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1 Introduction

Heterotic orbifolds are a fertile region of the string landscape [1] in which the Minimal

Supersymmetric Standard Model and Grand Unification Theories are widely encountered.

They possess appealing features such as the existence of fixed sets (fixed points and fixed

tori) where twisted states are localized. Those fixed sets yield quotient space singularities.

Their properties depend on the action of the local subgroup of the orbifold group which

leaves the particular set fixed. This locality can cause interesting physics [2–5] and has lead

to the concept of local grand unification [6–8] that has served to explore many promising

models. Heterotic orbifolds give rise to discrete symmetries [9, 10], which explain the

hierarchy between the electroweak and the unification scale [11], avoid proton decay [12, 13],

give rise to flavor symmetries [14] and suppress the problematic µ term [15–17].

On the other hand the biggest set of heterotic string compactifications preserving

N = 1 supersymmetry in 4d are the so called Calabi-Yau (CY) manifolds. The moduli

space of the metric in Calabi-Yau manifolds consists of the complex structure moduli and
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the complexified Kähler structure moduli. There are well studied examples in which twisted

states of orbifold models, which acquire vevs, smooth the singularities and can be identified

with the moduli of the CY manifold [18]. This is expected because both CY and orbifold

compactifications preserve N = 1 supersymmetry. In fact, all T 6/Zn orbifolds are singular

limits of smooth CY manifolds [18–25]. In the last years there has been an intense work in

understanding the transition of the heterotic string compactified on those two geometries.

For the string on orbifolds the conformal field theory is exactly solvable and all interactions

explicitly computable [26]. In contrast on a smooth CY the metric is not known and one

has to rely on the topological information. In general one can not solve the conformal

field theory, with the exception of certain points in the moduli space where a rational CFT

description is available e.g. at the Gepner points. The way to proceed is to compactify the

effective 10d N = 1 super Yang Mills coupled to supergravity on the CY. In this frame the

index theorems [27, 28] determine the 4d massless fermionic chiral asymmetry.

There are physical motivations to deform away from the orbifold point in moduli space.

At this point there are many exotics states, additional U(1) symmetries and enhanced

discrete symmetries. This differs from what is found in the real world and spontaneous

symmetry breaking with vevs of twisted fields can give rise to much more realistic vacua.

This breaking decouples exotics from the spectrum, reduces the abelian gauge sector and

breaks partially global discrete symmetries. The partial breaking of discrete symmetries

can be useful to create scale hierarchy, as the one needed for the pattern of quarks and

leptons masses through a Froggatt-Nielsen mechanism [29]. In addition on the orbifold

there exists an anomalous U(1)A symmetry which generates a Fayet-Iliopoulos D-term (FI),

which breaks supersymmetry and can be cancelled by the vevs of twisted fields [30–33].

The twisted fields which attain vevs can correspond to moduli of the CY geometry, which

vanish at the orbifold point. At the orbifold point, the full spectrum, the interactions and

the discrete symmetries can be determined. Thus, this connection can be used to extract

information not known in the CY [34].

The techniques of algebraic geometry in toric varieties [35–37] have been applied to

make the orbifold singularities smooth [20, 21, 23–25]. This process of removing the singu-

larity and adding exceptional divisors of finite size Vol(Er) is called blow-up or resolution,

the inverse process is called blow-down. In the work [24] non-compact orbifolds singulari-

ties C3/ZN as background of the heterotic superstring were resolved. In these models an

abelian gauge flux in 6d is turned on. It is parametrized by vectors with indices in the

E8 × E8 Cartan subalgebra which determine the field strength of a holomorphic vector

bundle. In the blow-down limit these vectors correspond to shifts on the gauge degrees

of freedom of the local orbifold action. Then, if we want to identify the heterotic orbifold

as the singular limit of the CY, it is necessary to construct the vector bundle in such a

way that orbifold rotations on the gauge degrees of freedom (d.o.f) are reproduced in the

blow-down limit. For the compact cases in which there are different local singularities, the

blow-down of local resolutions fixes the vector bundle such that it reproduces the local

shifts [38, 39].

The blow-up can be identified with the process of giving vevs to twisted fields. Using an

exponential redefinition those twisted fields are interpreted as the CY Kähler moduli. This
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observation relies on the realization of the gauge transformation [39] and on the fact that

the Kähler moduli are local, measuring the complex volume of the new cycles. Furthermore,

a way of identifying those blow-up modes on the orbifold with the components of the vector

bundle was proposed. This is based on the fact that the Bianchi Identities (BI) giving a

consistent gauge flux, possess strong similarities with the mass equations of the orbifold

states. In the gauged linear sigma model description [40] the mass equation appears as

the anomaly cancellation condition [41, 42]. Those results, opened a way to study the

transition in a more precise manner. If both, the string theory on the blow-up geometry

and the orbifold with vevs are coincident, then the massless spectrum should be identified.

In describing the departure from the orbifold point within realistic compact orbi-

folds [39, 43, 44] some difficulties were encountered in the Z6II Mini-Landscape [1, 17, 45]1

and the Z2 × Z2 Blaszczyk model of [47]. The problems have two sources. One is the

absence of a unique way to perform the toric resolution. In fact, there are many different

resolutions connected by flop transitions [43]. The second issue is the existence of discrete

torsion [48, 49], which allows for brother models and creates a further ambiguity in the

identification. This occurs because the identification of the vector bundle with the local

orbifold shift is only up to lattice vectors.

A complementary approach to explore the transition was proposed in [50]. This method

uses the fact that on the orbifold one encounters localized anomalies [51] which depend on

the chiral states at the fixed sets. On the blow-up, there exists also a localization on the

cycles appearing in the resolution. Using the Green-Schwarz anomaly polynomial [52, 53]

one can study the transition by comparing the anomaly in the blown-up orbifold and the

anomaly on the orbifold deformed by vevs. At the first sight the anomaly cancellation

mechanism seems very different in both cases. On the orbifold there is only one axion

needed to cancel a universal anomaly whereas in blow-up there are many anomalous U(1)s

and many axions which cancel them. This can be explained by the change in the massless

chiral spectrum, due to the field redefinitions and due to the fact that certain fields become

massive in the blow-up process. If the orbifold constitutes the blow-down limit of the toric

CY, the anomaly polynomial encodes the complete information of that transition.

We look at the transition from the two sides. First we match the chiral massless

spectrum. Using this identification we study the transition through the match of the

anomaly cancellation in both regions of the moduli space. In a previous work, we studied

the resolution of an MSSM like T 6/Z7 orbifold model [54]. This was simpler because all

the exceptional divisors performing the resolutions are local, thus there is a local index

theorem which allows to identify the spectrum. In addition there is a unique resolution

for the local singularities (giving a unique resolution for the compact space). Nevertheless

insights gained in that study apply in a modified way to our new situation.

In the present paper we manage to match an orbifold model (of the complexity af

a realistic MSSM candidate) with the corresponding blow-up version. For the first time

we are able to determine the relation between the spectra of such a model on both sides.

Previous attempts were not able to achieve a (matching) complete blow-up procedure in

1There are other realistic orbifold construction like the one presented in [46].
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the presence of fixed tori. We choose a specific model of the so-called mini-landscape and

specify the corresponding resolution (triangulation) in the blow-up process. In the detailed

analysis of this specific model we are able to identify and resolve all the subtleties that

plagued previous attempts in the literature, thus providing an existence proof for a valid

blow-up (with matching spectra) of an orbifold model that contains both fixed points and

fixed tori. First the blow-up modes are identified among the orbifold twisted states, then

we match the massless spectrum and the anomaly cancellation mechanism in 4d.

Let us sketch now how the paper is structured. In section 2 we review the heterotic

string on orbifolds and we present the T 6/Z6II model that we chose as the key example.

Section 3 is devoted to describe the orbifold toric resolution and the dimensional reduction

of the N = 1 10d theory on it. In section 4 we select the same resolution at all local C3/Z6II

singularities. We describe the Bianchi Identities and explain the search for blow-up modes

among the orbifold twisted fields. We review the Mini-landscape models [1, 17, 45] to

select an appropriate one. We have searched for candidates to blow-up modes among the

twisted singlets. From this search we present one finding. In section 5 we discuss how

field redefinitions are implemented to match the massless spectrum. In section 6 we study

the matching for one set of blow-up modes. Imposing an agreement with orbifold mass

terms, the allowed redefinitions are restrictive and we find one case in which the match

works perfectly. In section 7, we study the anomaly cancelation in 4d, which constitutes

an independent check of the picture. We compute the anomaly in the orbifold deformed by

vevs and compare it with the dimensional reduction of the 10d anomaly on the resolution.

We find agreement and local blow-up modes are identified as non-universal axions. The

universal axion on the resolution turns out to be a mixture of the single orbifold axion and

the blow-up modes. The check helps to establish the vacuum away from the orbifold as

the CY manifold obtained by a resolution.

2 The orbifold

In this section we review orbifold compactification of heterotic string theory. We then

present the geometry of T 6/Z6II and the heterotic orbifold model.

Heterotic string in orbifolds. The toroidal compactification of the 10d heterotic string

leads to a four dimensional theory with N = 4 supersymmetry. It is possible to define

a theory in which a symmetry of the toroidal lattice is modded out such that the 4d

supersymmetry is reduced. This constitutes an orbifold compactification. Let us start with

the six dimensional internal space and perform the toroidal compactification by identifying

points under translations in a lattice Γ6, to obtain T 6 = R6/Γ6. Now we take an isometry

group P of Γ6, and perform a modding of this symmetry to get T 6/P , P is called the point

group.2 Modular invariance of the string partition function requires that the space group

S = Γ6 o P is embedded in the gauge degrees of freedom, we call this embedding g. Then

the orbifold is defined by [55]

Ω = R6/(Γ6 o P )× Λ/g. (2.1)

2When this group is (non-)Abelian the orbifold is called (non-)Abelian.
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In the bosonic representation of the gauge sector of the heterotic theory, Λ = Γ8×Γ8 denotes

the internal 16d torus. The heterotic worldsheet fields in the internal space are the bosonic

space coordinates Xk(z, z̄), the fermionic right-moving modes ψ̃k(z̄) and the 16d torus

left-moving coordinates XI(z). The mentioned fields transform under the orbifold action

as Xk → θknXn + lk, k = 5, . . . , 10, ψ̃k → θknψ̃n and XI → XI + V I + AI , I = 1, . . . , 16,

determining the twisted string boundary conditions.

Resuming, the orbifold action is given by θ ∈ P, l ∈ Γ6 and V,A ∈ g. The gauge

embedding of the orbifold action is determined by V and A, which represent the embedding

of the spatial rotations θ and lattice translations l, respectively. The quantities V and A

are refered to as shifts and Wilson lines respectively. Wilson lines turn out to be essential

in order to break the gauge symmetry down to the Standard Model [56]. As there are six

internal dimensions, vectors in the toroidal lattice Γ6 can be expressed in terms of a basis

eα, α = 1, . . . , 6, such that l = nαeα, AI = nαA
I
α nα ∈ Z , where Aα is the Wilson line

corresponding to the lattice translation eα.

The space group S = {(θ, l)} is defined as the subset of the orbifold (2.1) acting

on the spatial internal dimensions Xk. Strings will propagate in the internal space given

by R6/S. Worldsheet supersymmetry is preserved, because the twist commutes with the

supersymmetry generator. This is ensured by the fact that the fermionic right-moving

modes share the orbifold rotation. Furthermore, important objects are the fixed sets (fixed

points and fixed tori) under the orbifold action. Those are defined by Xf = θXf + l where

Xf are the 6d coordinates of the internal space. The space group element (θ, l) is called

the constructing element of the fixed point (tori). Fixed points occur if det(1− θ) 6= 0. If

the determinant vanishes we encounter fixed tori. For orbifolds generated by ZN rotations

that preserve the lattice Γ6, take the orbifold action to be of the form

θ = exp(2πi(v1J45 + v2J67 + v3J89)), θ ∈ ZN , (2.2)

i.e. the transformation is block-diagonal in the internal part of the Lorentz group SO(6).

Here we denote the generators of rotations in the three distinct planes by J45, J67, J89. We

can impose that N = 1 supersymmetry survives the compactification. Then, the invariance

of the susy algebra generators under the orbifold action yields the condition
∑

i vi = 0.

There is a beautiful conformal field theory description of orbifolds that we will not

review here in detail [57–59]. Essentially one solves the worldsheet equations of motion

with the given boundary conditions and quantizes the string to obtain the twisted and

untwisted oscillators. The physical states are obtained by acting with the latter on the

twisted and untwisted vacua. Here we shortly present the ingredients required to compute

the massless spectrum. Let us look at the states with boundary conditions given by the

constructing element

g =
(
θk,maea

)
∈ S. (2.3)

The orbifold possesses untwisted and twisted modes which correspond to strings with

boundary conditions k = 0 and k 6= 0 respectively. The untwisted string states with

constructing element g = (1, 0) can be described by |q〉R ⊗ α̃|p〉L. In that formula q =

(q0, q1, q2, q3) represents the momentum of the bosonized right-moving fermion. This is a
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weight of the SO(8) Lorentz symmetry group which is manifest in the light cone gauge.

The quantity p denotes the left moving momentum of the 16 gauge d.o.f. and takes values

in the Γ8 × Γ8 lattice, whereas α̃ schematically denotes the set of left moving oscillators.

