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1 Introduction

The extensive observational evidence for inflation and dark energy strongly motivates the

development of a more complete framework for de Sitter spacetime and its decays. Perhaps

the most conservative approach to the problem is to formulate the physics inside an observer

patch as in [1–5]. In addition to restricting attention to operationally measurable quantities,

this builds the holographic dual from a unitary, Lorentzian low energy theory whose count

of degrees of freedom provides an estimate of the de Sitter entropy. On the other hand,

this approach does not make manifest the symmetries of global de Sitter spacetime, a

feature which in the dS/CFT approach to the problem [6–8] immediately implies conformal

invariance of the dual. However, the symmetries follow from the stabilization of the scalar

moduli (leading to a maximally symmetric solution), and as we will see, the consequences

of this are evident within a causal patch.
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In general, one would like to understand what specifications are required of the matter

sector1 in the dual in order for it to reconstruct the physics of an observer patch of dS.2

Because of its large number of degrees of freedom, the matter sector induces the D − 1

dimensional Planck mass, which is parametrically far above the scales that we focus on

in this work. Our main goal is to determine concrete properties of the matter sector that

is coupled to this residual gravity. Using the framework of the holographic Wilsonian

renormalization group developed in [10],3 we establish a simple and general feature of

the dual in the dS/dS correspondence [1–3]: its single-trace couplings have vanishing β

functions. Multiple trace terms in the Wilsonian action do run but in a special way dictated

by the maximal symmetry of the bulk spacetime. Moreover, the holographic RG reproduces

the expected behavior of the trace of the stress-energy tensor as we will discuss further

below.

It will be very interesting to apply this lesson to help construct and elucidate specific

dual field theories, including the concrete examples in [3]. The vanishing of βsingle-trace holds

for each direction in scalar field space which is metastabilized; this will allow us to analyze

it in simpler constructions which uplift the AdS/CFT potential without metastabilizing all

the moduli [16].

In the fully metastabilized case, we will work in the dS/dS framework [1, 2]. This

follows at a macroscopic level from the metric

ds2dSD = dy2 + sin2
y

R
ds2dSD−1

(1.1)

exhibiting dSD as a warped compactification down to dSD−1 with two highly redshifted

regions indicating two low energy theories coupled to each other and to D− 1 dimensional

gravity. As explained in [3], this same structure arises in a simple way more microscopically

when one uplifts Freund-Rubin AdS/CFT solutions to de Sitter using contributions to the

moduli potential which arise in string theory. The nontrivial agreement between the dS/dS

metric (1.1) and the basic structure of the uplifted brane construction is encouraging,

motivating further development of the dual descriptions.

In using the framework of the holographic Wilsonian RG, we path integrate first over

the fields in the bulk (separating them into UV and IR pieces), leaving for last the inte-

gration over the fields — including gravity — at the UV slice (the central slice between

the two throats). This last path integral includes integration over the D − 1 dimensional

metric as well as other sources which generically induce couplings between the two throats.

The RG properties of the matter sector that we will determine are what they would be

for a stand-alone matter theory (without couplings to gravity or to the other throat), be-

cause we have left the path integral on the UV slice for the last step. However, these RG

1We saymatter sector here because in both approaches, dynamical lower-dimensional gravity (integration

over metrics) is required to complete the calculation of observables, a complication intrinsic to the physics of

de Sitter space. This complication is minimal in low dimensional examples, and in all dimensions ultimately

disappears in the nonperturbative decay of metastable de Sitter [4, 9]. Despite the ultimate decay of de Sitter

space (at least in known UV complete constructions), it is still worth understanding as much as possible

about the very long-lived de Sitter phase itself.
2A brane construction which addresses this implicitly in a particular example is given in [3].
3Following many previous works [11–13]. See also [14, 15] for more recent related work.
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properties are the most useful in the sense that they could guide us in building putative

dual theories sector-by-sector before coupling them together and to gravity. The situation

is similar to studying the Standard Model beta functions in particle physics and neglecting

contributions from gravity and hidden sectors, assuming that these couplings are weak.

Although the full de Sitter symmetries are not as manifest within the static patch, they

follow from a simple feature which is evident in the region accessible to a single observer:

the stabilization of the scalar fields φI in the system. In AdS/CFT, this translates into

vanishing β functions for the couplings dual to the scalar fields φI as well as for all operators

generated in the RG flow [10]; conversely, solutions with radially rolling scalars describe

nontrivial RG flows in the dual field theory. In this work we will generalize this to the

de Sitter observer patch, using the holographic renormalization group to translate the

existence of a stable or metastable minimum of the potential V (φI) to basic simplifications

of the dual theory. We find that the single-trace couplings in the holographic dual do not

run, and that the higher-trace couplings are determined purely from lower-trace ones in

the Wilsonian action.

Finally, we will analyze the (likely general) case that the de Sitter phase is only meta-

stable, building in a runaway direction in V (φI) as occurs in string-theoretic de Sitter

constructions. This introduces bounce solutions into the semiclassical calculation of the

Wilson action, leading to an exponentially suppressed imaginary part. This is consistent

with the expectation that pure dS is not a complete theory in itself [9]; indeed, additional

degrees of freedom come into play in formulating its decays [4, 17].

This gives a new application of the holographic RG, which yields results that were

not known in any other way. As emphasized in [10], although it roughly corresponds to a

Wilsonian prescription of integrating out high energy modes, the precise implementation

of this scheme in the traditional field theory variables is not understood; it is a kind of

functional RG [18–20] but not precisely the same as those formulated in field theory. In any

case, it will be very interesting to turn things around and analyze in field theory what is

required to obtain the structures derived here (the vanishing of the single trace β functions

and the specific form of the running of mulitrace terms) from the field content of candidate

de Sitter duals, including [3].

This paper is organized as follows. In section 2, we derive in a simple way two of our

basic results, that single-trace β functions vanish in the Wilsonian holographic RG and that

the effective action for higher-trace terms is determined by lower-trace terms. In section 3,

we elucidate the redundancy of the trace of the stress-energy tensor in this framework. For

the reader interested in the main results, these two sections are sufficient. In section 4, we

lay out the general Hamilton-Jacobi framework for holographic RG, applying [10] to more

general foliations, in particular the dSD−1 case, and to arbitrary zero or nonzero modes

of the fields. Then in section 5 we derive the consequences of moduli stabilization for the

Wilsonian action for scalar operators and the trace of the stress tensor. In section 6 we

briefly discuss the consequences of the metastability of the potential for the holographic

RG, and we close in section 7 with some further comments. In the appendices we work

out some details on the stress-energy tensor in the Wilsonian action, as well as an explicit

calculation in D = 3.
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2 Basic results: path integral derivation

Let us start by explaining our basic framework and results. Much of this is in direct parallel

with the analysis in [10], generalized appropriately to the case of a dSD−1 foliation of the

bulk. Along the way, we will need to clarify the role of the warp factor and include appro-

priate counterterms to obtain standard AdS/CFT operator redundancies, applying [12, 21]

to the Wilsonian Holographic RG. Our main result is that the scale-invariance of the single-

trace couplings is a consequence of moduli stabilization for dS as well as AdS, and that in

both cases the higher-trace couplings are determined in terms of the lower-trace ones.

2.1 Framework

Since we are interested in the consequences of moduli stabilization, we will focus on the

dynamics of a bulk scalar field φ dual to an operator O in the d ≡ D− 1 dimensional dual

field theory, along with its effect on the warp factor a(y, x) in the gauge-fixed metric

ds2 = dy2 + a(y, x)2ĝµνdx
µdxν . (2.1)

This system has Euclidean-signature action

S =

∫

dy ddx ad
√

ĝ

{

1

2

(

∂φ

∂y

)2

+
1

2a2
ĝµν∂µφ∂νφ+ V (φ)− 1

2
(R+LGHY) +

1

ad
∂y(a

dLCT)

}

,

(2.2)

where LCT is a counterterm Lagrangian, a local function of φ, the metric, and their deriva-

tives in the x directions.4 For the case of AdS/CFT, the counterterms were derived in [21].

For the dS case, we will fix LCT = 0 using the symmetries in section 3. The bulk scalar

curvature R and the Gibbons-Hawking-York term LGHY
5 combine to give

R+ LGHY = d(d− 1)
1

a2

(

∂a

∂y

)2

+ (d− 1)(d− 2)
1

a4
ĝµν∂µa∂νa+

1

a2
R̂ (2.3)

where R̂ is the Ricci scalar of the d-dimensional metric ĝµν(x). One can similarly include

the dynamics of transverse traceless modes of the graviton, but we will focus on the scalar

fields and their interaction with the warp factor a(y, x). The warp factor itself is determined

by a constraint equation — it is not an independent dynamical degree of freedom on the

gravity side. This corresponds to the redundancy of the trace of the stress-energy tensor

in the dual field theory, a feature we will recover in our framework.

