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Université Pierre et Marie Curie – Paris 6,

4 place Jussieu, 75252 Paris cedex 05, France

E-mail: carlo.angelantonj@unito.it, florakis@mppmu.mpg.de,

boris.pioline@cern.ch
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concrete examples of interest in heterotic string compactifications.
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1 Introduction

Scattering amplitudes in closed string theory involve, at h-th order in perturbation theory,

an integral over the moduli space of conformal structures on genus h closed Riemann

surfaces. The torus amplitude (corresponding to h = 1) is particularly relevant, as it

encodes the perturbative spectrum of excitations. Moreover, for special choices of vacua

and of external states, corresponding to a special class of F -term interactions in the low

energy effective action, the torus contribution exhausts the perturbative series, and thus can

serve as a basis for quantitative tests of string dualities (see e.g. [1] and references therein).
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The moduli space of conformal metrics on the torus is the Poincaré upper half plane H,

parameterised by the complex structure parameter τ = τ1 + iτ2, modulo the action of the

modular group SL(2,Z). After performing the path integral over the world-sheet fields and

over the location of the vertex-operator insertions, the relevant amplitude is then expressed

as a modular integral ∫
F

dµA(τ1, τ2) , (1.1)

where F = {τ ∈ H | − 1
2 ≤ τ1 <

1
2 , |τ | ≥ 1} is the standard fundamental domain, dµ =

τ−2
2 dτ1 dτ2 is the SL(2,Z)-invariant integration measure, and A is a modular-invariant

function whose precise expression depends on the problem at hand. With this choice of

integration domain, the imaginary part τ2 can be identified with Schwinger’s proper time,

while the real part τ1 is the Lagrange multiplier imposing the level-matching condition.

Part of the difficulty in evaluating integrals of the form (1.1) is the unwieldy shape of F ,

which intertwines the integrals over τ1 and τ2.

Depending on the function A(τ1, τ2) methods have been devised to overcome this

problem. If A is a weak almost holomorphic function1 of τ (or, alternatively, an anti-

holomorphic function), the surface integral over F can be reduced by Stokes’ theorem to a

line-integral over its boundary ∂F that can be explicitly computed [2]. On the contrary, if

A is a genuine non-holomorphic function, as is the case for the one-loop partition function

of closed-oriented strings, no useful method is known to evaluate the integral, but one can

use the Rankin-Selberg-Zagier transform [3] to connect the integral to the graded sum of

physical degrees of freedom [4–7]. A frequently encountered intermediate case is that of

modular integrals of the form∫
F

dµΓd+k,d(G,B, Y ; τ1, τ2)Φ(τ) , (1.2)

where

Γd+k,d(G,B, Y ; τ1, τ2) ≡ τd/22

∑
pL,pR

q
1
4
p2L q̄

1
4
p2R (1.3)

is the partition function of the Narain lattice of Lorentzian signature (d + k, d), G, B, Y

parameterise the Narain moduli space SO(d+ k, d)/SO(d+ k)×SO(d), and Φ(τ) is a weak

almost holomorphic modular form of negative weight w = −k/2, which we shall refer to as

the elliptic genus. Such integrals occur in particular in one-loop corrections to certain BPS-

saturated couplings in the low energy effective action of heterotic or type II superstrings.

The traditional approach in the physics literature for computing modular integrals

of the form (1.2) has been the orbit method, which proceeds by unfolding the integration

domain F against the lattice partition function Γd+k,d [8–19]. While this procedure yields

an infinite series expansion which is useful in certain limits in Narain moduli space, it does

1By weak almost holomorphic we mean an element in the graded polynomial ring generated by the

holomorphic Eisenstein series E4 and E6, the almost holomorphic Eisenstein series Ê2 and the inverse

of the discriminant 1/∆. Our notations for Eisenstein series and other modular forms are collected in

appendix A.1. The adverb weak refers to the fact that the only singularity is, at most, a finite order pole

at the cusp q = 0.
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not make manifest the invariance under the T-duality group O(d + k, d,Z) of the Narain

lattice, nor does it clearly display the singularities of the amplitude at points of gauge

symmetry enhancement.

In [20] we proposed a new method for dealing with modular integrals of the form (1.2),

which relies on representing the elliptic genus Φ as a Poincaré series, and on unfolding

the integration domain against it rather than against the lattice partition function. The

advantage of this method is that T-duality remains manifest at all steps, and the result is

valid in all chambers in Narain moduli space, unlike the conventional approach.2 Moreover,

the amplitude is expressed as a sum over all BPS states in the spectrum, thus generalising

the constrained Eisenstein series constructed in [21].3 Finally, the singularities of the

amplitude at points of enhanced gauge symmetry can be immediately read-off from the

contributions of those BPS states which become massless.

The main difficulty in implementing this strategy is due to the fact that the standard

Poincaré series representation of a weak holomorphic modular form of weight w ≤ 0 [28–30]

is only conditionally convergent, and therefore unsuited for unfolding. In [20] we attempted

to circumvent this problem by considering a class of non-holomorphic Poincaré series

E(s, κ, w) that provide a natural regularisation of the modular forms of interest by inserting

a Kronecker-type convergence factor τ
s−w/2
2 in the standard sum over images. Therefore,

the resulting Poincaré series, originally studied in [31], converges absolutely for <(s) > 1,

and the modular integral
∫
F Γd,dE(s, κ, w) can be computed by unfolding F against it, at

least for large s. The result should then be analytically continued to the desired value s =
w
2 , where E(s, κ, w) becomes formally a holomorphic function of τ . This procedure would

then allow to compute the modular integral (1.2) for any Φ which can be expressed as a

linear combination of such E(w2 , κ, w)’s, at least in principle. However, this strategy turned

out to be quite difficult in practice, since this analytic continuation depends on the notori-

ously subtle analytic properties of the Kloosterman-Selberg zeta function which appears in

the Fourier expansion of E(s, κ, w). That is the reason why the analysis [20] was restricted

to the case of zero modular weight, where the analytic continuation is fully under control.

In the present work, we overcome these difficulties by employing a different class of

non-analytic Poincaré series introduced in the mathematics literature by Niebur [32] and

Hejhal [33] and studied more recently by Bruinier, Ono and Bringmann [34–37]. Similarly

to the Selberg-Poincaré series E(s, κ, w), the Niebur-Poincaré series F(s, κ, w) converges

absolutely for <(s) > 1, and formally becomes holomorphic in τ at the point s = w
2 .

However, the Niebur-Poincaré series can be specialised to the other interesting value s =

1− w
2 , which lies inside the domain of absolute convergence when the weight w is negative.

Although at this value F(s, κ, w) belongs to the more general class of weak harmonic Maass

forms,4 that are typically non-holomorphic functions of τ , it has the important property

2See for instance [18] for a detailed discussion on chamber dependence of the traditional unfolding

method.
3BPS states sums have appeared in earlier works [22–26]. In our approach these BPS sums follow directly

from unfolding the fundamental domain against the elliptic genus, without any further assumption.
4A harmonic Maass form is an eigenmode of the weight-w Laplacian on H with the same eigenvalue as

weak holomorphic modular forms. The positive frequency part of a weak harmonic Maass form is sometimes

known as a Mock modular form. See section 2.3 for a more precise definition of weak harmonic Maass forms.
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that any linear combination of F(1 − w
2 , κ, w), whose coefficients are determined by the

principal part of a given weak holomorphic modular form Φ, is actually a weak holomorphic

modular form, and equals Φ itself. Therefore, given any weak holomorphic modular form

Φ, the integral (1.2) can be computed by decomposing Φ into a sum of Niebur-Poincaré

series, and by unfolding each of them against the integration domain. Moreover, the same

strategy works also for weak almost holomorphic modular forms (i.e. involving powers of

Ê2), where now one has to specialise the Niebur-Poincaré series to the values s = 1− w
2 +n,

with n a non-negative integer.

The outline of this work is as follows. In section 2, we introduce the Niebur-Poincaré

series F(s, κ, w), discuss their main properties, present their Fourier coefficients and identify

their limiting values at s = 1− w
2 + n. We conclude the section by showing the important

result that any weak almost holomorphic modular form can be represented as a linear

combination of them. In section 3 we evaluate the modular integral
∫
F Γd+k,dF

(
s, κ,−k

2

)
in terms of certain BPS-state sums and discuss their singularity structure. In section 4,

we use this result to compute a sample of modular integrals of physical interest of the

form (1.2). In appendix A, we define our notation for modular forms, we collect various

definitions and properties of Whittaker and hypergeometric functions, and we introduce the

Kloosterman sums and the Kloosterman-Selberg zeta function. Finally, in appendix B we

briefly discuss the relation between the Selberg- and Niebur-Poincaré series, and between

the “shifted constrained” Epstein zeta series and the above BPS-state sums. The reader

interested only in physics applications may skip section 2 and proceed directly to section 3,

which begins with an executive summary of the main properties of F(s, κ, w).

Note added. After having obtained most of the results in this paper, we became aware

of ref. [34] where similar computations have been performed for general even lattices of

signature (d + k, d) with d = 0, 1, 2, in particular reproducing Borcherds’ automorphic

products for d = 2 [38]. Unlike [34], we restrict the analysis to even self-dual lattices

(with k = 0 mod 8), which suffices for our physics applications, but we allow for almost

holomorphic modular forms and arbitrary dimension d.

2 Niebur-Poincaré series and almost holomorphic modular forms

In this section, we introduce the Niebur-Poincaré series F(s, κ, w), a modular invariant

regularisation of the näıve Poincaré series of negative weight. We present its Fourier ex-

pansion for general values of s, and analyse its limit as s → 1 − w
2 + n where n is any

non-negative integer. We explain how to represent any weak almost holomorphic modular

form of negative weight as a suitable linear combinations of such Poincaré series.

2.1 Various Poincaré series

In order to motivate the construction of the Niebur-Poincaré series, let us start with a brief

overview of Poincaré series in general. Let w be an even integer5 and f a function on the

5In this paper we shall restrict to the case of even weight w in order to avoid complications with non-

trivial multiplier systems, though the construction can be generalised to half-integer weights.
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Poincaré upper half plane H. The action of an element γ =
(
a b

c d

)
∈ Γ = SL(2,Z) on f is

given by the Petersson slash operator

(f |wγ) (τ) = (cτ + d)−w f(γ · τ) , γ · τ =
aτ + b

cτ + d
. (2.1)

If f is invariant under Γ∞ =
(

1 ?

0 1

)
⊂ Γ , the Poincaré series of seed f and weight w

P (f, w; τ) ≡ P (f, w) = 1
2

∑
γ∈Γ∞\Γ

f |wγ (2.2)

defines an automorphic form of weight w on H, which is absolutely convergent provided

f(τ) � τ
1−w

2
2 as τ2 → 0. As an example, the choice f(τ) = q−κ with w > 2 leads to the

usual holomorphic Poincaré series

P (κ,w) = 1
2

∑
(c,d)=1

(cτ + d)−w e−2πiκ aτ+b
cτ+d , (2.3)

where the pair (a, b) is determined modulo (c, d) by the condition ad− bc = 1. Depending

on the value of κ, eq. (2.3) describes different types of modular forms. For κ = 0, P (κ,w)

is actually an Eisenstein series, while for κ ≤ −1 it is a cusp form, and must therefore

vanish if 2 < w < 12, an observation that will be important later. For κ > 0, eq. (2.3)

represents instead a weak holomorphic modular form with a pole of order κ at q = 0,

P (κ,w) = q−κ +O(q).

