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and pair-wise angles of particles within a jet, with (N + 1)-point correlators sensitive to

N -prong substructure. Unlike many previous jet substructure methods, these correlation

functions do not require the explicit identification of subjet regions. In addition, the cor-

relation functions are better probes of certain soft and collinear features that are masked

by other methods. We present three Monte Carlo case studies to illustrate the utility

of these observables: 2-point correlators for quark/gluon discrimination, 3-point correla-

tors for boosted W/Z/Higgs boson identification, and 4-point correlators for boosted top

quark identification. For quark/gluon discrimination, the 2-point correlator is particularly

powerful, as can be understood via a next-to-leading logarithmic calculation. For boosted

2-prong resonances the benefit depends on the mass of the resonance.
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1 Introduction

The field of jet substructure has evolved significantly over the last few years [1, 2]. Many

procedures have been developed not only for identifying and classifying jets [3–9] but also

for removing jet contamination due to underlying event or pile-up [5, 10–14]. On the

theoretical side, there has been substantial progress in computing and understanding these

observables and procedures in perturbative QCD [15–23]. On the experimental side, the

ATLAS and CMS experiments at the Large Hadron Collider (LHC) have begun measuring

and testing jet substructure ideas [24–39], with pile-up suppression becoming increasingly

important at higher luminosities. With the recent discovery of a Higgs-like particle [40, 41],
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jet substructure methods for identifying the H → bb̄ decay mode [5] (and potentially the

H → gg decay mode) could be vital for testing Higgs properties.

A common strategy for jet substructure studies is to first identity subjets, namely,

localized subclusters of energy within a jet. Jet discrimination then involves studying the

properties of and relationship between the subjets. For example, BDRS [5] and related

methods [8, 42, 43] involve first reclustering the jet with the Cambridge/Aachen [44–46]

or kT [47, 48] jet algorithm and then stepping through the clustering history to identify

a hard splitting in the jet; pruning [12] is similar. N -subjettiness [49, 50] relies on a

(quasi-)minimization procedure to identify N subjet directions in the jet. Of course, there

are jet shapes such as jet angularities [9, 51], planar flow [7, 9], Zernike coefficients [52],

and Fox-Wolfram moments [53] that can be used for classifying jets without subjet finding.

Considered individually, however, these jet shapes tend not to yield the same discrimination

power as subjet methods, since they are sensitive mainly to exotic kinematic configurations

and not directly to prong-like substructure.

In this paper, we introduce generalized energy correlation functions that can identify

N -prong jet substructure without requiring a subjet finding procedure. These correlators

only use information about the energies and pair-wise angles of particles within a jet,

but yield discrimination power comparable to methods based on subjets. As we will see,

(N + 1)-point correlation functions are sensitive to N -prong substructure, with an angular

exponent β that can be adjusted to optimize the discrimination power. To our knowledge,

the 2-point correlators — schematically
∑

i,j EiEjθ
β
ij where the sum runs over all particles

i and j in a jet or event — first appeared in ref. [54] and independently in ref. [55], with

no previous studies of higher-point correlators.1

Besides the novelty of not requiring subjet finding, a key feature of the generalized en-

ergy correlation functions is that the angular exponent β can be set to any value consistent

with infrared and collinear safety, namely β > 0. In contrast, observables like angulari-

ties [9, 51] are required to have β > 1 to avoid being dominated by recoil effects.2 By

choosing values of β ' 0.2, the correlators are able to more effectively probe small-scale

collinear splittings, which will turn out to be useful for quark/gluon discrimination.

To put our work in perspective, it is worth remembering that the basic idea for using

energy correlation functions to determine the number of jets in an event is actually quite

old. As we will review, the C-parameter for e+e− collisions [61, 62] is essentially a 3-point

energy correlation function that can be used to identify events that have two jets. However,

the C-parameter is defined as a function of the eigenvalues of the sphericity tensor and

therefore only gives sensible values for systems that have zero total momentum and for

events that are nearly dijet-like. In contrast, our generalized energy correlation functions

give sensible results in any Lorentz frame and can be used to identify any number of jets

in an event (or subjets within a jet). In addition, they can be defined in any number of

spacetime dimensions.

1Our definition of the energy correlation function should not be confused with refs. [56–59], which refer

to an ensemble average of products of energies measured at fixed angles. Here, energy correlation functions

are measured on an event-by-event basis.
2As will be discussed in section 2.2 and a forthcoming publication [60], N -subjettiness may or may not

have recoil sensitivity depending on how the axes are chosen.
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The remainder of the paper is organized as follows. In section 2, we introduce arbitrary-

point energy correlation functions and define appropriate energy correlation double ratios

C
(β)
N (built from the (N + 1)-point correlator), which can be used to identify a system with

N (sub)jets. We also contrast the behavior of C
(β)
N with N -subjettiness ratios. We then

present three case studies to show how these generalized energy correlation functions work

for different types of jet discrimination.

• Quark/gluon discrimination. Using C
(β)
1 (built from the 2-point correlator) in sec-

tion 3, we perform both an analytic study and a Monte Carlo study of quark/gluon

separation. Through a next-to-leading logarithmic study, we explain why quark/gluon

discrimination greatly improves as the angular exponent approaches zero (at least

down to β ' 0.2), highlighting the importance of working with recoil-free observ-

ables.

• Boosted W/Z/Higgs identification. Using C
(β)
2 (built from the 3-point correlator) in

section 4, we will see that the discrimination power between QCD jets and jets with

two intrinsic subjets from a colour-singlet decay depends strongly on the ratio of the

jet mass to its transverse momentum. This occurs because a QCD jet obtains mass

in different ways depending on this ratio. In particular, we will see that the energy

correlation function performs better than N -subjettiness in situations where the jet

mass is dominated by soft wide-angle emissions.

• Boosted top quark identification. Using C
(β)
3 (built from the 4-point correlator) in

section 5, we find comparable discrimination power to other top-tagging methods.

While one might worry that the 4-point correlators would face a high computational

cost, we find that a boosted top event can be analyzed for a single value of β in a

few milliseconds.

We conclude in section 6 with an experimental and theoretical outlook. The energy cor-

relation functions are available as an add-on to FastJet 3 [63] as part of the FastJet

contrib project (http://fastjet.hepforge.org/contrib/).

2 Generalized energy correlation functions

The basis for our analysis is the N -point energy correlation function (ECF)

ECF(N, β) =
∑

i1<i2<...<iN∈J

(
N∏
a=1

Eia

)(
N−1∏
b=1

N∏
c=b+1

θibic

)β
. (2.1)

Here, the sum runs over all particles within the system J (either a jet or the whole event).

Each term consists of N energies multiplied together with
(
N
2

)
pairwise angles raised to the

angular exponent β. This function is well-defined in any number of space-time dimensions

as well as for systems that do not have zero total momentum. Note that it is infrared and

collinear (IRC) safe for all β > 0. Moreover, ECF(N, β) goes to zero in all possible soft

and collinear limits of N partons.

– 3 –
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As written, eq. (2.1) is most appropriate for e+e− colliders where energies and angles

are the usual experimental observables. For hadron colliders, it is more natural to define

ECF(N, β) as a transverse momentum correlation function:3

ECF(N, β) =
∑

i1<i2<...<iN∈J

(
N∏
a=1

pT ia

)(
N−1∏
b=1

N∏
c=b+1

Ribic

)β
, (2.2)

where Rij is the Euclidean distance between i and j in the rapidity-azimuth angle plane,

R2
ij = (yi − yj)2 + (φi − φj)2, with yi = 1

2 ln Ei+pzi
Ei−pzi . In this paper, we will only consider up

to 4-point correlation functions:

ECF(0, β) = 1, (2.3)

ECF(1, β) =
∑
i∈J

pT i, (2.4)

ECF(2, β) =
∑
i<j∈J

pT i pT j(Rij)
β, (2.5)

ECF(3, β) =
∑

i<j<k∈J
pT i pT j pT k (RijRikRjk)

β , (2.6)

ECF(4, β) =
∑

i<j<k<`∈J
pT i pT j pT k pT ` (RijRikRi`RjkRj`Rk`)

β . (2.7)

If a jet has fewer than N constituents then ECF(N, β) = 0. Note that the computational

cost for ECF(N, β) with k particles scales like kN/N !.

From the ECF(N, β), we would like to define a dimensionless observable that can be

used to determine if a system has N subjets. The key observation is that the (N + 1)-

point correlators go to zero if there are only N particles. More generally, if a system

has N subjets, then ECF(N + 1, β) should be significantly smaller than ECF(N, β). One

potentially interesting ratio is

r
(β)
N ≡ ECF(N + 1, β)

ECF(N, β)
, (2.8)

which behaves much like N -subjettiness τN in that for a system of N partons plus soft

radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is

but one choice for an interesting combination of the energy correlation functions, and one

can imagine using the whole set of energy correlation functions in a multivariate analysis.

In this paper, we will work exclusively with the energy correlation double ratio

C
(β)
N ≡

r
(β)
N

r
(β)
N−1

=
ECF(N + 1, β) ECF(N − 1, β)

ECF(N, β)2 , (2.9)

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
4Unlike N -subjettiness, this ratio scales like γ1−Nβ under transverse Lorentz boosts γ, which is somewhat

undesirable when considering systems with several subjets.
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which is dimensionless.5 One way to motivate this observable is that we already know that

N -subjettiness ratios τN/τN−1 are good probes of N -prong substructure [49, 50]. As we

will see, the notation “C” is motivated by the fact that this variable generalizes the C-

parameter [61, 62]. One should keep in mind that C
(β)
N involves (N + 1)-point correlators,

and when clear from context, we will drop the (β) superscript.

The energy correlation double ratio CN effectively measures higher-order radiation

from leading order (LO) substructure. For a system with N subjets, the LO substructure

consists of N hard prongs, so if CN is small, then the higher-order radiation must be soft or

collinear with respect to the LO structure. If CN is large, then the higher-order radiation

is not strongly-ordered with respect to the LO structure, so the system has more than N

subjets. Thus, if CN is small and CN−1 is large, then we can say that a system has N

subjets. In this way, the energy correlation double ratio CN behaves like N -subjettiness

ratios τN/τN−1, with key advantages to be discussed in section 2.2.

2.1 Relationship to previous observables

While the definition of the energy correlation double ratio CN is new, it is related to

previous observables for e+e− and hadron colliders that have been studied in great detail.