In the holographic Wilsonian RG as formulated in [10], one uses the scale-radius duality

E = Epropera(y, x) (2.4)

to map the integration over high energy modes on the field theory side to integration over

the fields at large warp factor a, which will correspond in our coordinates to large radial

4We have chosen coordinates (2.1) here; the counterterm could be written more generally as

nµ∂µ(a
dLCT). The factor of ad in LCT is added to simplify our formulas below.

5Here we have chosen to write the Gibbons-Hawking-York boundary term as a total derivative in the

bulk action.
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position y on the gravity side. For supergravity modes the proper energy scales like 1/R in

terms of the bulk curvature radius R, for strings the proper energy is of order the square

root of the string tension, and additional scales may arise in general.6 To capture the

physics of the lightest scalar ‘moduli’ fields, the supergravity scale will be most relevant.

Let y = LUV be the most UV slice in our geometry (i.e. the slice with the largest

warp factor a).7 To formulate our renormalized theory, we introduce an arbitrary scale by

choosing an intermediate radial position y = L with respect to which we will divide the

path integral into high and low energy degrees of freedom. Defining ā(y) to be the classical

warp factor in AdS or dS (or more general geometries), this arbitrary energy scale will be

of order µL ∼ ā(L)/R. More precisely, we work at fixed proper distance LUV −L from the

UV slice of our geometry. The gravity path integral is divided into a UV part with fields

integrated over L < y < LUV, and IR piece from the region 0 < y < L, and an integral

over the fields at the surface y = L:

Z =

∫

DãDφ̃

∫

DaDφ|y>L exp(−κ−2S|y>L)

∫

DaDφ|y<L exp(−κ−2S|y<L) , (2.5)

where φ(x, L) = φ̃(x) and a(x, L) = ã(x). Here κ2 ∼ GN , with κ2 → 0 corresponding to

the planar limit in the holographic dual. We will work in this semiclassical approximation.

The UV part of the path integral

ΨUV(φ̃, ã, L) =

∫

DaDφ|y>L exp(−κ−2S|y>L) , (2.6)

is evaluated with radial boundary conditions φ(x, LUV) = φUV(x), a(x, LUV) = aUV(x)

and φ(x, L) = φ̃(x), a(x, L) = ã(x). ΨUV can be constructed equivalently via radial Hamil-

tonian evolution from the boundary, as we will describe in more detail in later sections.

Let us use S(0) to denote the bulk action (2.2) with every term except the counterterm.

We have

ΨUV(φ̃, ã, L) =

∫

DaDφ|y>L exp
{

−κ−2
(

S(0)|y>L + SCT[φUV, aUV]− SCT[φ̃, ã]
)}

(2.7)

= eκ
−2SCT[φ̃,ã]Ψ

(0)
UVe

−κ−2SCT[φUV,aUV] . (2.8)

The IR part of the path integral

ΨIR(φ̃, ã, L) =

∫

DaDφ|y<L exp(−κ−2S|y<L) = Ψ
(0)
IR e−κ−2SCT[φ̃,ã] (2.9)

(with boundary conditions φ(x, L) = φ̃(x), a(x, L) = ã(x)) is postulated [10] to be of

the form

ΨIR =

∫

DM |E<ã/R e−S0[M,ĝ]+κ−2
∫
ddx ãd

√
ĝ φ̃O, (2.10)

6One of the remaining subtleties with holographic RG is the fact that the gravity side contains excitations

with different proper energies, so a cutoff at y = L is not in fact a cutoff on energy scales in the dual QFT.

This may be a feature rather than a bug, potentially suggesting a novel way to organize the path integral

in QFT.
7In the AdS case, we can regulate this as in [10]. In the dS case, we first consider a single warped throat,

say the one with 0 ≤ y ≤ πR/2 in (1.1). In section 3, we will discuss its coupling to the full causal patch.
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in terms of the microscopic fields M of the holographic dual. In this formulation the scale

ã/R (which is semiclassically µL ∼ ā(L)/R) is some form of UV cutoff on the fields that

we integrate over to construct this low-energy part of the path integral. As in [10], we

will not solve the problem of making this explicit in the microscopic field theory variables,

but will use the gravity side to investigate the structure of the RG and its relation to

moduli stabilization given the postulate (2.10). According to this conjecture, which follows

naturally from the UV/IR relation in AdS/CFT, ΨIR is a cutoff version of the field theory

partition function. As L → LUV, ΨIR approaches the field theory partition function with

sources φUV, aUV, and ΨUV becomes a delta function localized on φUV, aUV [22].

In (2.10) O is a single-trace operator dual to φ. Correlators of the trace T of the stress-

energy tensor are obtained by differentiating with respect to log(ã). We will see explicitly

below that in Poincaré AdS/CFT, our prescription yields T = 0, and that we also obtain

the correct results for correlation functions of T for AdS and dS with de Sitter slicing.

The role of the warp factor — ultimately a non-dynamical redundant variable — is

somewhat complicated in the expression (2.10). Note that we have chosen to put the

fluctuation of the trace part of d-dimensional metric into ã instead of ĝµν . Equivalently,

we may write (2.10) in a more standard form by putting the fluctuation of ã away from

its background value ā(L) into the trace part of the metric ĝµν on which the field theory

lives, via the following change of variables:

ĝ′µν =
ã2

ā(L)2
ĝµν , (2.11)

therefore removing the fluctuation of ã from the cutoff on microscopic fields. Here again

ā(y) is the background warp factor in AdS or dS (or more general geometries with radial

evolving scalars in the case that we do not stabilize the moduli). This expresses ΨIR more

clearly as a cutoff version of the QFT partition function:

ΨIR =

∫

DM |E<µL
e−S0[M,ĝ′]+κ−2

∫
ddx ā(L)d

√
ĝ′φ̃O (2.12)

=

∫

DM |E<µL
e−S0[M,ĝ]+κ−2

∫
ddx ā(L)d

√
ĝ′ φ̃O+κ−2

∫
ddx ā(L)d

√
ĝ ( 1

2
δĝ′µνT

µν+...), (2.13)

where again the cutoff is µL ∼ ā(L)/R, and on the second line we have simply expanded

S0[M, ĝ′] to linear order around the metric ĝ which has a non-fluctuating trace part, and

the terms in ‘. . .’ refer to the nonlinear couplings of the stress-energy tensor and the metric

fluctuation δĝ′µν = ĝ′µν − ĝµν . Focusing on the fluctuation of the warp factor (i.e. the trace

part of the metric fluctuation8), we may further rewrite (2.12) as

ΨIR =

∫

DM |E<µL
e−S0[M,ĝ]+κ−2

∫
ddx

√
ĝ[ãdφ̃O+ā(L)d−1δã T+...] , (2.14)

where we have used (2.11) again.

Now we can substitute (2.14) into (2.5) and integrate over ã and φ̃, postponing the

path integral over the microscopic fields M . This gives a prescription [10] for a holographic

8The traceless fluctuations of the metric can be treated in analogy with scalars φ.
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Wilsonian effective action s(O, L)

exp
(

− κ−2s(O, L)
)

=

∫

DãDφ̃ΨUV(φ̃, ã, L) e
κ−2

∫
ddx

√
ĝ[ãdφ̃O+ā(L)d−1δã T+...] . (2.15)

This action is guaranteed to be local on energy scales much lower than µL; at the semiclas-

sical level it is the Legendre transform of ΨUV which can be constructed by radial evolution

from the boundary via a local Hamiltonian (as will be worked out in detail in section 4).

It is interesting to note that the Legendre transform of the Wilsonian effective action —

which is analogous to WUV ≡ κ2 logΨUV — also plays a role in studies of the exact RG

formalism in standard quantum field theory [18–20].

2.2 Consequences of moduli stabilization

We will be concerned with special properties possessed by the holographic Wilsonian ac-

tion (2.15) when the bulk scalar field has a potential with a stable or metastable extremum

at φ = φ∗ of the form

V (φ) = V∗ +
∞
∑

n=2

1

n!
V

(n)
∗ (φ− φ∗)

n. (2.16)

To see the main effect of the local minimum in V (φ), let us focus on zero modes of the

fields, taking them independent of the x directions (the directions along the d-dimensional

slice). Our conclusions will not depend on this, as we will show by using a more detailed

systematic analysis in section 5. As already mentioned, we will work semiclassically, taking

κ2 → 0, so that the path integral (2.6) is dominated by saddle points.