For w ≤ 2, the Poincaré series (2.3) is divergent and thus needs to be regularised. One

possible regularisation scheme, introduced in the mathematical literature in [28, 29] and

discussed in the physics literature in [30], is to consider the convergent sum

P (κ,w) = 1
2 lim
K→∞

∑
|c|≤K

∑
|d|<K;(c,d)=1

(cτ + d)−w e2πiκ aτ+b
cτ+d R

(
2πi|κ|

c(cτ + d)

)
, (2.4)

where R is a specific regulating factor such that R(x) ∼ x1−w/Γ (2 − w) as x → 0 and

approaches 1 as x → ∞. While this regularisation preserves holomorphicity, it does not

necessarily produce a modular form,6 except for small |w| where the modular anomaly can

be shown to vanish. Moreover, the convergence of (2.4) is conditional, which makes it

unsuitable for the unfolding procedure.

Another option, introduced by Selberg [31] and considered in our previous work [20],

is to jettison holomorphicity and introduce a convergence factor à la Kronecker, thus

considering the Poincaré-series

E(s, κ, w) ≡ 1
2

∑
(c,d)=1

τ
s−w

2
2

|cτ + d|2s−w
(cτ + d)−w e−2πiκ aτ+b

cτ+d (2.5)

6The holomorphic Poincaré series (2.4) is in general an Eichler integral, i.e. a function F (τ) which

satisfies F (τ) − (F |wγ)(τ) = rγ(τ) where rγ is a polynomial of degree −w in τ , whose coefficients depend

on a, b, c, d. We shall comment in section 2.3 on the modular completion of P (κ,w).
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associated to the seed f(τ) = τ
s−w

2
2 q−κ. We shall refer to (2.5) as the Selberg-Poincaré

series. The series (2.5) converges absolutely for <(s) > 1 and becomes formally holomorphic

at s = w
2 . However, for w ≤ 2 this value lies outside the convergence domain, and the

analytic continuation to s = w
2 depends on the analytic properties of the Kloosterman-

Selberg Zeta function, defined in appendix B, which are notoriously subtle. In particular

this analytic continuation generally leads to holomorphic anomalies. For this reason, in [20]

we restricted the analysis to the case w = 0, where the analytic continuation is under

control. Another drawback of the Selberg-Poincaré series (2.5) is that it fails to be an

eigenmode of the Laplacian on H, rather it satisfies [39][
∆w + 1

2 s(1− s) + 1
8 w(w + 2)

]
E(s, κ, w) = 2πκ (s− w

2 )E(s+ 1, κ, w) , (2.6)

where ∆w is the weight-w hyperbolic Laplacian defined in (A.1). Since E(s+ 1, κ, w) may

in general have a pole at s = w
2 , the analytic continuation of E(s, κ, w) to this value is not

even guaranteed to be harmonic.

To circumvent these problems, following [32–34] we introduce a different regularisa-

tion of the Poincaré series (2.3) for negative weight, which is both modular invariant and

annihilated by the operator on the l.h.s. of (2.6). Namely, we choose the seed in (2.2) to

be f(τ) =Ms,w(−κτ2) e−2πiκτ1 where

Ms,w(y) = |4πy|−
w
2 Mw

2
sgn(y),s− 1

2
(4π|y|) (2.7)

is expressed in terms of the Whittaker function7 Mλ,µ(z). We thus define the Niebur-

Poincaré series

F(s, κ, w) = 1
2

∑
γ∈Γ∞\Γ

Ms,w(−κτ2) e−2πiκτ1 |w γ (2.8)

= 1
2

∑
(c,d)=1

(cτ + d)−wMs,w

(
− κ τ2

|cτ + d|2

)
exp

{
−2iπκ

(
a

c
− cτ1 + d

c|cτ + d|2

)}
.

Since Ms,w(y) ∼ y<(s)−w
2 as y → 0, eq. (2.8) converges absolutely for <(s) > 1, indepen-

dently of w and κ. Moreover, for κ > 0, the case of main interest in this work, the seed

behaves as

Ms,w(−κτ2) e−2πiκτ1 ∼ Γ (2s)

Γ (s+ w
2 )
q−κ as τ2 →∞ , (2.9)

so that F(s, κ, w) can indeed be viewed as a regulated version of the näıve Poincaré series

P (q−κ, w), up to an overall normalisation. By construction it is an eigenmode of the

weight-w Laplacian on H,[
∆w + 1

2 s(1− s) + 1
8 w(w + 2)

]
F(s, κ, w) = 0 , (2.10)

for all values of s, κ, w. We shall denote by H(s, w) = H(1−s, w) the space of real-analytic

solutions to (2.10) which transform with modular weight w under Γ .

7For a definition of Whittaker functions and some of their properties see appendix A.2.

– 6 –



J
H
E
P
0
6
(
2
0
1
2
)
0
7
0

The raising and lowering operators Dw, D̄w defined in (A.2), mapH(s, w) intoH(s, w±
2), and have a simple action on the Niebur-Poincaré series

Dw · F(s, κ, w) = 2κ
(
s+ w

2

)
F(s, κ, w + 2) ,

D̄w · F(s, κ, w) =
1

8κ

(
s− w

2

)
F(s, κ, w − 2) .

(2.11)

Furthermore, under the action of the Hecke operator (A.7) F(s, κ, w) transforms as

Tκ′ · F(s, κ, w) =
∑

d|(κ,κ′)

d1−w F(s, κκ′/d2, w) . (2.12)

In particular, setting κ = 1, the series F(s, κ′, w) is obtained by acting with Tκ′ on

F(s, 1, w).

While the Poincaré series (2.8) converges absolutely only for <(s) > 1, it is known

to have a meromorphic continuation to the complex s-plane, holomorphic in the region

<(s) > 1
2 [32, 40], but with poles on the lines s ∈ 1

2 + iR and s ∈ 1
4 + iR. Moreover, the

‘completed’ series

F?(s, κ, w) =
Γ (1− 2s)

Γ
(
1− s+ w

2 sgn(κ)
)F(s, κ, w) (2.13)

is known to be invariant under s 7→ 1 − s, up to an additive contribution proportional

to the non-holomorphic Eisenstein series E?(s, w) [32, 40]. In this work however we shall

only consider F(s, κ, w) in its domain of convergence <(s) > 1, except for w = 0 where we

allow s = 1.

2.2 Fourier expansion of the Niebur-Poincaré series

The Fourier expansion of F(s, κ, w) can be obtained following the standard procedure of

extracting the contribution from c = 0, d = 1, setting d = d′ + mc in the remaining sum,

and Poisson resumming over m. The result is [34, 36]

F(s, κ, w) =Ms,w(−κτ2) e−2πiκτ1 +
∑
m∈Z

F̃m(s, κ, w) e2πimτ1 , (2.14)

where, for zero frequency

F̃0(s, κ, w) =
22−w i−w π1+s−w

2 κs−
w
2 Γ (2s− 1)σ1−2s(κ)

Γ
(
s− w

2

)
Γ
(
s+ w

2

)
ζ(2s)

τ
1−s−w

2
2 , (2.15)

while for non-vanishing integer frequencies8

F̃m(s, κ, w) =
4π κi−w Γ (2s)

Γ
(
s+ w

2 sgn(m)
) ∣∣∣m

κ

∣∣∣w2 Zs(m,−κ)Ws,w(mτ2) . (2.16)

In these expressions, σs(k) =
∑

d|k d
s is the divisor function and Zs(m,−κ) is the

Kloosterman-Selberg zeta function (A.37), a number-theoretical function which plays a

8Note that F̃−κ<0 does not include the contribution from the first term in (2.14).
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central rôle in the theory of Poincaré series. The function Ws,w is expressed in terms of

the Whittaker W -function as

Ws,w(y) = |4πy|−
w
2 Ww

2
sgn(y),s− 1

2
(4π|y|) , (2.17)

and is determined uniquely by the requirement that Ws,w(nτ2) e2πimτ1 be annihilated by

the Laplace operator on the l.h.s. of (2.10), and be exponentially suppressed as τ2 →∞.

Using the properties (A.35) and (A.36), it is straightforward to check that all Fourier

modes transform according to (2.11) under the raising and lowering operators Dw, D̄w.

Moreover, using the action (A.9) of the Hecke operators on the Fourier coefficients, and

the Selberg identity (A.39) satisfied by the Kloosterman sums, one can show that

Tκ · F(s, 1, w) = F(s, κ, w) . (2.18)

Eq. (2.12) follows then from this equation and from the Hecke algebra (A.8).

2.3 Harmonic Maass forms from Niebur-Poincaré series

Let us focus on the Niebur-Poincaré series F(s, κ, w) at the point s = 1− w
2 . To motivate

this value, we recall that any weak holomorphic modular form is an eigenmode of ∆w with

eigenvalue −w
2 , and therefore belongs to H(s, w) for s = 1 − w

2 (or equivalently, s = w
2 ).

However, weak holomorphic modular forms are not the only eigenmodes of ∆w with this

eigenvalue. In fact, the space H(1− w
2 , w) is known as the space of weak harmonic Maass

forms of weight w, of which weak holomorphic modular forms are only a proper subspace.

The Fourier expansion of a general weak harmonic Maass form Φ of weight w is given

by [41]

Φ =

−1∑
m=−∞

(−m)w−1 b̄−m Γ (1− w,−4πmτ2) qm +
b̄0 (4πτ2)1−w

w − 1
+

∞∑
m=−κ

am q
m , (2.19)

where Γ (s, x) is the incomplete Gamma function and am, bm are coefficients constrained

by modular invariance. As a result, a generic weak harmonic Maass form has an infi-

nite number of negative frequency components, which are non-holomorphic functions of

τ . A harmonic Maass form splits into the sum Φ = Φa + Φb of a holomorphic part

Φa =
∑∞

m=−κ am q
m, sometimes called a Mock modular form, and a non-holomorphic

part Φb. The non-holomorphic and holomorphic parts can be extracted using the lowering

operator D̄w and the iterated raising operator D1−w
w . Indeed,

• the operator D̄w annihilates the holomorphic part, and produces, up to powers of τ2,

the complex conjugate of a holomorphic modular form Ψ of weight 2− w,

D̄w · Φ = D̄w · Φb = −21−2w (πτ2)2−w Ψ , Ψ(τ) =
∞∑
m=0

bm q
m , (2.20)

sometimes known as the shadow.

– 8 –
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• the iterated raising operator D1−w
w , also known in the physics literature as the Farey

transform [42], annihilates the non-holomorphic part, and produces a weak holomor-

phic modular form Ξ of weight 2− w,

D1−w
w · Φ = D1−w

w · Φa = Ξ , Ξ ≡
∞∑

m=−κ
(−2m)1−w am q

m , (2.21)

that we shall call the ghost. The ghost encodes the holomorphic part of the harmonic

Maass form (modulo an additive constant).9

Returning to the Niebur-Poincaré series, we see that by construction the series

F(s, κ, w) at the special point s = 1 − w
2 — which, for w < 0, belongs to the conver-

gence domain — is a weak harmonic Maass form of weight w. Indeed, using (A.30) we find

that its Fourier expansion (2.14) reduces to

F(1− w
2 , κ, w) =M1−w

2
,w(−κτ2) e−2πiκτ1 +

∑
m∈Z

F̃m(1− w
2 , κ, w) e2iπmτ1 , (2.22)

where the seed simplifies to a finite sum

M1−w
2
,w(−κτ2) e−2πiκτ1 = Γ (2− w)

(
q−κ − q̄κ

−w∑
`=0

(4πκτ2)`

`!

)
= [Γ (2− w) + (1− w)Γ (1− w; 4πκτ2)] q−κ ,

(2.23)

and the remaining Fourier coefficients reduce to

F̃m>0(1− w
2 , κ, w) = 4π i−w κΓ (2− w)

(m
κ

)w
2 Z1−w

2
(m,−κ) e−2πmτ2 ,

F̃m<0(1− w
2 , κ, w) = 4π i−w κ (1− w)

(
−m
κ

)w
2

Z1−w
2

(m,−κ)Γ (1− w,−4πmτ2) e−2πmτ2 ,

F̃m=0(1− w
2 , κ, w) =

4π2 κ

(2πi)w
σw−1(κ)

ζ(2− w)
. (2.24)

One thus recognises an expansion of the form (2.19) with coefficients

a−κ = Γ (2− w) ,

a−κ<m<0 = 0 ,

a0 =
4π2 κ

(2πi)w
σw−1(κ)

ζ(2− w)
,

am>0 = 4π i−w κΓ (2− w)
(m
κ

)w
2 Z1−w2

(m,−κ) ,

b0 = 0 ,

bm>0 = (1− w)κ1−w δm,κ + 4π iw (1− w) (mκ)1−w2 Z1−w2
(m,κ) .

