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Abstract: We reanalyse the topological susceptibility assuming the possibility of a sig-

nificant paramagnetic suppression of the three-flavour quark condensate and a correlated

enhancement of vacuum fluctuations of ss̄ pairs. Using the framework of resummed χPT,

we point out that simulations performed near the physical point, with a significant mass

hierarchy between u, d and s dynamical quarks, are not able to disentangle the contribu-

tions from the quark condensate and sea ss̄-pair fluctuations, and that simulations with

three light quark masses of the same order are better suited for this purpose. We perform

a combined fit of recent RBC/UKQCD data on pseudoscalar masses and decay constants

as well as the topological susceptibility, and we reconsider the determination of lattice

spacings in our framework, working out the consequences on the parameters of the chi-

ral Lagrangian. We obtain (Σ(3; 2GeV))1/3 = 243 ± 12MeV for the three-flavour quark

condensate in the chiral limit. We notice a significant suppression compared to the two-

flavour quark condensate Σ(2; 2GeV)/Σ(3; 2GeV) = 1.51 ± 0.11 and we confirm previous

findings of a competition between leading order and next-to-leading order contributions in

three-flavour chiral series.

Keywords: Chiral Lagrangians, Lattice QCD, QCD

ArXiv ePrint: 1203.0508

Open Access doi:10.1007/JHEP06(2012)051

mailto:bernard@ipno.in2p3.fr
mailto:descotes@th.u-psud.fr
mailto:toucas@th.u-psud.fr
http://arxiv.org/abs/1203.0508
http://dx.doi.org/10.1007/JHEP06(2012)051


J
H
E
P
0
6
(
2
0
1
2
)
0
5
1

Contents

1 Introduction 1

2 Resummed Chiral Perturbation Theory and η observables 5

3 The topological susceptibility at next-to-leading order 8

3.1 Diagrammatic analysis 8

3.2 Resummed expression (no η pole) 10

3.3 Resummed expression (identifying the η pole) 13

3.4 Finite-volume effects 15

4 A first series of fits to lattice data 16

5 The role of lattice spacing 20

6 Conclusion 26

A NLO low-energy constants 28

B Lattice inputs 29

C Finite-volume effects 30

1 Introduction

Over the recent years, a joint experimental and theoretical effort has provided new insight

concerning low-energy dynamics of QCD, through the investigation of ππ (re)scattering

in Kℓ4 [1–7] and K → 3π decays [8–12]. It turns out that, in the Nf = 2 chiral limit

(mu = md = 0) [13], the breakdown of chiral symmetry (responsible for the presence of

pseudoscalar Goldstone bosons corresponding to pions) is triggered by the quark condensate

Σ(2) = − limmu,md→0〈ūu〉. The situation is not so clear for the pattern of chiral symmetry

breaking in the Nf = 3 chiral limit where ms also vanishes and kaons and η become also

Goldstone bosons [14, 15]. In particular, one would expect chiral order parameters (such as

the quark condensate) to decrease as the number of massless flavours in the theory increases.

This suppression is expected to be more and more pronounced as more and more light quark

masses are sent to zero due to a paramagnetic suppression from the vacuum fluctuations of

sea-quark pairs [16]. This effect is hinted at by the significant violation of the Zweig rule in

the scalar sector, and should affect three-flavour dynamics involving kaons and eta mostly,

but not (or only mildly) the two-flavour dynamics of pions alone [17, 18]. Such a suppression

would lead to a decrease of the condensate in the Nf = 3 case compared to its value in the

Nf = 2 limit. An unambiguous test of the pattern of Nf = 3 chiral symmetry breaking
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comes from lattice simulations, which have made significant progress in the recent years,

due to many improvements both at the conceptual and technical levels. A first avenue

consists in computing the spectrum and/or the dynamics of light pseudoscalar mesons in

order to extract the low-energy constants encoding the pattern of chiral symmetry breaking

in the two chiral limits (for a recent overview, see ref. [15]).

Two other alternative strategies are often used in lattice simulations to determine the

three-flavour quark condensate, both being related to the topological properties of QCD on

the lattice. The first one consists in studying the infrared end of the spectrum of the Dirac

operator directly, as the accumulation of its eigenvalues around zero provides information on

the value of the quark condensate [19, 20]. We will not address this type of determination

in the present article, but we notice that a joint JLQCD and TWQCD lattice study of

the distribution of low-lying Dirac eigenvalues obtained [21]: Σ(2)/Σ(3) = 1.30 ± 0.54,

where Σ(Nf ) denotes the quark condensate in the chiral limit of Nf massless flavours, in

agreement with a paramagnetic suppression of chiral order parameters as the number of

massless flavours increases.