Let us choose the UV boundary condition φ(LUV) = φ∗ and a(LUV) = ā(LUV). As a

warmup, consider first the scalar field on a fixed background warp factor ā(y). The path

integral for ΨUV will be dominated by the classical solution that describes the field rolling

on the inverted potential from φ̃ to φ∗ (with “Hubble” friction coming from the y-derivative

of the warp factor). This classical solution can be expanded in φ̃− φ∗:

φ(y) = φ∗ + φ1(y)(φ̃− φ∗) + φ2(y)(φ̃− φ∗)
2 + . . . (2.17)

with the first term encoding the fact that the solution becomes the constant φ(y) = φ̃ = φ∗
as the two boundary conditions φ̃ and φ∗ are brought together. When we plug this solution

back into the bulk action (2.2), each term depends on the fluctuation φ − φ∗ only via

quadratic terms and higher.9 This implies the following form for the semiclassical UV path

integral:

ΨUV(φ̃, L) = exp

{

− κ−2

∫

ddx ād(L)
√

ĝ

[

w0(L) +
1

2
w2(L)(φ̃− φ∗)

2 + . . .

]}

. (2.18)

In particular, there will be no linear term in φ̃ − φ∗ (i.e. w1 = 0). In section 4, we will

recover the same result in a systematic analysis by expanding the Hamilton-Jacobi equation

for the radial evolution of ΨUV.

9The counterterm Lagrangian LCT can be chosen so that it does not have a linear term in φ̃− φ∗.
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To obtain the holographic Wilsonian action, we plug ΨUV into the integral trans-

form (2.15). The saddle point solution is φ̃ − φ∗ = O
w2

+ . . . , where ‘. . . ’ denotes higher

powers of O. This leads to a Wilsonian action

s(O, L) =

∫

ddx ā(L)d
√

ĝ

(

w0(L)− φ∗O − 1

2w2(L)
O2 + . . .

)

, (2.19)

where ‘. . . ’ includes higher-order terms in O. In general, we can define a set of couplings

σn(L) by expanding the Wilsonian action in powers of O

s(O, L) =

∫

ddx ā(L)d
√

ĝ

∞
∑

n=0

1

n!
σn(L)On (2.20)

where σn(L) can be read off from (2.19). In particular, we note that σ1 = −φ∗ is indepen-

dent of L.

As a final step, let us rewrite this in standard field theory conventions, using

µL =
ā(L)

R
, OQFT =

ā(L)∆

R∆−(d+1)/2

O
κ
, TQFT = ā(L)d

T

κ2
(2.21)

to obtain a Wilsonian action of the form

κ−2s(OQFT, µL) =

∫

ddx
√

ĝ
∞
∑

n=0

(

Rd−1

κ2

)1−n/2
1

n!
σ̂n(L)µ

d−n∆
L On

QFT , (2.22)

where we have defined the dimensionless couplings σ̂n = R1−nσn following the usual con-

vention in quantum field theory. Their running as a function of µL defines beta functions.

Here the dimensions ∆ are obtained from the scalar masses using the standard AdS/CFT

dictionary; this applies to the de Sitter case as well by working in the low-energy region

where dS/dS reduces to AdS/dS [1, 2].10

If we consider multiple scalars, this result continues to hold in each direction in field

space with a local extremum; since the potential starts out quadratic there is no flow in the

single-trace coupling for the corresponding operator O. This will be useful in connecting

our results to UV complete uplifts of AdS/CFT [16], since it is significantly simpler to

obtain partial moduli stabilization than to work with a complete de Sitter construction.

From (2.19)–(2.22) we see that the single-trace coupling σ1 does not run: it is fixed

at −φ∗ and does not depend on L (or equivalently µL). Furthermore, the coefficient σn of

the On term in the Wilsonian action (2.20) is determined by wm’s with m ≤ n; this can

be seen by working out the saddle point solution for φ̃− φ∗ order by order in O. The wn

can themselves be determined order by order from the saddle point solution. Therefore, a

given coupling σn can be determined as a function of L once we know the lower ones σm<n,

indicating an iterative structure in the RG flow.

Both of the above results are substantial simplifications of the RG evolution. In stan-

dard functional RG in quantum field theory [18–20], the flow of a generic coupling gets

10Here we relate masses m to dimensions ∆ through the curvature radius, which we take to be the same

for dS and the fiducial AdS theory which reduces to it at low energies.
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contributions from both lower and higher dimension operators, and in matrix theories from

both higher- and lower-trace terms.

These results continue to hold when we include backreaction on the scale factor a(y, x).

In this case, the coefficients φi in the expansion (2.17) develop dependence on ã, but they

still have the property noted above that the solution is φ(y) = φ∗ if we take the boundary

condition φ̃ to φ∗. In addition, the classical solution for a(y) can also be expanded in

powers of φ̃− φ∗:

a(y) = a0(y) + a2(y)(φ̃− φ∗)
2 + . . . , (2.23)

where we have left implicit the dependence on the boundary condition ã. We note that

there is no linear term in (2.23). This is because the equation of motion for a(y) (i.e. the

second-order Friedmann equation in Euclidean signature) is sourced by V (φ) + 1
2φ

′(y)2,

which does not have a linear term in φ̃ − φ∗ when we use (2.17). As a result, the bulk

action (2.2) does not have any term linear in φ̃− φ∗, and the UV path integral (2.6) takes

the form

ΨUV(ã, φ̃, L) = exp

{

− 1

κ2

∫

ddx ãd
√

ĝ

[

w0(L, ã) +
1

2
w2(L, ã)(φ̃− φ∗)

2 + . . .

]}

, (2.24)

where the coefficient functions wn can be further expanded as

wn(L, ã) = wn0(L) + wn1(L)
(

ã− ā(L)
)

+ . . . (2.25)

with a generally nonzero linear term in ã − ā(L). As we will show in appendix A, this

linear term does not produce single-trace couplings for O. Therefore, we retain the feature

that the single-trace action for O is uncorrected under the holographic RG flow. In our

systematic analysis in sections 4 and 5, we will set up the equations determining the multi-

trace couplings, and note some further simplifications in their structure which result from

the maximal symmetry of the warp factor.

Nothing about this derivation depended on the sign of V∗ or the shape of the holo-

graphic screen, applying for arbitrary slicing a(y). Our main result is indeed that the

dS/dS dual theory living on dSD−1 must have special field content and interactions which

guarantee the cancellation of the β functions for single-trace couplings. At the same time,

multi-trace couplings do flow in a particular way, with the iterative structure mentioned

above. It will be very interesting to return to the brane construction of [3] to understand

how these special features come about there. More generally, one may be able to use

this structure to construct new theories with the right properties to provide duals for the

de Sitter static patch.

Such dual theories, however, are likely to be ultimately incomplete because of non-

perturbative decays of de Sitter space. In section 6 we will see this in the holographic

RG itself due to additional solutions (related to ‘bounce’ solutions in instanton physics)

which contribute to the path integral and lead to imaginary contributions to the Wilsonian

action. This is in accord with the arguments [4, 9] that a complete description of de Sitter

space must ultimately include its decays. There is a precedent for such behaviors already
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in the study of AdS/CFT and warped compactifications: freely-acting supersymmetry-

breaking orbifold theories [23–25] are only perturbatively stable. When we impose a cut-

off by embedding them in a warped compactification, these theories are metastable; they

survive for exponentially long (as a function of large inverse couplings) but ultimately decay.

Although not completely self-contained, their field content and couplings are known, given

by specific quiver gauge theories. It would be interesting to use the results of the present

paper to constrain the specific field content and couplings of the analogous theories dual

to the de Sitter static patch.

3 Operator relations and counterterms

Let us analyze further the role of the warp factor a(y, x) and its dual operator T , the

trace of the stress-energy tensor, exhibiting their redundancy in the holographic Wilsonian

RG. This will clarify the general framework, reproducing the trace anomaly for AdSD and

leading to a simple result for the dSD case.