The mass shell equations for massless states are given by

(p+ Vg)
2

2
+N − 1 + δc =

(q + φg)
2

2
− 1

2
+ δc = 0 . (2.4)

Here we have set the right oscillator numbers and the right-moving momentum to zero,

to allow for massless right-movers. The phases φg = kv appearing in (2.4) are called

local twists. Vg represents the embedding on the gauge d.o.f. of the local constructing

element g in (2.3). The zero point energy is given by δc = 1
2

∑3
i=1 ωi(1 − ωi), with ωi =

(φg)i mod 1 such that 0 ≤ ωi < 1 and the left-moving oscillator number is denoted

by N . For twisted strings it is convenient to define the shifted left-moving momentum

of the state as Psh = p + Vg. The weight Psh determines the behavior of the twisted

string under gauge transformations. An analogous definition is the shifted right-moving

momentum qsh = q + vg. Then, twisted states with constructing element g can be written

as |qsh〉R⊗ α̃|Psh〉L. They will transform under another space group element h with a phase

[Psh · Vh − qsh · φh − 1
2(Vg · Vh − φg · φh)]. The surviving twisted spectrum is determined

by imposing a trivial action under h ∈ S if [g, h] = 0. The surviving gauge group upon

compactification is computed by determining the E8 × E8 roots αi which fulfill αi · V =

αi ·Aα = 0.

The T 6/Z6II model. In the work [1] a large number of models of the E8×E8 heterotic

string compactified on T 6/Z6II was studied. There, of the order of 100 models with the

spectrum of the MSSM were found. This Mini-landscape constitutes a fertile region of

the space of N = 1 heterotic compactifications. The method they employed was to create

models with local GUT gauge group at the fixed sets. The corresponding local GUTs had

gauge groups E6 and SO(10). We focus on the models with SO(10) local GUT. In those

cases, the orbifold shift is chosen to break E8 × E8 down to SO(10). Further breaking is

performed by turning on the Wilson lines A3 ≡ A4 and A5. The torus lattice is the root

lattice of G2 × SU(3)× SO(4) and a basis for it can be found in [39].

In the figures 1, 2 and 3 we depict the geometry of the T 6/Z6II orbifold. The geome-

trical twist is given by v = {1/6, 1/3,−1/2}. Let us denote the three complex coordinates

by z1, z2 and z3, the twists acts on them as θ : zi → e2πivizi. The first figure corresponds

to the first twisted sector θ, which has 12 fixed points. We label the fixed points in the

complex planes i = 1, 2, 3 by α, β and γ respectively, following the notation in [39]. The

figure 2 corresponds to the fixed tori in the θ2 and θ4 sectors. In these sectors the plane

i = 3 is a fixed torus, so the twisted states will be localized at points in the first two planes

and on a torus in the third. Fixed tori with α = 3, 5 are identified under the orbifold,

so we have 6 fixed tori in total. The θ3 sector is represented in figure 3. In this case z2

is fixed under rotations, which gives a torus in the second plane. In the first plane the

fixed tori with α = 2, 4, 6 are identified on the orbifold. That gives us a total of 8 fixed

tori. In table 10 of appendix A we give all the conjugacy classes of this orbifold with the
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1 e1

e2

1

2

3

e3

e4

1 2

3 4

e5

e6

Figure 1. 12 fixed points of the θ sector from T 6/Z6II orbifold. The labels of the fixed points in

the planes 1, 2 and 3 denote α, β and γ, respectively.

1 3 5 e1

e2

1

2

3

e3

e4

e5

e6

Figure 2. 6 fixed tori of the θ2 and θ4 sectors from T 6/Z6II orbifold. The labels of the fixed points

in the planes 1 and 2 denote α and β respectively. Points α = 3 and α = 5 joined by a line are

identified under a θ3 twist.

1 2
4 6

e1

e2

e3

e4

1 2

3 4

e5

e6

Figure 3. 8 fixed tori of the θ3 sector from T 6/Z6II orbifold. The labels of the fixed points in the

planes 1 and 3 denote α and γ respectively. Points α = 2, 4, 6 joined by a line are identified under

a θ2 twist.

corresponding fixed sets, together with the labels α, β and γ denoting their loci in the three

complex planes. Also the Coxeter element is given.

We perform the study of the orbifold-resolution transition in Model 28 of the Mini-

landscape. This is a model that can be potentially blown-up because it has massless states

in every fixed point and fixed tori. The shift and Wilson lines of that model are given by

V =

(
1

3
,−1

2
,−1

2
, 05,

1

2
,−1

6
,−1

2

5

,
1

2

)
,

A5 =

(
−1

2
,−1

2
, 0,

1

2
,
1

2
, 0, 0, 0,

15

4
,−19

4
,−15

4
,−15

4
,−15

4
,−15

4
,−11

4
,
19

4

)
,

A3 = A4 =

(
1

6
,
1

6
,−1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
5

3
,−2

3
,−5

3
,−5

3
,−5

3
,−5

3
,−1

3
,
8

3

)
. (2.5)

The shift breaks E8 × E8 down to SO(10). Adding the Wilson lines the gauge group is

broken down further to SU(3) × SU(2) × SU(6) × U(1)8. A review of the non-Abelian

charges of the spectrum is given in table 1.
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Irrep. (1,1,1) (1,2,1) (3,1,1) (3̄,1,1) (1,1,6) (1,1, 6̄) (3,2,1) (3̄,2,1)

Mult. 114 19 22 16 7 7 1 4

Table 1. Massless spectrum of the Mini-landscape Model 28. We give the representations under

the non-abelian gauge group SU(3)× SU(2)× SU(6) and the multiplicities of the states.

3 Smoothing the singularities

In this section we describe how the spectrum is determined when compactifying the theory

on the resolved space. We review the resolution process of the local singularities and

give the relevant data for the geometry of the resolved space. Then we describe how the

dimensional reduction of the 10d theory is performed.

The geometry. The local orbifold singularities are resolved and the resulting patches

are joined to obtain a global resolution [23]. The local singularities at the fixed points of

θ are C3/Z6II singularities. Transversally to the fixed tori of θ2 and θ4 one has C2/Z3

singularities. Similarly for the fixed tori of θ3 the local singularities are C2/Z2.

Let NR = Nr⊗R. A cone σ ⊂ NR is a set σ = {a1v1 +a2v2 + . . .+akvk|ai ∈ R, ai ≥ 0}
generated by a finite set of vectors v1, v2, . . . , vk in Nr such that σ∩(−σ) = {0}. A collection

Σ of cones in NR is called a fan if each face of a cone in Σ is also a cone in Σ and the

intersection of two cones in Σ is a face of each of them.

Starting from a fan Σ one can construct a toric variety X. The fans are spanned

by vectors v1, v2, . . . , vn lying in the lattice Nr. They define a complex toric variety X

of dimC(X) = n− r, as the quotient of an open subset in Cn under a group G as X =

(Cn − Z(Σ))/G. Let us denote the coordinates by (z1, z2, . . . , zn) ∈ (Cn − Z(Σ)). The

vectors vi represent divisors zi = 0. The group G is defined as the kernel of the map

φ : (C∗)n → (C∗)r, (t1, . . . , tn)→

 n∏
j=1

t
vj1
j , . . . ,

n∏
j=1

t
vjr
j

 , (3.1)

and acts on the coordinates zi as tizi, where ti are the solutions to (
∏n
j=1 t

vj1
j , . . . ,

∏n
j=1 t

vjr
j )

= (1, . . . , 1). Fans describing the d-dim local toric singularities are defined by a d-1-dim

simplex Sd−1 lying in a hyperplane at distance one from the origin in NR, so that all rays

avk, a ∈ R+ go from the origin through Sd−1. Sd−1 and its triangulation is called toric

diagram in the following. Z(Σ) is an exclusion set encoded in the triangulation of the toric

diagram [37] and is given by the union of divisor intersections which do not span a cone in

Σ. The variety is singular if not all the points in the lattice Nr can be written as a linear

combination of the vectors vi with integer coefficients. Therefore, adding new vectors ωr
which subdivide the diagram is equivalent to resolving the variety.

The orbifold singularity C2/Zn has a toric diagram given by v1 = (1, 0) and v2 = (1, n),

and the orbifold group G = {(t, tn−1), tn = 1} acts on (z1, z2) as (tz1, t
n−1z2). The divisors

D1 = {z1 = 0} and D2 = {z2 = 0} correspond to the vectors v1 and v2. The blow-up is

performed by subdividing the diagram. This is done by adding the vectors ωr = (1, r), r =

1, . . . , n−1, which correspond to n−1 exceptional divisors Er = {yr = 0}, where yr are new
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C2/Z2 C2/Z3

D1

D2

E1

D1

D2

E1

E2

Figure 4. Resolutions of the local singularities under the θ3 and θ2, θ4 action respectively.

coordinates on the variety. In figure 4, we give the diagrams for the resolution of the local

singularities C2/Z3 and C2/Z2. The resolved C2/Z2 has coordinates (z1, z2, y1) identified

under G2 = {(t, t, t−2), t ∈ C∗}. The exclusion set is z1 = z2 = 0. The resolved C2/Z3

has coordinates (z1, z2, y1, y2) identified under G3 = {(t1, t2, t−2
1 t2, t1t

−2
2 ), t1, t2 ∈ C∗} with

Z(Σ) = (z1 = z2 = 0) ∪ (z1 = y2 = 0) ∪ (z2 = y1 = 0).

Let us look at the local singularity C3/Z6II . In this case we have to add four new

coordinates yr to the complex coordinates z1, z2, z3 ∈ C3 and four new scaling relations to

define the smooth global variety. The kernel of (t1, t2, t3, t̃1, . . . , t̃4)→ (
∏
i,k t

(vi)1
i t̃

(ωk)1
k , . . . ,∏

i,k t
(vi)3
i t̃

(ωk)3
k ) defines the new (C∗)4 action. Here ωk = givi, where zi goes to e2πigivizi

under θk [21]. Hence the new variety is defined by coordinates (z1, z2, z3, y1, y2, y3, y4)

identified under a (C∗)4 action given by

G6 = {(t−1/6
4 t

1/3
5 t

−1/2
6 t

−2/3
7 , t

−1/3
4 t

−2/3
5 t

−1/3
7 , t

−1/2
4 t

−1/2
6 , t4, t5, t6, t7), t4, t5, t6, t7 ∈ C∗}.

The N = 1 supersymmetry condition is equivalent to the Calabi-Yau condition. The latter

is ensured if the added vectors resolving the singularity lie in the hyperplane defined by

v1, v2 and v3. The vectors vi and ωk are associated with divisors Di = {zi = 0} and

Ek = {yk = 0}, which are ordinary and exceptional divisors respectively. In the figure 5

we draw the 2-simplices S2 defining the five distinct toric resolutions of C3/Z6II . Those

are given by the different triangulations of the toric diagram. The triangulation defines

the value of Z(Σ). For example triangulation B has Z(Σ) = (y3 = y4 = 0) ∪ (y3 = y2 = 0)

∪(y3 = z2 = 0)∪(z1 = z3 = 0) ∪(z1 = z2 = 0)∪(z1 = y2 = 0) ∪(y4 = z2 = 0)∪(z3 = y4 = 0)

∪(z3 = y2 = 0). Three divisors that correspond to the corners of a basic triangle have

intersection 1. Triplets of divisors that do not have this property have intersection 0.

Equivalence relations between the divisors are given by
∑

(vi)jDi+
∑

k(ωk)jEk ∼ 0. Using

Poincaré duality and Stokes theorem we relate cycles with closed-forms. Homology relations

between the cycles translate into cohomology relations between the forms i.e. equivalences

up to exact cycles translates into equivalences up to exact forms.
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A

D1 D2

D3

E1

E2

E3

E4

B

D1 D2

D3

E1

E2

E3

E4

C

D1 D2

D3

E1

E2

E3

E4

D

D1 D2

D3

E1

E2

E3

E4

E

D1 D2

D3

E1

E2

E3

E4

Figure 5. Local resolutions of the C3/Z6II orbifold. There are five different ways of defining the

fan [35] which are represented by the five possible triangulations of the 2-simplices. The divisor E2

corresponding to ω2 has coordinates (0, 0, 1). All vi are of the form (∗, ∗, 1).

The difference between the triangulations reflected in Z(Σ) lies in the existence of

certain curves. For the case B those are the curves D1E1, E1E4, E1E2, D2E1, D3E1 and

E1E3. The different triangulations are related by flop-transitions in which the size of one

of those curves goes to zero and another one emerges. For example taking the volume of

E1D1 to zero in triangulation B and blowing up E3E4 one goes to triangulation C.

The global information is obtained by taking into account all local resolutions and

including the inherited divisors Ri which are the Poincaré duals of the (1,1) invariant

orbifold forms dzi ∧ dz̄ī. An auxiliary polyhedron obtained in [22, 23] and employed in [39]

encodes all the triple intersections. In that way, new cohomology classes arise in the blow-

up and it is possible to determine topological information from them. Taking the volume

of the resolution cycles to zero Vol(Er)→ 0 the geometrical orbifold is recovered.