An energy-energy correlation (EEC) function for e+e− events was introduced in ref. [54]

for its particularly nice factorization and resummation properties. It is defined as

EECa =
1

E2
tot

∑
i 6=j

EiEj | sin θij |a(1− | cos θij |)1−a Θ[(~qi · ~nT )(~qj · ~nT )] , (2.10)

where the sum runs over all particles in the event and ~nT is the direction of the thrust

axis. This variable is IRC safe for all a < 2. The Θ-function is only non-zero if the

pair of particles is in the same hemisphere. This removes the large correlation of the

two initial hard partons which would otherwise dominate the sum, and means that EECa

behaves much like the jet angularities [9, 51] with the same angular exponent a. The EEC

was introduced because it is insensitive to recoil effects and has smooth behavior for all

allowed values of a. In particular, EECa has a smooth transition through a = 1, whereas

angularities exhibit non-smooth behavior and also are increasingly sensitive to recoil effects

as the angular power a increases. If one considers only one hemisphere of a dijet event, then

EECa is approximately the same as C
(β)
1 in our notation with β = 2− a. Both observables

are sensitive to 1-prong (sub)structure, and we will discuss the issue of recoil further in

section 2.2.

A related two-particle angular correlation function was introduced in refs. [21, 55, 64]

for discrimination of jets initiated by QCD from jets from boosted heavy particle decays.

The angular correlation function is defined as

Gβ(R) =
∑
i,j

pT i pTjR
β
ijΘ[R−Rij ] , (2.11)

where the Θ-function only allows pairs of particles separated by an angular scale of R or

less to contribute to the observable. The behavior of the observable can be studied as
5This double ratio scales as γ−β under transverse Lorentz boosts.
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a function of R, and jets that are approximately scale invariant should have an angular

correlation function that scales as a power of R. For a fixed value of R, the properties of

the angular correlation function are very similar to that of EECa and C
(β)
1 .

As mentioned above, the notation C
(β)
N was chosen because of its relation to the C-

parameter from e+e− collisions [61, 62]. The C-parameter is used to identify two-jet

configurations without recourse to a jet algorithm or explicit jet axes choice. It is defined as

C =
3

2

∑
i,j |pi||pj | sin2 θij

(
∑

i |pi|)
2 , (2.12)

which can also be expressed in terms of the eigenvalues of the sphericity tensor. At first

glance, this looks very much like C
(2)
1 in the sense that the numerator looks like a 2-point

correlation function with β = 2. There is a crucial difference between the behavior of

sin2 θij and θ2
ij , however, such that the C-parameter vanishes for dijet configurations when

the jets are back-to-back (i.e. θij = π). If we expand around the dijet limit, then the

C-parameter really behaves like a 3-point correlation function (i.e. like C2). To see this,

note that for e+e− → qq̄g, the C parameter has the simple form

C = 6
(1− x1)(1− x2)(1− x3)

x1x2x3
, (2.13)

where xi = 2pi · Q/Q2 and Q is the total four-vector of the system.6 The angle between

final-state particles i and j in the e+e− → qq̄g system is

1− cos θij = 2
1− xk
xixj

. (2.14)

Thus, if we change θ → 2 sin θ
2 in the definition of ECF(N, β), then C

(2)
2 can be expressed as

C
(2)
2 ∝ (1− x1)(1− x2)(1− x3)

x1x2x3
, (2.15)

which, up to normalization, is the traditional C-parameter. Of course, at higher orders in

perturbation theory the definitions of the C-parameter and C
(2)
2 diverge. Both observables

are sensitive to 2-prong (sub)structure, though C
(β)
2 gives sensible answers even for systems

with non-zero total momentum and has an adjustable angular exponent β.

Higher-point energy correlation functions have been studied very little in the literature.

Two early studies for e+e− collisions are in refs. [62, 65]. However, both define observables

that only make sense for systems with total momentum equal to zero and explicitly use op-

erations only defined in three-dimensional space, such as cross-products and the properties

of momentum tensors with rank greater than 2. Thus, these observables cannot be easily

generalized to determine if a (boosted) system has N (sub)jets. Historically, observables

like the D-parameter [61, 62, 66] have been used to identify peculiar phase space configura-

tions such as a planar configuration of particles. However, this is not directly related to the

6The C-parameter only properly makes sense if the total momentum of the system is zero, and so is not

immediately applicable for hadron collisions.
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number of jets in the event. Recent substructure variables like planar flow [7, 9], Zernike

coefficients [52], and Fox-Wolfram moments [53] are similarly sensitive to peculiar phase

space configurations rather than prong-like substructure. Planar flow, for example, van-

ishes if the constituents of the jet lie along a line, which is a good probe for some (but not

all) 3-prong configurations. The energy correlation double ratio CN is designed to directly

probe N -prong configurations, though the high computational cost of ECF(N + 1, β) likely

limits the practical range to N ≤ 3 (i.e. up to three-prongs).

2.2 Advantages compared to N-subjettiness

The variable N -subjettiness [49, 50] (based on N -jettiness [67]) is a jet observable that

can be used to test whether a jet has N subjets, and it has been used in a number of

theoretical [14, 20, 68–72] and experimental [27, 31] substructure studies. Since both N -

subjettiness and the energy correlation double ratio CN share the same motivation, it is

worth highlighting some of the advantages of the energy correlation double ratio.

First, a quick review of N -subjettiness. It is defined in terms of N subjet axes n̂A as7

τ
(β)
N =

∑
i

pT i min
{
Rβ1,i, R

β
2,i, . . . , R

β
N,i

}
, (2.16)

where the sum runs over all particles in the jet and RA,i is the distance from axis A to

particle i. There are a variety of methods to determine the subjet directions, with arguably

the most elegant way being to minimize τN over all possible subjet directions n̂A [50]. If

a jet has N subjets, then τN−1 should be much larger than τN , so the observable that is

typically used for jet discrimination studies is the ratio

τ
(β)
N,N−1 ≡

τ
(β)
N

τ
(β)
N−1

. (2.17)

As discussed above, this ratio is directly analogous to the energy correlation double ratio

C
(β)
N ≡ r(β)

N /r
(β)
N−1.

One immediate point of contrast between N -subjettiness and the energy correlation

double ratio is that CN does not require a separate procedure (such as minimization) to

determine the subjet directions. While novel, this by itself does not necessarily imply that

CN will have better discrimination power than τN,N−1, though it does mean that CN is a

simpler variable to study.8 We now explain two test cases where CN can perform better

than τN,N−1: insensitivity to recoil for C1 and sensitivity to soft wide-angle emissions

for C2.

7In refs. [49, 50], N -subjettiness was defined with an overall normalization factor to make it dimensionless.

Here, we remove the normalization factor so it has the same dimensions as eq. (2.8).
8In particular, β serves two different roles for N -subjettiness. As in C

(β)
N , β controls the weight given

to collinear or wide-angle emissions. In addition, when the minimization procedure is used, β controls the

location of the axes which minimize N -subjettiness. When trying to determine the optimal value for β for

subjet discrimination, it is difficult to disentangle these two effects.

– 7 –
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E1
E2

(a)

E1

E3

E2

(b)

Figure 1. Example kinematics with soft wide-angle radiation. Left: recoil of the jet axis (dashed)

away from the hard jet core (E1) due to soft wide-angle radiation (E2), which is relevant for small

values of β. Right: a three-particle configuration that highlights the difference between C2 and τ2,1.

2.2.1 Insensitivity to recoil

A recoil-sensitive observable is one for which soft emissions have an indirect effect on the

observable. In addition to the direct contribution to the observable, soft radiation in

a recoil-sensitive observable changes the collinear contribution by an O(1) amount. An

example of a recoil-sensitive observable is angularities for the angular exponent a ≥ 1

(β ≤ 1), which was studied in ref. [54]. Because CN is insensitive to recoils, it is better

able to resolve the collinear singularity of QCD.

For 1-prong jets, the effect of recoil on an observable is illustrated in figure 1a. Because

of conservation of momentum, soft wide-angle radiation displaces the hard jet core from

the jet axis. Angularities (i.e. 1-subjettiness) are sensitive to this displacement since they

are measured with respect to the jet center. For a jet with two constituents separated by

an angle θ12 (using the notation in eq. (2.1) for simplicity),

τ
(β)
1 =

E2E
β
1

(E1 + E2)β
(θ12)β +

E1E
β
2

(E1 + E2)β
(θ12)β . (2.18)

Taking the E2 � E1 limit one can view the first term as the contribution directly from the

emission E2, while the second term comes about because particle 1 recoils when it emits

particle 2. The dependence of τ
(β)
1 on the energies and emission angle is different according

to the value of β. For β > 1, the second term is negligible, and the angularities become

τ
(β>1)
1 ' E2(θ12)β, (2.19)

such that τ1 is linear in the soft radiation E2. However, for smaller values of β, the

expression for angularities changes because recoil effects become important. For β = 1,

both terms are identical in the E2 � E1 limit and angularities become

τ
(1)
1 ' 2E2(θ12)β. (2.20)

For β < 1, the first term is negligible in the E2 � E1 limit, and the angularities are

dominated by the effect of recoil of the hard radiation

τ
(β<1)
1 ' E1−β

1 Eβ2 (θ12)β. (2.21)

– 8 –
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By contrast, the observable C
(β)
1 has the same behavior for all values of β:

ECF(1, β) = E1, ECF(2, β) = E1E2 (θ12)β , ⇒ C
(β)
1 =

E2 (θ12)β

E1
, (2.22)

which is dominated by the splitting angle and energy of the softer particle in the jet for all

values of β > 0.

Because N -subjettiness is essentially a sum over N subjet angularities, τN can suffer

from the same recoil-sensitivity as angularities for β ≤ 1, depending on how the subjet

axes are determined. For example, if N -subjettiness is defined using kT subjet axes, then

τN is recoil sensitive. N -subjettiness is also recoil sensitive if the subjet axes are aligned

with the subjet momenta. A related issue is that if the subjet axes are determined using

the minimization procedure, then the minimization is only well-behaved for β ≥ 1.9 In all

of these cases, the useful range of β is limited to β ≥ 1. In contrast, the energy correlation

double ratio is recoil-free and well-behaved for the whole IRC-safe range β > 0. As we will

see in section 3 (and demonstrated recently in ref. [73]), this is relevant for quark/gluon

discrimination, where β ' 0.2 for C1 is the optimal choice.

It should be noted that one can construct a recoil-free version of N -subjettiness where

the subjet axes are always chosen to minimize the β = 1 measure (see forthcoming work in

ref. [60]), regardless of which β is used in eq. (2.16). We refer to axes defined in this way

as “broadening axes”, since β = 1 is closely related to the jet broadening measure [74]. We

will make use of this fact later when comparing C1 to 1-subjettiness in section 3.3.

2.2.2 Sensitivity to soft wide-angle emissions

Another point of contrast between CN and τN,N−1 is in how the two variables behave in

the presence of emissions at multiple angular scales. The way N -subjettiness is defined,

every jet is partitioned into N subjets, even if there are fewer than N “real” subjets. For

example, when a jet has a soft subjet separated at large angle (as one might expect from

the radiation off a quark or gluon), N -subjettiness will still identify that soft subjet region,

yielding a relatively low value of τN,N−1 (and therefore making the jet look more N -prong-

like than it really is). In contrast, because the energy correlation function is sensitive to all

possible soft and collinear singularities, CN takes on a relatively high value in the presence

of a soft wide-angle subjet, making the jet look less N -prong like (as desired).