A second possibility consists in studying the so-called topological susceptibility, which

will be the main focus of the present article. One can introduce the winding-number density:

ω =
1

16π2
trcG̃

a
µνG

µν
a , (1.1)

where a trace over colour indices is performed, and whose integral Q =
∫

dx ω can be

used to classify the gluonic configurations according to topology. In the case of lattice

simulations, the winding number of a gauge configuration can be determined through the

choice of appropriate periodic boundary conditions [19]. Its conjugate variable in the QCD

Lagrangian is the so-called vacuum angle θ, whose value is strongly constrained by the

absence of CP violation observed in strong interactions. The value of θ is experimentally

very small (θ < 10−10 [22]), which requires either fine tuning or a dynamical explanation

(e.g., axions [23, 24]).

The topological susceptibility defined as the mean square winding number per unit

volume χ = 〈Q2〉/V occurs when connecting an observable computed for a fixed topology

(i.e., a fixed winding number) to the same observable in the θ vacuum at finite volume [25].

Up to O(1/V 3), this relation involves both χ and the coefficient c4 = [〈Q4〉− 3(〈Q2〉)2)]/V
from the 4-point correlator of winding number densities (we will come back to this second

quantity in a forthcoming article [26]). The topological susceptibility is related to the value

at zero of the correlation function:

χ(p2) = −i

∫

d4x eip·x〈0|Tω(x)ω(0)|0〉 . (1.2)

This correlation function can be obtained from the generating functional of QCD by per-

forming two derivatives with respect to the local source corresponding to the vacuum angle

θ(x). As discussed in ref. [27], this correlation function is too singular in QCD for the

integral to exist, so that eq. (1.2) is an ambiguous notion and has to be renormalised. This

problem however does not affect the value of χ at zero momentum transfer and per unit

volume χ ≡ χ(0)/V , i.e., the topological susceptibility. Indeed, χ can be related through
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Ward identities to correlators requiring no renormalisation:

χ(0) = − i

6

∫

dx〈0|Tσ0(x)σ0(0)|0〉 −
1

9
〈0|q̄mq|0〉 , σ0 =

√

2

3
q̄iγ5mq . (1.3)

The two terms on the right-hand side of this Ward identity (written in the case of degen-

erate masses among quarks collected in a flavour multiplet q [27]) shows the connection

of the topological susceptibility with the determination of the quark condensate and the

propagation of flavour-singlet Goldstone bosons respectively. It is thus of no surprise that

this quantity, related to topological properties of QCD, is also exploited to determine the

quark condensate on the lattice [28–32].

This is reflected at the level of the low-energy effective theory of QCD, i.e. Chiral Per-

turbation Theory (χPT) [13, 14]. One builds a generating functional including the source

corresponding to the vacuum angle, θ(x). The latter is only affected by axial flavour-singlet

transformations, and thus connected to that of the (pseudo)scalar source term through:

[s(x) + ip(x) = s0 + ip0, θ(x) = θ0] ↔ [s(x) + ip(x) = VR(s0 + ip0)V
†
L ,

θ(x) = θ0 + arg det(V †
RVL)] . (1.4)

The source θ(x) corresponds to the phase of the matrix collecting Goldstone bosons in the

building of the low-energy effective theory, yielding Ward identities connecting correlators

with (pseudo)scalar and winding-number densities. Let us note that a general mass matrix

s0 + ip0 can be brought down to a diagonal one with real positive eigenvalues mu,md,ms

through the axial transformation eq. (1.4), so that the effective theory depends on s0, p0, θ0
only through mu,md,ms and θ̄ = θ0+arg det(s0+ ip0). If one of the quark masses is equal

to zero, this transformation can also be used to shift the vacuum angle θ by an arbitrary

amount without modifying the theory: the χPT effective potential becomes independent

of θ, and its second derivative, i.e., χ, should vanish in this limit (this can be also seen

from the Ward identity eq. (1.3) written for several distinct quark masses).