Applying the method of the auxiliary polyhedra it is possible to determine the set

of intersections for the compact resolved orbifold M = ̂T 6/Z6II . Triple intersections of

distinct divisors belonging to local resolutions have the values that can be read from the

local toric diagrams. On the ̂T 6/Z6II the divisors have indices corresponding to the fixed

points from which they come. Di,ρ represents the ordinary divisor corresponding to the

fixed point singularity ρ in the complex plane i. There are in total 10 ordinary divisors

D1,1, D1,2, D1,3, D2,β and D3,γ . The exceptional divisors E1,βγ , E2,αβ, E4,αβ and E3,αγ

have their first index denoting the sector and the two following indices denoting the co-

rresponding fixed point singularity. The global equivalence relations [39] determine Di,ρ

as linear combinations of Er and Ri. Using those equivalence relations for divisors it is

possible to obtain the non-zero intersection numbers of exceptional divisors only. Those

intersections are the ones used in performing the dimensional reduction of the 10d theory

and are given by

E3
1,βγ = 6, E3

2,1β = 8, E3
3,1γ = 8, E3

4,1β = 8, E1,βγE
2
2,1β = −2,

E1,βγE
2
3,1γ = −2, E1,βγE

2
4,1β = −2, E1,βγE2,1βE4,1β = 1, E2

2,1βE4,1β = −2,

c2(M)E2,1β = c2(M)E4,1β = c2(M)E3,1γ = −4, c2(M)R2 = c2(M)R3 = 24. (3.2)
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The second Chern-class of the manifold c2(M) is the piece of degree two in the formal

variables DJ , Er and Ri in the total Chern-class [39] according to

c(M) =
∏
J,r

(1 +DJ)(1 + Er)(1−R1)(1−R2)(1−R3)2. (3.3)

Supergravity on the resolution. What is known about the geometry of ̂T 6/Z6II is

mainly the topological information e.g. the set of intersection numbers between divisors.

In order to determine the theory in 4d one can perform a dimensional reduction of the

10d N = 1 theory, which is supergravity coupled to super Yang-Mills. Massless 4d tensor

fields descend from the 10d heterotic massless tensor fields by reducing the latter on har-

monic forms in ̂T 6/Z6II . Let us consider the descendants of the fields with representations

(35,1,1) and (28,1,1) under SO(8) × E8 × E8. Here SO(8) is the Little group of the

10d Lorentz group for massless states and E8 × E8 is the gauge group of the heterotic

string. The massless tensor and form fields in 10d are the metric G and the antisymmetric

Kalb-Ramond field B2 of SO(8) respectively. Their expansions in the base of the internal

(1, 1) harmonic forms are [39]3

G = g + J = g + aiRi − brEr , B2 = b2 +B = b2 + αiRi − βrEr , (3.4)

where J is the Kähler form, B is the internal 6d component of B2, b2 is the 4d component

of B2 and g is the 4d component of the metric. In four dimensions J and B join to form the

complex scalar components of the chiral multiplets Ti|θ=0 = ai + iαi and Tr|θ=0 = br + iβr.

The real components ai, br govern the size of the Ri and Er cycles, respectively. The four

dimensional field b2 is the dual of the blow-up universal axion auni. Let us write the field

strength H3

H3 = dB2 − ΩYM
3 + ΩL

3 . (3.5)

ΩYM
3 and ΩL

3 are the gauge and gravitational Chern-Simons 3-forms respectively [60]. The

gauge invariance of H3 under abelian gauge transformations with gauge parameter χI

implies the following variations

δβr = V I
r χ

I , δαi = 0, (3.6)

of the dimensionally reduced antisymmetric tensor. The gauge variation of those axions

cancels the 4d anomaly, which can be determined by dimensional reduction or direct evalua-

tion [54]. It is precisely the gauge variation of the βr moduli that leads to the interpretation

that the exp(βr) correspond to twisted orbifold states [39].

The corresponding blow-up model to a deformed orbifold has a gauge group determined

by the breaking of the orbifold gauge group by the vevs of the blow-up modes. Thus, in

the blow-up the E8 × E8 group should be broken. The 6d flux F which is required for

consistency breaks E8 × E8 down to a subgroup. Consistency conditions restricting the

flux are the zero supersymmetric variation of the gaugino giving the Donaldson Uhlenbeck

Yau (DUY) theorem
∫
M trF ∧ J ∧ J = 0 and the Bianchi Identities

∫
S dH = 0, for S

3Here we use the same notation for a divisor and its dual (1,1) form.

– 11 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
4

any compact divisor on the manifold M. The DUY equations have to be corrected at

one-loop [61]. Abelian gauge fluxes satisfying the DUY theorem are the field strengths of

holomorphic vector bundles. The Bianchi Identities are given by

0 =

∫
S

(
trR2 − trF2

)
, S ∈ {Er, Ri} . (3.7)

The second Chern-class is related to the internal curvature by trR2 = −2c2( ̂T 6/Z6II). We

consider an Abelian flux

F = HIV
I
r Er, (3.8)

where r runs over indices of the orbifold fixed sets, which are denoted by (1, β, γ), (2, α, β),

(4, α, β) and (3, α, γ). The first entry represents the twisted sector and the α, β and γ indices

the fixed point in the first, second and third plane. The HI are the Cartan generators of

E8×E8. The vectors V I
r determine the field strength of the vector bundle and are subject to

the following constraints: they must satisfy flux quantization conditions which are fulfilled

by requiring Vr ∼ V(θk,λ), where V(θk,λ) is the local orbifold shift corresponding to the

constructing element (θk, λ) which coincides with r. Note that the above equivalence is up

to lattice vectors. The Vr also have to satisfy the Bianchi Identities (3.7), which constrain

their lengths and scalar products.

The massless fermion fields whose reductions gives the 4d massless chiral matter are

the 10d states (8,248,1) and (8,1,248) characterized by the E8×E8 root vectors. Their

4d multiplicity is determined using an index theorem which detects the 4d fermionic chiral

asymmetry [28, 60]. The multiplicity operator is given by

N̂ =
1

6

∫
M

(
F3 − 1

4
trR2F

)
. (3.9)

Upon dimensional reduction (3.9) defines with which multiplicity the states appear in

the spectrum. The surviving gauge group is determined by all the E8 × E8 roots with

fulfill αi · Vr = 0. This can be seen by dimensionally reducing the Yang-Mills action.

The representation of a given state can be computed with the Dynkin labels, which are

determined by the product αi · p between the surviving simple roots in 4d αi and the root

vector p characterizing the state.

4 Identifying the blow-up modes

In this section we explain the search for blow-up modes using the Bianchi Identities on

the resolved orbifold. We focus on the case in which all local fixed sets have the same

resolution. The search for blow-up modes is performed among all twisted states of the

Mini-landscape MSSM model. We start with an orbifold model in which localized chiral

superfields appear at all the fixed sets. Then, we explore solutions of the Bianchi Identities,

which correspond to massless non-oscillatory blow-up modes. In triangulation B there are

multiple sets of modes which fulfill the Bianchi Identities and therefore multiple ways of
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blowing-up. They determine to which extent the hidden gauge group is broken. All of

the encountered vacua possess moduli with different chirality in the orbifold theory. We

find multiple solutions which correspond to massless and non oscillatory states, whose vevs

preserve the hidden group.

We can fix the topology of the resolved manifold by specifying the triangulation at all

local C3/Z6II resolutions. Then, using the Bianchi Identities we search for consistent sets of

vevs of the twisted fields. Let us describe as an example ̂T 6/Z6II where we chose at all fixed

points triangulation B. This triangulation has the least non-vanishing self-intersections, and

therefore leads to the least restrictive equations for the vectors Vr.

In ̂T 6/Z6II the abelian field strength of the vector bundle (3.8) is given by

F = HI

 3∑
β=1

4∑
γ=1

V I
1,βγE1βγ +

∑
k=2,4

∑
α=1,3

3∑
β=1

V I
k,αβEkαβ +

2∑
α=1

4∑
γ=1

V I
3,αγE3αγ

 . (4.1)

To obtain the Bianchi Identities (3.7) and the multiplicity of the massless states in blow-up

we need all the self intersections of exceptional divisors in equation (3.2). The multiplicity

of a state with E8 × E8 weight ω can be written as

N̂ =
∑
βγ

N̂1,βγ(ω) +
∑
β

N̂2,β(w) +
∑
γ

N̂3,γ(ω), (4.2)

N̂1,βγ(ω) = −V1,βγ · ω
(

(V2,1β · w)2 + (V4,1β · ω)2 − (V2,1β · w)(V4,1β.ω)

−(V1,βγ · ω)2 + (V3,1γ · ω)2
)
,

N̂2,β(w) =
1

3

(
4(V2,1β · ω)3+4(V4,1β · ω)3−V2,1β · ω−V4,1β · ω−3(V2,1β · ω)2(V4,1β · ω)

)
,

N̂3,γ(ω) =
1

3

(
4(V3,1γ · ω)3 − V3,1γ · ω

)
.

On [54] the decomposition of N̂ in a sum
∑

r N̂r, with r the index associated to the divisor

Er, lead to the identification of local multiplicities. Here the situation is more complex

because there are also fixed tori. So it is not possible to isolate a dependence on all the

fixed set indices. In the map presented in section 6 we tested (4.2) to check whether it

reflected some locality for the corresponding orbifold states but the observations were not

conclusive.4 However we observed and interesting fact. Let us look at the multiplicity

obtained by applying the Dirac index theorem to a compactification in the non-compact

CY 3-fold Ĉ3/Z6II which is given by5

Ñ(Ĉ3/Z6II)|1βγ = N̂1,βγ(w) +
1

4
N̂2,β(w) +

1

3
N̂3,γ(w).

This formula implies that the multiplicity for the global CY can be written as the sum of the

local multiplicities at the θ fixed points resolutions: N̂ =
∑

βγ Ñ(Ĉ3/Z6II)|1βγ . However

4In [62] we present redefinitions for which we test the ansatz for the local multiplicities.
5This index has to be computed by considering the set of intersections for the exceptional divisors of

the non-compact CY.
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in the field redefinitions found those local operators don’t play a role in identifying the

corresponding orbifold states. In addition the 4d multiplicity N̂ can also be written in

terms of the 6d multiplicities obtained by integrating on the exceptional divisors in a

similar fashion as in [63] to give

N̂ =
∑
r

N6d(Er)(Vr).w −
1

3

∫
X

∑
r1r2r3

Er1Er2Er3(Vr1 .w)(Vr2 .w)(Vr3 .w).6

Let us look now at the equations for the blow-up modes. Using (3.2) the Bianchi

Identities (3.7) for triangulation B in all local C3/Z6II resolutions one gets

24−
∑
γ

V 2
3,1γ − 3

∑
γ

V 2
3,2γ = 0, (4.3)

3V 2
1,βγ − (V2,1β;V4,1β)− V 2

3,1γ = 0, (4.4)

−2− V3,1γ ·
∑
β

V1,βγ + 2V 2
3,1γ = 0, (4.5)

24−
∑
β

(V2,1β;V4,1β)− 2
∑
β

(V2,3β;V4,3β) = 0, (4.6)

−12− 3V4,1β ·
∑
γ

V1,βγ + 6V 2
4,1β + 2(V2,1β;V4,1β) = 0, (4.7)

−12− 3V2,1β ·
∑
γ

V1,βγ + 3V 2
4,1β + 4(V2,1β;V4,1β) = 0. (4.8)

We use the notation (V1;V2) = V 2
1 + V 2

2 − V1 · V2. This set of equations allows us to

explore if a given orbifold model has candidates for blow-up modes fulfilling the Bianchi

Identities, which are conjectured to be linked to the orbifold mass equations [39, 41, 42].

This exploration can be performed in a reasonable computing time. We explored also other

sets of triangulations in all 12 fixed points resolutions without finding a match with the

orbifold. In particular for triangulation A in all C3/Z6II resolutions the blow-up modes can

not be identified in the orbifold. This means that such CY 3-folds can not correspond to the

orbifold model. Although a full exploration was impossible due to computing resources, we

found a set of triangulations (B in every C3/Z6II resolution) where blow-up modes could

be identified in the orbifold model.

The equations (4.3) involving V3,αγ are automatically satisfied for all the correspon-

ding twisted states in Model 28 and also satisfied for the Mini-landscape model discussed

in [39]. This occurs because in all the fixed tori (3, α, γ) the singlets surviving the orbifold

projection fulfill P 2
sh = V 2

3,αγ = 3
2 , i.e. have zero oscillator number.

Let us describe here the further steps of the exploration for triangulation B. First, for

given values of V3,αγ , we select all the V1,βγ which obey (4.5). For a fixed V3,αγ there are

2401 possibilities for V1,βγ . There are 50400 V2,αβ and V4,αβ that satisfy (4.6). From this

surviving set we explore which V1,βγ , V2,αβ, V4,αβ satisfy the equations (4.4) (4.7) and (4.8),

which turn to be the hardest to obey. An exploration for a fixed V3,αγ requires 1.2 × 108

6We have used the index theorem N̂d(S) =
∫
S

(
1
2
F2 + 1

12
c2(TX)|S

)
to count the zeroes of the Dirac

operator on a compactification on a divisor S to 6d.

– 14 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
4

iterations, while a full exploration will require of the order of 3 × 1010 iterations. In the

exploration we performed, we found multiple sets of blow-up modes which can be identified

with twisted states of Model 28.

The blow-up modes identified with twisted fields have to acquire vevs to ensure D-

flatness and F-flatness of the superpotential. The local shift of the blow-up modes Psh ≡
Vr satisfy the Bianchi Identities of the vector bundle [39]. In the following we give the

simplified Bianchi Identities for triangulation B and one of the encountered solutions.

Abelian vector bundles for triangulation B. Now we come to the solutions of the

Bianchi Identities for triangulation B. Considering massless and non-oscillatory modes, the

equations (4.3)–(4.8) are given by

(V2,1β;V4;1β) =
8

3
, (4.9)∑

β

(V2,3β;V4,3β) = 8, (4.10)

V3,1γ ·
∑
β

V1,βγ = 1, (4.11)

V4,1β ·
∑
γ

V1,βγ =
8

9
, (4.12)

V2,1β ·
∑
γ

V1,βγ =
10

9
. (4.13)

We found sets of blow-up modes which can either break or preserve the hidden group.