We can show this concretely for C2 using the configuration in figure 1b where there is

the following hierarchy of the energies and angles:10

E1 � E2, E3, θ13 � θ12 ' θ23. (2.23)

Again using the notation in eq. (2.1), the energy correlation functions are

ECF(1, β) ' E1, ECF(2, β) ' E1 max
[
E2 (θ12)β , E3 (θ13)β

]
,

ECF(3, β) = E1E2E3 (θ12θ23θ13)β , (2.24)

9That said, the minimization procedure does eliminate the recoil effect.
10Roughly the same conclusions about C2 versus τ2,1 hold for the limit E1 ' E2 � E3 as well, which is

relevant for the Z boson discussion below.
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yielding

C
(β)
2 =

ECF(3, β)ECF(1, β)

ECF(2, β)2 ' E2E3 (θ12)2β (θ13)β

max
[
E2 (θ12)β , E3 (θ13)β

]2 . (2.25)

For N -subjettiness with three jet constituents, it is consistent to choose axes that lie along

the hardest particle in a subjet. For 1-subjettiness, the axis lies along particle 1. For 2-

subjettiness, one axis lies along particle 1 and the other axis lies along particle 2 or particle

3, depending on the relationship between E3θ13 and E2θ12. This gives

τ
(β)
1 ' max

[
E2(θ12)β, E3(θ13)β

]
, τ

(β)
2 ' min

[
E2(θ12)β, E3(θ13)β

]
⇒ τ

(β)
2,1 =

min
[
E2(θ12)β, E3(θ13)β

]
max [E2(θ12)β, E3(θ13)β]

. (2.26)

Regardless of the ordering of E3θ13 and E2θ12 we see that:

C
(β)
2 ' τ (β)

2,1 × (θ12)β, (2.27)

so in the presence of a soft subjet at large angle θ12, C2 yields a larger value than τ2,1

(i.e. more background-like as desired). As we will see in section 4, this allows C2 to perform

better than τ2,1 for background rejection in regions of phase space where soft wide-angle

radiation plays an important role.

One way to understand the improved performance of C2 with respect to τ2,1 is to

consider the concrete example of β = 2 at fixed jet mass m.11 Using the kinematic limit

above, the jet mass-squared is given approximately by

m2 ' E1 max
[
E2 (θ12)2 , E3 (θ13)2

]
, (2.28)

and it is convenient to define z as the energy fraction of the emission that dominates the

mass (e.g. z = E2/E1 if E2 (θ12)2 > E3 (θ13)2). For fixed jet mass, QCD backgrounds

tend to peak at small values of z, but we see from eq. (2.26) that τ2,1 does not have any

z-dependence for fixed jet mass. For C2, if particle 2 dominates the mass (i.e. if a soft

wide-angle emission dominates the mass), then

C
(2)
2 ' τ (2)

2,1 ×
m2

(E1)2

1

z
, (2.29)

so C2 penalizes small values of z. In this way, C2 acts similarly to taggers that reject jets

if the kinematics of the dominant splitting of the jet is consistent with background [3–

6, 11, 12]. In contrast, τ2,1 only exploits the degree to which radiation is collimated with

respect to the two subjet directions, and does not take into account the z-dependence at

fixed jet mass.

If particle 3 dominates the mass (i.e. if the mass is dominated by a hard core of energy),

then C2 is constant in the energy fraction z, and so is no longer affected by the kinematics

of the emission that generated the mass. However, there is still the potential for improved

11We thank Gregory Soyez for helpful discussions on these points.
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performance in identifying boosted color singlet resonances like Z bosons. For a boosted

Z boson, emissions at wide angle with respect to the angle between decay products are

suppressed by color coherence. As one goes to higher boosts where the ratio of jet mass

to jet pT decreases for fixed jet radius, the volume of phase space for allowed emissions

decreases, which can also be seen as a consequence of angular ordering. It is therefore less

likely for a Z boson signal to generate final state radiation at large θ12, while background

QCD jets will emit at large angle independently of the pT . Because radiation at large

angles has an enhanced effect on C2 as compared to τ2,1, cf. eq. (2.27), we expect C2 to be

more effective at discriminating color-singlet signals from background QCD jets.

3 Quark vs. gluon discrimination with C1

Our first case study is to use the energy correlation functions to discriminate between quark

jets and gluon jets. The observable C1 contains the 2-point energy correlation function

ECF(2, β) and so is sensitive to radiation in a jet about a single hard core.12 This case

study is simple enough that we can predict the quark/gluon discrimination power through

an analytic calculation, which we will subsequently validate with Monte Carlo simulations.

In our later case studies involving higher-point correlators, we will rely on Monte Carlo

alone.

In any discussion of quark-gluon discrimination, one should start with a reminder that

defining what is meant by a quark or a gluon jet is a subtle task, since the one existing

infrared-safe way of defining quark and gluon jets [76] works only at parton level. Existing

work on practical aspects of quark-gluon discrimination in refs. [39, 73, 75, 77, 78] has not

entered into these issues. Instead the discussion has relied on Monte Carlo simulations,

defining a quark (gluon) jet to be whatever results from the showering of a quark (gluon)

parton. We will adopt a variant of this methodology in our Monte Carlo studies. Our

analytic approach will instead define a quark or gluon jet in terms of the sum of the flavors

of the partons contained inside it. It is based on resummation and therefore contains

similar physics to the Monte Carlo parton shower.

3.1 Leading logarithmic analysis

We begin our analysis by considering the leading logarithmic (LL) structure of the cross

section for the observable C1. With L equal to the logarithm of C1, we define LL order as

including all terms in the cross section that scale like αnsL
2n, for n ≥ 1. At LL order, quark

versus gluon jet discrimination can be understood as a consequence of quarks and gluons

having different color charges. To LL order, the strong coupling constant αs can be taken

fixed and only the most singular term in the splitting function need be retained. With only

one soft-collinear gluon emission, the normalized differential cross section for any infrared

and collinear safe observable e has the same form for both quark and gluon jets:

1

σ

dσ

de
= 2

αs
π
C

∫ R0

0

dθ

θ

∫ 1

0

dz

z
δ(e− ê) , (3.1)

12The CMS experiment uses an observable they call pTD =
∑
i p

2
ti/(
∑
i pti)

2 for quark versus gluon

discrimination [39, 75]. It is related to the β = 0 limit of C
(β)
1 as pTD = 1− 2C

(0)
1 .
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where C is the color factor, R0 is the jet radius,13 z is the energy fraction of the emitted

gluon, θ is its splitting angle, and ê is a function of z and θ. Recall that CF = 4/3 for

quarks and CA = 3 for gluons.

At this order, the observable C
(β)
1 is

Ĉ
(β)
1 = z(1− z)θβ, (3.2)

which takes a maximum value of 1
4R

β
0 . So integrating eq. (3.1) yields, for small C

(β)
1 , the

cross section
1

σ

dσ

dC
(β)
1

=
2αs
π

C

β

1

C
(β)
1

ln
Rβ0

C
(β)
1

. (3.3)

We identify the logarithm L as

L ≡ ln
Rβ0

C
(β)
1

, (3.4)

which we use in the following expressions for compactness. This distribution can be re-

summed to LL order by exponentiating the cumulative C
(β)
1 distribution. The resummed

distribution that follows is then

1

σ

dσLL

dC
(β)
1

=
2αs
π

C

β

L

C
(β)
1

e
−αs

π
C
β
L2

. (3.5)

Because the quark color factor is smaller than the gluon color factor, the Sudakov sup-

pression is less for quarks. Thus, the C
(β)
1 distribution for quark jets is peaked at smaller

values than for gluon jets.

To figure out the quark/gluon discrimination power from this C
(β)
1 resummed distri-

bution, we will make a sliding cut on C
(β)
1 and count the number of events that lie to the

left of the cut. Adjusting this cut then defines a ROC curve relating the signal (quark)

jet efficiency to the background (gluon) jet rejection. To LL accuracy, the (normalized)

cumulative distributions for quarks and gluons are:

Σq(C
(β)
1 ) = e

−αs
π

CF
β
L2

, Σg(C
(β)
1 ) = e

−αs
π

CA
β
L2

. (3.6)

Note that at LL order, there is a simple relationship between these cumulative distributions:

Σg(C
(β)
1 ) =

(
Σq(C

(β)
1 )
)CA/CF

. (3.7)

Thus, if a sliding cut on C
(β)
1 retains a fraction x of the quarks, it will retain a fraction

xCA/CF of the gluons. The quark/gluon discrimination curve is then

disc(x) = xCA/CF = x9/4, (3.8)

which (perhaps surprisingly) is independent of β. This LL discrimination result holds for

a wide class of IRC safe observables sensitive to the overall jet color factor, including the

jet mass. Only beyond LL order does the discrimination curve depend on β.

13We use this somewhat non-standard notation because R will later be used with a different meaning.
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3.2 Next-to-leading logarithmic analysis

We continue our analysis to next-to-leading logarithmic (NLL) order, which we define as

including all terms that scale as αnsL
n+1 and αnsL

n in ln Σ. In addition, we will also include

the non-logarithmically enhanced term arising at O(αs). At NLL order, there are several

new effects that must be included, which together turn out to improve the quark/gluon

discrimination power of C
(β)
1 compared to the LL estimate. The dominant effects are

subleading terms in the splitting functions and phase space restrictions due to multiple

emissions. In addition, one must account for the running of αs, fixed-order corrections,

and non-global logarithms [79] arising from the phase space cut of the jet algorithm. We

will consider how these affect the discrimination power of C
(β)
1 , ultimately showing that

small values of β improve quark/gluon discrimination. We will work in an approximation

of small jet radius, R0 � 1, which will allow us to consider only the effects of radiation

from the jet, while neglecting modifications associated with the full antenna structure of

initial and final-state partons.

The resummation to NLL for generic (global) observables was carried out in ref. [54].

The central result of that analysis was an expression for the NLL cumulative distribution for

an arbitrary observable (satisfying certain basic conditions, e.g. recursive infrared safety).

From ref. [54], the probability that the value of an observable is less than e−L takes a form

such as

Σ(e−L) = N
e−γER

′

Γ(1 +R′)
e−R , R′ ≡ dR

dL
, (3.9)

where N is a matching factor to fixed order, N = 1 + O (αs), and γE ' 0.5772 is the

Euler-Mascheroni constant. In a fixed-coupling approximation, the “radiator” function R

for the observable C
(β)
1 is

R =
αs
π

C

β
(L+B)2 , (3.10)

where C is the color factor of the jet and B encodes subleading terms in the splitting

functions.14 For quark jets Bq = −3
4 and for gluon jets Bg = −11

12 +
nf

6CA
, where nf is the

number of light quark flavors. The specific NLL resummed formula in eq. (3.9) holds for

observables that are global, recursively infrared and collinear safe (rIRC), and additive.