(2.25)

9Notice that the ghost is only defined for integer weight w, unlike the shadow, which extends to the case

of half-integer weight Mock theta series.
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In particular, b0 = 0, so that the shadow of F
(
1− w

2 , κ, w
)

is a cusp form of weight 2−w,

proportional to the holomorphic Poincaré series P (−κ, 2−w). Indeed, using (2.11) we find

D̄w · F(1− w
2 , κ, w) =

1− w
8κ

F(1− w
2 , κ, w − 2)

=
1− w

8κ
(4π κ τ2)2−w P (−κ, 2− w) ,

(2.26)

where in the second line we have recognised the Fourier expansion of the standard holo-

morphic Poincaré series of weight greater than 2. Similarly, using (2.11) the ghost of

F(1− w
2 , κ, w) is

D1−w
w · F(1− w

2 , κ, w) = (2κ)1−w Γ (2− w)F(1− w
2 , κ, 2− w) , (2.27)

and corresponds to the Niebur-Poincaré series F
(
w′

2 , κ, w
′
)

, with w′ = 2 − w > 2 within

the convergence domain. Moreover, the Fourier expansion of the latter reproduces that of

the Poincaré series P (κ,w) of positive weight

F(w
′

2 , κ, w
′) = q−κ + 2π i−w

′ ∑
m>0

(m
κ

)w′−1
2
∑
c>0

S(m,−κ; c)

c
Iw′−1

(
4π

c

√
κm

)
qm . (2.28)

As an aside, we note that the holomorphic part Fa
(
1− w

2 , κ, w
)

of the Niebur-Poincaré

series F(s, κ, w) at s = 1− w
2 reproduces the Fourier expansion of the Poincaré series Γ (2−

w)P (κ,w) defined by holomorphic regularisation as in (2.4) and worked out in [28, 29].

Therefore, the non-holomorphic part Fb
(
1− w

2 , κ, w
)

of the same Niebur-Poincaré series

provides the modular completion of the Eichler integral P (κ,w) — a clear advantage of

modular-invariant regularisation over holomorphic regularisation.

To make this discussion less abstract, we shall now exhibit the harmonic Maass form

F
(
1− w

2 , κ, w
)
, its shadow and its ghost for the two cases w = −10 and w = −14 (lower

values of |w| will be discussed in the next subsection) and κ = 1. Evaluating the Fourier

coefficients numerically, we find:

• For w = −10,

F(6, 1,−10)=Fb(6, 1,−10)+11!

[
q−1 − 65520

691
− 1842.89 q − 23274.08 q2+ . . .

]
(2.29)

where Fb(6, 1,−10) is the non-holomorphic component. The shadow of (2.29) reads

F(6, 1,−12) = (4πτ2)12 P (−1, 12) , P (−1, 12) = β12∆ , (2.30)

where the modular discriminant ∆ generates the space of cusp forms of weight 12.

The ghost, obtained by acting with D11 on the holomorphic part, can be written as

F(6, 1, 12) =
83E3

4E
2
6 − 11E4

6

72∆
+ α12

(E3
4 − E2

6)2

∆

= q−1 + 1842.89 q + 47665306.53 q2 + . . . ,

(2.31)

where α12 = 0.201029508104 . . . , β12 = 2.840287517 . . . are irrational numbers. The

coefficients 1842.89, 23274.08, 47665306.53 are two-digit approximations of the exact

values 324(9216α12− 1847), (60617− 69984α12)/2, 1024(60617− 69984α12), respec-

tively. This example was discussed in detail in [37].
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• Similarly, for w = −14,

F(8, 1,−14) = Fb(8, 1,−14) + 15!

[
q−1 − 16320

3617
− 45.67 q − 366.47 q2 + . . .

]
(2.32)

where Fb(8, 1,−14) is the non-holomorphic component. The shadow of (2.32) reads

F(8, 1,−16) = (4πτ2)16 P (−1, 16) , P (−1, 16) = β16E4∆ (2.33)

where E4∆ generate the space of cusp forms of weight 16. The ghost, obtained by

acting with D15 on the holomorphic part, can be written as

F(8, 1, 16) =
73E4

4E
2
6 − E4E

4
6

72∆
+ α16

E7
4 − 2E4

4E
2
6 + E4E

4
6

∆

= q−1 + 45.67 q + 12008361.57 q2 + . . . ,

(2.34)

where α16 = 0.137975847804 . . . and β16 = 1.3061364711 . . . are irrational numbers.

The coefficients 45.67, 366.47 in eq. (2.32) are two-digit approximations of the exact

values 36(82944α16 − 11443), (314928α16 − 37589)/16, respectively.

These two examples illustrate the fact that Fourier coefficients of harmonic Maass

forms are in general irrational numbers.

2.4 Weak holomorphic modular forms from Niebur-Poincaré series

We now come to our main goal, i.e. to find an absolutely convergent Poincaré series repre-

sentation of any weak holomorphic modular form Φw of weight w ≤ 0 and κ-order pole at

the cusp, with given principal part

Φ−w(τ) =
∑

−κ≤m<0

am q
m . (2.35)

As we shall see, any such Φw can be expressed as a linear combination of the Niebur-

Poincaré series F(s, κ, w).

We have noted in the previous subsection that the eigenvalue of a weak holomorphic

modular form under the hyperbolic Laplacian ∆w coincides with the eigenvalue of the

Niebur-Poincaré series whenever s = 1 − w
2 . At this value, however, F

(
1− w

2 , κ, w
)

is

a weak harmonic Maass form, in general not holomorphic. Exceptions to this statement

occur at the special values w ∈ {−2,−4,−6,−8,−12}, where the space of holomorphic

cusp forms of weight 2− w is empty, and F
(
1− w

2 , κ, w
)

can be recognised as an element

of the ring of weak holomorphic modular forms by matching the principal part of their

expansions. For κ = 1 the exact identification is reported in table 1, while for κ > 1, the

proper identification of F
(
1− w

2 , κ, w
)

can be obtained by acting on F
(
1− w

2 , 1, w
)

with

the Hecke operator Tκ, as given by eq. (2.18).

For w ≤ 0 outside the list above, the space of cusp forms of weight 2−w is not empty,

and F(1− w
2 , κ, w) is indeed a genuine harmonic Maass form, with non-vanishing shadow.

Nevertheless, it can be shown [34] that the linear combination

G(s, w) ≡ 1

Γ (2− w)

∑
−κ≤m<0

amF(s,m,w) , (2.36)
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w F
(
1− w

2 , 1, w
)
F
(
1− w

2 , 1, 2− w
)

0 j + 24 E2
4E6∆

−1

−2 3!E4E6∆
−1 E4(j − 240)

−4 5!E2
4 ∆
−1 E6(j + 204)

−6 7!E6∆
−1 E2

4(j − 480)

−8 9!E4∆
−1 E4E6(j + 264)

−12 13!∆−1 E2
4E6(j + 24)

Table 1. Weak holomorphic modular forms obtained as the limit s→ 1− w
2 of F(s, 1, w), for the

values w ∈ {0,−2,−4,−6,−8,−12}. For w negative and outside this range, the limit yields a weak

harmonic Maass form. The second line shows the ghost, which is a weak holomorphic modular form

of weight 2− w with vanishing constant term (aside from the case w = 0).

with coefficients am determined by the principal part

Φ−w =
∑

−κ≤m<0

am q
−m (2.37)

of any weak holomorphic form Φw of negative weight w, reduces to a weak holomorphic

modular form for s = 1 − w
2 , namely Φw itself. Said differently, the shadows of the weak

harmonic Maass forms F
(
1− w

2 , κ, w
)

cancel in the linear combination (2.36). As a result,

any Φw can be represented as the linear combination

Φw =
1

Γ (2− w)

∑
−κ≤m<0

amF
(
1− w

2 ,m,w
)
, (2.38)

or equivalently, using (2.23), as an absolutely convergent Poincaré sum

Φw = 1
2

∑
γ∈Γ∞\Γ

(
Φ−w −

∑
−κ≤m<0

−w∑
`=0

am q̄
m (4πκτ2)`

`!

)∣∣∣∣∣
w

γ , (2.39)

where the subtraction in the bracket ensures that the seed is O(τ
1−w

2
2 ) as τ2 → 0. We stress

that, unlike the holomorphic regularisation in (2.4), the expression (2.39) is manifestly

modular covariant and absolutely convergent.

To illustrate the power of eq. (2.38), let us reconsider the two examples of the previous

subsection, now allowing for κ = 1, 2.

• For w = −10, F(6, 2,−10) and F(6, 1,−10) are separately weak harmonic Maass

forms with irrational coefficients, but the linear combination

F(6, 2,−10) + 24F(6, 1,−10) = 11!
E2

4E6

∆2 = 11! (q−2 + 24 q−1− 196560 + . . . ) (2.40)

produces (up to an overall normalisation) the unique weak holomorphic form10 of

weight −10 with a double pole at q = 0;

10Compare the simplicity of our expression to the corresponding equation in Sec 4.1 of [37].
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• Similarly, for w = −14, F(8, 2,−14) and F(8, 1,−14) are separately weak harmonic

Maass forms with irrational coefficients, but the linear combination

F(8, 2,−14)−216F(8, 1,−14) = 15! E4E6
∆2 = 15! (q−2−216 q−1−146880+. . . ) (2.41)

produces (up to an overall normalisation) the unique weak holomorphic form of weight

−14 with a double pole at q = 0.

Similar relations occur for higher negative weight w < −14 and higher order κ of the

pole at q = 0.

2.5 Weak almost holomorphic modular forms from Niebur-Poincaré series

For physics applications it is important to extend our previous analysis to the case of

weak almost holomorphic modular forms, i.e. elements of the ring generated by the almost

holomorphic Eisenstein series Ê2 and the ordinary weak holomorphic modular forms, or

equivalently, by the modular derivatives DnΦ of ordinary weak holomorphic modular forms.

To this end, it is important to note that for any integer n ≥ 0, it follows from (2.11)

that the Niebur-Poincaré series F(s, κ, w) evaluated at the point s = 1 − w
2 + n can be

expressed as

F
(
1− w

2 + n, κ,w
)

=
1

(2κ)n n!
DnF

(
1− w

2 + n, κ,w − 2n
)
, (2.42)

where Dn is the iterated modular derivative (A.6). The Niebur-Poincaré series F(s′, κ, w′)

appearing on the r.h.s. satisfies s′ = 1− w′

2 , and thus is a harmonic Maass form.

As a result, provided that the coefficients am in the linear combination (2.36) are

chosen such that

Φ−w−2n ≡
∑

−κ≤m<0

am
(2m)n n!

qm (2.43)

is the principal part of a weak holomorphic modular form Φw−2n of weight w − 2n, then

the linear combination G(s, w) in (2.36) evaluated at the point s = 1 − w
2 + n reproduces

an almost holomorphic modular form of weight w,

G
(
1− w

2 + n,w
)

=
1

Γ (2− w)

∑
−κ≤m<0

amF
(
1− w

2 + n,m,w
)

= Dn Φw−2n . (2.44)

More generally, we refer to the space
⊕

n≥0H
(
1− w

2 + n,w
)

as the space of “weak almost

harmonic Maass forms”, of which almost holomorphic modular forms are only a subspace.