We also explored the possibility to obtain certain chirality features for a set of blow-up

modes. The fact that the modes in sectors θ2 and θ4 are CPT conjugate to each other is

incompatible with having modes that are massless and non-oscillatory in both the θ and

θ3 sectors. A possibility would be that in the θ2 sector all the modes are left handed and

in the θ4 sector all are right handed, but this can not be achieved in our case. For example

in the case of V2,11 and V4,11 the only opposite chirality modes are V2,11 = −V4,11 and

this implies (V2,11;V2,11) = 14
3 which violates (4.9). As (2, 1, 1) is the class conjugated to

(4, 1, 1), this means that it is not possible to take a set of blow-up modes in which every

component of a CPT pair is identified with one blow-up mode. Having a solution in which

all the blow-up modes are right or left handed is also not possible for this orbifold. For

example: this restriction is seen by the fact that the fixed tori (2, 1, 2) and (4, 1, 2) don’t

possess right handed and left handed singlets respectively.

The modes V2,3β and V4,3β are easily adjusted, and one can find many different solu-

tions. There are 107520 solutions of equation (4.10). If one requires that all the modes are

left or right handed, there are 48 solutions. If instead one imposes that all the modes at

same fixed tori from θ2 and θ4 have opposite chirality one obtains also 48 solutions. We

focus in the set of blow-up modes given in table 2. We use ψ̄ and ψ to denote left and

right chiral superfields on the orbifold. Thus we use the same notation to denote the scalar

and fermionic components of it, also 〈ψ〉 and 〈ψ̄〉 will be used to denote the vevs of the

– 15 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
4

V 2
r F.P. QY Numerical value of Vr Irrep. Φorb

γ
25
18 (1, 1, 1) 0

{
− 1

6 , 0, 0,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 , 0,

1
3 , 0, 0, 0, 0, 0, 0

}
1 ψ57

25
18 (1, 1, 2) 1

2

{
− 1

6 , 0,
1
2 ,

1
2 ,

1
2 , 0, 0, 0,−

1
4 ,−

5
12 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,−

1
4

}
1 ψ44

25
18 (1, 1, 3) 0

{
− 1

6 , 0, 0,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 , 0,

1
3 , 0, 0, 0, 0, 0, 0

}
1 ψ45

25
18 (1, 1, 4) 1

2

{
− 1

6 , 0,
1
2 ,

1
2 ,

1
2 , 0, 0, 0,−

1
4 ,−

5
12 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,−

1
4

}
1 ψ41

25
18 (1, 2, 1) 0

{
− 1

2 ,−
1
3 , 0,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

5
6 ,

1
6

}
1 ψ88

25
18 (1, 2, 2) − 1

2

{
0, 16 , 0,−

1
3 ,−

1
3 ,

1
6 ,

1
6 ,

1
6 ,

5
12 ,−

1
12 ,−

5
12 ,−

5
12 ,−

5
12 ,−

5
12 ,−

1
12 ,

5
12

}
1 ψ77

25
18 (1, 2, 3) 0

{
− 1

2 ,−
1
3 , 0,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

5
6 ,

1
6

}
1 ψ85

25
18 (1, 2, 4) − 1

2

{
0, 16 , 0,−

1
3 ,−

1
3 ,

1
6 ,

1
6 ,

1
6 ,

5
12 ,−

1
12 ,−

5
12 ,−

5
12 ,−

5
12 ,−

5
12 ,−

1
12 ,

5
12

}
1 ψ70

25
18 (1, 3, 1) 0

{
1
6 ,−

2
3 , 0,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
3 , 0,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3

}
1 ψ34

25
18 (1, 3, 2) − 1

2

{
1
6 ,−

2
3 ,

1
2 ,−

1
6 ,−

1
6 ,

1
3 ,

1
3 ,

1
3 ,

1
12 ,

1
4 ,−

1
12 ,−

1
12 ,−

1
12 ,−

1
12 ,−

5
12 ,

1
12

}
1 ψ22

25
18 (1, 3, 3) 0

{
1
6 ,−

2
3 , 0,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
3 , 0,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3

}
1 ψ28

25
18 (1, 3, 4) − 1

2

{
1
6 ,−

2
3 ,

1
2 ,−

1
6 ,−

1
6 ,

1
3 ,

1
3 ,

1
3 ,

1
12 ,

1
4 ,−

1
12 ,−

1
12 ,−

1
12 ,−

1
12 ,−

5
12 ,

1
12

}
1 ψ15

14
9 (2, 1, 1) 0

{
− 1

3 , 0, 1, 0, 0, 0, 0, 0, 0,
2
3 , 0, 0, 0, 0, 0, 0

}
1 ψ115

14
9 (2, 1, 2) 0

{
1
2 ,−

1
6 ,

1
2 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
3 ,

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3

}
1 ψ̄36

14
9 (2, 1, 3) 0

{
− 1

6 ,
1
6 ,

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
2 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

5
6 ,

1
6

}
1 ψ̄45

14
9 (4, 1, 1) 0

{
− 2

3 , 0, 0, 0, 0, 0, 0, 0, 0,
1
3 , 0, 0, 0, 0, 1, 0

}
1 ψ183

14
9 (4, 1, 2) 0

{
1
2 ,−

5
6 ,−

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
6 ,

1
6

}
1 ψ187

14
9 (4, 1, 3) 0

{
− 1

3 ,−
2
3 , 0,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

1
6 ,

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6

}
1 ψ̄106

14
9 (2, 3, 1) 0

{
− 1

3 , 0,−1, 0, 0, 0, 0, 0, 0, 23 , 0, 0, 0, 0, 0, 0
}

1 ψ97
14
9 (2, 3, 2) 0

{
− 1

2 ,
5
6 ,

1
2 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6

}
1 ψ90

14
9 (2, 3, 3) 0

{
− 2

3 ,−
1
3 , 0,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,

1
6 ,−

1
2 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
6 ,

1
6

}
1 ψ103

14
9 (4, 3, 1) 0

{
− 2

3 , 0, 0, 0, 0, 0, 0, 0, 0,
1
3 , 0, 0, 0, 0, 1, 0

}
1 ψ165

14
9 (4, 3, 2) 0

{
− 1

2 ,
1
6 ,−

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

1
3 ,−

1
3

}
1 ψ170

14
9 (4, 3, 3) 0

{
1
6 ,−

1
6 ,−

1
2 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,−

1
6

}
1 ψ159

3
2 (3, 1, 1) 0

{
0,− 1

2 ,
1
2 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

}
1 ψ155

3
2 (3, 1, 2) 1

2

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 , 0, 0, 0,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4

}
1 ψ153

3
2 (3, 1, 3) 0

{
0,− 1

2 ,
1
2 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

}
1 ψ154

3
2 (3, 1, 4) 1

2

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 , 0, 0, 0,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4

}
1 ψ150

3
2 (3, 2, 1) 0

{
0, 12 ,−

1
2 , 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0

}
1 ψ147

3
2 (3, 2, 2) 1

2

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 , 0, 0, 0,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4

}
1 ψ134

3
2 (3, 2, 3) 0

{
0, 12 ,−

1
2 , 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0

}
1 ψ141

3
2 (3, 2, 4) 1

2

{
1
2 , 0,

1
2 ,

1
2 ,

1
2 , 0, 0, 0,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4

}
1 ψ126

Table 2. Blow-up modes for triangulation B in all local C3/Z6II resolutions. QY denotes the

hypercharge of the given blow-up mode.

scalar components. The non-abelian representations of the blow-up massless spectrum can

be seen in table 3.

Similarly the solution of the BI given in [39] has modes with different chirality. This

can be checked in one of the appendices of [62], in which also the chirality of the twisted

states are indicated. Another feature that appears in our solutions to the BI is that the

blow-up modes can have states of equal or opposite charges in the spectrum.

Another way to explore the orbifold-smooth CY transition is to start with a given

orbifold vev configuration and ask if there exists a resolution topology which allows us

to interpret the fields taking vevs as blow-up modes. To follow this strategy we created
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Irrep. (1,1,1) (1,2,1) (3,1,1) (3̄,1,1) (1,1,6) (1,1, 6̄) (3,2,1) (3̄,2,1)

Mult. 40 9 8 2 4 4 0 3

Table 3. Massless spectrum on the orbifold resolution. We give the representations under the

non-abelian 4d gauge group SU(3)× SU(2)× SU(6) and the multiplicities of the states.

a code that finds the self-intersections for all ∼ 512 triangulations.7 Then, for a given

set of vevs for the twisted orbifold states, we can check whether the set of weights Psh

can be a solution of the BI (3.7) in a given triangulation. This exploration requires too

much computing time. We therefore concentrate on the triangulation B, which gives a

less restrictive set of equations, and search for compatible blow-up modes on the orbifold

spectrum.

Looking at the Mini-landscape orbifold models we can ask which conditions they

should obey such that they can be blown-up completely. The first requirement is that

they have twisted matter in every fixed point or fixed torus. From the Mini-landscape

models with an specific SO(10) shift and two Wilson lines this criterium is fulfilled by

6/50 models. The fixed tori with constructing elements (0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1) in

the θ3 sector are usually empty. We understand that by looking at the orbifold pro-

jection conditions [62]. The fixed tori share projection conditions with Vh = A3(m3 +

m4) + kV, k = 0, . . . , 5. Those conditions are more restrictive than the ones of other fixed

tori. For example the θ3 fixed tori (1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 1) involve projections under

Vh = A3(m3 +m4), 3V +A3(m3 +m4)−A5. This circumstance makes hard not to project

out all the states in the mentioned fixed tori. For example, the twisted right-moving states

from θ3 with non-zero entrances ±1
2 ,±

1
2 ,±1 able to survive the orbifold projection are

PAsh = (0,−1
2 ,

1
2 , 0

6, 1, 06), PBsh = (0, 1
2 ,−

1
2 , 0

6, 1, 06). In addition the models have to fulfill

the requirement Psh.A3 = 0 mod 1. In the studied model this last condition is fulfilled by

the state with momentum PAsh and there are not empty fixed points or fixed tori.

Let us comment on how the blow-up breaks the hypercharge of the model. This issue

was discussed in [39]. Here we give an alternative simple argument that shows that Mini-

landscape models with SO(10) shift can not be completely blown-up. In those models the

SM gauge group is embedded in E8 × E8 as

α1 = (0, 0, 0, 0, 0, 1,−1, 0), α2 = (0, 0, 0, 0, 0, 0, 1,−1), α3 = (0, 0, 0, 1,−1, 0, 0, 0),

Y =

(
0, 0, 0,

1

2
,
1

2
,−1

3
,−1

3
,−1

3

)
. (4.14)

For the Model 28 the following equations hold

(V.Y,A5 · Y,A3.Y ) =

(
0,

1

2
, 0

)
,

(V.α1,2,3, A5.α1,2,3, A3.α1,2,3) = (0, 0, 0). (4.15)

7The exact number of inequivalent triangulations is given in [39].
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Then, assume that in the fixed set with n5 = 0 there is a blow-up mode which is neutral

under the SM gauge group and has in particular zero hypercharge. In this case the left-

moving momentum of the state is Psh = p1+kV +(n3+n4)A3 implying p1·Y = p1·α1,2,3 = 0.

Then, let us explore if in the fixed set with conjugacy class differing just by n5 = 1 a singlet

with zero hypercharge can exist. Denote the left-momentum by Psh,2 = p2 + kV + (n3 +

n4)A3 + A5 which implies p2 · Y = −1/2, p2 · α1,2,3 = 0. Then, the quantity α0 = p1 − p2

has to fullfill α0 · α1,2,3 = 0, α0 · Y = −1/2. Taking into account (4.14) we obtain that

p1 − p2 = (∗, ∗, ∗, a− 1/2, a− 1/2, a, a, a) /∈ Γ8 × Γ8. (4.16)

This contradiction means that if there exists an SM singlet with zero hypercharge in any

fixed point with n5 = 0 then in any fixed point differing only by n5 = 1 a hypercharge

neutral singlet can not exist. This argument is in perfect agreement with the set of blow-up

modes given in table 2.

5 Field redefinitions

We want to test if the deviation from the orbifold vacuum produced by vevs corresponds

to a smooth Calabi-Yau manifold. For this aim the next step after identifying the blow-up

modes is to compare the massless spectrum. The massless chiral spectrum remaining after

assigning vevs should coincide with the massless spectrum in the heterotic supergravity

coupled to super Yang-Mills on the resolved variety. A first observation is that states on

the orbifold Φorb
γ , numbered by γ, have weights Psh which are different from the weights

of the supergravity states which belong to the E8 × E8 root lattice. For this reason field

redefinitions must be performed [50, 54]. We perform redefinitions employing the blow-up

modes Φbu-mode
i . Those have to reproduce the chiral asymmetry of the supergravity on the

blow-up. We require that the sum of the left moving momenta of the states add up to a

vector in the lattice. We consider redefinitions of the kind

Φbu
γ = Φorb

γ

∏
i

(Φbu-mode
i )c

γ
i , cγi ∈ Z, (5.1)

with integer coefficients cγi such that the map is single valued, and where Φbu
γ is a chiral

state on the blow-up. The coefficients cγi are constrained such that the weights of the

resulting state lies on the root lattice of E8×E8, this will be discussed in the following. The

constructing elements of Φorb
γ and Φbu-mode

i are given by g = (θk, nαeα) and gi = (θki ,mi
αeα)

respectively. One can consider different numbers of blow-up modes in one redefinition. We

studied the cases involving 1,2, or 3 blow-up modes. Let us denote the root system of

E8 × E8 by λ and recall that we call Λ the root lattice. Then the left moving momentum

of the blow-up state is P γbu ∈ λ. We denote the left moving momentum of the twisted state

and the blow-up mode i by P γsh and P ish respectively. They are given by

P γsh = p+ kV + nαAα,

P ish = pi + kiV +mi
αAα, (5.2)
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with p, p1 ∈ Λ. The shift and Wilson lines have to satisfy 6V, 3A3, 3A4, 2A5, 2A6 ∈ Λ. The

redefinition should add a momentum to P γsh such that the result is a vector of λ. Given

the redefinition (5.1) we obtain for the momentum of the blow-up state

P γbu = p+
∑
i

cγi pi + δ,

δ =

(
k +

∑
i

cγi ki

)
V +

(
nα +

∑
i

cγim
i
α

)
Aα. (5.3)

The sum (5.3) has to be in the lattice of Γ8×Γ8. This restricts the redefinitions as follows

(k +
∑
i

cγi ki) = 0 mod 6,

(n3 +
∑
i

cγim
i
3 + n4 +

∑
i

cγim
i
4) = 0 mod 3,

n5,6 +
∑
i

cγim
i
5,6 = 0 mod 2. (5.4)

There are many solutions to (5.4) that map a certain orbifold massless state to a blow-up

massless state. In next section we present a set of cγi performing a map which matches

the full massless spectrum. In the study of T 6/Z7 [54] we allowed only for redefinitions of

fields at the same fixed points. Here the situation is more complicated, because there are

not only fixed points, but also fixed tori. In the resolved manifold occurs that exceptional

divisors where blow-modes are localized have a compact intersection with other divisors in

the manifold, such that every pair of exceptional divisors is connected.8 For this reason

we allow for redefinitions with fields that lie on different fixed sets than the twisted state.