The last two conditions are satisfied by C
(β)
1 . The general expression for R with running

αs appears in ref. [54]. The scale at which αs is evaluated is pTR0, and we will use the

shorthand

αs ≡ αs(pTR0) , (3.11)

unless an explicit scale is used as the argument of αs. Because C
(β)
1 for a jet is non-

global, it is necessary to include an extra factor in the resummation, discussed in detail

14To obtain eq. (3.10), we used the fact that, for a general jet observable that takes the form

O =
∑
i∈J

(
pTi
pTJ

)A(
Ri
R0

)B
,

where Ri is the angle of the emission, eq. (2.19) in ref. [54] applies for a = A, b = B −A, and d = 1, where

we identify the scales Q = Q12 = 2E` = pTJR0. The sum over ` = 1, 2 in eq. (2.19) is replaced by the

individual contribution ` = 1.
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Figure 2. Left: quark/gluon discrimination curves using C
(β)
1 , calculated at NLL order matched

to fixed order for various values of β. The β-independent LL prediction is shown for comparison.

Right: gluon rejection rates at 50% quark efficiency, as a function of β, demonstrating that β ' 0.2

is optimal at NLL order (for smaller values of β, non-perturbative effects become important). Also

shown is an analytic approximation from eq. (3.22) (C1 Approx.) that includes the most important

physics that enters at NLL.

in section 3.2.3. We will also include information obtained by matching to the O(αs)

fixed-order cross section, where the matching procedure is described in appendix A.

Armed with the matched NLL cumulative distribution, including the non-global and

O (αs) corrections, we can now determine the quark versus gluon discrimination curve by

numerically inverting Σq and plugging it into the expression for Σg. This is shown for

various values of β in figure 2a. In figure 2b, we fix 50% quark efficiency and show the

gluon rejection rate (i.e. one minus the gluon efficiency) as a function of β for R0 = 0.6.

Also on this plot is an approximate analytic expression for the rejection rate as a function

of β that we derive below in eq. (3.22). We see that the discrimination power improves as

β decreases. It is, however, not sensible to take β too small: for β = 0 our observable is

collinear unsafe, and large non-perturbative effects can be expected as β approaches zero.

Furthermore for β . αs the convergence of our calculation breaks down (cf. appendix B).

To understand the behavior of figure 2b semi-analytically, we will study the impact of

different physical effects on the discrimination. To do so, we will again express Σg in terms

of Σq so as to determine the discrimination power of a cut on C1. In fact, we are most

interested in the exponent relating Σg to Σq (as in eq. (3.7)), so we will actually relate the

logarithms of the two cumulative distributions to one another. We are interested in the

regime where ln 1/Σ ∼ 1, which, from eq. (3.6), implies that αsL
2 ∼ 1. The logarithm of

the cumulative distribution has the schematic expansion

ln Σ ∼ αsL2 + αsL+ αs + α2
sL

3 + α2
sL

2 + α2
sL+ α2

s +O(α3
s) . (3.12)

With the power counting of αsL
2 ∼ 1, we will consider all terms from eq. (3.12) that scale

as α0
s, α

1/2
s , or α1

s. This corresponds to all terms at order αs from eq. (3.12), as well as the
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terms at α2
sL

3, α2
sL

2, and α3
sL

4. To illustrate this power counting, consider, for example,

the term αsL, which scales as α
1/2
s as one varies αs while keeping αsL

2 fixed and of order 1.

In what follows we will pay special attention to the terms at order αsL and α2
sL

2,

which turn out to be the most relevant ones when establishing deviations from our LL

analysis and whose dominant contributions have clearly identifiable physical origins. The

terms at order α2
sL

3 and α3
sL

4 are simply proportional to the LL color factor, multiplied

by powers of the β-function, and so do not significantly modify the LL analysis.

3.2.1 Subleading terms in splitting functions

We first consider the effect on the discrimination from the subleading terms in the splitting

functions. In the observable C
(β)
1 , β controls the weight given to collinear and wide-angle

emissions in the jet. At large values of β, wide-angle emissions are given greater weight, and

at small values of β, collinear emissions are given greater weight. Wide-angle soft radiation

is controlled by the term in the splitting function that diverges as the energy fraction goes

to zero; i.e., the term dz/z. Both quarks and gluons have the same functional form for the

soft limit of the splitting function, with the only difference being the overall color factor.

By contrast, collinear emissions are controlled by the subleading terms in the splitting

function, which differ for quarks and gluons (i.e. different values of the B coefficient).

Therefore, as β goes to zero and the collinear emissions become more important in C
(β)
1 ,

the differences between the quark and gluon splitting functions are accentuated.

To see this behavior directly from eq. (3.9), we can ignore the R′-dependent prefactor

and focus on the e−R factor. We can write Bg = Bq + δB, where

δB =
nf − CA

6CA
, (3.13)

which is 1
9 for nf = 5. We then have

Rg '
CA
CF

Rq

(
1 +

2δB

L+Bq

)
=
CA
CF

Rq

(
1 + 2δB

√
αsCF
πβRq

)
. (3.14)

This last form allows us to relate the cumulative distribution for gluons to that of quarks,

in the same spirit as eq. (3.7):

ln Σg '
CA
CF

(
1 + 2δB

√
αsCF

πβ ln 1/Σq

)
ln Σq, (3.15)

This implies that the separation between the quark and gluon distributions increases as

β decreases and so smaller values of β result in better discrimination. Because this effect

first arises at O
(√
αs
)
, there will be corrections at O (αs) due to the running coupling.

Note also that the coefficient δB is quite small in QCD, and so the total effect from the

subleading terms in the splitting functions on the discrimination power is minimal.
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3.2.2 Multiple emissions

Next, consider the effect of multiple emissions. The Sudakov logarithm corresponds to the

integral of the area (in ln kt, ln θ space) over which emissions are forbidden. At LL, any

number of emissions can lie arbitrarily close to the lower boundary of the phase space region

without changing the value of the observable. At NLL, one must consider the cumulative

effect of the emissions that lie near the phase space boundary. Multiple emissions tend

to increase the value of the observable C1, and so, for a fixed value of C1, they must be

suppressed. This introduces an extra degree of discrimination between quarks and gluons;

there are likely to be more such emissions for gluons than quarks and so it costs more to

“accept” a gluon jet. For a given LL Sudakov factor, the extent of the boundary region is

effectively increased as β is decreased, leading to better quark versus gluon discrimination

at small β.

In eq. (3.9), the effect of muliple emissions is seen in the R′-dependent prefactor. For

small values of R′, the prefactor has the expansion

e−γER
′

Γ(1 +R′)
= 1− π2

12
R′2 +O

(
R′3
)

= 1− π2

12

4αs
π

C

β
R+O

(
α2
sLR

β2

)
. (3.16)

We will drop terms at O
(
α2
sLR/β

2
)

and higher, which constrains us to consider β & αsL.

The cumulative distribution can then be written approximately as

ln Σ ' −R
(

1 +
4π

12

C

β
αs

)
, (3.17)

which allows us to relate Σg in terms of Σq as

ln Σg =
CA
CF

1 + 4π
12

CA
β αs

1 + 4π
12

CF
β αs

ln Σq '
CA
CF

(
1 +

4π

12

CA − CF
β

αs

)
ln Σq. (3.18)

This again suggests an increase in discrimination power for relatively small β. While this

effect appears at order αs rather than
√
αs, it has a substantially larger coefficient.

3.2.3 Non-global logarithms

Because jets are defined in a restricted phase space, non-global logarithms may contribute

to the quark versus gluon discrimination power. The effect of non-global logarithms on

the cumulative distribution can, for our purposes, be approximated in the large-NC limit

as [79–81]

Σwith NG = e−CCA
π2

12

α2s
π2
L2

Σ = e−CA
π2

12
αs
π
βRΣ . (3.19)

This neglects some contributions starting at order α3
sL

3 in the exponent, but these would

not affect the quark-gluon discrimination at our accuracy. Recently a first numerical calcu-

lation has been performed including the full-NC structure [82] and it suggests that finite-NC

corrections are small.
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If we temporarily ignore the R′-dependent prefactor in eq. (3.9), the inclusion of non-

global logarithms leads to

ln Σwith NG ' −R
(

1− CA
π2

12

αs
π
β

)
. (3.20)

All quark/gluon dependence resides in the color factor inside R, so we still have the property

from the LL calculation (again, ignoring the prefactor and setting δB = 0)

Σg,with NG(L) = [Σq,with NG(L)]CA/CF . (3.21)

Hence non-global logarithms do not modify the above arguments in any significant way.

This analysis holds for the anti-kT jet algorithm, whose boundary is unaffected by

soft radiation at angles ∼ R0. For other algorithms of the generalized-kT family, which

have irregular, soft-emission-dependent boundaries, there are additional terms, clustering

logarithms [83, 84], which also appear starting from order α2
sL

2. Some of the O
(
α2
s

)
clustering logarithms involve color factor combinations such as C2

F and C2
A for quarks and

gluons respectively, and so presumably would have an impact on quark-gluon discrimination

at our accuracy. We leave the study of these terms for future work.

3.2.4 Summary of NLL result

Using the results of ref. [54] and appendix A to include all effects up through O(αs) in the

logarithm of the cumulative distribution we find

ln Σg '
CA
CF

(
1 +

nF − CA
3CA

√
αsCF

πβ ln 1/Σq
+
nF − CA
CA

αs
36π

b0
β

(2− β)

+
αsπ

3

CA − CF
β

− 17

36

αs
π

CF
CA

nf − CA
β ln 1/Σq

+ . . .

)
ln Σq . (3.22)

This expression includes two terms beyond those discussed in the subsections above. The

one proportional to b0, where b0 = 11
3 CA −

2
3nf is the one-loop β-function coefficient, has

two origins: it comes from the running coupling corrections to the contribution from the

subleading terms in the splitting functions and from the running-coupling corrections to

the relation between the logarithm L and ln Σq. The last term in parentheses comes from

O (αs) matrix element corrections, discussed in detail in appendix A. It depends on the

choice of the jet definition, including the procedure by which one defines quark versus gluon

jets at parton level. Specifically, we assume any algorithm is equivalent to the generalized

kT family of jet algorithms at order αs, and at this order define a quark jet to be one

that contains a quark and a gluon, while jets containing gg or qq̄ are considered to be

gluon jets.15 Beyond O (αs), the calculation assumes that the algorithm maintains a rigid

circular boundary in the presence of multiple soft particles at angles of order R0, i.e. that

it behaves like the anti-kT algorithm.