From the construction introduced above, correlation functions of T (and O when it is

nontrivial) are given by (using (2.14))

〈TnOm〉 = 1

Z

∫

DãDφ̃ΨUV

(

1

ā(L)d−1
√
ĝ

δ

δã

)n( 1

ã(L)d
√
ĝ

δ

δφ̃

)m

ΨIR . (3.1)

One may analyze this directly in terms of ΨUV, related to the Wilsonian action by a

Legendre transform, or in terms of the Wilsonian action itself. In writing (3.1), we must

keep in mind that only low-energy modes of the operators T and O are to be inserted,

as specified in (2.14). In particular, it is important to study low-energy correlators which

can be reliably computed after having done the path integration over UV modes which led

to ΨUV.

We could use the relation between bulk and boundary observables derived in [26, 27]

to construct low-lying operators very precisely. The smeared operators defined in [26, 27]

correspond to bulk fields; these are QFT operators O convolved with their corresponding

bulk-to-boundary propagator to give φ(x, y) =
∫

dyddx′K(x−x′, y)O(x′). If we insert these

fields into the path integral in the IR region y < L of our geometry, they do not affect the

path integration over the UV region y > L at all. Therefore, correlators of the smeared

operators provide explicit low-energy observables which are precisely calculable after inte-

grating out the UV modes in the holographic Wilsonian RG. Analyzing these correlators

in detail would require folding in the appropriate bulk-to-boundary propagators, including

mixing between scalars and the warp factor. Because the Wilsonian prescription defined

above yields exactly the same path integral calculating these observables as one gets using

the usual AdS/CFT dictionary (since the insertions do not interfere with the Wilsonian

order of integration), this calculation will automatically precisely yield the correct trace

anomaly.

More generally, even if we do not define the low-lying modes precisely in this way,

correlators of low-energy modes of the operators must satisfy the correct operator identities

up to corrections arising as a power series in (energy/µL). We can see this directly from our
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prescription in section 2. With our counterterm prescription in place, ΨIR is the partition

function for the QFT cut off at the scale µL (and ΨUV approaches δ(ã−aUV)δ(φ̃−φUV) as

µL → ∞). ΨIR necessarily generates the appropriate operator relations as we take µL → ∞
relative to the energy scale at which we work, since in that limit we recover the standard

AdS/CFT partition function (the latter was analyzed explicitly in [21]).

3.1 (A)dS3/X2 case

It is interesting to see how this works explicitly in the simplest cases. Let us work it out

for d = 2, starting with a fixed scalar background φ = φ∗, where φ∗ is an extremum of

the bulk potential V (φ). In d = 2, the bulk action (2.2) restricted to the d-dimensional

zeromodes becomes quadratic in the scale factor a, and we can easily obtain the UV and IR

amplitudes by explicitly evaluating the path integrals (2.6) and (2.9), which are Gaussian

for this case. We will then determine the required counterterm Lagrangian, following [21]

for the AdSD case and using symmetries in the dSD case. From this, we can determine the

correlation functions of T at scales below µL and check that T is redundant.

In d = 2, the bulk action (2.2) without counterterms at fixed φ = φ∗ becomes

S(0) =

∫

dy

∫

d2x
√

ĝ

[

−
(

∂a

∂y

)2

+ a2V∗ −
1

2
R̂
]

, (3.2)

with the y integral ranging from 0 (or −∞) to L for ΨIR, and from L to LUV for ΨUV. We

would first like to compute the path integral (2.9) for ΨIR with the boundary condition

a(L) = ã. We will focus on the zero mode, assuming ã to be independent of x, but

higher harmonics in the x directions work via similar Gaussian integration.11 Since the

bulk action S is quadratic in a with a wrong-sign kinetic term, we implicitly use the

prescription that rotates the integration contour a → ia on the complex plane, so that the

path integral becomes convergent. The integral is then given by the action evaluated at the

unique classical trajectory (satisfying the equations of motion including the Hamiltonian

constraint with the boundary condition just noted).

Let us begin by considering the simplest case of Poincaré AdS/CFT, for which we wish

to recover the standard result that the trace of the stress-energy tensor vanishes: we should

find that T = 0 in correlation functions at least for low-energy modes of T . In this case

the appropriate classical solution is

a(y) = ãe(y−L)/R , (3.3)

where the AdS radius R is related to V∗ by V∗ = −d(d − 1)/2R2. From this one finds (in

the limit κ2 → 012) [22]

Ψ
(0)
IR [ã] = exp

{

1

κ2R

∫

d2x
√

ĝ ã2
}

(3.4)

11Decomposing these into eigenmodes of the d-dimensional Laplacian shows that their effect can be

packaged as additional terms in a2V (φ = φ∗) which are extremized when the higher harmonics vanish.
12As long as we are working in this limit we can ignore the prefactor from the functional determinant,

which is independent of ã. The path integral can then be evaluated in arbitrary dimension, although the

counterterms in eq. (3.6) will be more complicated.
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As we take the limit ã → aUV → ∞, ΨIR approaches the partition function of the dual field

theory, and the bare term (3.4) diverges. In order to preserve conformal invariance, we

must introduce a local counterterm Lagrangian which precisely cancels this, a special case

of the counterterm Lagrangian derived in [21]. From that, we see immediately from (3.1)

that correlators of T vanish, since after including the counterterm ΨIR is independent of ã.

Next, let us compute the IR amplitude for the other cases of interest and do a similar

analysis. For AdS3/dS2 we find

ΨIR[ã] = exp

{

1

κ2R

∫

d2x
√

ĝ
(

ã
√

1 + ã2 + arcsinh ã
)

− SCT[ã]

}

. (3.5)

Since the dual CFT lives on dS2, it should have TQFT = c
24πRdS2 where c is the central

charge, and the relation between T and TQFT is specified in (2.21). Note that for large

ã → aUV, (3.5) can be expanded as

ΨIR[ã] = exp

{

1

κ2R

∫

d2x
√

ĝ

(

ã2 + log(2ã) +
1

2
+ . . .

)

− SCT[ã]

}

, (3.6)

where ‘. . . ’ represents terms of order 1/ã2 and higher. From the Poincaré case just covered,

we know that SCT contains a term cancelling the ã2 divergence. In fact, aside from the

logarithmic term, each term in the series can be cancelled by a choice of SCT which takes

the form of an expansion in local curvature invariants divided by powers of µL. The

logarithmic term gives rise to the standard conformal anomaly.

Now for dS3/dS2 we obtain

ΨIR[ã] = exp

{

1

κ2R

∫

d2x
√

ĝ
(

ã
√

1− ã2 + arcsin ã
)

− SCT[ã]

}

. (3.7)

In order to proceed, we need to understand SCT. In the de Sitter static patch, the full ge-

ometry contains two warped throats (1.1), and dynamical d = 2 gravity (Liouville theory).

The two matter sectors are isomorphic, but a nonzero counterterm action would break that

symmetry: the path integral for one side would be multiplied by exp(+SCT), while that for

the other side would be multiplied by exp(−SCT). The only consistent possibility is then

SCT = 0 (dS case) . (3.8)

Given that, we see immediately from (3.7) that as we go to the UV slice, ã → 1, the first

derivative of ΨIR with respect to ã approaches zero, and we obtain

〈T 〉 = 0 (dS case) . (3.9)

This is exactly what is expected for matter coupled to Liouville gravity: overall this is a

CFT with zero central charge. This result was obtained in several different ways previously

in [1, 2, 4].13 In appendix B we will calculate ΨUV and the Wilsonian action for this simple

case.14

13We stress once more that we are studying properties of the matter sector coupled to gravity in the dual,

and while D− 1 dimensional gravity appears here as a constraint on this theory, we are not considering the

full dynamics of lower-dimensional gravity, and the cutoff scale Λ ∼ 1/R is far below the D− 1 dimensional

Planck scale.
14Because we can.
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4 General framework and Hamilton-Jacobi analysis

The preceding sections established the main consequences of moduli stabilization for the

RG evolution of the holographic dual by performing the bulk path integral. In this and

the next sections we will study an equivalent framework based on the Hamilton-Jacobi

formulation. This approach turns out to be helpful for deriving β functions that include

multitrace couplings and backreaction. The formulation also makes contact with QFT

language, and it potentially suggests a new way of organizing the RG of the dual.

In this section we will extend the framework for holographic Wilsonian RG of [10]

to general curved slicings of a maximally symmetric D-dimensional space. The metric is

chosen to be of the form

ds2D = dy2 + gµν(y, x)dx
µdxν , gµν(y, x) = a(y, x)2ĝµν (4.1)

where ĝ is the metric of the d-dimensional slice (d ≡ D − 1). This general structure will

be applied to AdSD and dSD bulk geometries with different warp factors and slicings in

section 5. It will be useful to study the RG evolution of both the UV partition function ΨUV

and the Wilsonian action introduced in (2.15); a similar situation arises for functional RG

in QFTs, which can be formulated in terms of the microscopic action or the 1PI effective

action [18–20].