Let us write the blow-up modes as Φ(θk,αβγ), where the index represents their constructing

element. One example of allowed redefinitions with 3 blow-up modes is given by

Φbu
γ = Φorb

γ,111Φ−1
(θ,111)Φ

−1
(θ2,233)

Φ−1
(θ4,413)

. (5.5)

The labels denote the values of α, β and γ. By checking the conjugacy classes in table (10)

of appendix A one can see that the redefinitions give a vector of Γ8 × Γ8.9 In the table in

appendix B we have collected a set of redefinitions which realizes the orbifold-resolution

map. The exploration indicates that the correct redefinitions involve blow-up modes from

different fixed points.

8For example it is possible to go from the divisor E1,34 to E2,31 by first going to the compact curve

E1,34D3,4 and then from D3,4 to the compact curve E2,31D3,4. See [39] for the full list of compact curves

in the chosen set of triangulations.
9We choose to parametrize the redefinitions using the vector (k3, 3k4 − k3, 2k5, 6m) which reflects the

fact that a valid redefinition is given by δ = (3k4A3,4 + 2k5A5 + 6mV ) ∈ Γ8 × Γ8, and this ensures that

Pbu ∈ Γ8 × Γ8. For one and two blow-up modes we computationally explore possible redefinitions with

−3 ≤ k6 ≤ 3, −3 ≤ k4 ≤ 3, −2 ≤ k5 ≤ 2, −1 ≤ m ≤ 1. For three blow-up modes we explore possible

redefinitions with −6 ≤ k3 ≤ 6, −1 ≤ k4 ≤ 1, −2 ≤ k5 ≤ 2, −1 ≤ m ≤ 1.
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Multip. Blow-up state Redefinition Irrep.

-2 ΦI
11 (ψ48, ψ60)→ ΦI

11 (3̄,2,1)

-1 ΦI
20 ψ189 → ΦI

20 (3̄,2,1)

0 ΦII
13 ψ93 → ΦIII

13 , ψ173 → Φ̄III
13 (3,2,1)

Table 4. Orbifold-resolution map for the (3,2,1) representation.

6 Match of the massless spectrum

In this section we describe the identification of the massless spectrum of the orbifold de-

formed by a vev configuration and the supergravity theory on the resolution. We search

for field redefinitions that reproduce the chiral asymmetry of blow-up fermions which agree

with the orbifold superpotential mass terms. We have explored the mass terms coming

from Yukawa couplings involving blow-up modes. We don’t consider higher order terms in

the superpotential, because they are suppressed by Ms. In addition we do not have access

to the interactions in the smooth CY. The superpotential terms are computed with the

Orbifolder program [64] using the classical orbifold selection rules.10 We use ψi (ψ̄j) to

denote a right-(left-)chiral orbifold field, which in [64] is denoted by bFi (Fj). The multi-

plicity Nx of a state Φx in the CY (4.2) determines the difference between the number of

right-chiral fermions and the number of left-chiral fermions with the state representation.

The complex conjugate representation to Φx is denoted as Φ̄x and it has multiplicity −Nx.

We denote the representations with charges in the first E8 by I, in the second E8 by II,

and by III when they have zero multiplicity. 11 A list with all the blow-up massless

states is given in table 12 of appendix C, there the fields are ordered as ΦI,II,III . In our

notation a pair (ψi, ψj) represents two orbifold fields with equal left-moving momentum

(same representation under the 4d gauge group).

The (3, 2, 1) states. Let us first describe the match of the (3,2,1) and (3̄,2,1) states

in table 4. According to the orbifold selection rules there are no mass terms arising from

Yukawa couplings with blow-up modes.

The orbifold fields ψ93 and ψ173 are mapped to conjugate blow-up states ΦIII
13 and Φ̄III

13

respectively, which form a massive pair. In blow-up there is a net number of 3 (3̄,2,1) and

0 (3,2,1) massless states, whereas on the orbifold (see table 1) there are 4 (3̄,2,1) and

1 (3,2,1). The field redefinitions in appendix B give multiplicities which match perfectly

this difference.

The triplets. The orbifold-resolution map is summarized in table 5. This map is com-

patible with the orbifold superpotential mass terms. In the appendix B we explicitly give

a set of redefinitions which realize it. We start by listing the mass terms in which triplets

and blow-up modes are involved. The Yukawa couplings coefficients will be denoted by

10The new discussions in orbifold selection rules [26] is restricted to the case with zero Wilson lines.
11Only the states charged under the surviving gauge symmetries in the first E8 can have zero multiplicity.
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ai, bi, ei, fi and gi, they have the same letter and index if they are equal.12 A set of mass

terms is given by


ψ6

ψ112

ψ92

ψ116

ψ105



T
0 0 a1〈ψ126〉 a2〈ψ134〉 a3〈ψ150〉 a4〈ψ153〉
0 0 a5〈ψ70〉 a5〈ψ77〉 a6〈ψ70〉 a6〈ψ77〉
0 0 a7〈ψ70〉 a7〈ψ77〉 a8〈ψ70〉 a8〈ψ77〉

e1〈ψ154〉 e1〈ψ155〉 e2〈ψ15〉 e2〈ψ22〉 e1〈ψ15〉 e1〈ψ22〉
e3〈ψ154〉 e3〈ψ155〉 e4〈ψ15〉 e4〈ψ22〉 e3〈ψ15〉 e3〈ψ22〉





ψ30

ψ36

ψ125

ψ133

ψ149

ψ152


. (6.1)

The fields in the vector to the left are triplets and the ones in the vector to the right are

the anti-triplets. This mass matrix has generically rank 5. The field ψ6 is untwisted and

its charges are exactly identified with ΦI
4. We also redefine to ΦI

4 the remaning triplets

ψ112, ψ92, ψ105 and ψ116 . If we want that the map transforms orbifold mass terms into

blow-up mass terms we need to redefine conjugated pairs in (6.1) into conjugated pairs in

blow-up. It is possible to perform a unitary transformation on the anti-triplets eliminating

the last column obtaining one massless eigenstate. We can adjust the redefinitions to have

all the triplets and anti-triplets in a given mass term redefined to conjugate pairs on the

blow-up side. So we take ψ30, ψ36, ψ125, ψ133, ψ149 and ψ152 to Φ̄I
4. Finally mapping ψ121,

ψ129, ψ188 and ψ172 also to ΦI
4 a total of 3 massless states ΦI

4 is obtained in the CY.

Let us analyze now another set of states. The following masses agree easily with

redefinitions

(ψ62 ψ50)

(
b1〈ψ157〉 b2〈ψ157〉
b1〈ψ45〉 b2〈ψ45〉

)(
ψ169

ψ185

)
. (6.2)

The mass matrix has rank 1. Due to that there are two massless eigenstates in the orb-

ifold formed with ψ62, ψ50 and ψ169, ψ185. With the identifications (ψ62, ψ50)→ ΦIII
16 and

(ψ169, ψ185)→ Φ̄III
16 we get a net zero number of blow-up states ΦIII

16 . There are two orbifold

massive linear combinations appearing in (6.2) that are conjugated pairs ΦIII
16 Φ̄III

16 . But

also the two massless eigenstates from the orbifold perspective constitute a pair ΦIII
16 Φ̄III

16

in blow-up.

The remaining mass terms are

ψ20(ψ151〈ψ̄106〉+ ψ132〈ψ̄106〉+ ψ23(〈ψ̄45〉+ 〈ψ159〉)), (6.3)

ψ13(ψ148〈ψ̄106〉+ ψ124〈ψ̄106〉+ ψ16(〈ψ̄45〉+ 〈ψ159〉)). (6.4)

The fields on them are redefined as shown in table 5. In (6.3) and (6.4) we have omitted

the Yukawa coefficients because the rank of both 1× 3 mass matrices is clearly 1.

The exploration criterium was to search for a map that matches the spectrum. We

give the redefinitions in appendix B. The map transforms massive conjugated pairs to

conjugated blow-up pairs. The redefined massive modes give a zero chiral asymmetry for a

12The Yukawa couplings [65, 66] depend on the fixed points, the sectors and the fixed point degeneracy,

so it is possible without calculating them to establish when they must be equal. However it could be that

there are more equal coefficients than expected. This could happen for particular values of the orbifold

moduli. So the rank of the mass matrices we give is a maximal bound.
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Mult. State blow-up Irrep. Redef.

-3 ΦI
4 3 ψ6 ≡ ΦI

4 ψ116, ψ105,ψ112, ψ92 → ΦI
4

ψ30, ψ36, ψ125, ψ133, ψ149, ψ152 → Φ̄I
4

(ψ121, ψ129), (ψ188, ψ172)→ ΦI
4,

-2 ΦI
7 3 (ψ135, ψ127)→ Φ̄I

7

-2 ΦI
8 3̄ ψ20 → ΦI

8, ψ151, ψ132, ψ23 → Φ̄I
8

-2 ΦI
12 3 (ψ58, ψ46)→ ΦI

12

-1 ΦI
25 3 ψ184, ψ166, ψ99 → ΦI

25

ψ100, ψ174 → Φ̄I
25

0 ΦIII
16 3 (ψ62, ψ50)→ ΦIII

16 , (ψ169, ψ185)→ Φ̄III
16

0 ΦIII
32 3̄ ψ148, ψ124, ψ16 → Φ̄III

32

ψ13, ψ94, ψ161 → ΦIII
32

Table 5. Triplets identification in agreement with superpotential mass terms.

given blow-up state. In addition there are massless states from the orbifold superpotential

perspective that are redefined to conjugated pairs in blow-up.

Let us conclude with the overall picture. In the orbifold there are 16 (3,1,1) and

22 (3̄,1,1), whereas in blow-up there are 2 triplets and 8 anti-triplets. The redefinitions

performed give a map in which 14 massive vector pairs are created and the chiral asymmetry

of the Calabi-Yau compactification is reproduced.

The doublets. Some of the mass terms arising from Yukawa couplings are

(ψ11 ψ31 ψ37)

 f1〈ψ118〉 f2〈ψ90〉 0

f3〈ψ28〉 0 f4〈ψ28〉
f3〈ψ34〉 0 f4〈ψ34〉


ψ178

ψ175

ψ158

 . (6.5)

The rank of the mass matrix (6.5) is 2. The remaining mass terms involving doublets are

given by

ψ12(ψ89〈ψ171〉+ ψ111〈ψ187〉). (6.6)

We omitted the Yukawa coupling coefficients because the rank of the 1× 2 mass matrix is

clearly 1. A set of redefinitions consistent with all given mass terms is given in table 6. The

untwisted field ψ12 is identified with ΦIII
29 . The fields ψ89 and ψ111 are mapped to Φ̄III

29 .

They form a massive linear combination and a massless one. In the orbifold there are 19

doublets and 10 of them form conjugated pairs in blow-up giving a total of 9 massless chiral

fields.

The sixplets. The matter charged under SU(6)hidden has representations (1,1,6) and

(1,1, 6̄). The map can be seen in table 7. In the orbifold there are 7 six-plets and 7 anti-

six-plets. On blow-up there are 4 of both kinds. This agrees with the 3 blow-up massive

pairs that can be seen in the table formed by six-plets and anti-six-plets.

The orbifold superpotential mass terms are

ψ9ψ136〈ψ141〉+ ψ9ψ142〈ψ147〉. (6.7)
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Mult. State blow-up Redef. Irrep.

-2 ΦI
10 (ψ61, ψ49)→ ΦI

10 (1,2,1)

-2 ΦI
16 ψ24, ψ108 → Φ̄I

16 (1,2,1)

-2 ΦI
17 (ψ42, ψ39)→ Φ̄I

17 (1,2,1)

-1 ΦI
19 ψ8 ≡ ΦI

19 (1,2,1)

-1 ΦI
21 ψ4 ≡ Φ̄I

21 (1,2,1)

-1 ΦI
23 ψ10 ≡ ΦI

23 (1,2,1)

0 ΦIII
29 ψ11 ≡ Φ̄III

29 ,ψ89, ψ111, (ψ31, ψ37)→ Φ̄III
29 (1,2,1)

ψ12 ≡ ΦIII
29 , ψ175, ψ17, (ψ158, ψ178)→ ΦIII

29

Table 6. Doublets redefinition with correct orbifold mass terms.