15In contrast to the situation with LO studies, at O (αs) it does not makes sense to discuss jet flavor

based on the flavor of the parton that “initiates” the jet, since interference effects between diagrams mean

that the initiating parton cannot be uniquely identified. The question of quark-gluon jet definition at fixed

order is discussed further in appendix A.
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Note that every subleading term in eq. (3.22) is proportional to a difference of color

or quark number factors and so the discrimination power depends sensitively on these

differences. The overall quark versus gluon discrimination power increases as β is decreased

(even though the last term favors larger values of β for nf > CA). Numerically, this

behavior is dominated by the subleading terms in the splitting functions and the multiple

emissions effect. The effect of the subleading terms in the splitting functions goes like
√
αs and so is formally more important than the multiple emissions effect which is O(αs).

However, the effect of the subleading terms is multiplied by the small number δB and so is

numerically smaller than the contribution from multiple emissions. Running-coupling and

fixed-order effects are significantly smaller.

Robustly, then, smaller values of β lead to better discrimination between quark and

gluon jets. One explicitly sees that we have an expansion in powers of
√
αs/β, and so it

can only be trusted for β substantially larger than αs; in practice, perhaps β & (2 ∼ 4)×αs
(see appendix B). It is interesting to comment also on traditional angularities: for β > 1

most of eq. (3.22) still holds, and only the last term in parentheses would be modified.

However, for β ≤ 1 angularities are dominated by recoil effects, with a structure that is

independent of β, and so we expect that the discrimination should saturate. Because the

energy correlation double ratio C
(β)
1 is recoil-free for all values of β, it is better able to

probe the collinear singularity and multiple emission effects that distinguish quarks from

gluons.

3.3 Monte Carlo study

We now use a showering Monte Carlo simulation to validate the above NLL analysis of

C
(β)
1 . A similar study of the EEC function appears in ref. [73], where it was called the two-

point moment.16 Through this paper, jets are identified with the anti-kT algorithm [85]

using FastJet 3.0.3 [63]. No detector simulations are used other than to remove muons

and neutrinos from the event samples before jet finding, as was done in analyses for the

BOOST 2010 report [1].

We generate pure quark and gluon dijet samples from the processes qq → qq and

gg → gg in Pythia 8.165 [86, 87] at the 8 TeV LHC using tune 4C [88]. While Pythia is

not fully accurate to NLL, it does include subleading terms in the splitting functions and

multiple emissions, so not surprisingly we find improved discrimination at smaller values of

β, in agreement with section 3.2. We scan over various jet radii and pT cuts to study the

dependence of the quark/gluon discrimination on these parameters. For this study, we only

use the hardest reconstructed hadron-level jet in the event with a transverse momentum

in the ranges of pT ∈ [200, 300] GeV, [400, 500] GeV, or [800, 900] GeV.17 If the hardest

jet in the event lies outside the pT range of interest, the event is ignored. In addition, we

16Ref. [73] examined the C1 quark-gluon discrimination for a range of β values and reached a conclusion

that is consistent with ours. While their initial analysis näıvely suggests that C1, figure 18, performs worse

than jet broadening (“girth”, or equivalently τ1 with β = 1), figure 13, that comparison involves different

Monte Carlo event samples. Table 1 of ref. [73] compares the observables on equal footing, which shows

that C1 indeed has better discrimination power than jet broadening, consistent with our discussion here.
17The reason for focusing only on the leading jet is that we want to minimize ambiguities related to

defining quark and gluon jets. The subleading jet is the one more likely to have undergone radiation, and
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Figure 3. Left: distribution of C
(0.2)
1 for quark jets (purple) and gluon jets (orange) using Pythia

dijet samples. The sample consists of anti-kT jets with radius R = 0.6 and transverse momentum

in the range [400, 500] GeV. Right: quark versus gluon discrimination curves using C
(β)
1 for several

values of β in Pythia. Also plotted is the leading log approximation for the discrimination curve,

eq. (3.8).

scan over jet radii values of R0 = 0.4, 0.6, and 0.8. Because our broad conclusions hold

for all samples generated, we only show representative plots to illustrate the quark/gluon

performance of C1.

In figure 3a, we plot the distribution of C
(0.2)
1 for jets initiated by quarks and gluons

with transverse momentum in the range [400, 500] GeV and jet radius R = 0.6 in Pythia.

As expected, the gluon curve lies at larger values than the quark curve because of the

greater Sudakov suppression in gluon jets. The quark/gluon discrimination curves for

different values of β are shown in figure 3b, which are directly comparable to the NLL

results in figure 2, up to jet contamination effects included in Pythia such as underlying

event and initial-state radiation. Again, we see that β ' 0.2 is the optimal value. In

figure 4, we show the gluon rejection rate for 50% quark efficiency as a function of β,

comparing different pT ranges and R0 values, all of which favor small values of β. Note

that the gluon rejection power degrades as the jet radius is increased, exhibited in figure 4a.

This may be associated with the increase in the amount of underlying event and initial-

state radiation captured in the jet as the jet radius increases. This radiation is uncorrelated

with the dynamics of the quark or gluon which initiates the jet. The degradation is most

prominent at large values of β, where wide angles in the jet are emphasized (which is where

most of the uncorrelated radiation resides).

with radiation, quark jets may change into gluon jets, and vice-versa. Additionally, the local emission

environment is changed (e.g. non-global logs may become more important). The probability that an event

has radiation in the vicinity of the subleading jet is O (αs), while it is O
(
α2
s

)
near the leading jet. As a

cross-check on the flavour composition of our events, we have clustered the parton-level showered events

with the flavor-kt algorithm [76]. We find that the flavor of the leading jet is consistent with expectations

except in a small fraction of events, between a few percent and ten percent depending on the generator.
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Figure 4. Gluon rejection rates at 50% quark efficiency in Pythia, as a function of β. Left:

fixing the pT range to be [400, 500] GeV and sweeping the value of R0. Right: fixing R0 = 0.6 and

sweeping the pT range. For all of these cases, small values of β yield the best discrimination.
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Figure 5. Left: quark/gluon discrimination curves using jet angularities τ
(β)
1 (i.e. 1-subjettiness

measured with respect to the jet axis), for several values of β in Pythia. Also plotted is the

leading log approximation for the discrimination curve from eq. (3.8) and the discrimination curve

for C
(0.2)
1 . The jet sample is the same as used in figure 3b. Right: gluon rejection rate for 50%

quark efficiency as a function of β, for angularities, 1-subjettiness measured with respect to the

broadening axis, and C
(β)
1 . The broadening axis is defined as the axis which minimizes the β = 1

measure in N -subjettiness. The latter two observables are recoil-free, and therefore give better

discrimination power for small values of β.

To compare the discrimination power of C
(β)
1 to other IRC safe observables, we consider

1-subjettiness τ
(β)
1 defined in eq. (2.16). We allow for two different axis choices: the jet

axis and the broadening axis (i.e. the axis that minimizes the β = 1 measure). When

measured with respect to the jet axis, τ
(β)
1 is essentially the same as the jet angularities τa

with a = 2− β. Angularities coincides with familiar observables for particular values of β:

β = 2 is jet thrust and β = 1 is jet broadening or girth. Among the angularities, ref. [77]
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Figure 6. Left: quark versus gluon discrimination curves using C
(β)
1 for several values of β in

Herwig++ (directly comparable to figure 3b). Also plotted is the leading log approximation

for the discrimination curve, eq. (3.8). Right: gluon rejection rate for 50% quark efficiency as a

function of β, for angularities, 1-subjettiness measured with respect to the broadening axis, and C
(β)
1

in Herwig++ (directly comparable to figure 5b). We also tested Pythia 6.425 and Herwig 6.520,

whose results lie in between Pythia 8 and Herwig++.

found that jet broadening (β = 1) was the most powerful angularity for quark/gluon

discrimination, and so is a natural benchmark to compare to C
(β)
1 . When measured with

respect to the broadening axis, τ
(β)
1 is a recoil-free observable and is therefore expected to

behave similarly to C
(β)
1 .

In figure 5a we plot the discrimination curves for angularities (i.e. 1-subjettiness mea-

sured with respect to the jet axis) for several values of β, as well as the discrimination curve

for C
(0.2)
1 in Pythia. Indeed, for most of the range, the most discriminating angularity is

β = 1, but the performance of all angularities is roughly comparable to and only somewhat

better than the LL expectation. By contrast, C
(0.2)
1 yields a quark to gluon efficiency ratio

that is about twice as large as any of the angularities over much of the range. In figure 5b,

we highlight the importance of working with recoil-free variables, by plotting the gluon

rejection rate at a fixed 50% quark efficiency. For β ≥ 1, C
(β)
1 and 1-subjettiness have

essentially the same performance. As β approaches 0, however, the discrimination power

for the angularities degrades, while the two recoil-free observables (C
(β)
1 and 1-subjettiness

with respect to the broadening axis) have improved performance, as expected from the

NLL analysis.18

To verify the claims made about the performance of C
(β)
1 as a quark/gluon discrimi-

nator, we also simulate quark and gluon dijet samples in Herwig++ 2.6.3 [89, 90]. We

use the same kinematic cuts and jet algorithm parameters as in the Pythia samples. As

the same qualitative conclusions hold in the Herwig++ samples as in Pythia, we only

reproduce figures 3b and 5b for the Herwig++ sample. In figure 6a, we plot the quark

18The reason for the mismatch between C1 and τ1 with respect to the broadening axis at very small

values of β has not yet been determined.
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versus gluon discrimination curve with C
(β)
1 . While the discrimination power of C

(β)
1 in

the Herwig++ sample is not as great as in the Pythia sample, the behavior that the

discrimination increases as β decreases is robust. In figure 6b, we plot the gluon rejection

rate at a fixed 50% quark efficiency for the three observables considered earlier. As in

figure 5b, the discrimination power of the recoil-free observables increases as β decreases

and degrades for the recoil-sensitive angularities (though the β-dependence is once again

weaker than with Pythia 8). We also tested C
(β)
1 using Pythia 6.425 [86] with tunes DW

and Perugia 2011 [91] and Herwig 6.420 [92] with JIMMY [93], which exhibit discrimi-

nation power that is intermediate between Pythia 8 and Herwig++. We also checked

that the behavior is robust as underlying event, initial-state radiation, and hadronization

are sequentially turned off.