The general Fourier expansion of such forms can be obtained by taking the limit s =

1− w
2 +n in eqs. (2.14) and (2.16), and by using the identities (A.33) and (A.34). Similarly,

the series F(s, κ, w) at the point s = 1− w
2 +n for n ≤ −2 may be obtained from F(s′, κ, w′)

at the point s′ = −w′

2 by using the lowering operator D̄w.
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2
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k
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k
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t
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l.

s
=
− w
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τ 2−

w2

×
anti-hol.

(shadow
)

s
=

1−
w

2 :
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Figure 1. Phase diagram for the Niebur-Poincaré series F(s, κ, w) for integer values of
(
w
2 , s
)

with

s ≥ 1. For low negative values of w, F(s, κ, w) reduces to an ordinary weak almost holomorphic

Maass form, see table 2.

2.6 Summary

To summarise this discussion, it is useful to consider the plane of the variables
(
w
2 , s
)

as in

figure 1. The Niebur-Poincaré series F(s, κ, w) converges absolutely for s > 1. For integer

values of s, it is generally a weak almost harmonic Maass form, and on the line s = 1− w
2

(and w < 0), F(s, κ, w) becomes a weak harmonic Maass form. On the line s = −w
2 ,

obtained from the former by acting with the lowering operator D, F(s, κ, w) reduces, up

to an overall multiplicative factor τ−w2 , to the complex conjugate of a cusp form of weight

2−w, known as the shadow of the harmonic Maass form F(s, κ, w+2). On the line s = w
2 ,

F(s, κ, w) is instead a weak holomorphic modular form. It is connected to its expression on

the line s = 1− w
2 by the action of the iterated raising operator D1−w, and thus we refer to

it as the ‘ghost’ of the harmonic Maass form F(s, κ, 2−w). In the quadrant w > 2, s > 1,

F(s, κ, w) is more generally a weak almost holomorphic modular form. For low negative val-

ues of w and s integer, F(s, κ, w) is in fact always a weak almost holomorphic modular form,

as displayed in table 2. Genuine harmonic Maass forms start appearing at s = 6 and s ≥ 8.
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3 A new road to one-loop modular integrals

We are interested in the evaluation of one-loop modular integrals of the form (1.2), while

keeping manifest at all steps the automorphisms of the Narain lattice, i.e. T-duality. Such

integrals encode, for instance, threshold corrections to the running of gauge and gravi-

tational couplings. The function Φ, related to the elliptic genus and dependent on the

vacuum under consideration, is in general a weak almost holomorphic modular form of

non-positive weight. For example, in N = 4 compactifications of the SO(32) heterotic

string (with vanishing Wilson lines) one finds a linear combination of zero-weight weak

almost holomorphic modular forms [2]

Φ(τ) = t8 trF 4 +
1

27 32 5

E3
4

∆
t8 trR4 +

1

29 32

Ê2
2 E

2
4

∆
t8(trR2)2

+
1

28 32

(
Ê2E4E6

∆
− Ê2

2 E
2
4

∆

)
t8 trF 2 trR2

+
1

29 32

(
E3

4

∆
+
Ê2

2 E
2
4

∆
− 2

Ê2E4E6

∆
− 27 32

)
t8 (trF 2)2 ,

(3.1)

where t8 is the familiar tensor appearing in four-point amplitudes of the heterotic string,

and F and R are the gauge field strength and curvature two-form. A similar expression

arises for gauge and gravitational couplings in the E8 × E8 heterotic string.

While the traditional procedure for evaluating integrals of the form (1.2) has been

to unfold the integration domain F against the lattice partition function Γd+k,d, in [20]

we instead proposed to represent Φ as a Poincaré series of the form (2.2), which is then

amenable to the unfolding procedure. The advantage of this approach is that T-duality is

kept manifest at all steps and the final result is expressed as a sum over BPS states which

is manifestly invariant under O(d + k, d;Z). Moreover, singularities associated to states

becoming massless at special points in the Narain moduli space are easily read off from

this representation.

3.1 Niebur-Poincaré series in a nutshell

In order to implement this strategy, it is essential to represent Φ as an absolutely convergent

Poincaré series, so that the unfolding of the fundamental domain is justified. Fortunately,

as discussed in detail in section 2 and summarised in the following, any weak almost

holomorphic modular form Φw of weight w ≤ 0 can be written as a linear combination of

Niebur-Poincaré series, defined as

F(s, κ, w) = 1
2

∑
γ∈Γ∞\Γ

Ms,w(−κτ2) e−2πiκτ1 |w γ (3.2)

= 1
2

∑
(c,d)=1

(cτ + d)−wMs,w

(
−κτ2

|cτ + d|2

)
exp

{
−2iπκ

(
a

c
− cτ1 + d

c|cτ + d|2

)}
.

Here Ms,w is related to the Whittaker M -function via

Ms,w(−y) = (4πy)−w/2M−w
2
,s− 1

2
(4πy) , (3.3)
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and s is a complex parameter, the real part of which must be larger than 1 for absolute

convergence. The choice of the Whittaker function in (3.2) is dictated by the requirement

that F(s, κ, w) be an eigenmode of the hyperbolic Laplacian ∆w (see eq. (2.10)), and behave

as q−κ at the cusp q ≡ e2πiτ = 0 (see eq. (2.9)), thus reproducing, for κ = 1, the simple pole

associated to the unphysical tachyon of the heterotic string. The set of Niebur-Poincaré

series F(s, κ, w) is closed under the action of the derivative operators Dw and D̄w defined

in (A.2), which, according to (2.11), act by raising or lowering the weight w by two units

while keeping s fixed.

At the special point s = 1 − w
2 , which for w < 0 lies within the domain of absolute

convergence, the Niebur-Poincaré series F(s, κ, w) becomes a weak harmonic Maass form.11

In particular, unless w takes one of the special values listed in table 1, it is in general not

holomorphic. Although the values listed in the table essentially exhaust all the cases of

interest in string theory, it is a remarkable fact that linear combinations of Niebur-Poincaré

series, with coefficients determined by the principal part of a weak holomorphic modular

form Φw, are in fact weakly holomorphic, and reproduce Φw itself [34]:

Φ−w =
∑

−κ≤m<0

am q
−m ⇒ Φw =

1

Γ (2− w)

∑
−κ≤m<0

amF(1− w
2 ,m,w) . (3.4)

Moreover, upon using (2.11) one can also relate weak almost holomorphic modular forms

involving (up to) n powers of Ê2 — or equivalently, obtained by acting up to n times with

the derivative operator Dw on a weak holomorphic modular form — to linear combinations

of F(s, κ, w) evaluated at the special points s = 1− w
2 + n′, with 0 ≤ n′ ≤ n.

In the cases relevant to heterotic string threshold corrections, the elliptic genus Φw has

a simple pole at q = 0, corresponding to the unphysical tachyon, and therefore the expan-

sion (3.4) includes only one term, with κ = m = 1 (modulo an additive constant in the case

w = 0). Moreover, the weight w is related to the signature (d+ k, d) of the Narain lattice

by w = −k/2. Since string theory restricts the Narain lattice to be even and self-dual, so

that Γd+k,d is covariant under the full modular group Γ = SL(2,Z), the possible values of

w are w = 0 (corresponding to the point of unbroken E8×E8 or SO(32) gauge symmetry),

w = −4 (corresponding to the point of unbroken E8 symmetry, with arbitrary Wilson lines

for the other E8 factor), or w = −8 (corresponding to generic values of the Wilson lines in

E8 × E8 or SO(32)). The complete list of weak almost holomorphic modular forms with

a simple pole at q = 0 and modular weights w = 0,−2,−4,−6,−8,−10, together with

their expressions as linear combinations of Niebur-Poincaré series, can be found in table 3.

Although string-theory applications only require κ = 1, our methods apply equally well for

arbitrary positive integer values of κ, which we therefore keep general until section 3.5.

3.2 One-loop BPS amplitudes as BPS-state sums

Since any weak almost holomorphic modular form of negative weight can be represented

as a linear combination of Niebur-Poincaré series, for the purpose of computing integrals

11For a definition of weak harmonic Maass forms see section 2.3.

– 17 –



J
H
E
P
0
6
(
2
0
1
2
)
0
7
0

w = 0

Ê2E4E6
∆ = F(2, 1, 0)− 5F(1, 1, 0)− 144

Ê2
2E

2
4

∆ = 1
5 F(3, 1, 0)− 4F(2, 1, 0) + 13F(1, 1, 0) + 144

Ê3
2E6

∆ = 3
175 F(4, 1, 0)− 3

5 F(3, 1, 0) + 33
5 F(2, 1, 0)− 17F(1, 1, 0)− 144

Ê4
2 E4

∆ = 1
1225 F(5, 1, 0)− 6

175 F(4, 1, 0) + 18
35 F(3, 1, 0)− 16

5 F(2, 1, 0)

+29
5 F(1, 1, 0) + 144

5

Ê6
2
∆ = 1

1926925F(7, 1, 0)− 3
2695F(5, 1, 0) + 6

175F(4, 1, 0)− 3
7F(3, 1, 0)

+12
5 F(2, 1, 0)− 29

7 F(1, 1, 0)− 144
7

w = −2

Ê2E2
4

∆ = 1
40F(3, 1,−2)− 1

3F(2, 1,−2)

Ê2
2E6

∆ = 1
525F(4, 1,−2)− 1

20F(3, 1,−2) + 11
30F(2, 1,−2)

Ê3
2E4

∆ = 1
11760F(5, 1,−2)− 1

350F(4, 1,−2) + 9
280F(3, 1,−2)− 2

15F(2, 1,−2)

Ê5
2
∆ = 1

19819800F(7, 1,−2)− 1
12936F(5, 1,−2) + 1

525F(4, 1,−2)− 1
56F(3, 1,−2)

+ 1
15F(2, 1,−2)

w = −4

Ê2E6
∆ = 1

2520F(4, 1,−4)− 1
120F(3, 1,−4)

Ê2
2E4

∆ = 1
70560F(5, 1,−4)− 1

2520F(4, 1,−4) + 1
280F(3, 1,−4)

Ê4
2
∆ = 1

148648500F(7, 1,−4)− 1
129360F(5, 1,−4) + 1

6300F(4, 1,−4)− 1
840F(3, 1,−4)

w = −6

Ê2E4
∆ = 1

241920F(5, 1,−6)− 1
10080F(4, 1,−6)

Ê3
2
∆ = 1

792792000F(7, 1,−6)− 1
887040F(5, 1,−6) + 1

50400F(4, 1,−6)

w = −8

Ê2
2
∆ = 1

2854051200F(7, 1,−8)− 1
3991680F(5, 1,−8)

w = −10

Ê2
∆ = 1

13!F(7, 1,−10)

Table 3. List of all weak almost holomorphic modular forms of negative weight with a simple pole

at q = 0, as linear combination of Niebur-Poincaré series F(1− w
2 + n, 1, w) (the holomorphic ones

appear in the first column of table 1).
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of the form (1.2) it suffices to consider the basic integral

Id+k,d(G,B, Y ; s, κ; T ) ≡ Id+k,d(s, κ; T ) =

∫
FT

dµΓd+k,d(G,B, Y )F
(
s, κ,−k

2

)
, (3.5)

where the modular weight w = −k/2 of the Niebur-Poincaré series is determined, via

modular invariance, by the signature of the Narain lattice. In order to regulate potential

infrared divergences, associated to massless string states, we have introduced in (3.5) an

infrared cut-off T , which we shall eventually take to infinity.

According to the unfolding procedure, extended in the presence of a hard cut-off T
in [3], the truncated fundamental domain FT can be extended to the truncated strip{

0 < τ2 < T ,−1
2 ≤ τ1 < 1

2

}
at the expense of restricting the sum over images in the

Niebur-Poincaré series to the trivial coset, and subtracting the contribution of the non-

trivial ones integrated over the complement F − FT . In equations

Id+k,d(s, κ, T ) =

∫ T
0

dτ2

τ2
2

∫ 1/2

−1/2
dτ1 Γd+k,dMs,− k

2
(−κτ2) e−2iπκτ1

−
∫
F−FT

dµΓd+k,d

(
F
(
s, κ,−k

2

)
−Ms,− k

2
(−κτ2) e−2iπκτ1

)
.