4.1 Scalar on a fixed background

We begin by considering a scalar field φ(y, x) in a fixed background (4.1) with a(y, x) =

ā(y), neglecting the backreaction of the scalar field; backreaction on the metric will be

taken into account below.

In order to determine the radial evolution of the UV amplitude, it is useful to begin

from the bare version of the amplitude Ψ
(0)
UV; recall from section 2 that the two are related by

ΨUV(φ̃, ã, L) = eκ
−2SCT[φ̃,ã]Ψ

(0)
UVe

−κ−2SCT[φUV,aUV] (4.2)

where SCT =
∫

ddx
√
gLCT. Here ã = ā(L) because the background is fixed; later we will

include backreaction of the scalar on ã. For a scalar field with Euclidean action

S(0) =

∫

dyddx ād
√

ĝ

{

1

2

(

∂φ

∂y

)2

+
1

2ā2
ĝµν∂µφ∂νφ+ V (φ)− 1

2
R̄(D)

}

, (4.3)

the radial evolution is governed by a radial Schrödinger equation

κ2∂LΨ
(0)
UV(φ̃, L) = H(0)(φ̃, π̃φ)Ψ

(0)
UV(φ̃, L) (4.4)

with the Hamiltonian15

H(0)(φ̃, π̃φ) =

∫

ddx
√

g̃

(

1

2
π̃2
φ +

1

2
g̃µν∂µφ̃∂ν φ̃+ V (φ̃)− 1

2
R̄(D)

)

. (4.5)

15Our definition of momentum in Euclidean signature is π̃φ = i 1√
g̃

∂L
∂φ̃,y

and H =
∫

ddx
√
g̃(i

√
g̃ π̃φφ̃,y+L).

Quantizing the theory according to [φ̃(x), π̃φ(x
′)] = iκ2 δ(d)(x−x′)√

g̃
then gives π̃φ = −iκ2 1√

g̃

δ

δφ̃
.
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Here π̃φ = −iκ2 1√
g̃

δ
δφ̃

is the (covariant) canonical momentum, g̃µν = ã2ĝµν , and R̄(D) is

the background D-dimensional Ricci scalar.

Given this, the radial evolution of the UV amplitude including counterterms becomes

κ2∂LΨUV(φ̃, L) = H(φ̃, π̃φ)ΨUV(φ̃, L) (4.6)

with the new Hamiltonian

H = eκ
−2S̃CTH(0)e−κ−2S̃CT + ∂LS̃CT . (4.7)

Note that only the counterterm S̃CT ≡ SCT(φ̃, ã) contributes to the evolution of the am-

plitude; SCT(φUV, aUV) cancels out from this equation. Also, ∂LS̃CT appears because the

background ã = ā(L) contains explicit L dependence. This term will be absent once we

include backreaction on the scale factor.

Commuting the e−κ−2S̃CT factor to the left of H(0) has the effect of replacing π̃φ by

π̃φ + i√
g̃
δS̃CT

δφ̃
in (4.5). Therefore the new Hamiltonian (4.7) becomes

H(φ̃, π̃φ) =

∫

ddx
√

g̃

[

1

2

(

π̃φ +
i√
g̃

δS̃CT

δφ̃

)2

+
1

2
g̃µν∂µφ̃∂ν φ̃+ V (φ̃)− 1

2
R̄(D)

+ (∂L + d∂L log ã)L̃CT

]

. (4.8)

Writing the UV amplitude as

ΨUV(φ̃, L) = exp
(

− κ−2WUV(φ̃, L)
)

, WUV(φ̃, L) =

∫

ddx
√

g̃ w(φ̃, L) , (4.9)

and taking the semiclassical limit κ2 → 0, the Schrödinger equation (4.6) becomes a

Hamilton-Jacobi (HJ) equation for WUV

∂LWUV = −H

(

φ̃,
i√
g̃

δWUV

δφ̃

)

. (4.10)

If we restrict to the zero mode of φ̃ on the d-dimensional slice, the HJ equation for w can

be further simplified to

(∂L + d∂L log ã)(w + VCT) =
1

2

(

∂

∂φ̃
(w + VCT)

)2

− V (φ̃) +
1

2
R̃(D) . (4.11)

Here VCT is the zero-derivative term in LCT. Thus, w+VCT satisfies the same HJ equation

as the bare w(0), consistent with (4.2) and the fact that the counterterm at LUV does not

contribute to the radial evolution.

The Wilsonian action s(O, L) is determined in terms of the integral transform (2.15).

For a scalar field on a fixed background, the integral transform is simply

exp
(

− κ−2s(O, L)
)

=

∫

Dφ̃ΨUV(φ̃, L) e
κ−2

∫
ddx

√
g̃ φ̃O. (4.12)
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Using this and (4.6), we can also derive an equation governing the radial evolution of s

directly:

κ2∂Le
−κ−2s(O,L) =

[

H

(

κ2√
g̃

δ

δO , iO
)

+ (d∂L log ã)

∫

ddxOκ2
δ

δO

]

e−κ−2s(O,L) , (4.13)

with the extra term on the right hand side coming from the derivative acting on
√
g̃

in (4.12). Restricting as before to the zero mode and taking the semiclassical limit κ2 → 0,

the Wilsonian Lagrangian σ defined by

s(O, L) =

∫

ddx
√

g̃ σ(O, L) (4.14)

evolves according to

∂Lσ + d∂L log ã

(

σ −O ∂σ

∂O

)

=
1

2

[

O + V ′
CT

(

− ∂σ

∂O

)]2

− V

(

− ∂σ

∂O

)

+
1

2
R̃(D)

− (∂L + d∂L log ã)VCT

(

− ∂σ

∂O

)

. (4.15)

Of course, in the semiclassical limit the path integral ΨUV can be evaluated directly

by plugging in the classical solution between LUV and L with the appropriate boundary

conditions, and σ follows from the integral transform (2.15). This was the more direct

approach already used in sections 2 and 3.

4.2 Including backreaction

Having obtained the RG equation for the Wilsonian action of a single operator O (and its

multi-trace deformation), let us now add backreaction on the metric. The metric gµν is

dual to the QFT stress tensor Tµν , so allowing for a dynamical metric amounts to taking

into account the effects of interactions between O and Tµν . For simplicity we restrict to a

minisuperspace analysis, and only analyze the scale factor a dual to the trace of the stress

tensor T .

As before, the radial evolution for ΨUV is obtained from that of Ψ
(0)
UV after taking into

account the effects of the counterterm S̃CT. Setting the lapse to one and the shift to zero,

the bare ADM Hamiltonian for the scale factor and scalar field is

H(0)(φ̃I , π̃I) =

∫

ddx
√

g̃

(

− 1

2d(d−1)
ã2π̃2

a+
1

2
π̃2
φ+

1

2
g̃µν∂µφ̃∂ν φ̃+V (φ̃)− 1

2
R̃(d)

)

, (4.16)

where g̃µν(x) = ã(x)ĝµν(x) is the induced d-dimensional metric, and R̃(d) is its Ricci scalar

containing the last two terms in (2.3). We also use φ̃I to denote φ̃ and ã. The canonical

momenta are given by π̃I = −iκ2 1√
g̃

δ
δφ̃I

. As discussed in [10], the Hamiltonian constraint

should not be imposed on Ψ
(0)
UV.

Writing Ψ
(0)
UV in terms of ΨUV and the counterterms leads to the evolution equation

κ2∂LΨUV(φ̃I , L) = H(φ̃I , π̃I)ΨUV(φ̃, L) , H = eκ
−2S̃CTH(0)e−κ−2S̃CT . (4.17)
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Note that S̃CT = SCT(φ̃I , ã) is independent of L because ã is taken to be dynamical —

the term ∂LS̃CT found before in (4.7) is now absent. From this point, the derivation

continues analogously as in section 4.1. The effect of the counterterm is to shift the

canonical momenta,

H(φ̃I , π̃I) =

∫

ddx
√

g̃

[

− 1

2d(d− 1)
ã2
(

π̃a +
i√
g̃

δS̃CT

δã

)2

+
1

2

(

π̃φ +
i√
g̃

δS̃CT

δφ̃

)2

+
1

2
g̃µν∂µφ̃∂ν φ̃+ V (φ̃)− 1

2
R̃(d)

]

. (4.18)

The radial evolution of the UV free energy WUV = −κ2 logΨUV is then given in the

semiclassical limit κ2 → 0 by the HJ equation

∂LWUV = −H

(

φ̃I , i
1√
g̃

δWUV

δφ̃I

)

, (4.19)

where the ordering ambiguity between ã and π̃a in (4.16) and (4.18) goes away. This implies

that WUV + S̃CT evolves with the bare hamiltonian H(0), as expected.