Mult. State blow-up Redef. Irrep.

-1 ΦII
4 ψ182 → ΦII

4 6

-1 ΦII
2 ψ2 ≡ ΦII

2 6̄

-1 ΦII
9

ψ9 ≡ ΦII
9 , ψ136, ψ142 → Φ̄II

9 ,

ψ137, ψ143 → ΦII
9

6̄

-1 ΦII
19

ψ164, ψ157 → ΦII
19,

ψ102 → Φ̄II
19

6

-2 ΦII
14 (ψ106, ψ117)→ ΦII

14 6̄

-2 ΦII
13 (ψ86, ψ83)→ ΦII

13 6

Table 7. Orbifold-resolution identification for the 6 and 6̄ representations of SU(6).

Equation (6.7) shows that a massive pair is formed from ψ9 and a combination of ψ136 and

ψ142. The field ψ9 is redefined to ΦII
9 and ψ136 and ψ142 are redefined to Φ̄II

9 . Furthermore

there are two additional orbifold fields redefined to the state ΦII
9 to give one massless ΦII

9

state in blow-up.

The singlets. At the orbifold all the untwisted singlets are massless and they only take

part in Yukawa couplings with doublets. The twisted singlets instead have various mass

terms coming from Yukawa couplings to blow-up modes. Those are

ψ160 (ψ84〈ψ45〉g1 + ψ87〈ψ57〉g1 + ψ27〈ψ28〉g2 + ψ33〈ψ34〉g2) , (6.8)

ψ180(ψ84〈ψ45〉g3 + ψ87〈ψ57〉g3 + ψ27〈ψ28〉g4 + ψ33〈ψ34〉g4), (6.9)

ψ40(ψ114(〈ψ134〉+ 〈ψ153〉) + ψ14〈ψ187〉), (6.10)

ψ43(ψ114(〈ψ126〉+ 〈ψ150〉) + ψ21〈ψ187〉), (6.11)

ψ35(ψ146〈ψ̄106〉+ ψ107〈ψ155)〉, (6.12)

ψ29(ψ140〈ψ̄106〉+ ψ107〈ψ154〉). (6.13)

We only wrote explicitly the Yukawa coupling coefficients in (6.8) and (6.9) as gi to illustrate

that the mass matrix formed with those equations has rank 2. It is easy to check by looking

at table 8 that the identifications agree with the mass terms of the orbifold superpotential.
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There is an ingredient not shown in the map presented so far. In the superpotential

there are Yukawa couplings in which two blow-up modes are involved. We have checked up

to trilinear order that the vevs can be assigned while ensuring F-flat vacua. In addition,

only a pair of twisted singlets written as massless in the map of the table 8 becomes

massive due to those trilinear couplings. The map given above can be slightly modified to

also reproduce the CY chiral asymmetry.13 The number of singlets in the orbifold is 114

out of which 74 are redefined to conjugated states forming blow-up massive pairs, to give

40 massless states in blow-up.

This completes the matching of the heterotic string massless spectrum in the deformed

orbifold and in the toric CY. At the level of the massless spectrum, the geometric resolution

with abelian vector bundle constitutes a blow-up of the MSSM Mini-landscape Model 28,

in which the twisted singlets in table 2 are identified as the blow-up modes.

The field redefinitions in appendix B usually involve blow-up modes from different

fixed sets than those of the orbifold twisted fields. Although it also occurs that only the

local blow-up modes take part in the redefinition. Due to the topology of the T 6/Z6II

orbifold and its resolution this was expectable.

7 Anomaly cancellation in 4d

In this section we present the study of the anomaly cancelation in 4d from the orbifold

perspective and the resolution perspective. We aim to check the equivalence of the 4d

anomaly cancellation in the orbifold deformed by vevs and in the resolution. The relevant

formulas for the dimensional reduction needed to compute the resolution anomalies can

be found in [54]. We chose a basis inside the Cartan subalgebra of E8 × E8 such that the

abelian gauge group U(1)8 is explicit and we can express the anomaly polynomials in terms

of it. This basis is given in appendix D.

We checked that the dimensionally reduced polynomial coincides with the one com-

puted from the supergravity 4d spectrum. Details of the anomaly polynomials are given in

the following. We explicitly write the anomaly polynomials of the orbifold (orb), blow-up

(bu) and the polynomial variation due to field redefinitions (red). We use the symbols

Iorb
G , Ired

G and Ibu
G to denote the anomaly polynomial for the gauge factors U(1)-G2 with

G = SU(2), SU(3),SU(6). Also we employ the notation Fsu(n) to denote the field strength

taking values in the adjoint of SU(n). The other symbols are Iorb,bu,red
grav to denote the

U(1)-grav2 anomalies, and Iorb,bu,red
pure to denote the pure U(1) anomalies.

The dimensionally reduced anomaly polynomial on ̂T 6/Z6II is given by [39, 61]

I6 =

∫
X

{1

6

(
tr[F ′F ′]

)2
+

1

4

(
trF ′2− 1

2
trR2

)
trF ′2− 1

8

(
trF ′2− 5

12
trR2

)
trR2

}
tr[F ′F ′]+(′→′′) .

(7.1)

The orbifold and resolution anomalies can also be explicitly evaluated using the tradi-

tional method with the charges of the fields. As a cross check for the resolution we use

13The fields ψ72, ψ79 are the ones becoming massive due to the trilinear couplings with blow-up modes.

The change in the map is to make ψ95, ψ96 → ΦI18 via the redefinition V122 − V312.
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Mult. States blow-up redef.

E1
8 spectrum I

−4 ΦI
1 (ψ63, ψ66)→ ΦI

1, (ψ51, ψ54)→ ΦI
1

−4 ΦI
2 (ψ64, ψ52)→ ΦI

2, (ψ81, ψ75)→ ΦI
2

−2 ΦI
5

ψ123, ψ35, ψ29, ψ65, ψ55 → ΦI
5,

ψ140, ψ146, ψ107 → Φ̄I
5

−2 ΦI
6 ψ98, ψ114, (ψ21, ψ14)→ ΦI

6, ψ40, ψ43 → Φ̄I
6

−2 ΦI
9 (ψ82, ψ74)→ ΦI

9

−2 ΦI
13 ψ78, ψ163 → Φ̄I

13

−2 ΦI
14 (ψ25, ψ18)→ ΦI

14

−2 ΦI
15 (ψ130, ψ122), ψ71 → ΦI

15, ψ73 → Φ̄I
15

−4 ΦI
3 ψ1 ≡ ΦI

3, ψ177, ψ190, ψ80 → ΦI
3

−2 ΦI
18 (ψ79, ψ72)→ Φ̄I

18

−1 ΦI
24

ψ87, ψ84, ψ171, (ψ33, ψ27)→ ΦI
24,

(ψ26, ψ19)→ Φ̄I
24, ψ95, ψ96, ψ128 → ΦI

24,

ψ91, ψ104, ψ120, ψ180, ψ160 → Φ̄I
24

−1 ΦI
22 ψ7 ≡ ΦI

22

E2
8 spectrum II

−2 ΦII
7

(ψ47, ψ59)→ Φ̄II
7 , ψ3 ≡ Φ̄II

7 ,

(ψ38, ψ32), ψ113, ψ168, ψ144 → ΦII
7

−2 ΦII
3 (ψ76, ψ69)→ ΦII

3

−4 ΦII
20 (ψ53, ψ67)→ Φ̄II

20, (ψ145, ψ139)→ Φ̄II
20

−4 ΦII
18 ψ119, ψ181, (ψ109, ψ110)→ ΦII

18

Non-chiral III

0 ΦIII
1

ψ5 ≡ Φ̄III
1 , ψ162, ψ138, ψ101 → Φ̄III

1

(ψ56, ψ68), ψ176, ψ156 → ΦIII
1 ,

0 ΦIII
24 ψ131 → ΦIII

24 , ψ167 → Φ̄III
24

Table 8. Singlets identification in agreement with superpotential mass terms.

both methods. The change to the anomaly due to field redefinitions is computed con-

sidering the remaining mass fields after symmetry breaking and computing the traces as

discussed in [54].

The U(1)-SU(3)2 anomalies are given by

Iorb
su(3) = −52

9
F1trF 2

su(3),

Ibu
su(3) =

1

2
(11F1 + 2F2 − 30F3 + 330F4 + 1053F5 − 243F6 − 2087F7 − 594F8)trF 2

su(3),

Ired
su(3) =

1

6

(
203

3
F1 + 6F2 − 90F3 + 990F4 + 3159F5 − 729F6 − 6261F7 − 1782F8

)
trF 2

su(3).

(7.2)
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It is clear from (7.2) that in the orbifold the anomalies are universal, with the unique axion

canceling the U(1)1-SU(3)2 anomaly, whereas in blow-up all the U(1) become anomalous.

The U(1)-SU(2)2 anomalies have an identical structure:

Iorb
su(2) = −52

9
F1trF 2

su(2),

Ibu
su(2) =

1

2
(11F1 + 2F2 − 30F3 + 330F4 + 1053F5 − 243F6 − 2087F7 − 594F8)trF 2

su(2),

Ired
su(2) =

1

6

(
203

3
F1 + 6F2 − 90F3 + 990F4 + 3159F5 − 729F6 − 6261F7 − 1782F8

)
trF 2

su(2).

(7.3)

On the other hand the U(1)-SU(6)2 anomaly has a very particular structure:

Iorb
su(6) = −52

9
F1trF 2

su(6), (7.4)

Ired
su(6) =

52

9
F1trF 2

su(6), (7.5)

Ibu
su(6) = 0. (7.6)

In the resolution it cancels. As the charges of the sixplets and anti-sixplets are all different in

blow-up this cancelation seems to be accidental. As expected, in the orbifold the anomaly is

universal, and in blow-up it turns out to be zero. The gravitational anomalies are given by

Iorb
grav =

52

9
F1trR2,

Ibu
grav = − 1

12
(23F1 + 7F2 − 119F3 + 1439F4 + 3946F5 + 6(−57F6 − 967F7 + F8))trR2,

Ired
grav = − 1

36
(277F1 + 3(7F2 − 119F3 + 1439F4 + 3946F5 + 6(−57F6 − 967F7 + F8)))trR2.

(7.7)

The pure U(1) anomalies have also a universal character in the orbifold:

Iorb
pure =

1

6

(
−10816

27
F 3

1 −
260

9
F1F

2
2 −

13520

3
F1F

2
2 −

1879280

3
F1F

2
4 −

17809792

3
F1F

2
5

)
−1

6

(
40616576

3
F1F

2
6 −

59672080

3
F1F

2
7 − 7830784F1F

2
8

)
. (7.8)

On the blow-up the expression is much longer, so we refrain from writing it. It is important

to mention the fact that compactifying in the smooth CY all the U(1)s become anomalous.

We don’t need the explicit field redefinitions obtained in order to match the anomalies

in the supergravity and in the orbifold deformed by vevs. Any map that identifies the

orbifold and blow-up massless spectrum gives the same Ired. Nevertheless, in appendix B

we give a list of the redefined orbifold fields and one of the many possible redefinitions that

can be used to perform the considered map.
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Blow-up modes and non-universal axions. Let us explore how the orbifold axion and

the blow-up modes are related to the blow-up universal- and non-universal axions. As in the

T 6/Z7 study [54] we want to determine if the local blow-up modes can be interpreted as the

non-universal axions.14 For that purpose we write the anomaly change due to redefinitions

as Ired =
∑

r q
r
IF

IXred
4,r i.e. as a factorization that can be canceled by a counterterm of

blow-up modes. Then, the anomaly polynomial in the resolved space can be written as

I6 = F1X
orb
4 +

∑
r

qrIF
IXred

4,r = Xuni
2 Xuni

4 +
∑

Xr
2X

r
4 . (7.9)

To describe the factorization we use the formulas for Xuni
2 , Xuni

4 , Xr
2 and Xr

4 obtained

in [54]. To determine how the anomaly change due to redefinitions factorizes we employ

the ansatz

Xred
4,r = − 1

12
(crX

uni
4,r + drX

r
4), (7.10)

in which the −1/12 is introduced in order to simplify the normalization. In appendix E

we give the solutions for cr and dr. Our results identify the blow-up modes τr as the non-

universal axions βr. The blow-up universal axion auni is given as a mixture of the blow-up

modes and the orbifold axion aorb. This can be seen in the following relations

auni = − 1

12
(aorb +

∑
r

crτr), (7.11)

βr = − 1

12
drτr. (7.12)

The proportionality factor −1/12dr can be chosen to be universal. It is 1/6 for all the blow-

up modes which are right-handed and −1/6 for the three blow-up modes which are left-

handed. This result agrees exactly with the one encountered in [54] for the T 6/Z7 orbifold.

In the appendix it can also be seen that the universal blow-up axion receives contributions

from the unique orbifold axion aorb and the blow-up modes. This one-loop computation

provides a direct identification between the orbifold resolution and the deformed orbifold

with vevs of twisted fields turned on.

8 Conclusions and outlook

Our work explores deformations in heterotic orbifold compactifications by vevs of twisted

fields which can be identified with compactifications of the heterotic string on Calabi-Yau

manifolds. The identification we study fulfills the following requirements. First, the blow-

up modes are identified with twisted states, then the massless spectra map to each other

and finally the 4d anomaly cancellation matches on both sides. The study focuses on

the heterotic orbifold T 6/Z6II and its resolution ̂T 6/Z6II . This orbifold model belongs

to the MSSM Mini-landscape which is a phenomenologically fertile region of the heterotic

string compactifications. The model has the greatest complexity encountered in heterotic

14The existence of non-universal axions have been discussed for non-compact blow-ups in [50] and for

generic CY 3-folds in [61][67].
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orbifolds. There are fixed points with C3/Z6II singularities and fixed tori with C2/Z3 or

C2/Z2 local singularities. Part of the geometric complexity of the model is due to the

singularity C3/Z6II because it can be resolved in five different ways, leading to ∼ 512

possibilities to resolve the compact variety.