Of course, there is a substantial numerical difference between Pythia 8 and Her-

wig++ for quark versus gluon discrimination. Some of distinction between Pythia 8 and

Herwig++ could be due to the fact that different evolution variables are used: Pythia 8

is a pT -ordered shower whereas Herwig++ is angular ordered. This could in turn affect

the flavor content of the quark and gluon jets, thus leading to variations in their ability

to discriminate quark and gluon jets. The energy correlation function observables seem

to be particularly sensitive to these differences, especially at relatively small values of the

angular exponent β. This suggests that any detailed study of the properties of quark and

gluon jets should measure C1 at multiple values of β. Beyond discriminating quark and

gluon jets, measurements of energy correlation functions at both e+e− and hadron colliders

could be useful for Monte Carlo tuning, especially given the current differences between

generators.

In these studies, C1 has been measured on jet samples which include both charged and

neutral hadrons (and we have not applied realistic smearing of energies and angles). In

order to exploit the discrimination power of C1 with β ' 0.2, one needs excellent angular

resolution, so in an experimental context, it may be advantageous to measure C1 using

only charged hadrons. A track-only calculation of C1, using e.g. the methods of ref. [94],

is beyond the scope of this work, but we did verify in Monte Carlo that the quark/gluon

discrimination power only degrades by a few percent when using a track-only version of

C1. We also note that CMS has successfully made use of ptD, related to the β → 0 limit

of C1, using both charged and neutral hadrons [39, 75].

Because we observe significant differences in the absolute scale of the quark versus

gluon discrimination between different Monte Carlo generators, the performance of C1 in

an experiment may not be as optimistic as computed to NLL. However, the increase in the

discrimination power as β → 0 seems robust and would be important to verify in data.

As discussed in appendix B, perturbative control over C1 ceases to exist for β . 0.2− 0.4.

While hadronization will then become significant, separately on the distributions of C1 for

both quark and gluon jets, it is not entirely trivial to relate this to the question of its

expected impact on the quark/gluon discrimination performance. In any case, this kind of

questions deserves further investigation, both theoretically and experimentally.
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4 Boosted electroweak bosons with C2

Our next case study is using C2 to discriminate between QCD jets and jets with two

intrinsic subjets, such as boosted W , Z, or Higgs bosons.19 Recall that C2 involves the

3-point correlator. To identify a boosted resonance, one first looks for jets whose mass

is compatible with the resonance of interest. Then C2 can be used to determine if the

jet has two hard subjets, in which case the jet is tagged as coming from that boosted

resonance. While we have not carried out analytic calculations to guide us to understand

the performance of C2 (and higher point correlation functions), it is still instructive to

study its discrimination power in Monte Carlo. We use Pythia 8 to demonstrate the

qualitative behavior and performance of C2, though one must of course be mindful of the

quantitative differences in Monte Carlo programs seen already in section 3.3. A calculation

of C2 will be left to future work.

The key finding from this section is that this tagging procedure is very sensitive to

the ratio of the jet mass to the the jet transverse momentum. This arises because the

structure of the QCD background depends strongly on the jet mass requirement, and the

behavior of C
(β)
2 differs depending on what type of radiation contributes dominantly to the

jet mass. For a fixed jet pT , we will find that small values of β ' 0.5 are better for high

mass resonance discrimination, whereas large values of β ' 2 give the optimal separation

at lower masses. In both regimes, C2 offers better discrimination power than τ2,1, with

the difference being more pronounced for small m/pT . After describing this physics for a

generic boosted 2-prong resonance, we will specialize to the case of the Higgs boson, where

additional b-tagging information is available.

4.1 Dependence on the mass criterion

Consider a quark or gluon jet with invariant mass close to the boosted resonance of interest

(which we will call a Z boson for concreteness). For jets with mass comparable to their

transverse momentum, the mass is dominated by a single, relatively hard, perturbative

splitting. Thus, one expects that the QCD jets that can fake a Z boson are those with

two relatively hard cores of energy surrounded by soft radiation. These jets are straight-

forward to analyze in fixed-order perturbation theory (to generate the jet mass) matched

to resummed perturbation theory (to generate the radiation pattern for C2), since there

is a clear ordering of emissions in the jet. In particular, QCD jets with large mass should

appear similar to jets initiated from heavy resonance decay, with differences controlled

mainly by the color of the decay products and the phase space of the hard splitting.

For many systems of interest, however, the above analysis is not appropriate. Once

the jet mass is less than around a fifth of the jet transverse momentum times R, the mass

no longer arises dominantly from a hard perturbative splitting. For jets in the low to

intermediate mass ranges, a significant mass can be generated by a single soft emission

from a single hard core. At lower masses, the mass of a jet is generated by multiple soft

emissions. Jets in the low and intermediate mass regimes require resummation of these

soft emissions to accurately model their dynamics as fixed-order perturbation theory is no

longer accurate. For this reason, we expect QCD jets in this mass regime to look very

19For related studies, see refs. [3–5, 9, 49, 95–108].
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Figure 7. Distribution of mass of QCD jets in the process pp → Zj as simulated in Mad-

Graph5 1.5.0 and showered in Pythia 8.165. The transverse momentum of the jets lie in one of

the ranges of [200, 300], [400, 500] or [600, 700] GeV, as labeled on the plot.

different from boosted resonances with two hard cores, and the discrimination power of

C2 should improve as the ratio of the jet mass to the transverse momentum decreases. In

addition, as discussed in section 2.2.2, C2 is better able to exploit the color singlet nature

of the Z boson when m/pT is small.

To illustrate this, we generate a mixed sample of quark and gluon jets from pp →
Zj with the Z decaying to leptons. These are simulated at the 8 TeV LHC in Mad-

Graph5 1.5.0 [109], showered in Pythia 8.165 [86, 87], and we identify the hardest anti-kT
R0 = 1.0 jet. In figure 7 we plot the invariant mass spectrum of QCD jets in three different

transverse momentum bins, pT ∈ [200, 300] GeV, [400, 500] GeV, and [600, 700] GeV. We

see that the mass distributions in each pT bin have steeply falling tails extending to masses

of about pT /2. In the tail region, we expect fixed-order perturbation theory to accurately

describe the origin of mass of the jet. At lower masses, below about pT /5, Sudakov sup-

pression becomes important as the distributions peak and decrease toward zero mass. In

this mass regime, fixed-order perturbation theory is no longer adequate to describe the

distribution.

This differing origin of the jet mass is reflected in the C
(β)
2 distributions. Because

small values of C
(β)
2 correspond to 2-subjet-like jets, the C

(β)
2 distribution moves to lower

values as the mass of a QCD jet increases, as shown in figure 8a for β = 2 in the pT range

[400, 500] GeV.20 In contrast, for a boosted heavy particle that decays to two partons, the

C
(β)
2 distribution is relatively insensitive to the resonance mass, since the mass of such a

jet comes mostly from two partons from the decay regardless of the boost factor. Shown

in figure 8b is the signal C
(2)
2 distribution for pp → ZZ, where one of the Z bosons

decays to leptons and the other decays to jets. We can manually adjust the mass of the

Z in MadGraph5 to study several different mass to transverse momentum ratios. For

mZ = {91, 125, 200} GeV, the C
(2)
2 distributions are remarkably similar.21

20The labelled jet masses of mZ = {80, 91, 110, 125, 150, 200} GeV correspond to the jet mass ranges

[70, 90] GeV, [80, 100] GeV, [100, 120] GeV, [110, 140] GeV, [140, 170] GeV, and [180, 230] GeV.
21C2 is not invariant to transverse boosts, so for more extreme values of m/pT , the distribution will move
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Figure 8. Distributions of C
(2)
2 for QCD jets (left) and Z bosons decaying to jets (right) with

different masses of the Z. The transverse momentum of the jets for all masses lies in the range of

[400, 500] GeV. The different curves correspond to different event samples according to the mass of

the resonance.
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Figure 9. Left: the discrimination curves for boosted hadronic Z bosons (mZ = 91 GeV) compared

to QCD jets with C
(β)
2 for various values of β. The transverse momentum of all jets was required

to lie in the range of [400, 500] GeV. Right: QCD rejection rate for 50% boosted Z efficiency as a

function of β, sweeping the value of the Z boson mass to mZ = {80, 91, 110, 125, 150, 200} GeV.

The optimal value of β depends strongly on the resonance mass.

In figure 9a, we show the QCD jet versus Z boson discrimination curve for mZ =

91 GeV with pT ∈ [400, 500] GeV for several values of β. To see how the physics changes as

the resonance mass changes, we plot the QCD rejection rate for 50% boosted Z efficiency

in figure 9b as a function of β, for mZ = {80, 91, 110, 125, 150, 200} GeV. At low masses,

to smaller values. However, because of underlying event and initial state radiation, C2 does not change as

much as one would näıvely expect under boosts.
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Figure 10. Left: the discrimination curves for boosted hadronic Z bosons (mZ = 91 GeV)

compared to QCD jets with τβ2,1 for various values of β. For comparison is shown the C
(β)
2 curve

with the best discrimination (β = 1.7). The subjet axes for N -subjettiness are defined as those

that minimize the β = 1 measure (broadening axes). Right: QCD rejection rate for 90% boosted Z

efficiency as a function of β, sweeping the value of the Z boson mass to mZ = {91, 125, 200} GeV.

Because these curves are with 90% Z efficiency, they are not directly comparable to figure 9b. Note

that as m/pT decreases, the performance of C2 improves relative to τ2,1.

the most powerful discriminant is β ' 1.5 − 2. This is expected, since large values of

β emphasize soft wide-angle emissions where there is more of a penalty for QCD jets in

the Sudakov peak. However, we do not have a quantitative way to understand why the

discrimination power saturates at β ' 2, as opposed to even higher values. At intermediate

masses, a wide range of β values yield very similar results. At the high masses where QCD

jets are in the tail region, the discrimination dependence on β inverts, with the most

powerful discrimination for β ' 0.5. This is likely to do with the same quark/gluon color

factor discrimination as in section 3. In particular, high mass QCD jets are formed by a

hard perturbative splitting, which is most likely to be a gluon, whereas the Z jet has two

hard quark subjets. That said, we have not yet performed a NLL calculation to understand

why β ' 0.5 is preferred, as opposed to even smaller values.

Finally, it is instructive to compare the discrimination power of C2 to N -subjettiness.

The ratio of 2-subjettiness to 1-subjettiness τ
(β)
2,1 is defined in eq. (2.17) and can be used to

identify Z bosons decaying to two jets. To eliminate ambiguities in minimum axes finding

at small values of β, we choose to define the subjet axes by those that minimize the β = 1

measure (i.e. the broadening axes). The discrimination curves of τ
(β)
2,1 for mZ = 91 GeV is

plotted in figure 10a, with the C
(β)
2 curve with the most discriminating value from figure 9a

shown for comparison. We also show the QCD rejection rate for 90% boosted Z efficiency

in figure 10b. At low masses, C
(2)
2 performs as well as or better than τ

(β)
2,1 over the entire

range of β, except at very small values of β. At high masses, the discrimination power

of τ
(β)
2,1 becomes comparable to C

(β)
2 , since both observables lock onto the hard subjets in

the Z decay of the massive QCD jet. The increase in the relative discrimination power
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of C2 with respect to τ2,1 as the ratio m/pT decreases is expected from the discussion

of section 2.2.2. As m/pT decreases, soft wide-angle subjets become more important for

determining the structure of the jet and C2 emphasizes these emissions more than τ2,1.