The dependence on the zero modes of ã and φ̃ can be more easily analyzed in terms

of the density w defined as

WUV(ã, φ̃, L) =

∫

ddx
√

g̃ w(ã, φ̃, L) . (4.20)

The evolution equation for w + VCT is then the same as that of the bare w(0),

∂L(w + VCT) = − 1

2d(d− 1)
ã2
(

∂

∂ã
(w + VCT)

)2

+
1

2

(

∂

∂φ̃
(w + VCT)

)2

− V (φ̃) +
1

2ã2
R̂ ,

(4.21)

where we have used R̃(d) = R̂/ã2 at the level of zero mode analysis. (4.21) is the general-

ization of (4.11) for the case of a dynamical scale factor. (For this reason, in this expression

there is no term proportional to ∂L log ã; we also added ∂LVCT = 0 to the left hand side,

to have the equation in terms of w + VCT).

In the presence of a dynamical scale factor, the Wilsonian action depends on both O
and the trace of the stress tensor T . At the linear order, the coupling between the metric

and stress tensor on a surface y = L is

1

2

∫

ddx
√

g̃ δg̃µν T
µν + . . . =

∫

ddx
√

g̃

(

δã

ã
+ . . .

)

(g̃µνT
µν) . (4.22)

The ‘. . .’ are higher order terms that are needed such that the usual relation

Tµν =
2√
gUV

δ logZ

δgµνUV

is obtained. In all, the Wilsonian Lagrangian σ(T,O, L) is given in terms of w(ã, φ̃, L) by

exp

(

− 1

κ2

∫

ddx
√

ḡ(L)σ

)

=

∫

Dφ̃Dã exp

(

− 1

κ2

∫

ddx
√

g̃

[

w −
(

δã

ã
+ . . .

)

T − φ̃O
])

.

(4.23)
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This is the functional that should be compared with the Wilsonian action of the QFT

dual, for the case with single- and multi-trace interactions for both O and the trace of the

stress tensor T = g̃µνT
µν . As before, instead of performing the integral transform of w,

one can derive a HJ equation for σ itself.

5 Moduli stabilization and holography for (A)dSD

We are now ready to apply the general techniques developed in section 4 to maximally

symmetric AdSD and dSD solutions. Our goal is to determine the consequences of moduli

stabilization V ′(φ∗) = 0 for the structure of the interactions in the holographic dual. We

will focus on the functional WUV(ã, φ̃, L), whose HJ equation is simpler than that of the

Wilsonian action.

5.1 RG flow in the zero mode sector

Before studying the full problem, as a warmup let us first analyze the RG flow restricted to

the zero mode sector. For simplicity in this section we will shift φ such that the minimum

of the potential occurs at φ = 0; i.e. we take φ∗ = 0.

Ignoring backreaction on the metric, the RG equation is given by (4.11). While it

is hard to find exact solutions, we will work around the minimum of the potential and

find a series solution in powers of φ̃. Furthermore, the counterterm potential VCT will

be chosen to respect the critical point, V ′
CT(0) = 0. We first solve the HJ equation for

ŵ(φ̃, L) ≡ w(φ̃, L) + VCT(φ̃, L) and then translate to w.

In terms of the series

V (φ̃) =
∞
∑

n=0

1

n!
V

(n)
∗ φ̃n, ŵ(φ̃, L) =

∞
∑

n=0

1

n!
ŵn(L)φ̃

n, (5.1)

we may organize the HJ equation (4.11) order by order as

(∂L + d∂L log ã)ŵ0 =
1

2
ŵ2
1 − V∗ , (5.2)

(∂L + d∂L log ã)ŵ1 = ŵ1ŵ2 − V ′
∗ , (5.3)

(∂L + d∂L log ã)ŵ2 = ŵ2
2 + ŵ1ŵ3 − V ′′

∗ , (5.4)

· · ·

(∂L + d∂L log ã)ŵn =
1

2

n
∑

m=0

n!

m!(n−m)!
ŵm+1ŵn−m+1 − V

(n)
∗ , (5.5)

where V
(n)
∗ ≡ V (n)(0).

These general results are valid as long as φ̃ remains small. We now impose that the

modulus is stabilized at φ̃ = 0, namely V ′(0) = 0. This consistently allows ŵ1 = 0

to be a solution to (5.3), with any maximally symmetric d-dimensional slicing. The HJ

equations can then be solved iteratively, with the equation involving ∂Lŵn depending only

on coefficients ŵm with m ≤ n. Choosing the counterterm such that V ′
CT(0) = 0, the same

properties apply to the generating function w(φ̃, L).
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For AdSD in flat slicing, we have a stronger statement that the function w(φ̃, L) is

actually independent of L. This is because the scale factor ã = eL gives ∂L log ã = 1,

allowing us to set the right hand side of the HJ equations (5.5) to zero and solve for ŵn

(and hence for wn) algebraically. The first few coefficients in this case are

ŵ0 = −V∗
d

, ŵ2 = ∆± ≡ d

2
±
√

d2

4
+ V ′′

∗ , ŵ3 =
V

(3)
∗

3∆± − d
, · · · (5.6)

However, for (A)dSD with dSD−1 slices it is no longer consistent to impose ∂Lw = 0

because ∂L log ã is L-dependent. In the AdSD/dSD−1 case, this is explained by noting that

the dual CFT lives on a curved background dSD−1, which breaks explicitly the conformal

invariance.16 Nevertheless, we can still set w1 = 0 and solve (5.5) iteratively.

The Wilsonian action can be derived from the integral transform of w or from (4.15).

The expansion in powers of φ̃ corresponds to an expansion in powers of the dual operator O

σ(O, L) =
∞
∑

n=0

1

n!
σn(L)On, (5.7)

where σn is identified with the n-th multi-trace coupling at a certain cutoff scale µL in the

holographic dual. The HJ equation shows that if V ′(0) = 0, there is a constant solution

σ1 = 0 and, precisely in this case, the dependence of ∂Lσn on higher σm>n cancels. This

allows for an iterative solution, where the equation for ∂Lσn depends only on σm≤n.

Equivalently, as explained in section 2, in the semiclassical limit the integral trans-

form (4.12) is dominated by the saddle point solution O = ∂w/∂φ̃. The point is that since

w1 = 0, there is an order by order solution that starts linear in O,

φ̃ =
1

w2
O − w3

2w3
2

O2 + · · · , (5.8)

and φ̃ ∝ O at leading order implies that the single trace coupling σ1 = 0. The first few

orders relating σ to the wn are then

σ(O, L) = w0(L)−
1

2w2(L)
O2 +

w3(L)

6w3
2(L)

O3 + · · · (5.9)

As before, except for the case of Poincaré AdS, only the single-trace coupling does not run,

with the multi-trace ones having a nontrivial dependence on the RG scale µL.

This analysis was in the limit of a fixed background. Backreaction on the metric can

be incorporated by making wn a function of ã:

w(ã, φ̃, L) =
∞
∑

n=0

1

n!
wn(ã, L)φ̃

n, (5.10)

16Note that as is familiar from AdS/CFT, reality of operator dimensions and of ŵ2 implies that the scalar

potential satisfies the Breitenlohner-Freedman bound [28, 29]. In the de Sitter case, we require V ′′ > 0 to

avoid perturbative instability on the gravity side, and since the d-dimensional couplings are dynamical any

instability in the bulk will translate to an instability on the d-dimensional side.
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and then solving (4.21). We will give more details of the case with dynamical metric below,

and here just note that if the modulus is stabilized, there is still a consistent solution with

w1 = 0. Choosing this then implies that the equation for ∂Lwn (which is now a PDE) only

depends on the lower wm≤n. Similar results apply to the Wilsonian action, where now the

coefficients σn are functions of T and L.