We scanned over the Mini-landscape models, restricting the search to the ones in

which all fixed sets support chiral matter multiplets. Then, for a given orbifold model, we

explored multiple resolutions. A technical observation is that the Bianchi Identities are

easier to fulfill by fixing the triangulation of all the local resolutions to be the same. For

triangulation B in all the fixed points resolutions, we identified many sets of twisted fields

which can play the role of blow-up modes. Taking one of those resolutions we succeed to

perform field redefinitions that reproduce the chiral asymmetry of the supergravity on the

Calabi-Yau manifold. We looked at the masses generated by Yukawa couplings to blow-up

modes and we found that they strongly restrict the allowed redefinitions. We obtained a

match between the massless spectrum of the supergravity on the blow-up and the one of

the deformed orbifold. We found many equivalent redefinitions which lead to the same

identification of the orbifold spectrum with the blow-up spectrum.

One of our findings is that the local index theorem seems not applicable. That can be

expected due to the presence of fixed tori, and the absence of some exceptional divisors

on the triple intersections. Another observation is that field redefinitions involve also non

local blow-up modes. This can be expected from the fact that on the CY all exceptional

divisors are connected. With this information at hand we carried out a detailed analysis

of the anomaly cancelation mechanism. We computed the dimensional reduced anomaly

polynomial on the blown-up orbifold ̂T 6/Z6II . We also obtained the orbifold anomaly

polynomial and its variation due to field redefinitions and fields becoming massive on the

blow-up geometry. The anomaly cancellation in 4d is inherited from the 10d cancellation.

This is checked by obtaining the factorization of the 4d polynomial on ̂T 6/Z6II . We were

able to factorize the variation of the orbifold anomaly polynomial, and we identified the

blow-up modes to be the non-universal axions of the resolution. The universal axion on

the blown-up geometry is a mixture of the orbifold-axion and the blow-up modes. This

mixing of the axions is relevant for the interactions in blow-up. This study completes the

identification of the smooth geometry with the deformed orbifold at the quantum level.

Let us conclude by pointing out some problems related to this work that we would like

to address in the future. It is interesting to understand the degeneracy of the identification.

We would like to explore if there are stronger restrictions which could single out a bijection

between a particular resolution and a corresponding orbifold deformed by vevs. We would

like also to study how the Bianchi Identities translate into the level-matching condition

for the blow-up modes. In addition, it would be interesting to study algebraic descriptions

of the global Calabi-Yau manifolds with bundles, using the understanding of the moduli

space of these compactifications achieved in this work.

Our analysis shows that to study the blow-up mechanism in detail allows us to translate

the powerful computational techniques of orbifold compactification to smooth compactifi-

cations. We have shown here that even in the more complex orbifold constructions it is

possible to study the orbifold-resolution transition in great detail.
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A Orbifold data

The orbifold Coxeter element is

θe1 = 2e1 + 3e2, θe2 = −e1 − e2, θe3 = e4, θe4 = −e3 − e4,

θe5 = −e5, θe6 = −e6. (A.1)

B Field redefinitions for T 6/Z6II

Here we present a sample of the field redefinitions found which perform the presented map

from orbifold to blow-up states. The first column of the table denotes the orbifold field to

be redefined ψγ , the second column represents its fixed point and in the third column one

can read off the redefinition.

Field Fixed point Redefinition

ψ61 (1, 1, 1) V1,3,1 − V2,1,2
ψ60 (1, 1, 1) −V1,1,1
ψ62 (1, 1, 1) V1,3,1 − V2,1,2
ψ58 (1, 1, 1) −V1,1,1
ψ68 (1, 1, 1) −V1,1,1 + V2,3,3 + V4,1,3
ψ67 (1, 1, 1) −V1,2,1 + V4,1,1 − V4,3,3
ψ59 (1, 1, 1) 2V1,2,2 − V1,2,3 + V4,1,3
ψ65 (1, 1, 1) −V1,1,1
ψ64 (1, 1, 1) −V1,1,1
ψ66 (1, 1, 1) −V1,1,1
ψ63 (1, 1, 1) −V1,1,1 − V2,3,3 − V4,1,3
ψ42 (1, 1, 2) V1,1,2 + V2,1,3 − V4,3,2
ψ43 (1, 1, 2) V1,2,2 + V4,1,3
ψ49 (1, 1, 3) V1,3,3 − V2,1,2
ψ48 (1, 1, 3) −V1,1,3
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ψ50 (1, 1, 3) V1,3,3 − V2,1,2
ψ46 (1, 1, 3) −V1,1,3
ψ56 (1, 1, 3) −V1,1,3 + V2,3,3 + V4,1,3
ψ53 (1, 1, 3) −V1,2,3 + V4,1,1 − V4,3,3
ψ47 (1, 1, 3) 2V1,2,2 − V1,2,3 + V4,1,3
ψ55 (1, 1, 3) −V1,1,3
ψ52 (1, 1, 3) −V1,1,3
ψ54 (1, 1, 3) −V1,1,3
ψ51 (1, 1, 3) −V1,1,3 − V2,3,3 − V4,1,3
ψ39 (1, 1, 4) V1,1,4 + V2,1,3 − V4,3,2
ψ40 (1, 1, 4) V1,2,4 + V4,1,3
ψ86 (1, 2, 1) −V1,2,1
ψ87 (1, 2, 1) V1,1,1 + V4,1,3
ψ76 (1, 2, 2) −V1,2,1 − V1,3,1 + V1,3,2
ψ79 (1, 2, 2) −V1,1,1 + V1,2,1 − V1,3,2
ψ80 (1, 2, 2) −V1,3,2 + V2,1,3 + V4,1,1
ψ78 (1, 2, 2) −V1,1,2 − V2,1,3 − V4,1,1
ψ82 (1, 2, 2) V1,2,2 + V4,3,2
ψ81 (1, 2, 2) −V1,1,1 + V1,2,1 − V1,3,2
ψ83 (1, 2, 3) −V1,2,3
ψ84 (1, 2, 3) V1,1,3 + V4,1,3
ψ69 (1, 2, 4) −V1,2,1 − V1,3,1 + V1,3,4
ψ72 (1, 2, 4) −V1,1,1 + V1,2,1 − V1,3,4
ψ73 (1, 2, 4) −V1,2,1 + V3,1,4 − V3,2,1
ψ71 (1, 2, 4) −V1,1,4 − V2,1,2 + V2,3,3
ψ74 (1, 2, 4) V1,2,4 − V2,1,2
ψ75 (1, 2, 4) −V1,1,1 + V1,2,1 − V1,3,4
ψ36 (1, 3, 1) −V1,3,2 + V3,1,2 − V3,2,1
ψ37 (1, 3, 1) V1,3,1 + V4,1,3
ψ38 (1, 3, 1) −V1,3,1
ψ33 (1, 3, 1) V1,3,1 + V4,1,3
ψ35 (1, 3, 1) V1,3,1 − V2,3,3
ψ24 (1, 3, 2) V3,1,2 − V2,3,3 + V4,3,3
ψ23 (1, 3, 2) V1,3,2 − V2,1,3
ψ20 (1, 3, 2) −V1,3,2
ψ26 (1, 3, 2) V1,2,2 − V1,2,3 − V1,3,3
ψ25 (1, 3, 2) −V1,3,2
ψ21 (1, 3, 2) −V1,2,2 − V2,3,2 − V4,1,3
ψ31 (1, 3, 3) V1,3,3 + V4,1,3
ψ32 (1, 3, 3) −V1,3,3
ψ27 (1, 3, 3) V1,3,3 + V4,1,3
ψ29 (1, 3, 3) V1,3,3 − V2,3,3
ψ30 (1, 3, 3) −V1,3,4 + V3,1,3 + V3,1,4
ψ17 (1, 3, 4) −V1,2,1 + V1,2,4 − V1,3,1
ψ16 (1, 3, 4) −V1,3,4
ψ13 (1, 3, 4) V1,3,4 − V2,1,3
ψ19 (1, 3, 4) −V1,2,1 + V1,2,4 − V1,3,1
ψ18 (1, 3, 4) −V1,3,4
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ψ14 (1, 3, 4) −V1,2,4 − V2,3,2 − V4,1,3
ψ114 (2, 1, 1) −V1,2,2 + V3,1,2 − V4,1,3
ψ111 (2, 1, 2) −V2,3,2
ψ112 (2, 1, 2) V1,2,2 − V3,1,2
ψ113 (2, 1, 2) −V2,1,2
ψ117 (2, 1, 3) V1,3,3 − V3,1,3
ψ116 (2, 1, 3) V1,3,2 − V3,1,2
ψ119 (2, 1, 3) −V2,1,3
ψ102 (2, 3, 1) V4,3,1
ψ100 (2, 3, 1) −V2,3,1
ψ99 (2, 3, 1) −V2,1,1
ψ101 (2, 3, 1) −V1,3,2 − V3,1,2 − V4,3,2
ψ98 (2, 3, 1) −2V1,3,4 − V2,3,2 − V4,3,1
ψ89 (2, 3, 2) −V2,3,2
ψ93 (2, 3, 2) V1,1,2 + V1,2,2 + V2,3,1
ψ94 (2, 3, 2) −V1,1,1 + V2,3,3 + V3,1,1
ψ92 (2, 3, 2) V1,2,2 − V3,1,2
ψ91 (2, 3, 2) −2V1,3,1 − V2,3,2 − V4,1,3
ψ96 (2, 3, 2) 2V1,2,1 − V2,1,3 + V4,3,1
ψ95 (2, 3, 2) 2V1,2,1 − V2,1,3 + V4,3,1
ψ106 (2, 3, 3) V1,3,1 + V3,2,1
ψ108 (2, 3, 3) −V2,3,3
ψ105 (2, 3, 3) V1,3,2 − V3,1,2
ψ110 (2, 3, 3) V4,3,3
ψ109 (2, 3, 3) V4,3,3
ψ104 (2, 3, 3) −2V1,2,1 − V2,1,1 − V4,3,3
ψ107 (2, 3, 3) −V1,3,1 + V2,3,3 − V3,2,1
ψ182 (4, 1, 1) −V2,1,1 + V2,1,2 + V2,1,3
ψ185 (4, 1, 1) V1,1,1 − V1,2,1 + V2,1,3
ψ184 (4, 1, 1) −V1,1,2 − V1,3,2 + V4,1,3
ψ189 (4, 1, 2) −V4,1,2
ψ188 (4, 1, 2) V1,3,2 − V2,1,1 − V3,1,2
ψ190 (4, 1, 2) −V4,1,2
ψ178 (4, 1, 3) −V4,1,3
ψ181 (4, 1, 3) 2V1,1,2 + 2V1,2,2 − V2,1,3
ψ180 (4, 1, 3) −V4,1,3
ψ164 (4, 3, 1) −V4,3,1
ψ169 (4, 3, 1) V1,1,1 − V1,3,3 − V4,3,2
ψ166 (4, 3, 1) V2,3,1
ψ167 (4, 3, 1) V1,3,1 − V3,2,3 + V4,3,2
ψ168 (4, 3, 1) −V1,1,4 − V1,2,2 + V4,3,2
ψ175 (4, 3, 2) V2,3,2
ψ173 (4, 3, 2) −V1,1,2 − V1,2,4 − V2,3,1
ψ174 (4, 3, 2) V1,1,2 + V1,3,2
ψ172 (4, 3, 2) V1,3,2 − V2,1,1 − V3,1,2
ψ176 (4, 3, 2) −V2,3,1 + V4,1,3
ψ171 (4, 3, 2) V2,3,3 − V4,1,2 + V4,1,3
ψ177 (4, 3, 2) V2,3,2
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ψ157 (4, 3, 3) −V4,1,2 + V4,1,3 − V4,3,1
ψ158 (4, 3, 3) −V4,1,3
ψ161 (4, 3, 3) V1,3,1 − V3,1,1 + V4,1,3
ψ162 (4, 3, 3) −V4,1,3
ψ156 (4, 3, 3) −V1,1,1 + V1,3,1 + V2,3,2
ψ160 (4, 3, 3) −V4,1,3
ψ163 (4, 3, 3) V1,3,1 − V2,3,3 − V3,1,1
ψ151 (3, 1, 2) V1,3,2 − V4,1,3
ψ152 (3, 1, 2) V3,1,2
ψ148 (3, 1, 4) −V1,3,4 + V2,1,3 − V4,1,3
ψ149 (3, 1, 4) V3,1,4
ψ143 (3, 2, 1) −V3,2,1
ψ142 (3, 2, 1) V3,2,1
ψ145 (3, 2, 1) −V3,2,1
ψ144 (3, 2, 1) −V1,3,1 − V2,1,3
ψ146 (3, 2, 1) −V1,3,1 + V2,3,3 − V4,1,3
ψ132 (3, 2, 2) −V1,1,2 − V2,3,1
ψ133 (3, 2, 2) V3,2,2
ψ135 (3, 2, 2) −V1,2,2 − V2,3,2
ψ133 (3, 2, 2) V3,2,2
ψ129 (3, 2, 2) −V3,2,2
ψ131 (3, 2, 2) V1,2,2 + V2,3,2
ψ128 (3, 2, 2) V1,1,2 + V1,2,1 + V1,3,1
ψ130 (3, 2, 2) V1,1,2 + V2,3,1
ψ137 (3, 2, 3) −V3,2,3
ψ136 (3, 2, 3) V3,2,3
ψ138 (3, 2, 3) −V1,1,2 − V1,2,3 − V1,3,2
ψ139 (3, 2, 3) −V3,2,3
ψ140 (3, 2, 3) −V1,3,3 + V2,3,3 − V4,1,3
ψ124 (3, 2, 4) −V1,3,4 + V2,1,3 − V4,1,3
ψ127 (3, 2, 4) −V1,2,4 − V2,3,2
ψ121 (3, 2, 4) −V3,2,4
ψ120 (3, 2, 4) −V2,3,3 + V3,2,4 − V4,1,3
ψ122 (3, 2, 4) V1,1,4 + V2,3,1
ψ123 (3, 2, 4) V1,2,4 − V2,1,2 + V4,1,2
ψ125 (3, 2, 4) V3,2,4