(3.6)

Using the asymptotic behaviours

Ms,− k
2
(−κτ2) ∼ τ s+

k
4

2 , Γd+k,d ∼ τ
− d+k

2
2 , as τ2 → 0 , (3.7)

and

Γd+k,d ∼ τ
d
2

2 as τ2 →∞ , (3.8)

together with the Fourier expansion (2.14), one can show that the second integral in (3.6)

converges for <(s) > 1
4(2d + k), while the first integral in (3.6) converges for <(s) >

1 + 1
4(2d+ k). For <(s) in this range, one may then remove the IR cut-off and extend, in

the first integral, the τ2 range to the full R+. Moreover, the τ1 integral vanishes unless the

lattice vector satisfies the level-matching constraint

p2
L − p2

R = 4κ . (3.9)

In heterotic string vacua (with κ = 1) this condition selects the contributions of the half-

BPS states in the perturbative spectrum, and thus the first integral in (3.6) can be written

as a BPS-state sum

Id+k,d(s, κ) ≡
∑
BPS

∫ ∞
0

dτ2

τ2
2

Ms,− k
2
(−κτ2) τ

d/2
2 e−πτ2(p2L+p2R)/2 . (3.10)

Here we have introduced the short-hand notation∑
BPS

≡
∑
pL , pR

δ(p2
L − p2

R − 4κ) (3.11)

to denote the sum over those lattice vectors satisfying the level-matching condition (3.9),

and corresponding to half-BPS states if κ = 1. By the previous estimates, this sum is
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absolutely convergent for <(s) > 1 + 1
4(2d+ k), and thus defines an analytic function of s

in this range.

To relate the BPS-state sum to the modular integral of interest, we note that upon

using (3.6) and rearranging terms, eq. (3.10) may be rewritten as

Id+k,d(s, κ) = Id+k,d(s, κ, T )

+

∫
F−FT

dµΓd+k,d

(
F
(
s, κ,−k

2

)
−Ms,− k

2
(−κτ2) e−2iπκτ1 − f0(s) τ

1−s+ k
4

2

)
+

∫
F−FT

dµ (Γd+k,d − τ
d
2

2 )

(
Ms,− k

2
(−κτ2) e−2iπκτ1 + f0(s) τ

1−s+ k
4

2

)
+

∫
F−FT

dµ τ
d
2

2

(
Ms,− k

2
(−κτ2) e−2iπκτ1 + f0(s) τ

1−s+ k
4

2

)
, (3.12)

where

f0(s) =
(4π)1+ k

4 πs i
k
2 Γ (2s− 1)κs+

k
4 σ1−2s(κ)

Γ
(
s+ k

4

)
Γ
(
s− k

4

)
ζ(2s)

(3.13)

is the coefficient of the zero-frequency Fourier mode (2.15), and the r.h.s. of (3.12) is

independent of T . The first three lines in (3.12) are analytic functions of s for <(s) > 1,

since Id+k,d(s, κ, T ) is integrated over the compact domain FT , while the integrands in the

second and third line are exponentially suppressed as τ2 → ∞, away from the points of

enhanced gauge symmetry. The fourth line, however, evaluates to

f0(s)

∫ ∞
T

dτ2 τ
−1−s+ 2d+k

4
2 = f0(s)

T
2d+k

4
−s

s− 2d+k
4

(3.14)

and is therefore analytic in s, except for a simple pole at s = 1
4(2d+ k). We thus conclude

that the BPS state sum (3.10) admits a meromorphic continuation to <(s) > 1, with a sim-

ple pole at s = 2d+k
4 with residue f0

(
2d+k

4

)
. Moreover, taking the limit T → ∞ in (3.12),

we find that the BPS-state sum (3.10) is actually equal to the renormalised integral

R.N.

∫
F

dµΓd+k,dF
(
s, κ,−k

2

)
= lim
T →∞

[
Id+k,d(s, κ, T ) + f0(s)

T
2d+k

4
−s

s− 2d+k
4

]
= Id+k,d(s, κ)

(3.15)

for generic values of s 6= 2d+k
4 . At the point s = 2d+k

4 , the renormalised integral is instead

equal to the constant term in the Laurent expansion of Id+k,d(s, κ) around s = 2d+k
4 ,

R.N.

∫
F

dµΓd+k,dF(s, κ,−k
2 ) = lim

T →∞

[
Id+k,d

(
2d+k

4 , κ, T
)
− f0

(
2d+k

4

)
log T + f ′0

(
2d+k

4

)]
= Îd+k,d

(
2d+k

4 , κ
)
, (3.16)

where f ′0(s) = df0/ds, and the r.h.s. is defined as the limit of Id+k,d(s, κ) after the pole is

properly subtracted,

Îd+k,d

(
2d+ k

4
, κ

)
≡ lim

s→ 2d+k
4

[
Id+k,d(s, κ)−

f0

(
2d+k

4

)
s− 2d+k

4

]
. (3.17)
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Eqs. (3.15) and (3.16) relate the renormalised integral to the BPS state sum (3.10), or to its

analytic continuation whenever <(s) > 1. We note that this renormalisation prescription

amounts to subtracting only the infrared divergent contribution of the massless states,

unlike other schemes used in the literature where the full contribution of the massless

states is subtracted. Of course, any two renormalisation schemes differ by an additive

constant independent of the moduli.

Having discussed the analytic properties of the BPS-state sum (3.10), and its relation

to the regulated integral (3.5), let us now evaluate the integral in (3.10). Using the rela-

tion (A.16) between the Whittaker M -function and the confluent hypergeometric function

1F1, as well as the identity∫ ∞
0

dt ta−1 e−z t 1F1(b; c; t) = z−a Γ (a) 2F1(a, b; c; z−1) , (3.18)

we arrive at our main result

Id+k,d(s, κ) =(4πκ)1− d
2 Γ (s+ 2d+k

4 − 1)

×
∑
BPS

2F1

(
s− k

4
, s+

2d+ k

4
− 1 ; 2s ;

4κ

p2
L

) (
p2

L

4κ

)1−s− 2d+k
4

.
(3.19)

The sum in (3.19) converges absolutely for <(s) > 2d+k
4 and can be analytically continued

to a meromorphic function on <(s) > 1 with a simple pole at s = 2d+k
4 [34]. Again, for

κ = 1 the sum in (3.19) can be physically interpreted as a sum of the one-loop contributions

of all physical BPS states satisfying the level-matching condition (3.9). This expression is

manifestly invariant under T-duality, independent of any choice of chamber, and generalises

the constrained Epstein zeta series considered in [20, 21] to the case of a non-trivial elliptic

genus. We would like to stress that these properties follow directly from our approach, as

opposed to the conventional unfolding method, which depends on a choice of chamber to

ensure convergence.

Moreover, using the fact that the lattice partition function satisfies the differential

equation [21] [
∆SO(d+k,d) − 2 ∆−k/2 + 1

4 d(d+ k − 2)
]
Γd+k,d = 0 , (3.20)

we find that the BPS state sum (3.19) is an eigenmode of the Laplacian ∆SO(d+k,d) on the

Narain moduli space

[
∆SO(d,d+k) + 1

16 (2d+ k − 4s)(2d+ k + 4s− 4)
]
Id+k,d(s, κ) = 0 . (3.21)

For s = 2d+k
4 , the eigenvalue vanishes but the BPS state sum Id+k,d(s, κ) has a pole. After

subtracting the pole, one finds that the renormalised BPS state sum is an almost harmonic

function on the Narain moduli space, namely its image under the Laplacian is a constant

∆SO(d,d+k) Îd+k,d

(
2d+ k

4
, κ

)
= (1− d− k

2 ) f0

(
2d+ k

4

)
. (3.22)
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3.3 One-loop BPS amplitudes with momentum insertions

Our method carries over straightforwardly to cases where insertions of left-moving or right-

moving momenta appear in the lattice sum, i.e. to modular integrals of the type∫
F

dµ

[
τ
−λ/2
2

∑
pL,pR

ρ (pL
√
τ2, pR

√
τ2) q

1
4
p2L q̄

1
4
p2R

]
Φ(τ) , (3.23)

considered for example in [26, 38]. The term in the square bracket is a modular form of

weight (λ+ d+ k
2 , 0), provided that the function ρ(xL , xR) satisfies[
∂2
xL
− ∂2

xR
− 2π (xL∂xL − xR ∂xR − λ− d)

]
ρ(xL , xR) = 0 , (3.24)

and that ρ(xL, xR) e−π (x2L+x2R) should decay sufficiently fast at infinity [27].12 For example,

upon choosing ρ = τ2 p
2
L−

d+k
2π (respectively ρ = τ2 p

2
R−

d
2π ), it is proportional to the modular

derivative D ·Γd+k,d (respectively, D ·Γd+k,d) of the usual Narain lattice partition function.

The integrand in (3.23) is then modular invariant provided λ+ d+ k
2 = −w.

As usual, expressing the elliptic genus as a linear combination of Niebur Poincaré

series, one is left to consider integrals of the form∫
F

dµ τ
−λ/2
2

∑
pL,pR

ρ (pL
√
τ2, pR

√
τ2) q

1
4
p2L q̄

1
4
p2R F(s, κ, w) , (3.25)

and following similar steps as in the previous subsection, one finds the result

(4πκ)1+λ
2

∑
BPS

∫ ∞
0
dt ts+

2d+k
4
−2

1F1

(
s− 2λ+2d+k

4
; 2s; t

)
ρ

(
pL√
4πκ

√
t,

pR√
4πκ

√
t

)
e−t p

2
L/4κ .

(3.26)

In most applications, ρ is a polynomial in paL, p
b
R, and the integral can be evaluated us-

ing (3.18). As a result, each monomial can be evaluated to∫
F

dµ τ δ2
∑
pL,pR

pa1L · · · p
aα
L pb1R · · · p

bβ
R q

1
4
p2L q̄

1
4
p2R F(s, κ, w)⇒ (4πκ)1−δ Γ (s+ |w|

2 + δ−1) (3.27)

×
∑
BPS

pa1L · · · p
aα
L pb1R · · · p

bβ
R 2F1

(
s− |w|

2
, s+

|w|
2

+ δ − 1; 2s;
4κ

p2
L

)(
p2
L

4κ

)1−s− |w|
2
−δ

,

with δ = (α+β−λ)/2. Clearly, this result is meaningful only when the various monomials

are combined into a solution of (3.24), as required by modular invariance.

3.4 BPS-state sum for integer s

For special values of s and w, the hypergeometric function 2F1 appearing in the BPS-state

sum (3.19) can actually be expressed in terms of elementary functions. For example, for

12We are grateful to J. Manschot for pointing out this reference.
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d = 1 and w = 0, 2F1(s, s− 1
2 , 2s; z) = 22s−1(1 +

√
1− z)1−2s, and thus

I1,1(1 + n, κ) =
√

4πκ 21+2n Γ
(
n+ 1

2

) ∑
BPS

(√
p2

L

4κ
+

√
p2

R

4κ

)−1−2n

(3.28)

= 1
2

√
π (16κ)1+n Γ

(
n+ 1

2

)∑
p,q∈Z
pq=κ

(∣∣pR+ q R−1
∣∣+∣∣pR− q R−1

∣∣)−1−2n
,

with s = 1 + n. For n = 0, this agrees with the expression derived in [20] using the

Selberg-Poincaré series E(s, κ, w) at s = 0.

More generally, similar simplifications also take place for s = 1− w
2 + n = 1 + k

4 + n,

with n a positive integer, which are the special values relevant for representing weak almost

holomorphic modular forms, and are thus of interest for our physical applications. While

it is cumbersome to express 2F1 directly in terms of elementary functions, it is simpler to

notice that the Whittaker M -function appearing in (3.10) reduces to the finite sum (A.33).