4.2 Boosted Higgs identification

One key application for 2-prong jet substructure observables is for identifying boosted

Higgs bosons in the decay H → bb̄. Compared to the case of Z bosons, there is additional

information from the presence of b quarks (and the resulting B hadrons) in the final state,

which can be used to mitigate QCD backgrounds. Thus, to identify boosted Higgs bosons

decaying to bottom quarks, we employ three criteria. First, we require the jet to have a

mass comparable to the Higgs boson. Second, we demand that two B hadrons are tagged

in the jet. Third, we use a sliding cut on C
(β)
2 to test for two hard subjets in the jet.

Because we demand that the jet have two B hadrons, the largest QCD background

to Higgs decays to bottoms is gluon splitting to bottoms. The splitting function g → bb̄

does not have a soft singularity, so the bottoms from this splitting will have comparable

energies. This is also the case for Higgs decay, so we do not expect the same discrimination

power for Higgs bosons compared to Z bosons studied above. That said, because of the

difference in the total color of the jets, there is an additional handle on Higgs versus gluon

discrimination; the bottom quarks from the gluon splitting will be in a color octet state,

so there will be significantly more radiation at wide angles compared to Higgs jets.

This color octet versus color singlet distinction can be exploited in two ways. First,

more wide-angle radiation can be included in the jet if the jet radius is increased. Larger

jet radii improve the contrast for C
(β)
2 , since more wide-angle radiation is included in the

(octet) gluon jets compared to the (singlet) Higgs jets. Second, the value of β can be set to

accentuate the importance of wide-angle emissions in the jet. As β increases, more weight

is given to wide-angle emissions, further penalizing gluon jets compared to Higgs jets when

using C
(β)
2 .

A full study of boosted Higgs identification using C
(β)
2 is beyond the scope of this work,

but we can get a sense for the discrimination power of C
(β)
2 by comparing the boosted Higgs

signal pp→ ZH to the leading QCD background of pp→ Zbb̄ where both bottom quarks

happen to be clustered into the same jet. We generate both the signal and background

distributions for the 8 TeV LHC in MadGraph5 1.5.0 [109] plus Pythia 8.165 [86, 87],

with all ground state B hadrons stable to allow for näıve b-tagging of the jets (with 100%

efficiency and no mistags). The mass of the Higgs is set to 125 GeV, and the Z is decayed

to leptons and the Higgs is decayed to bb̄. We consider anti-kT jets with various values

of the jet radius R0 = {0.6, 0.8, 1.0, 1.2}. The leading jet is required to have transverse

momentum in the range [400, 500] GeV with exactly two B-hadrons as constituents. To

approximate realistic b-tagging within jets, we recluster the jet with the kT algorithm to

find two exclusive subjets, and we require that each subjet contain exactly one identified B-

hadron. Finally, the mass of the jet is required to be in the window of mJ ∈ [110, 140] GeV

(i.e. within 15 GeV of the Higgs mass). From the leading jet, we compute C
(β)
2 for various

values of β and determine the discrimination power.
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Figure 11. Distributions of C
(2)
2 for bb̄ jets from QCD (left) and Higgs bosons decaying to bb̄

(right) with different jet radii. The plotted events are in the mass window mJ ∈ [110, 140] GeV

and the transverse momentum window pT ∈ [400, 500] GeV.
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Figure 12. Left: discrimination curves of H → bb̄ jets versus bb̄ jets from QCD with C
(β)
2 for

several values of β with jet radius R0 = 1.0. Right: QCD bb̄ rejection rate for 50% boosted H → bb̄

efficiency as a function of β, sweeping the value of the jet radius R0 = {0.6, 0.8, 1.0, 1.2}.

In figure 11, we plot the distributions of C
(2)
2 for Higgs jets and the QCD background

for various jet radii. As expected, the C
(2)
2 distributions dramatically increase as the jet

radius increases for QCD jets, while they only increase slightly for Higgs jets. In figure 12a,

we plot the discrimination curves of Higgs jets versus QCD using C
(β)
2 for several values

of β for the jet radius R0 = 1.0. As expected, the discrimination power increases both as

the angular exponent increases, again, a consequence of the greater amount of wide-angle

radiation in the QCD jets. figure 12b shows the β dependence on the QCD rejection rate

for 50% boosted Higgs efficiency for jet radii of R0 = {0.6, 0.8, 1.0, 1.2}. The rejection rate

increases dramatically as the jet radius increases. At small jet radii, large values of β lead
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Figure 13. Left: the discrimination curves for boosted H → bb̄ compared to QCD bb̄ jets with

τβ2,1 for various values of β. For comparison is shown the C
(β)
2 curve with the best discrimination

(β = 2.0). Right: QCD bb̄ rejection rate for 50% boosted H → bb̄ efficiency as a function of β,

sweeping the value of the jet radius R0 = {0.6, 0.8, 1.0, 1.2}.

to the best discrimination, as large β emphasizes wide-angle emissions which differ for QCD

and boosted Higgs jets. As the jet radius increases, the largest QCD rejection rate moves

to intermediate values of β. This may be because a large jet radius will tend to include

more initial state radiation or underlying event, which is independent of the dynamics of

the jet.

In figure 13a, we compare the discrimination performance of the N -subjettiness ratio

τ
(β)
2,1 to the most discriminating C

(β)
2 (β = 2.0) with jet radius equal to R0 = 1.0. Over

the entire range of signal efficiencies, C
(2)
2 performs better than τ

(β)
2,1 for any value of β.

In figure 13b, we plot the QCD rejection rate for 50% boosted Higgs efficiency at several

jet radii. For a jet with a small jet radius, C
(β)
2 performs significantly better than any

N -subjettiness, with the distinction decreasing as the jet radius increases.

5 Boosted top quarks with C3

Our final case study tests the discrimination power of even higher-point correlation func-

tions, namely using C3 to distinguish boosted top quarks from QCD jets.22 Unlike the

previous two case studies, this observable is significantly more challenging than lower point

correlation functions. From a computational point of view, C3 involves a 4-point correla-

tor, so its computational cost is expensive since it scales like k4, where k is the number of

particles in the system. That said, our FastJet add-on only requires a few milliseconds

to analyze a boosted top event at one value of β. From an analytical point of view, each

term in ECF(4, β) involves a product of 4 energies and
(

4
2

)
= 6 angles, complicating an

understanding of how C3 behaves in various limits.

22For related studies, see refs. [3, 6–9, 42, 43, 49, 50, 55, 110–117].
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We will find that C3 performs significantly worse than one might expect from the

strong performance seen in C1 and C2. While it is possible that this is an artifact of

choosing the particular double ratio combination in the definition of C3, we suspect that

the proliferation of energy and angular factors in ECF(4, β) is reducing the sensitivity of

C3 to any individual soft emission. In particular, for a soft-collinear emission, C1 and C2

are independent of the kinematics of the hard structure of the jet. By contrast, even for

a soft-collinear emission, C3 retains dependence on the hard kinematics of the jet. This

is because the correlation functions in the ratio defining C3 are dominated by possibly

different subsets of the hard emissions in the jet. Nevertheless, it is illustrative to see that

even with these limitations, there is still discrimination power in C3.

To study the performance of C3 as a top tagger, we use the boosted top and QCD

background event samples created for the BOOST 2010 workshop [1].23 These events

come from 7 TeV LHC collisions simulated with Herwig 6.510 [118] with underlying event

simulated with JIMMY [93] with an ATLAS tune [119]. The event samples consist of

2 → 2 QCD processes, either all hadronic tt̄ production or dijet production. For direct

comparison to other top tagging procedures, we follow the analysis procedures used in

ref. [1]. We identify anti-kT jets with radius R0 = 1.0 and demand that the jets have

pT ∈ [500, 600] GeV. No detector simulation is performed at this stage, other than removing

muons and neutrinos before jet finding. We impose three cuts to discriminate top jets from

QCD. First, we demand that the jets have mass in the fixed window of 160 < mJ <

240 GeV, and second, we apply a sliding cut on C
(β)
3 . In addition, it was noted in ref. [14]

that ratio observables such as C3 can be IR-unsafe without an additional cut. We therefore

apply a third cut that C
(β)
2 > 0.1, which makes C3 explicitly IR-safe.

In scanning over the range of 0.5 < β < 2.5, we found that the best discrimination over

a wide range of signal efficiencies using C
(β)
3 is obtained for β = 1.0. This is the same β

value that is optimal for N -subjettiness τ
(β)
3,2 [50]. A plot of the distribution of C

(1)
3 for top

jets and QCD jets in the kinematic and mass windows from above is shown in figure 14a.

The discrimination curves for the different values of β are shown in figure 14b, where the

quoted efficiencies only include the effect of a cut on the observable C3 for jets in the mass

window of 160 to 240 GeV.

Finally, we compare the performance of C
(1)
3 against several other top tagging pro-

cedures in figure 15. For this plot, the quoted efficiencies include both the effect of the

mass cut as well as the effect from a cut on C
(1)
3 . While not as powerful as methods like

N -subjettiness, the energy correlation function yields comparable discrimination power to

other methods. Of course, the performance may be improved by combining information

from different values of β, as well as including additional C2 and C1 information.

23The events can be found at http://www.lpthe.jussieu.fr/˜salam/projects/boost2010-events/ and

http://tev4.phys.washington.edu/TeraScale. While updated event samples are available from the BOOST

2011 report [2], the comparison includes a W subjet tagger which would artificially improve the performance

of C3.
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Figure 14. Left: distribution of C
(1)
3 comparing top jets and QCD jets. The plotted events are in

the mass window mJ ∈ [160, 240] GeV and the transverse momentum window pT ∈ [500, 600] GeV.

Right: discrimination curves for top jets versus QCD jets, using C
(β)
3 for several values of β. These

efficiencies only include the effect of the cut on C3.
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Figure 15. Comparing the performance of C
(1)
3 to other methods studied in the BOOST 2010

report [1]. The efficiency curves for N -subjettiness (τ3/τ2) [50] and the angular correlation function

(ACF) [55] were added later. Here, the efficiencies include both the effect of a mass cut as well as

a cut on C
(1)
3 .

6 Conclusions

In this paper, we have introduced arbitrary-point energy correlators that are sensitive to

N -prong substructure. These correlators are effective when used as part of an energy cor-

relation double ratio C
(β)
N , though more general combinations deserve further exploration.

