mass. The m 4 — tan 8 parameter space is mostly
consistent with the latest MSSM Higgs sector limits from the LHC [110, 111]. As for the
bino mass parameter M, it is clear that a relatively small value of |M;| < 100GeV is
preferred to obtain a light bino-like neutralino LSP. Finally, as is well-known, a relatively
large value of |A;| is required in order to enhance the radiative corrections for the light
C P-even Higgs mass to be consistent with the LHC-preferred value of 125 + 2 GeV.

Finally, we wish to point out that the allowed sparticle spectra discussed here with
mostly heavy squarks, and with light sleptons, chargino and bino-like neutralino LSP, are
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also crucial for explaining the muon (g—2) anomaly [153], while simultaneously satisfying all
the other experimental constraints. Light staus with sizable left-right mixing can also lead
to an enhanced h — vy decay rate [154-156], which might be able to explain the persistent
excess in the Higgs signal strength in this channel: 1.65 & 0.24(stat) (72 (syst) [157].

5 Conclusion

We have studied the naturalness of a light neutralino dark matter candidate in the MSSM
in the light of the latest results from the collider (LEP, Tevatron and LHC), flavor (LHCb)
and dark matter (XENON100, WMAP-9, Planck) sectors. In particular, keeping in mind
the recent positive hints for a light DM below 45 GeV in some direct detection experiments
and the null results from SUSY searches at the LHC, we perform a dedicated study
focusing on the possibility of a light DM candidate in the form of the lightest neutralino
in the pMSSM, also analyzing the naturalness of such a scenario. We include all the new
results from the ongoing LHC experiments in our analysis, such as the null results from
the SUSY searches, the observation of a Higgs-like particle, the observation of the rare
meson decay Bs — putp~, and the updated constraints on the MSSM Higgs sector. We
also take into account the 9-year WMAP results as well as the recently released Planck
results for the DM relic density and the Fermi-LAT data for the integrated photon flux. In
order to efficiently scan over the 19-dimensional pMSSM parameter space, we perform a
MCMC likelihood analysis focusing on a light neutralino with mass below the LEP bound
of 46 GeV (applicable to gaugino mass unification models).

We find that a light neutralino DM with mass as low as 10 GeV is still allowed in the
pMSSM, while satisfying all the existing experimental constraints. However, such neutrali-
nos which are required to be mostly bino-like are severely fine-tuned and require the exis-
tence of light sleptons with mass below 100 GeV in order to provide an efficient annihilation
channel to reduce the DM relic density below the observed upper limit. Such light smuons
and staus are excluded from LEP searches while light selectrons are excluded only if we
assume gaugino mass unification. A dedicated analysis of the LEP data in the context of a
pMSSM scenario could completely eliminate the possibility of a light neutralino DM in the
mass range of 10-30 GeV. We also find that for the allowed parameter space, other possible
solutions in this mass range as discussed in the literature (e.g., light sbottom NLSP) are now
excluded mainly due to the latest LHC results on the strongly interacting sfermion sector.

On the other hand, low fine-tuning regions can be obtained around mso = 45 GeV
where the resonant annihilation via the s-channel Z-exchange is possible for a bino-higgsino
mixture of neutralino LSP. However, such regions also predict a higher spin-independent
DM-nucleon scattering cross section, and are mostly excluded by the recent XENON100
limits. The remaining such points are within the reach of the XENONIT projected limits.

In conclusion, while a light neutralino DM with mass below 46 GeV has been
conclusively ruled out in MSSM with gaugino mass unification by LEP searches, such
a possibility in a general version of MSSM is of enormous interest in the light of the
recent claims for a positive signal in some DM direct detection experiments. Taking
into account the latest experimental results from collider, flavor, dark matter and
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astrophysical /cosmological sectors, we show that such a light neutralino DM scenario is
also getting highly constrained in MSSM without gaugino mass unification. However,
within a pMSSM scenario, there still exists some parameter space for light neutralino DM
which could be completely probed by a dedicated analysis of the existing experimental
data, in combination with the ongoing searches.

Note added. After the submission of our paper, another DM direct detection experi-
ment, namely, CDMS-II [158], has reported three WIMP-candidate events with an expected
background of 0.7 events. Their best-fit WIMP mass is 8.6 GeV with the WIMP-nucleon
cross section of 1.9 x 107° pb. This bolsters our motivation in this work to examine the
allowed parameter space for a light neutralino DM candidate in the MSSM.
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