As a result, the integral (3.10) reduces to

Id+k,d(1+ k
4 + n, κ) =

∑
BPS

∫ ∞
0

dτ2 τ
d
2
−2+α

2 M1+ k
4

+n,− k
2
(−κτ2) e−πτ2(p2L+p2R)/2 , (3.29)

= (4πκ)1−d2
Γ
(
2(n+ 1) + k

2

)
Γ
(
n+ d+k

2

)
n!

n∑
m=0

(
n

m

)
(−1)m

Γ
(
n−m+ d+k

2

)
×
∑
BPS

(
p2

L

4κ

)n−m∫ ∞
0

dz z
d
2−m−2

(
e−z p

2
R/4κ − e−z p2L/4κ

2n+
k
2∑

`=0

z`

`!

)
,

where, in going from the first to the second line we have set z = 4πκτ2, and have integrated

by parts n times, and we used the fact that the boundary terms vanish. Although the full

integrand vanishes rapidly enough as z → 0, so that the integral exists, this is not true of

each individual term, unless d
2 − n − 1 > 0. To regulate these unphysical divergences, we

introduce a convergence factor τα2 in the integrand, and evaluate each integral in (3.29) for

large enough α. The desired result is then expressed as the limit

Id+k,d(1+ k
4 + n, κ) =(4πκ)1− d

2
Γ
(
2(n+ 1) + k

2

)
Γ (n+ d+k

2 )

n!

n∑
m=0

(
n

m

)
(−1)m

Γ
(
n−m+ d+k

2

)
×
∑
BPS

(
p2

L

4κ

)n−m
lim
α→0

[
Γ
(
d
2−m−1 + α

)(p2
R

4κ

)m+1− d
2
−α

−
2n+k/2∑
`=0

Γ
(
d
2 −m− 1 + `+ α

)
`!

(
p2

L

4κ

)1+m− d
2
−`−α ]

. (3.30)

The series (3.30) converges absolutely for n > d
2 − 1, as a result of the finiteness of the

original modular integral. For n ≤ d
2 − 1, it is a formal (divergent) sum over BPS states,

which nevertheless captures the singularities of the amplitude at points of gauge symme-

try enhancement.
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For n < d
2 − 1, or whenever d is odd, independently of n, the limit α → 0 is trivial,

leading to Id+k,d(s, κ) = I(1)
d+k,d(s, κ) where

I(1)
d+k,d(1 + k

4 + n, κ) = (4πκ)1− d
2
Γ (2(n+ 1) + k

2 )Γ (n+ d+k
2 )

n!

×
d/2−2∑
m=0

(
n

m

)
(−1)m

Γ (n−m+ d+k
2 )

∑
BPS

(
p2

L

4κ

)n−m

×

[
Γ
(
d
2 −m− 1

) (p2
R

4κ

)m+1− d
2

−
2n+k/2∑
`=0

Γ
(
d
2 −m− 1 + `

)
`!

(
p2

L

4κ

)1+m− d
2
−` ]

.

(3.31)

If d is even and n ≥ d
2 − 1 one finds Id+k,d(s, κ) = I(1)

d+k,d(s, κ) + I(2)
d+k,d(s, κ) where the first

term is still given by (3.31) and the second term is

I(2)
d+k,d(1 + k

4 + n, κ) = (4πκ)1− d
2
Γ
(
2(n+ 1) + k

2

)
Γ
(
n+ d+k

2

)
n!

(3.32)

×
∑
BPS

n∑
m=d/2−1

(
n

m

)
(−1)m

Γ
(
n−m+ d+k

2

) (p2
L

4κ

)n−m

×

−
2n+k/2∑

`=m+2−d/2

Γ
(
d
2 −m− 1 + `

)
`!

(
p2

L

4κ

)1+m−d2−`

+
(−1)m+1− d

2

Γ (m+ 2− d
2)

(
p2

R

4κ

)m+1− d
2
[
Hm+1− d

2
− log

(
p2

R

p2
L

)]

− 1

Γ
(
m+2− d

2

)m+1−d/2∑
`=0

(
m+1− d

2

`

)(
−
p2

L

4κ

)m+1− d
2
−`
Hm+1− d

2
−`

 ,

where HN =
∑N

k=1 k
−1 is the N -th harmonic number. The combination (3.31) vanishes for

d = 2, the sum over m being void. The results (3.31) and (3.32) allow to write any integral

of the type (1.2) as a formal sum over physical BPS states (which converges absolutely

for n > d
2 − 1). In particular, the result is manifestly invariant under the T-duality group

O(d+ k, d;Z)

We conclude this subsection with some simple examples for special values of n and k.

For n = 0 the sum over m in (3.29) is void and only few terms contribute to the integral,

corresponding to the various terms in (2.23). When d 6= 2 the limit α → 0 is trivial and

one arrives at the simple expression

Id+k,d(1 + k
4 , κ) = (4πκ)1− d

2 Γ (2 + k
2 )
∑
BPS

[
Γ (d2 − 1)

(
p2

R

4κ

)1− d
2

−
k/2∑
`=0

Γ (d2 + `− 1)

`!

(
p2

L

4κ

)1− d
2
−` ]

.

(3.33)
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When d = 2, the limit α → 0 is subtler and leads to logarithmic contributions. One

obtains, for n = 0, any k,

I2+k,2(1 + k
4 , κ) = −Γ (2 + k

2 )
∑
BPS

log

(
p2

R

p2
L

)
+

k/2∑
`=1

1

`

(
p2

L

4κ

)−` , (3.34)

and for k = 0, any n,

I2,2(1+n, κ) =
(2n+1)!

n!

∑
BPS

(
p2

L

4κ

)n n∑
m=0

(
n

m

)2
{(

p2
R

p2
L

)m [
Hm − log

(
p2

R

p2
L

)]
(3.35)

−
m∑
`=0

(−1)`
(
m

`

)(
p2

L

4κ

)−`
Hm−` − (−1)m

2n∑
`=m+1

Γ (`−m)m!

`!

(
p2

L

4κ

)−`}
.

As usual, the left and right-handed momenta are defined by

pL,I = (mi + Y a
i Q

a + 1
2Y

a
i Y

a
j n

j + (G+B)ijn
j , Qa + Y a

j n
j) ,

pR,i = mi + Y a
i Q

a + 1
2Y

a
i Y

a
j n

j − (G−B)ijn
j ,

(3.36)

with mi and ni the Kaluza-Klein and winding numbers and Qa are the charge vectors. In

the d = 2 case, and in the absence of Wilson lines, it is often convenient to express them

in terms of the Kähler modulus T and of the complex structure modulus U as

p2
L =

1

T2 U2

∣∣m2 − U m1 + T̄ (n1 + U n2)
∣∣2 ,

p2
R =

1

T2 U2

∣∣m2 − U m1 + T (n1 + U n2)
∣∣2 . (3.37)

The relation between these results (for k = 0) and the ‘shifted constrained Epstein

zeta series’ of [20] is discussed in appendix B.

3.5 Singularities at points of gauge symmetry enhancement

In addition to keeping T-duality manifest, another advantage of this approach for the

evaluation of one-loop modular integrals is that it allows to easily read-off the singular-

ity structure of the amplitudes at point of enhanced gauge symmetry. These points are

characterised by the appearance of extra massless states with pR = 0. Depending on the

dimension of the Narain lattice, as well as on the value of n, the amplitude may diverge

(we refer to this case as real singularity) or one of its derivatives can be discontinuous (we

refer to this case as conical singularity).

For odd dimension d, the modular integral Id+k,d(s, κ) always develops conical singu-

larities, as exemplified in the one-dimensional case by eq. (3.28). In addition, for d ≥ 3

real singularities appear from terms with m < d
2 − 1 in (3.30).

For even dimension real singularities always appear. They are are power-like in I(1)

whenever d ≥ 4 and logarithmic in I(2) for any even d ≤ 2n + 2. Moreover, conical

singularities do not appear.
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Notice that for d = 2 the singularities cancel in the combination

I2,2(1 + n, 1)− (2n+ 1)!

n!
Î2,2(1, 1) , (3.38)

which is therefore a continuous function over the Narain moduli space, including at points of

enhanced gauge symmetry. Since, using the results in [10, 18] and the fact that F(1, 1, 0) =

j + 24,

Î2,2(1, 1) = − log |j(T )− j(U)|4 − 24 log
[
T2U2|η(T ) η(U)|4

]
+ const , (3.39)

we conclude that all integrals I2,2(1 + n, 1) exhibit the same universal singular behaviour

up to an overall normalisation

I2,2(1 + n, 1) ∼ −(2n+ 1)!

n!
log |j(T )− j(U)|4 . (3.40)

This expression can be generalised as in [18] if Wilson lines are turned on.

4 Some examples from string threshold computations

In this section we evaluate a sample of modular integrals that enter in threshold corrections

to gauge and gravitational couplings in heterotic string vacua using the method developed

in the previous section. We express the elliptic genus as a linear combination of Niebur-

Poincaré series, and we evaluate the modular integral in terms of the BPS-state sums

Id+k,d(s, κ) defined in eqs. (3.19) and (3.30).

4.1 A gravitational coupling in maximally supersymmetric heterotic vacua

Let us start with the example of toroidally compactified SO(32) heterotic string, for which

the elliptic genus takes the form (3.1). Using table 3 and the relation E3
4 ∆
−1 = j + 744,

this can be conveniently expressed in terms of the Niebur-Poincaré series as

Φ(τ) = t8 trF 4 +
1

27 32 5
[F(1, 1, 0) + 720] t8 trR4

+
1

29 32

[
1
5F(3, 1, 0)− 4F(2, 1, 0) + 13F(1, 1, 0) + 144

]
t8 (trR2)2

+
1

28 32

[
−1

5F(3, 1, 0) + 5F(2, 1, 0)− 18F(1, 1, 0) + 288
]
t8 trR2 trF 2

+
1

29 32

[
1
5F(3, 1, 0)− 6F(2, 1, 0) + 24F(1, 1, 0)− 576

]
t8 (trF 2)2 .

(4.1)

Therefore, using the results in the previous section, the renormalised modular integral (1.2)

can be expressed as the linear combination

R.N.

∫
F

dµΓd,d Φ = Id,d t8 trF 4 +
1

27 32 5
[Id,d(1, 1) + 720 Id,d] t8 trR4 (4.2)

+
1

29 32

[
1
5 Id,d(3, 1)− 4 Id,d(2, 1) + 13 Id,d(1, 1) + 144 Id,d

]
t8 (trR2)2

+
1

28 32

[
−1

5 Id,d(3, 1)+5 Id,d(2, 1)−18 Id,d(1, 1)+288 Id,d
]
t8 trR2 trF 2

+
1

29 32

[
1
5 Id,d(3, 1)− 6 Id,d(2, 1) + 24 Id,d(1, 1)− 576 Id,d

]
t8(trF 2)2 ,
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where, as computed in [20, 21],

Id,d ≡ R.N.

∫
F

dµΓd,d(G,B) =
Γ
(
d
2 − 1

)
π
d
2−1

EdV
(
G,B; d2 − 1

)
, (4.3)

with EdV being the constrained Epstein zeta function defined in [20, 21]. In this expression,

any time n = d
2 − 1 the BPS-state sum Id,d(1 + n, κ) should be replaced by Îd,d(1 + n, κ),

as explained in section 3.2.

In the one-dimensional case the constrained sums can be easily evaluated, leading to∫
F

dµΓ1,1 Φ =
π

3
(R+R−1) t8 trF 4 +

π

23 32 5

(
15R+ 16R−1

)
t8 trR4

+
π

25 32

(
3R+ 16R−1 − 24R−3 + 12R−5

)
t8 (trR2)2

+
π

23 3

(
R− 2R−1 + 5R−3 − 2R−5

)
t8 trR2 trF 2

− π

23 3

(
R−R−1 + 3R−3 −R−5

)
t8 (trF 2)2 ,

(4.4)

for R > 1. The expression for R < 1 can be obtained by replacing in the previous

expression R 7→ R−1. Notice that, aside from the threshold correction to t8 trF 4, all other

terms develop a conical singularity at the self-dual radius R = 1.