5.2 Wilsonian generating functional

Having understood the RG flow restricted to the zero mode sector, let us now discuss the

full functional WUV including sources for O and for the trace of the stress tensor.17 It

satisfies a Callan-Symanzik type equation

∂LŴUV =

∫

x

[

− 1

2d(d−1)

(

ã√
g̃

δŴUV

δã

)2

+
1

2

(

1√
g̃

δŴUV

δφ̃

)2

− 1

2
g̃µν∂µφ̃∂ν φ̃− V (φ̃) +

R̃(d)

2

]

(5.11)

where we have introduced the combination ŴUV ≡ WUV + S̃CT, and the integral symbol

contains the volume factor ddx
√
g̃.

We will solve this equation in an expansion in powers of φ̃(x) around the minimum of

the potential:

WUV(φ̃, ã, L)=W (0)(ã, L)+

∫

x
W (1)(x; ã, L)φ̃(x)+

1

2

∫

x1,x2

W (2)(x1, x2; ã, L)φ̃(x1)φ̃(x2)+ . . . ,

(5.12)

with a similar expansion for S̃CT. Here, each coefficient W (n) is a functional of the dynam-

ical scale factor. The equation satisfied by W (n) is obtained by taking the nth functional

derivative of (5.11) with respect to φ̃, and then evaluating the expression at φ̃ = 0. To

avoid cluttering our formulas, in what follows the dependence on ã and L is kept implicit.

At zeroth order, we find

∂LŴ
(0) =

∫

x

[

− 1

2d(d− 1)

(

Dã(x)Ŵ
(0)

)2
+

1

2
Ŵ (1)(x)2 − V (0) +

1

2
R̃(d)

]

, (5.13)

with the shorthand notation Dã(x) ≡ ã√
g̃

δ
δã . The first order coefficient, which determines

the running of the single trace operator, satisfies the equation

∂LŴ
(1)(x1) =

∫

x

[

− 1

d(d− 1)
Dã(x)Ŵ

(0)Dã(x)Ŵ
(1)(x1) + Ŵ (1)(x)Ŵ (2)(x, x1)

]

− V ′(0) .

(5.14)

At second order,

∂LŴ
(2)(x1, x2) =

∫

x

[

− 1

d(d−1)

(

Dã(x)Ŵ
(1)(x1)Dã(x)Ŵ

(1)(x2)+Dã(x)Ŵ
(1)(x)Dã(x)Ŵ

(2)(x1, x2)
)

+Ŵ (2)(x, x1)Ŵ
(2)(x, x2)+Ŵ (1)(x)Ŵ (3)(x, x1, x2)

]

+
(

�̃x1
−V ′′(0)

)

δd(x1−x2)

and similarly for the higher order coefficients.

17A source for the traceless part of the stress tensor can be treated similarly to the source for O, by

adding a term
(

1√
g̃

δŴUV

δh̃µν(x)

)2
to the HJ equation, where h̃µν is a traceless metric fluctuation.
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Now we impose the condition that the modulus is stabilized. Then, (5.14) is solved

by Ŵ (1)(x; ã, L) = 0. Choosing the counterterm to preserve this critical point (S̃(1)
CT = 0),

we deduce that the first order coefficient W (1) = Ŵ (1) − S̃(1)
CT of the generating functional

vanishes identically. In this case, the Callan-Symanzik equation for W (2) depends only on

W (0) and W (1). This iterative structure continues to hold for the higher W (n).

For stabilized moduli, computing the Wilsonian action as the integral transform of

WUV shows that the single-trace couplings in the dual QFT do not run, and that higher-

trace couplings only depend on lower-trace ones, with a specific L dependence that encodes

the simple shape of the bulk warp factor. This implies important simplifications for the

Wilsonian RG flow of the QFT, suggesting a new way of organizing the path integral.

6 Metastability

In this section we briefly consider the implications of the metastability of V (φ) in cases such

as dS (and a subset of perturbative AdS solutions) where this occurs. The basic effect it has

for the holographic RG is to introduce imaginary contributions into the Wilsonian action.

This seems reasonable, reflecting the fact that the theory is not unitary by itself if it decays

— more degrees of freedom are required to capture the decay product [4, 9].18 It provides

an interesting new application of basic instanton technology to the holographic RG.

For simplicity let us analyze the scalar on a fixed dSD background; we expect the

backreacted case to work similarly as happened in the perturbative analysis in the previ-

ous sections. Formally ΨUV, which determines the Wilsonian action, is like a transition

amplitude

ΨUV[φ̃, L] = 〈φ∗|R
(

e−
∫ LUV
L

H
)

|φ̃〉 (6.1)

satisfying the radial Schrödinger equation. Here we put the UV value of φ at the local

minimum, φUV = φ∗, and R denotes radial-coordinate ordering.

We will continue to use a semiclassical (κ2 → 0) limit to control the calculations. There

are contributions to ΨUV from classical solutions to the φ field equation which start at φ∗ at

the UV slice and end at φ̃ at the slice y = L, times a determinant K from integrating over

the fluctuations about each solution. Since we are doing radial rather than time evolution,

the equation for the mode of φ which is homogeneous along the dSD−1 is equivalent to the

equation for a particle rolling on the inverse of our potential, −V (φ), with a friction term

from the warp factor.

This is isomorphic to the equation governing instanton solutions for fields on dSD, but

here the interpretation will be different. In instanton physics, one formally computes the

imaginary part of the ground state energy and infers from it a decay rate. In our case, a

somewhat similar computation should give the imaginary part of WUV and the Wilsonian

action: schematically

ΨUV[φ̃, L] = e−WUV,pert[φ̃,L] +
∑

e−Winst[φ̃,L]K[φ̃, L] (6.2)

18Another effect of the metastability of V (φ) is simply to introduce CdL decays in the D − 1 gravity

+ matter dual theory to dSD, but here we are focusing on what it says about the holographic Wilsonian

effective action in each throat QFT.
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with the determinant K being imaginary for fluctuations about a single instanton solution.

As for instantons, we will be justified in considering non-perturbatively small contributions

without first summing all perturbative effects because the nonperturbative effects will be

the leading contribution to the imaginary part of the action.

We are in the false vacuum in the UV. At the slice y = L we could be in the basin of

attraction of the false or true vacuum, or right at the extremum between them, depending

on φ̃. At the perturbative level we focused on the behavior near the local minimum φ∗,

where ΨUV is approximately Gaussian. To start we could consider that regime here, mean-

ing that at slice y = L the field is in the basin of attraction of the original false vacuum. In

addition to the original solution φ = φ∗, there can be bounce solutions in which the field

goes to the other basin and comes back, in general doing so multiple times. In particular,

we could consider for simplicity the case that the potential admits bounce solutions which

are thin compared to the curvature scale of the dSD, which reduces the problem to simple

particle mechanics on the inverted potential without a significant friction term, the simplest

case in [30]. For φ̃ = φ∗, the action for such solutions will be the standard bounce action,

with imaginary K from the negative mode. For our purposes, we are also interested in

more general configurations φ̃ 6= φ∗, and we expect these also generate a complex effective

theory at a nonperturbatively suppressed level.

7 Summary and future directions

In the present work we have related the statement that all moduli are stabilized in (A)dSD
to the property that single-trace couplings in the Wilsonian effective action for the holo-

graphic dual theory living on dSD−1 have vanishing β functions. This result applies equally

well to perturbatively stable de Sitter and anti-de Sitter solutions. In both cases the RG

also exhibits the simplifying feature that multiple trace terms are determined by lower

trace ones. It extends also to cases where moduli stabilization is incomplete: there the

single-trace β functions vanish for each operator dual to a perturbatively stabilized direc-

tion. In the metastable case with non-perturbative decays, the Wilsonian action exhibits

the expected breakdown in unitarity at a non-perturbatively suppressed level, reflecting

the need for additional degrees of freedom to capture its decay to a more general FRW

background.

Further, in analyzing the correlators of the trace T of the stress-energy tensor, we

found that the joining of the two warped throats comprising the causal patch of de Sitter

fixes the (otherwise arbitrary) counterterm Lagrangian to zero, leading to a clean result

that T = 0 in the de Sitter case. This is exactly what is expected from the coupling of

the matter sector to dynamical gravity (Liouville in d = D − 1 = 2), agreeing with earlier

calculations [1, 2, 4].

These features and others developed in [1–3] hang together, indicating a consistent

framework for de Sitter spacetime. The vanishing of the single-trace beta functions should

provide strong guidance in developing concrete dual theories further. It will be interesting

to understand this from a more microscopic perspective in simple brane constructions which

uplift the potential and metastabilize one or more of the moduli [16]. We would also like to
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understand it in the concrete brane construction in [3] and to use it as a strong constraint

on the content and couplings of new examples of de Sitter duals. Additional macroscopic

calculations, such as correlation functions in each throat theory, also help constrain the

duals and may define them in the large-N limit, at least for the low-dimensional cases

where gravity just provides a constraint.