Through an NLL calculation, we have seen how C1 yields excellent quark/gluon discrimi-

nation, with β ' 0.2 being most effective at capturing the differences in color charges. We

have also shown the power of C2 for boosted 2-prong objects like Higgs bosons, and the

potential power of C3 for boosted 3-prong objects like top quarks.
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Given the explosion of jet substructure methods over the past few years, it is worth

asking whether CN is sufficiently novel to merit further experimental and theoretical stud-

ies. Indeed, it is a quite unique variable that combines a number of desirable features. Like

N -subjettiness, CN is a variable which tests for N -prong substructure, but can behave

more continuously in situations with soft subsets. Like planar flow and related jet shapes,

CN can be calculated directly from the energies and angles of the jet constituents without a

separate axes finding step, but it is designed for identifying N -prong substructure instead

of just exotic kinematic configurations. Finally, like jet angularities, CN is sensitive to

higher-order radiation about LO substructure, but because it is a recoil-free observable, it

can better probe the collinear physics that distinguishes a jet’s color with 0.2 . β . 1.0.

Because CN has a high computational cost for N > 3, we expect CN will be most useful

in practice for 1-, 2-, and 3-prong jet studies.

To gain further confidence in the behavior and performance of these observables, fur-

ther analytic studies are needed. Of particular need is to calculate C2 for QCD backgrounds.

We already saw that the behavior of C2 for QCD jets depends strongly on the jet’s mass

over pT ratio, and it is likely that different theoretical descriptions will be needed for C2

as a function of m/pT . While C2 is built as a ratio of IRC safe observables, C2 itself

is only IRC safe with a cut on the jet mass (which acts like a cut on the denominator),

and it is an interesting question how to best perform NLL resummation for generic ratio

observables. Like all jet shape observables, C2 is sensitive to underlying event, initial state

radiation, and pileup, which must be accounted for in determining the optimal β value.

Ideally, theoretical progress on understanding C2 and other jet shapes will match the rapid

experimental progress in implementing them, such that jet substructure observables can

truly be a robust tool for LHC physics.
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A Fixed-order calculation

In this appendix, we present the details of the fixed-order calculation of C1 and matching

to the NLL result from section 3.2. The calculation is valid for any jet algorithm that, for

configurations involving exactly two partons in some neighborhood, combines two partons

into a single jet if they are separated by an angle less than R0 and otherwise places them

in separate jets. At this order we define a quark jet to be a jet that contains a single quark,

or a quark and a gluon. A gluon jet is a jet that contains a single gluon, a gluon pair, or

a quark-antiquark pair (of identical flavor). 24

In the limit where the jet radius R0 is small, the O(αs) cumulative distribution of the

observable C
(β)
1 can be computed from

Σ(C1) = 1 +
αs
π

∫ R0

0

dθ

θ

∫ 1

0
dz P (z) Θ

(
C1 − z(1− z)θβ

)

= 1− αs
π

1

β

1+u
2∫

1−u
2

dz P (z) ln
z(1− z)Rβ0

C1
, (A.1)

where

u ≡
√

1− 4C1

Rβ0
, (A.2)

and we have approximated the full matrix element by the appropriate splitting function,

P (z), as is legitimate for R0 � 1. The splitting functions are

Pq(z) = CF
1 + z2

1− z
, (A.3)

for quarks and

Pg(z) = CA

(
z

1− z
+

1− z
z

+ z(1− z)
)

+
nF
2

(
z2 + (1− z)2

)
, (A.4)

for gluons, including combinatoric factors. For quarks, it follows that

Σq(C1) = 1− αs
π

CF
β

{
−4 Li2

(
1 + u

2

)
+ 3u+ ln2 (1− u)− 2 ln (u+ 1) ln (1− u)

+ [4 ln 2− ln (u+ 1)] ln (u+ 1)− 3 tanh−1 (u) +
π2

3
− 2 ln2 2

}
. (A.5)

24Algorithms that satisfy the condition for when they pair partons into a single jet include all members

of the generalized-kT family, notably the anti-kT algorithm [85]. One subtlety is that the flavor of jets

from such algorithms is not infrared safe for configurations with three or more particles in a common

neighborhood. There exist algorithms designed specifically to guarantee a safe jet flavor to all orders, the

“flavor-kT ” algorithms [76]. These, however, have the property that a quark-antiquark pair can be combined

into a jet even for angular separations larger than R0, and so they do not yield the same jets at O (αs) as

the generalized-kT family and as we assume in the calculation here. We have reason to believe that it is

possible to design an algorithm that is both equivalent to generalized-kT at O (αs) and flavor safe to all

orders, but leave an investigation of this question to future work.
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For gluons, the fixed-order cumulative distribution is

Σg(C1) = 1− αs
π

1

β

{
CA

[
−4 Li2

(
1 + u

2

)
− 2

9

C1

Rβ0
u +

67

18
u+ ln2 (1− u)− ln2 (u+ 1)

− 2 ln (1− u) ln (u+ 1) + 4 ln 2 ln (u+ 1)− 11

3
tanh−1 (u) +

π2

3
− 2 ln2 2

]
+ nF

[
u

(
2

9

C1

Rβ0
− 13

18

)
+

2

3
tanh−1 (u)

]}
. (A.6)

Here, Li2(x) is dilogarithm function

Li2(x) = −
∫ x

0
dt

ln(1− t)
t

. (A.7)

To match the fixed-order cumulative distribution to the NLL cumulative distribution,

we use the “Log-R” matching scheme [120]. In this matching scheme, the fixed-order

corrections are exponentiated with the NLL distribution. The logarithms that appear

in the fixed-order expression must be properly subtracted so as to eliminate a double

counting with the logarithms that were resummed. Also, at large values of C1, we want the

distribution to agree with the fixed-order result. This requires “turning off” the logarithms

of the resummation properly.

Matching O(αs) fixed-order to NLL is straightforward. The matching scheme can be

written as

Σmatch = Σ (L)resum e−
αs
π (R1−G0−G1L−G2L2) . (A.8)

Here, R1 is defined from the fixed-order cumulative distribution as

Σ = 1− αs
π
R1 +O

(
α2
s

)
, (A.9)

and G0, G1L and G2L
2 are placeholders representing the constant terms, single loga-

rithms and double logarithms that have been resummed, respectively. For quarks, the

logarithms are (
G1L+G2L

2
)
q

=
CF
β

ln2 R
β
0

C1
− 3

2

CF
β

ln
Rβ0
C1

, (A.10)

and for gluons the logarithms are(
G1L+G2L

2
)
g

=
CA
β

ln2 R
β
0

C1
− 11

6

CA
β

ln
Rβ0
C1

+
1

3

nF
β

ln
Rβ0
C1

. (A.11)

The choice of G0 in Σ(L)resum is arbitrary because these terms are subleading to the NLL

resummation. Subtracting these logarithms from R1, in addition to the constant terms G0,

eliminates double counting. Also, to verify that the distribution agrees with the fixed-order

result at large values of C1, we can shift the argument of the logarithms appropriately

to vanish when C1 =
Rβ0
4 , which is the maximum value of C1. That is, we replace the

logarithms in the resummation and subtraction to be

L→ L̃ = ln

(
Rβ0
C1
− Rβ0
Cmax

1

+ 1

)
= ln

(
Rβ0
C1
− 3

)
. (A.12)
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L̃ vanishes when C1 =
Rβ0
4 and smoothly interpolates to L in the small C1 region. The final

NLL resummed cumulative distribution matched to fixed-order is

Σmatch = Σ
(
L̃
)

resum
e−

αs
π (R1−G0−G1L̃−G2L̃2) . (A.13)

We use this expression to determine the quark versus gluon discrimination in section 3.2.

B Breakdown of perturbative calculation

In this appendix, we provide some simple quantitative arguments for the breakdown of the

perturbative calculation from section 3.2 for values of β less than about 0.2. There are two

effects that we will consider: the QCD Landau pole and the breakdown of the independent

emission approximation. Of course, there may be other effects that become important at

small values of β, but these nevertheless suggest that our perturbative calculation of the

quark versus gluon discrimination power ceases to make sense at very small values of β.

First, the QCD Landau pole. At small β, the smallest scale Q0 that the running

coupling is sensitive to is

Q0 = pTR0e
−L/β . (B.1)

The perturbative calculation can be trusted when Q0 � ΛNP, where ΛNP is a scale at

which αs becomes non-perturbative. We can estimate the value of β at which the non-

perturbative effects become important as follows. The logarithm of the observable C1 can

be roughly estimated from the LL, fixed-coupling expression for the cumulative distribution

Σ for quarks, where

Σ ' e−
αs
π

CF
β
L2

. (B.2)

Then, L in terms of Σ is

L '
(
π

αs

β

CF
ln 1/Σ

)1/2

. (B.3)

Demanding that Q0 > ΛNP and using the expression for L from the above equation we find

that

βmin '
π ln 1/Σ

αsCF

1

ln2 pTR0

ΛNP

. (B.4)

Because we have used a fixed-coupling approximation, it is not immediately clear at what

scale αs should most appropriately be evaluated. Taking it at the geometric mean of pTR0

and ΛNP ' 0.5 GeV gives αs ' 0.17. Plugging this into eq. (B.4), for a quark efficiency of

50% and a jet selection as in section 3.2, yields

βmin '
π ln 2

0.17CF

1

ln2 400×0.6
0.5

' 0.25 , (B.5)

suggesting that non-perturbative effects become critical for β . 0.2–0.3. One can also

perform such an analysis numerically using the full NLL expressions for Σq, including all

running-coupling effects, and one reaches a similar conclusion.

Second, the NLL calculation assumed that emissions could be treated as independent,

but multiple emissions cannot be regarded as independent when each emission can take an
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O(1) fraction of the energy of the jet. That is, if the logarithm of C1 is not large then our

analysis (appropriate for soft-collinear emissions) breaks down. Assuming as above that

the cumulative distribution can be written as in eq. (B.2), the minimal value of β is

βmin '
αs
π

CF
ln 1/Σ

L2
min , (B.6)

where Lmin is the minimal value for the logarithm at which we trust the soft-collinear

analysis. Assuming that the soft-collinear analysis fails when Lmin ' 2, with the same

choice of parameter values as above, including αs ∼ 0.17, βmin is

βmin '
0.17

π

4/3

ln 2
22 ' 0.41 . (B.7)

The precise value of Lmin at which the soft-collinear analysis is deemed to break down will

change this value. Nevertheless, multiple hard, collinear emissions become important and

result in a breakdown of the analysis when β is too small. To include the leading effect

of energy conservation among emissions, one must match the NLL resummation to NLO

(O(α2
s)) splitting functions.

It should be noted that the fact that the non-perturbative analysis and the multiple

emissions analysis give the same ballpark of βmin is a coincidence due to the choice of

parameters that were made.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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