4.2 Gauge-thresholds in N = 2 heterotic vacua with/without Wilson lines

Let us turn now to N = 2 heterotic vacua in the orbifold limit T 2×T 4/Z2, with a standard

embedding on the gauge sector. At the orbifold point, the gauge group is broken to

E8 × E8 → E8 × E7 × SU(2) , (4.5)

and, in the absence of Wilson lines, gauge threshold corrections read

∆E8 = − 1

12

∫
F

dµΓ2,2
Ê2E4E6 − E2

6

∆
,

∆E7 = − 1

12

∫
F

dµΓ2,2
Ê2E4E6 − E3

4

∆
.

(4.6)

From table 3 one can read that

Ê2E4E6 − E2
6

∆
= F(2, 1, 0)− 6F(1, 1, 0) + 864 ,

Ê2E4E6 − E3
4

∆
= F(2, 1, 0)− 6F(1, 1, 0)− 864 ,

(4.7)

and thus

∆E8 =
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
+ 72 log

(
T2 U2 |η(T ) η(U)|4

)
+ const ,

∆E7 =
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
− 72 log

(
T2 U2 |η(T ) η(U)|4

)
+ const

(4.8)
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Notice that the combination I2(2, 1, 0)−6 I2(1, 1, 0) is regular at any point in moduli space

(and in any chamber), as expected since the unphysical tachyon is neutral and therefore

does not contribute to the running of the non-Abelian gauge couplings.

Turning on Wilson lines on the E8 group factor along the spectator T 2, yields

∆E7 = − 1

12

∫
F

dµΓ2,10
Ê2E6 − E2

4

∆
. (4.9)

Using table 3, one easily finds

Ê2E6 − E2
4

∆
=

2

7!
F(4, 1,−4)− 2

5!
F(3, 1,−4) , (4.10)

and thus

∆E7 = − 1

720

[
1

42
I10,2(4, 1)− I10,2(3, 1)

]
=
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)
− 2

p2
L

− 8

3 p4
L

− 16

3 p6
L

− 64

5 p8
L

]
.

(4.11)

In this expression pL,R depend also on the Wilson lines, and the constraint in the BPS-sum

now reads

p2
L − p2

R = 4 ⇒ mTn+ 1
2 Q

TQ = 1 , (4.12)

where Q is the U(1)-charge vector in the Cartan sub-algebra of E8.

4.3 Kähler metric corrections in N = 2 heterotic vacua

Our procedure can also be used to compute loop corrections to Kähler metric and other

terms in the low-energy effective action. For instance, in N = 2 heterotic vacua at the

orbifold point, the one-loop correction to the Kähler metric for the T modulus reads

KT T̄

∣∣∣
1−loop

=
i

12π T 2
2

∫
F

dµ
E4E6

∆
∂τ Γ2,2

=
i

72π T 2
2

∫
F

dµF(2, 1,−2) ∂τ Γ2,2 ,

(4.13)

where we have used the relation between E4E6∆
−1 and F(s, κ, w) from table 1. Integrating

by parts, and using the action of the modular derivative on the Niebur-Poincaré series, one

immediately finds

KT T̄

∣∣∣
1−loop

= − i

72π T 2
2

∫
F

dµΓ2,2D−2F(2, 1,−2)

=
1

36T 2
2

∫
F

dµΓ2,2F(2, 1, 0)

=
1

36T 2
2

I2,2(2, 1) .

(4.14)

Similar results can be obtained for higher-derivative couplings in N = 4 vacua.
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4.4 An example from non-compact heterotic vacua

In some heterotic constructions on ALE spaces and in the presence of background NS5

branes, gauge threshold corrections include a contribution of the (finite) integral [45]

L =

∫
F

dµ (
√
τ2 η η̄)3

Ê2E4

(
Ê2E4 − 2E6

)
∆

. (4.15)

Despite its apparent complexity, this integral can be easily computed using our techniques.

In fact, the relation

ϑ′1(0|τ) = 2πη3 , (4.16)

and the standard bosonisation formulae, allow one to write

(
√
τ2 ηη̄)3 = − 1

8π

∂

∂R

[
1

R
(Γ1,1(2R)− Γ1,1(R))

]
R=1/

√
2

. (4.17)

Combining this observation with table 3, eq. (3.28), and with the standard result∫
F dµΓ1,1(R) = π

3 (R+R−1), the integral reduces to

L = − 1

8π

∂

∂R

[
1

R

∫
F

dµ (Γ1,1(2R)− Γ1,1(R))

×
(

1
5F(3, 1, 0)− 6F(2, 1, 0) + 23F(1, 1, 0) + 432

) ]
R=1/

√
2

= − 1

8π

∂

∂R

[
1

R

(
1
5 I1,1(2R; 3, 1)− 6 I1,1(2R; 2, 1) + 23 I1,1(2R; 1, 1)

−
(

1
5 I1,1(R; 3, 1)− 6 I1,1(R; 2, 1) + 23 I1,1(R; 1, 1)

)
+ 144π

(
R− 1

2 R
−1
))]

R=1/
√

2

= − 20
√

2 . (4.18)
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A Notations and useful identities

In this appendix we collect various definitions, notations and formulae used in the text.
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A.1 Operators acting on modular forms

The hyperbolic Laplacian acts on modular forms of weight w via13

∆w = 2 τ2
2 ∂τ̄

(
∂τ −

iw

2τ2

)
. (A.1)

We denote by H(s, w) the eigenspace of ∆w with eigenvalue 1
2s(s− 1)− 1

8w(w+ 2), in the

space of real analytic functions of modular weight w under Γ = SL(2,Z). The raising and

lowering operators Dw, D̄w defined by

Dw =
i

π

(
∂τ −

iw

2τ2

)
, D̄w = −iπ τ2

2∂τ̄ , (A.2)

map H(s, w) to H(s, w ± 2),

H(s, w − 2)
D̄w←− H(s, w)

Dw−→ H(s, w + 2) , (A.3)

and satisfy the commutation identity

Dw−2 · D̄w − D̄w+2 ·Dw =
w

4
. (A.4)

The operator Dw (and of course, D̄w) satisfies the Leibniz rule

Dw+w′ (fw fw′) = (Dw fw) fw′ + fw (Dw′ fw′) , (A.5)

where fw is a modular form of weight w. We denote by Dr
w fw (or simply Drf) the iterated

derivative Dw+2r−2 · . . . ·Dw+2 ·Dw · fw, a modular form of weight w + 2r. One has

Dr
w =

(
i

π

)r r∑
j=0

r!

j! (r − j)!
Γ (w + r)

Γ (w + j)
(2iτ2)j−r ∂jτ . (A.6)

For w ≤ 0, the operator D1−w
w simplifies to (i/π)1−w∂1−w

τ (Bol’s identity), and is known in

the physics literature as the Farey transform [42].

The Hecke operators Tκ are defined by

(Tκ · Φ)(τ) =
∑

a,d>0,ad=κ

∑
b mod d

d−w Φ

(
aτ + b

d

)
, (A.7)

and satisfy the commutative algebra

Tκ Tκ′ =
∑

d|(κ,κ′)

d1−w Tκκ′/d2 , (A.8)

If Φ =
∑

n∈Z Φ(n, τ2) e2πnτ1 is a modular form of weight w, then the Fourier coefficients of

Tκ · Φ are

(Tκ · Φ)(n, τ2) = κ1−w
∑
d|(n,κ)

dw−1 Φ
(
nκ/d2, d2τ2/κ

)
. (A.9)

13Our Laplacian is related to the one used e.g in [36] via ∆w = − 1
2
∆w;BO − w

2
.
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The generators of the ring of holomorphic modular forms are the normalised Eisen-

stein series

E4 = 1 + 240

∞∑
n=0

n3qn

1− qn
and E6 = 1− 504

∞∑
n=0

n5qn

1− qn
, (A.10)

with modular weight 4 and 6, respectively. The discriminant function is the weight 12

cusp form

∆ = q

∞∏
n=1

(1− qn)24 = 1
1728(E3

4 − E2
6) . (A.11)

The generators of the ring of weak holomorphic modular forms are E4, E6 and 1/∆. The

modular j-invariant is the unique weak holomorphic modular form of weight zero with

j = 1/q +O(q),

j =
E3

4

∆
− 744 =

E2
6

∆
+ 984 . (A.12)

The ring of weak almost holomorphic modular forms is obtained by adding to E4, E6, 1/∆

the almost holomorphic Eisenstein series

Ê2 = E2 −
3

πτ2
= 1− 24

∞∑
n=0

n qn

1− qn
− 3

πτ2
. (A.13)

Under the raising operator Dw one has

DÊ2 = 1
6(E4 − Ê2

2) , DE4 = 2
3(E6 − Ê2E4) , DE6 = E2

4 − Ê2E6 , D(1/∆) = 2Ê2/∆ ,

(A.14)

where, for simplicity, we have left implicit the specification of the weight in D. Using the

Leibniz rule (A.5), this allows to compute the action of D on any weak almost holomorphic

modular form.

Finally, the operator Tκ maps the weak holomorphic modular form Φ = 1/q+O(q) to

TκΦ = 1/qκ +O(q).

A.2 Whittaker and hypergeometric functions

Whittaker functions and hypergeometric functions, more in general, are central in the

analysis of the Niebur-Poincaré series and the evaluation of one-loop modular integrals.

We summarise here their definitions and some of their main properties.

Whittaker functions are solutions of the second-order differential equation

u′′ +

(
−1

4
+
λ

z
+

1
4 − µ

2

z2

)
u = 0 . (A.15)

For 2µ not integer the two independent solutions are given by the Whittaker M -functions

Mλ,±µ(z) = e−z/2 z±µ+
1
2 1F1

(
±µ− λ+ 1

2 ; 1± 2µ; z
)
, (A.16)
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and are expressed in terms of the confluent hypergeometric function

1F1(a; b; z) =
Γ (b)

Γ (a)

∞∑
n=0

Γ (a+ n)

Γ (b+ n)

zn

n!
. (A.17)

When 2µ is an integer, however, the second solution is not defined anymore, and thus it is

useful to introduce a second Whittaker function defined by

Wλ,µ(z)=− 1

2πi
Γ (λ+ 1

2 − µ) e−z/2 zλ
∫ (0+)

∞
(−t)−λ−

1
2

+µ

(
1 +

t

z

)λ− 1
2

+µ

e−t dt , (A.18)

where |arg(−t)| ≤ π, and the contour does not contain the point t = −z and circles the ori-

gin counter-clockwise. The functions Wλ,µ(z) and W−λ,µ(−z) are then the two independent

solutions of the differential equation (A.15), and have the asymptotic behaviour

Ws,w(y) ∼ |4πy|
w
2 (sgn(y)−1) e−2π|y| as |y| → ∞ . (A.19)

The Whittaker M -function can then be expressed as the linear combination

Mλ,µ(z) =
Γ (2µ+ 1)

Γ
(
µ− λ+ 1

2

)eiπλW−λ,µ(eiπz) +
Γ (2µ+ 1)

Γ
(
µ+ λ+ 1

2

)eiπ(λ−µ− 1
2

)Wλ,µ(z) . (A.20)

Using the symmetry of the W -functions, Wλ,µ(z) = Wλ,−µ(z), one can invert the previous

relation and write

Wλ,µ(z) =
Γ (−2µ)

Γ
(

1
2 − µ− λ

)Mλ,µ(z) +
Γ (2µ)

Γ
(

1
2 + µ− λ

)Mλ,−µ(z) . (A.21)

This implies that the functions Ms,w and Ws,w obey

Ws,w(y) =
Γ (1− 2s)