It also remains of interest to understand the role of the global eternally inflating ge-

ometry; see [31, 32] for some recent works on this subject. The observer patch is all that

is operationally accessible, and it is possible that the global correlation functions do not

contain additional information [33, 34]. In any case, there is much to do to flesh out the

holographic (re-)construction observables in de Sitter and FRW geometries.
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A Treating the term linear in δã

In this appendix, we show that the linear term w01δã in ΨUV does not produce single-trace

couplings for O. In particular, we will see that w01 removes the unit operator part of T in

just the right way, so that at the saddle point solution δã is replaced by (a combination

of) multi-trace operators.

Let us start by writing WUV = κ2 logΨUV as a double expansion

WUV(ã, φ̃, L) =

∫

ddx ā(L)d
√

ĝ
∞
∑

m,n=0

1

m!n!
wmn(L)(δφ̃)

m(δã)n, (A.1)

where as before δφ̃ = φ̃ − φ∗, δã = ã − ā(L). Note that we have chosen to have ā(L)d in

front of the sum, putting all ã-dependence into the expansion. To obtain the Wilsonian

action, we perform an integral transform (2.15):

exp
(

− κ−2s(O, L)
)

=

∫

DãDφ̃ΨUV(φ̃, ã, L) e
κ−2

∫
ddx

√
ĝ[ãdφ̃O+ā(L)d−1δã T+...] . (A.2)

The saddle point that dominates this integral can be obtained by solving

O = w20δφ̃+ (higher orders in δφ̃, δã) , (A.3)

T

ā(L)
= w01 + w02δã+ (higher orders in δφ̃, δã) , (A.4)

where we have used the fact that there is no term linear in δφ̃ (i.e. w10 = 0).
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The trace of the stress-energy tensor is a redundant operator; it may be written in

the form

T = T0 + βiOi + (multi-trace operators) , (A.5)

where T0 denotes the part of T that is proportional to the unit operator, and it may be

found by varying WIR with respect to ã a little away from the background solution:

T0 = − 1

ā(L)d−1
√
ĝ

δWIR(ã, φ̃, L)

δã

∣

∣

∣

∣

ã=ā(L), φ̃=φ∗

. (A.6)

This is consistent with the postulate (2.14) about ΨIR, where T0 can be thought of as the

expectation value of T when the source fluctuations δφ̃, δã are turned off.

We wish to relate T0 to the linear term w01. To achieve this, we note that at the

semiclassical level, we must have

1

Z

∫

DãDφ̃ΨUVΨIR ã = ā(L) . (A.7)

This means that the exponent WUV +WIR must be stationary at the background solution:

δ(WUV +WIR)

δã

∣

∣

∣

∣

ã=ā(L), φ̃=φ∗

= 0 , (A.8)

which immediately leads to a relation between T0 and w01:

T0 = w01ā(L) . (A.9)

Plugging this into (A.4), we find that the saddle point for (A.2) can be consistently

solved to be

δφ̃ =
O
w20

+ . . . , δã =
T − T0

w02ā(L)
+ . . . . (A.10)

Substituting this saddle point solution into (A.2), we find that the terms linear in T − T0

cancel. Since terms quadratic in T − T0 or higher are multi-trace operators, they do not

affect our result that the single-trace couplings have vanishing beta functions.

B ΨUV and Wilsonian Action for (A)dS3/X2

In this appendix we continue the calculations begun in section 3, working out ΨUV and the

Wilsonian action for the simplest example.

B.1 UV amplitude

Let us calculate the UV amplitude ΨUV for (A)dS3/X2 directly from (2.6). In d = 2, the

bulk action for the d-dimensional zeromodes without counterterms again becomes (3.2)

at fixed φ = φ∗. We would like to compute the path integral (2.6) with the boundary

conditions a(L) = ã, a(LUV) = a0. We will again focus on the zero mode first. The

integral is then given by the action evaluated at the unique classical trajectory (satisfying
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the equation of motion) which travels from ã to a0 within Euclidean time LUV − L. All

solutions to the equation of motion (∂2
y + V∗)a = 0 derived from (3.2) can be written as

a(y) = c1 exp
(

√

−V∗y
)

+ c2 exp
(

−
√

−V∗y
)

. (B.1)

Fixing the constants c1, c2 by imposing the boundary conditions, and plugging the classical

solution back to the action, we find the bare UV amplitude (2.6) to be

Ψ
(0)
UV = N exp

√−V∗
κ2

∫

d2x
√

ĝ
(a20 + ã2) cosh

[√−V∗(LUV − L)
]

− 2a0ã

sinh
[√−V∗(LUV − L)

] , (B.2)

where N is a normalization constant that comes from both the determinant of the Gaussian

integral and the last R̂ term in (3.2) (in cases where R̂ 6= 0). When we exponentiate N ,

the part from the determinant is subdominant to WUV in the semiclassical limit κ2 → 0,

and the part from R̂ is simply 1
2R̂(LUV − L) which does not depend on ã. Therefore we

will neglect N in the following analysis.

It is easy to verify that (B.2) approaches the delta function δ(ã−a0) on the imaginary

a-axis as L → LUV, and also that it satisfies the HJ equation (4.21) to be introduced in

the next section (with φ treated as a background).

From the general expression (B.2) for ΨUV, we may now wish to consider special cases.

For AdS cases (V∗ < 0), we may set V∗ = −1 (and hence the AdS radius to 1) for simplicity.

We can also set the boundary condition as a0 = expLUV for flat slicing or a0 = sinhLUV

for dS slicing. This corresponds to not introducing bare source terms for the trace T of

the stress tensor in the dual QFT. Pushing the UV boundary y = LUV to the conformal

boundary y = ∞ of AdS, we find that (B.2) simplifies to

Ψ
(0)
UV =















N exp
1

κ2

∫

d2x
√

ĝ (ã2 − 2eLã+ a20) (AdS3/dS2)

N exp
1

κ2

∫

d2x
√

ĝ (ã2 − 4eLã+ a20) (Poincaré AdS3)

(B.3)

Adding the appropriate counterterms, we have

ΨUV =















N exp
1

κ2

∫

d2x
√

ĝ (2ã2 − 2eLã) (AdS3/dS2)

N exp
1

κ2

∫

d2x
√

ĝ (2ã2 − 4eLã) (Poincaré AdS3)

(B.4)

For the dS3/dS2 case (V∗ > 0), we may set V∗ = 1 and impose the boundary condition

at the central slice LUV = π/2. The zero-source boundary condition is a0 = sinLUV = 1.

Plugging these into (B.2), we find that the UV amplitude simplifies to

ΨUV = N exp
1

κ2

∫

d2x
√

ĝ
(ã2 + 1) sinL− 2ã

cosL
(dS3/dS2) (B.5)

where we have used the fact that there are no counterterms in the dS case.
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B.2 Wilsonian action

In this subsection, we calculate the Wilsonian action as a function of T by directly evalu-

ating the integral transform of (B.4) and (B.5):

exp
(

− κ−2s(T, L)
)

=

∫

Dã exp

{

1

κ2

∫

ddx
√

ĝ ā(ã− ā)T

}

ΨUV(ã, L) . (B.6)

In all cases the path integral is again Gaussian (with its wrong sign fixed by contour

rotation). As before we can neglect the determinant of the Gaussian integral because it

does not contribute to the leading κ2 → 0 limit.

For AdS3 with the zero-source boundary condition (a0 = sinhLUV or expLUV as

LUV → ∞, where we have rescaled R(A)dS to 1), the Wilsonian action is

s =



















∫

d2x
√

ĝ

(

sinh2 L

8
T 2 − 1− e−2L

4
T +

1

2
e2L

)

(AdS3/dS2)

∫

d2x
√

ĝ

(

e2L

8
T 2 + 2e2L

)

(Poincaré AdS3)

(B.7)

For the case of dS3/dS2 we impose the zero-source boundary condition (a0 = sinLUV)

at the central slice LUV = π/2, which leads to

s =

∫

d2x
√

ĝ

(

sinL cosL

4
T 2 − (cos2 L)T +

cosL

sinL

)

(dS3/dS2) (B.8)

These expressions can be straightforwardly generalized to arbitrary dimension, as long

as we are working in the limit κ2 → 0.
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