C Blow-up spectrum

ΦI

1 (1,1) -4 (1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

2 (1,1) -4 (-1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

3 (1,1) -4 (-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

4 (3,1) -3 (-1
2 ,-1

2 ,-1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

5 (1,1) -2 (1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)
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6 (1,1) -2 (1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,-1

2 ,-1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

7 (3,1) -2 (-1
2 ,1

2 ,1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

8 (3̄,1) -2 (-1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,-1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

9 (1,1) -2 (-1
2 ,1

2 ,-1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

10 (1,2) -2 (-1
2 ,-1

2 ,-1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

11 (3̄,2) -2 (0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)

12 (3,1) -2 (0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0)

13 (1,1) -2 (-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)

14 (1,1) -2 (0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0)

15 (1,1) -2 (-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0)

16 (1,2) -2 (-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)

17 (1,2) -2 (0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0)

18 (1,1) -2 (0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0)

19 (1,2) -1 (-1
2 ,1

2 ,1
2 ,-1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

20 (3̄,2) -1 (-1
2 ,1

2 ,1
2 ,1

2 ,-1
2 ,1

2 ,-1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

21 (1,2) -1 (-1
2 ,1

2 ,-1
2 ,1

2 ,-1
2 ,-1

2 ,-1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

22 (1,1) -1 (-1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,-1

2 ,-1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

23 (1,2) -1 (1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)

24 (1,1) -1 (-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

25 (3,1) -1 (0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0)

ΦII

2 6̄ -1 (0,0,0,0,0,0,0,0,-1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,-1
2 ,-1

2)

3 1 -2 (0,0,0,0,0,0,0,0,-1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,-1

2)

4 6 -1 (0,0,0,0,0,0,0,0,1
2 ,1

2 ,-1
2 ,1

2 ,-1
2 ,-1

2 ,-1
2 ,1

2)

7 1 -2 (0,0,0,0,0,0,0,0,-1
2 ,-1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,-1
2 ,-1

2)

9 6̄ -1 (0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0)

13 6 -2 (0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0)

14 6̄ -2 (0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0)

18 1 -4 (0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0)

19 6 -1 (0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0)

20 1 -4 (0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0)

ΦIII

1 (1,1) 0 (-1
2 ,-1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,1

2 ,0,0,0,0,0,0,0,0)

13 (3,2) 0 (-1
2 ,1

2 ,-1
2 ,1

2 ,-1
2 ,1

2 ,1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

16 (3,1) 0 (-1
2 ,-1

2 ,-1
2 ,1

2 ,1
2 ,1

2 ,1
2 ,-1

2 ,0,0,0,0,0,0,0,0)

24 (1,1) 0 (0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)

29 (1,2) 0 (0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)

32 (3̄,1) 0 (0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

Table 12: Here we give all the blow-up states representa-

tions, together with one of its roots.
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nαeα {n1, n2, n3, n4, n5, n6} k {α, β, γ} F.P. coordinates

0 {0, 0, 0, 0, 0, 0} 1 {1, 1, 1} {0, 0, 0, 0, 0, 0}
e6 {0, 0, 0, 0, 0, 1} 1 {1, 1, 3} {0, 0, 0, 0, 0, 1/2}
e5 {0, 0, 0, 0, 1, 0} 1 {1, 1, 2} {0, 0, 0, 0, 1/2, 0}

e5 + e6 {0, 0, 0, 0, 1, 1} 1 {1, 1, 4} {0, 0, 0, 0, 1/2, 1/2}
e3 {0, 0, 1, 0, 0, 0} 1 {1, 2, 1} {0, 0, 2/3, 1/3, 0, 0}

e3 + e6 {0, 0, 1, 0, 0, 1} 1 {1, 2, 3} {0, 0, 2/3, 1/3, 0, 1/2}
e3 + e5 {0, 0, 1, 0, 1, 0} 1 {1, 2, 2} {0, 0, 2/3, 1/3, 1/2, 0}

e3 + e5 + e6 {0, 0, 1, 0, 1, 1} 1 {1, 2, 4} {0, 0, 2/3, 1/3, 1/2, 1/2}
e3 + e4 {0, 0, 1, 1, 0, 0} 1 {1, 3, 1} {0, 0, 1/3, 2/3, 0, 0}

e3 + e4 + e6 {0, 0, 1, 1, 0, 1} 1 {1, 3, 3} {0, 0, 1/3, 2/3, 0, 1/2}
e3 + e4 + e5 {0, 0, 1, 1, 1, 0} 1 {1, 3, 2} {0, 0, 1/3, 2/3, 1/2, 0}

e3 + e4 + e5 + e6 {0, 0, 1, 1, 1, 1} 1 {1, 3, 4} {0, 0, 1/3, 2/3, 1/2, 1/2}
-2 e2 {0, -2, 0, 0, 0, 0} 2 {5, 1, 1} {2/3, 0, 0, 0, 0, 0}

-2 e2 + e4 {0, -2, 0, 1, 0, 0} 2 {5, 3, 1} {2/3, 0, 1/3, 2/3, 0, 0}
-2 e2 + e3 + e4 {0, -2, 1, 1, 0, 0} 2 {5, 2, 1} {2/3, 0, 2/3, 1/3, 0, 0}

0 {0, 0, 0, 0, 0, 0} 2 {1, 1, 1} {0, 0, 0, 0, 0, 0}
e4 {0, 0, 0, 1, 0, 0} 2 {1, 3, 1} {0, 0, 1/3, 2/3, 0, 0}

e3 + e4 {0, 0, 1, 1, 0, 0} 2 {1, 2, 1} {0, 0, 2/3, 1/3, 0, 0}
0 {0, 0, 0, 0, 0, 0} 3 {1, 1, 1} {0, 0, 0, 0, 0, 0}
e6 {0, 0, 0, 0, 0, 1} 3 {1, 1, 3} {0, 0, 0, 0, 0, 1/2}
e5 {0, 0, 0, 0, 1, 0} 3 {1, 1, 2} {0, 0, 0, 0, 1/2, 0}

e5 + e6 {0, 0, 0, 0, 1, 1} 3 {1, 1, 4} {0, 0, 0, 0, 1/2, 1/2}
e2 {0, 1, 0, 0, 0, 0} 3 {4, 1, 1} {0, 1/2, 0, 0, 0, 0}

e2 + e6 {0, 1, 0, 0, 0, 1} 3 {4, 1, 3} {0, 1/2, 0, 0, 0, 1/2}
e2 + e5 {0, 1, 0, 0, 1, 0} 3 {4, 1, 2} {0, 1/2, 0, 0, 1/2, 0}

e2 + e5 + e6 {0, 1, 0, 0, 1, 1} 3 {4, 1, 4} {0, 1/2, 0, 0, 1/2, 1/2}
0 {0, 0, 0, 0, 0, 0} 4 {1, 1, 1} {0, 0, 0, 0, 0, 0}
e3 {0, 0, 1, 0, 0, 0} 4 {1, 2, 1} {0, 0, 2/3, 1/3, 0, 0}

e3 + e4 {0, 0, 1, 1, 0, 0} 4 {1, 3, 1} {0, 0, 1/3, 2/3, 0, 0}
e1 + e2 {1, 1, 0, 0, 0, 0} 4 {3, 1, 1} {1/3, 0, 0, 0, 0, 0}

e1 + e2 + e3 {1, 1, 1, 0, 0, 0} 4 {3, 2, 1} {1/3, 0, 2/3, 1/3, 0, 0}
e1 + e2 + e3 + e4 {1, 1, 1, 1, 0, 0} 4 {3, 3, 1} {1/3, 0, 1/3, 2/3, 0, 0}

Table 10. Conjugacy classes of the Z6II orbifold. In the indices (α, β, γ) we denote also by 1 the

fixed tori.

D U(1) basis

We start with a basis for a set of Cartan generators HI such that trHIHJ = δIJ . There

are 8 U(1)k symmetries. Writing the generator of each of them as Gk =
∑

I c
I
kHI , they are
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given as

G1 =

(
11

6
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,−13

6
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,
1

2

)
,

G2 =

(
0, 0, 0,

1

2
,
1

2
,−1

3
,−1

3
,−1

3
, 0, 0, 0, 0, 0, 0, 0, 0

)
,

G3 = (−3, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

G4 = (33, 9, 130, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

G5 = (286, 78,−78, 0, 0, 0, 0, 0, 0, 278, 0, 0, 0, 0, 0, 0),

G6 = (−66,−18, 18, 0, 0, 0, 0, 0, 0, 78, 0, 0, 0, 0, 616, 0),

G7 = (165, 45,−45, 317, 317, 317, 317, 317, 0,−195, 0, 0, 0, 0, 45, 0),

G8 = (−99,−27, 27, 27, 27, 27, 27, 27, 181, 117,−181,−181,−181,−181,−27, 181).

Every entry I in the vector Gk represents the coefficient cIk. The generator G1 is the

generator of the anomalous U(1)1.

E Axions in blow-up versus orbifold axions

Here we give the solutions for the coefficients cr and dr relating the orbifold axion aorb and

the blow-up modes τr with the universal auni and non-universal axions βr in the resolution.

The relations are

auni = − 1

12
(aorb +

∑
r

crτr), (E.1)

βr = − 1

12
drτr. (E.2)

The following set correspond to solutions such that Ired is factorizable and therefore
can be canceled by a counterterm:

c1 = d19 +
45

4
(−4− d28) +

1

4
(4− 4c3 + 16c17 + 16c19 − 8c20 − 20c21 + 10c25

+12c26 + 10c27 + 12c28 − 2c29 + 12c30 − 2c31 + 12c32 + 4d20 + 4d21 + 4d22

+4d23 + 4d24 + 45d28 + 4d29 + 4d30 + 4d31 + 4d32,

c2 = 1− c4 + 4c17 + 5c19 − 2c20 − 5c21 + 3c25 + 2c26 + 3c27 + 2c28 − c29

+2c30 − c31 + 2c32 + d19 + d20 + d21 + d22 + d23 + d24 +
21

2
(−4− d28)

+
21d28

2
+ d29 + d30 + d31 + d32,

c9 = −1− c5 − c7 − c11 − 4c17 − 4c19 + 2c20 + 3c21 −
5c25

2
− 3c26 −

5c27
2

−3c28 +
c29
2
− 3c30 +

c31
2
− 3c32 − d19 − d20 − d21 − d22 − d23 − d24 −

51

4
(−4− d28)

−51d28
4
− d29 − d30 − d31 − d32,

c10 = 1− c6 − c8 − c12 + 4c17 + 5c19 − 2c20 − 5c21 + 3c25 + 3c26 + 3c27 + 3c28

−c29 + 3c30 − c31 + 3c32 + d19 + d20 + d21 + d22 + d23 + d24 +
27

2
(−4− d28)

+
27d28

2
+ d29 + d30 + d31 + d32,
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c13 = −2 + c6 + c8 − 7c17 − 8c19 + 3c20 + 9c21 − 6c25 − 5c26 − 6c27 − 5c28

+2c29 − 5c30 + 2c31 − 5c32 − 2d19 − 2d20 − 2d21 − 2d22 − 2d23 − 2d24

−24(−4− d28)− 24d28 − 2d29 − 2d30 − 2d31 − 2d32,

c14 = −1− c5 − c7 − 3c17 − 4c19 + c20 + 3c21 − c23 − 2c25 − 2c26 − 2c27 − 2c28

−2c30 − 2c32 − d19 − d20 − d21 − d22 − d23 − d24 −
15

2
(−4− d28)

−15d28
2
− d29 − d30 − d31 − d32,

c15 = −1 + c5 + c6 + c7 + c8 − 4c17 − 4c19 + 2c20 + 5c21 − c24 − 3c25 − 2c26

−3c27 − 2c28 + c29 − 2c30 + c31 − 2c32 − d19 − d20 − d21 − d22 − d23 − d24

−63

4
(−4− d28)− 63d28

4
− d29 − d30 − d31 − d32,

c16 = 1− c6 − c8 + 4c17 + 4c19 − 2c20 − 5c21 − c22 + 3c25 + 3c26 + 3c27 + 3c28

−c29 + 3c30 − c31 + 3c32 + d19 + d20 + d21 + d22 + d23 + d24

+
69

4
(−4− d28) +

69d28
4

+ d29 + d30 + d31 + d32,

c18 = −c6 − c8 + c17 + c19 − c20 − c21 + c25 + c27 − c29 − c31

−3

4
(−4− d28)− 3d28

4
,

d1 = −4− d3,
d2 = −4− d4,
d5 = −4− d7,
d6 = −4− d8,
d9 = −4− d11,
d10 = −4− d12,
d13 = −2,

d14 = 2,

d15 = 2,

d16 = −2,

d17 = −2,

d18 = 2,

d25 = −4− d27,
d26 = −4− d28.
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