Γ
(
1− s− w

2 sgn(y)
)Ms,w(y) +

Γ (2s− 1)

Γ
(
s− w

2 sgn(y)
)M1−s,w(y) . (A.22)

For special values of λ and µ, the Whittaker functions reduce to elementary functions

or to other special functions. This derives from the properties of the hypergeometric

functions, for instance

1F1(a; a; z) = ez ,

1F1(1, a, z) = (a− 1) z1−a ez γ(a− 1, z) ,

1F1(a, a+ 1, z) = a(−z)−a γ(a,−z) ,

1F1(a; 2a; z) = ez/2
(

1
4 z
) 1

2
−a
Γ
(
a+ 1

2

)
Ia− 1

2
(z/2) ,

(A.23)

where

γ(a, z) =

∫ z

0
e−t ta−1dt = Γ (a)− Γ (a, z) (A.24)

is the incomplete Gamma function, and

Iν(z) =
∞∑
m=0

(z/2)2m+ν

m!Γ (m+ ν + 1)
= i−ν Jν(iz) (A.25)

is the modified Bessel function and Jν(z) is the Bessel function of the first kind.
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Given the definitions (A.16), (2.7) and

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin πν
, (A.26)

one can then show that (y > 0)

Ms,0(±y) = 22s−1 Γ (s+ 1
2) (4π|y|)

1
2 Is− 1

2
(2π|y|) ,

Ws,0(±y) = 2 |y|
1
2 Ks− 1

2
(2π|y|) , (A.27)

Mw
2 ,w

(−y) = e2πy ,

Ww
2 ,w

(−y) = Γ (1− w, 4πy) e2πy ,

Ww
2 ,w

(y) = e−2πy , (A.28)

M−w2 ,w
(−y) = (4πy)w e−2πy ,

W−w2 ,w
(−y) = (4πy)−w e−2πy ,

W−w2 ,w
(y) = (4πy)−w Γ (1 + w, 4πy) e2πy , (A.29)

M1−w2 ,w
(−y) = (1− w) γ(1− w, 4πy) e2πy ,

W1−w
2
,w(−y) = Γ (1− w, 4πy) e2πy ,

W1−w
2
,w(y) = e−2πy . (A.30)

For integer values of the arguments, the confluent hypergeometric function, and thus

the Whittaker functions, take a particularly simple expression

1F1(n+ 1, a, z) =
Γ (a)

n!

dn

dzn

[
zn+1−a

(
ez −

a−2∑
k=0

zk

k!

)]
= Γ (a) z1−a

[
ez L(1−a)

n (−z)− L(1−a)
a−2−n(z)

]
,

(A.31)

where

L(k)
n (x) =

x−k ex

n!

dn

dxn

[
xn+k e−x

]
(A.32)

are the associated Laguerre polynomials.

As a result, the seed function that enters in the definition of the Niebur-Poincaré series

involves only a finite number of terms when s = 1− w
2 + n, and reads

M1−w2 +n,w(−y) = (4πy)1−w+ne−2πy (2n+ 1− w)!

n!

× dn

d(4πy)n

[
(4πy)w−n−1

(
e4πy −

2n−w∑
k=0

(4πy)k

k!

)]
=Γ (2n+ 2− w) (4πy)−n

×
[
e2πy L(−1−2n+w)

n (−4πy)− e−2πy L
(−1−2n+w)
n−w (4πy)

]
.

(A.33)
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Similarly,

W1−w2 +n,w(y) = (−1)n n! (4πy)−n e−2πy L(−1−2n+w)
n (4πy) ,

W1−w2 +n,w(−y) = (−1)n−w Γ (n− w + 1) (4πy)−n e2πy L
(−1−2n+w)
n−w (−4πy) .

(A.34)

The modular derivatives (A.2) have a natural action on the Whittaker functions,

so that

Dw ·
[
Ms,w(−κτ2) e−2πiκτ1

]
= 2κ(s+ w

2 )Ms,w+2(−κτ2) e−2πiκτ1 ,

D̄w ·
[
Ms,w(−κτ2) e−2πiκτ1

]
=

1

8κ
(s− w

2 )Ms,w−2(−κτ2) e−2πiκτ1 ,
(A.35)

and

Dw ·
[
Ws,w(nτ2) e2πinτ1

]
=Ws,w+2(nτ2) e2πinτ1×

{
−2n , n > 0 ,

2n
(
s+ w

2

) (
s− w

2 − 1
)
, n < 0 ,

D̄w ·
[
Ws,w(nτ2) e2πinτ1

]
=Ws,w−2(nτ2) e2πinτ1×

{
1

8n n < 0 ,

− 1
8n

(
s− w

2

) (
s+ w

2 − 1
)

n > 0 .

(A.36)

A.3 Kloosterman-Selberg zeta function

The Kloosterman-Selberg zeta function entering in the expression (2.16) of the Fourier

coefficients of the Niebur-Poincaré series is defined as [43]

Zs(a, b) =
1

2
√
|ab|

∑
c>0

S(a, b; c)

c
×

J2s−1

(
4π
c

√
ab
)

if a b > 0 ,

I2s−1

(
4π
c

√
−ab

)
if a b < 0 ,

(A.37)

where Is(x) and Js(x) are the Bessel I and J functions, and S(a, b; c) are the classical

Kloosterman sums for the modular group Γ = SL(2,Z),

S(a, b; c) =
∑

d∈(Z/cZ)∗

exp

[
2πi

c
(a d+ b d−1)

]
. (A.38)

Here a, b and c are integers, and d−1 is the inverse of d mod c. S(a, b; c) is clearly symmetric

under the exchange of a and b. Less evidently, it satisfies the Selberg identity

S(a, b; c) =
∑

d|gcd(a,b,c)

dS(ab/d2, 1; c/d) . (A.39)

In the special case a 6= 0, b = 0, the Kloosterman sum reduces to the Ramanujan sum

S(a, 0; c) = S(0, a; c) =
∑

d∈(Z/cZ)∗

exp

(
2πi

c
a d

)
=

∑
d|gcd(c,a)

dµ(c/d) , (A.40)

with µ(n) the Möbius function. For a = b = 0, S(a, b; c) reduces instead to the Euler

totient function φ(c), and one can verify that∑
c>0

S(0, 0; c)

c2s
=
ζ(2s− 1)

ζ(2s)
,

∑
c>0

S(0,±κ; c)

c2s
=
σ1−2s(κ)

ζ(2s)
(κ 6= 0) , (A.41)
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with σx(n) the divisor function. Under complex conjugation, Zs(a, b) transforms as

Zs(a, b) = Zs̄(−a,−b) . (A.42)

The Kloosterman-Selberg zeta function defined in (A.37) is related to the zeta function

Z(a, b; s) ≡
∑
c>0

S(a, b; c)

c2s
(A.43)

originally considered in [31] and used in [20] via

Zs(a, b) = π (4π2|a b|)s−1
∞∑
m=0

(−4π2a b)m

m!Γ (2s+m)
Z(a, b; s+m) . (A.44)

B Selberg-Poincaré series vs. Niebur-Poincaré series

In this section, we briefly discuss the relation between the Niebur-Poincaré series (2.8)

and the Selberg-Poincaré series (2.5), considered in our previous work [20] in the special

case w = 0, as well as the relation between the BPS-state sum (3.19) and the “shifted

constrained Epstein zeta series” considered in [20].

Comparing the differential equations (2.10) and (2.6), it is easily seen that a set of

solutions of one can be converted into a set of solutions of the other by considering the

linear combinations [33, 44]

F(s, κ, w) =
∑
m≥0

a(s, κ, w,m)E(s+m,κ,w) ,

E(s, κ, w) =
∑
m≥0

b(s, κ, w,m)F(s+m,κ,w) ,
(B.1)

such that the coefficients satisfy the recursion relations

a(s, κ, w,m+ 1)

a(s, κ, w,m)
= −

4πκ
(
s+m− w

2

)
(m+ 1)(m+ 2s)

,
b(s, κ, w,m+ 1)

b(s+ 1, κ, w,m)
=

4πκ
(
s− w

2

)
(m+ 1)(m+ 2s)

. (B.2)

Comparing also the constant term (2.15) of the Niebur-Poincaré series and the con-

stant term

Ẽ0(s, κ, w) =
∞∑
m=0

22(1−s) π i−w (πκ)m Γ (2s+m− 1)σ1−2s−2m(κ)

m!Γ
(
w
2 + s+m

)
Γ
(
s− w

2

)
ζ(2s+ 2m)

τ
1−s−m−w2
2 , (B.3)

of the Selberg-Poincaré series, we find that the coefficients are given by

a(s, κ, w,m) = (−1)m
22s+2m−w (πκ)s−

w
2 +m Γ (2s)Γ

(
s+m− w

2

)
m!Γ (2s+m)Γ

(
s− w

2

) ,

b(s, κ, w,m) =
2w−2s (πκ)−s+

w
2 Γ (2s+m− 1)Γ

(
s+m− w

2

)
m!Γ (2s+ 2m− 1)Γ

(
s− w

2

) .

(B.4)
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In particular, in the limit s → w
2 where the summand of the Selberg-Poincaré series (2.5)

becomes holomorphic, one finds E(s, κ, w) = F(w2 , κ, w) for w ≥ 2, but

E
(
w
2 , κ, w

)
=F

(
w
2 , κ, w

)
+

−w
2
−1∑

m=1

b′m Ress=w
2

+mF(s, κ, w) +
1−w∑

m=−w
2

+1

bmF
(
w
2 +m,κ,w

)
(B.5)

for w ≤ 0, where bm ≡ lims→w
2
b(s, κ, w,m) and b′m ≡ lims→w

2

d
dsb(s, κ, w,m). In writ-

ing (B.5), we have assumed that the singularities of F(s, κ, w) on the real s-axis can be

read off from the constant term (2.15), namely that F(s, κ, w) is regular at integer values

of s provided s ≥ 0 or s ≤ −|w|/2, and has simple poles for integer values of s such that

− |w|2 < s < 0. In particular, E(w2 , κ, w) receives a contribution (for m = 1 − w) propor-

tional to the harmonic Maass form F(1− w
2 , κ, w), which is the main object of interest in

the present work, but is contaminated by other Niebur-Poincaré series lying outside the

convergence domain <(s) > 1. For example, for w = 0, we find

E(0, κ, 0) = F(0, κ, 0) + 1
2F(1, κ, 0) , (B.6)

consistently with the identifications

E(0, κ, 0) = Tκ j + 12σ(κ) , F(1, κ, 0) = Tκ j + 24σ(κ) , F(0, κ, 0) = 1
2Tκ j . (B.7)

Moreover, the relation (B.1) between the Niebur-Poincaré and Selberg-Poincaré series im-

plies a similar relation between the BPS-state sum (3.19) and the “shifted constrained

Epstein zeta series”

EdV (G,B, Y ; s, κ) ≡ 2s
∑
BPS

(p2
L + p2

R − 4κ)−s =
∑
BPS

(p2
R)−s (B.8)

generalising the constructio in [20] to the case k 6= 0. Namely, using the same techniques

as in our previous paper, one may show that (B.8) arises from the modular integral

lim
T →∞

∫
FT

dµΓd+k,d(G,B, Y )E
(
s, κ,−k

2

)
=
Γ
(
s+ 2d+k

4 − 1
)

πs+
2d+k

4
−1

EdV
(
G,B, Y ; s+ 2s+k

4 − 1, κ
)
.

(B.9)

Since the BPS-state sum Id+k,d(s, κ) arises from the limit T → ∞ of the integral (3.15),

from (B.1) we conclude that

EdV
(
G,B, Y ; s+ 2d+k

4 − 1, κ
)

=
πs+

2d+k
4
−1

Γ
(
s+ 2d+k

4 − 1
) ∑
m≥0

b(s, κ, w,m) Id+k,d(s+m,κ) , (B.10)

for large <(s).
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