Eq. (1.4) yields a natural connection between θ-related observables, the UA(1) anomaly

and the η′ meson, connection which can be investigated further by performing a simultane-

ous expansion in momenta, quark masses and 1/Nc and promoting the η′ meson to a ninth

Goldstone boson [19, 27]. This has led to a detailed study of the topological susceptibility

in the pure Yang-Mills theory (see, e.g., refs. [33, 34]). But even without relying on the

large-Nc expansion, one can determine the low-energy behaviour of χ(p2), and in particular

its value at zero, within three-flavour Chiral Perturbation Theory. The leading-order result

follows the structure of the vanishing-momentum Ward identity eq. (1.3) closely [14]:

χ(p2) = −
∑

P=π0,η

|〈0|ω|P 〉|2
◦

M
2

P −p2
+

1

9
Σ(3)(mu +md +ms) +

1

6
p2H̃0 +O(p4) , (1.5)

where Σ(3) is (the opposite of) the quark condensate in the Nf = 3 chiral limit,1 〈0|ω|P 〉
1In the following, we will denote Σ(Nf ) and F (Nf ) the quark condensate and the pseudoscalar decay

constant in the chiral limit where the masses of the lighter Nf quarks vanish. According to refs. [13, 14]:

F0 = F (3), Σ0 = Σ(3) = F 2
0B0, F = F (2), Σ = Σ(2) = F 2B . (1.6)
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is the coupling of flavour-singlet Goldstone bosons to the winding number density and
◦

M
2

P

the leading-order (LO) contribution to their masses, while H̃0 is a high-energy counterterm

affecting χ′(0) but not χ(0). Replacing the first term on the left hand-side by its appropriate

expression and setting the momentum transfer to zero, one finally gets the widely used and

very simple leading-order expression:

χ = Σ(3)m̄ , 1/m̄ ≡ 1/mu + 1/md + 1/ms , (1.7)

with an interesting non-analytic structure going to zero for vanishing mu,md or ms. Obvi-

ously, an accurate determination of the quark condensate from the topological susceptibility

requires to go beyond a LO analysis. The next-to-leading (NLO) expression for the topo-

logical susceptibility was recently computed in ref. [35], by determining the dependence of

the χPT potential with respect to the vacuum angle (i.e., taking the source term θ(x) as

a constant) and performing the corresponding partial derivatives. The LO formula (1.7)

was exploited by the TWQCD collaboration to extract the value of the three-flavour quark

condensate [28] from RBC/UKQCD configurations with 2+1 domain-wall fermions [36]:

Σ(3, 2 GeV) = [259(6)(9) MeV]3 (in the MS scheme). Another study was performed by

the RBC and UKQCD collaborations based on data at larger volumes using the NLO for-

mula [30], but it was not fully exploited as only a consistency check with the dependence

on mu,d was performed and the three-flavour quark condensate was not determined by

this method.

In this context, it is interesting to consider the topological susceptibility as a way to

extract the quark condensate, taking into account the possibility that it is not the order

parameter triggering three-flavour chiral symmetry breaking. Indeed various analyses of

lattice results [15, 37–42] suggest an overall good agreement between lattice simulations and

χPT concerning chiral series obtained as an expansion in mu and md only (Nf = 2 χPT),

but significant disagreements concerning the chiral expansions in powers of mu,md,ms

(Nf = 3 χPT). In some cases, small values of the Nf = 3 quark condensate and pseu-

doscalar decay constant fail to saturate the LO chiral expansions. In other cases, the

convergence of the three-flavour chiral series exhibits sometimes unexpected features, as

small next-to-leading (NLO) contributions and large next-to-next-to-leading (NNLO) ones,

or numerical cancellations between LO and NLO terms.

A scenario where such features could occur was discussed in a series of arti-

cles [16–18, 43–47]: significant vacuum fluctuations of ss̄ pairs, hinted at by the violation

of the Zweig rule in the scalar sector, could lead to a paramagnetic suppression of LO chi-

ral order parameters (quark condensate and pseudoscalar decay constant). In the Nf = 3

chiral expansions of observables such as decay constants, masses, form factors. . . these fluc-

tuations would decrease the size of LO contributions and enhance NLO contributions nu-

merically (see also refs. [48, 49] for a discussion of the η dynamics in the same framework).

This would require a particular treatment of chiral expansions, going under the name of

Resummed Chiral Perturbation Theory (ReχPT). It resums higher-order contributions in

chiral series from the L4 and L6 NLO low-energy constants encoding the effect of ss̄ pairs

on the structure of the chiral vacuum and may induce a significant ms-dependence in the
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pattern of chiral symmetry breaking. It is compatible with the usual treatment of chiral

series in the limit where the latter are saturated by their LO term, but it allows for a

consistent treatment of the series even if there is a significant competition of LO and NLO

contributions for some of the observables.

In ref. [47], we illustrated our procedure for energy-dependent quantities, namely form

factors, such as the electromagnetic form factors of pions and kaons, as well as those for Kℓ3

decays. We used the same framework to deal with masses, decay constants and form factors

simulated on the lattice for 2+1 dynamical flavours (in the unitary limit where valence and

sea quarks have the same masses). This allowed us to extract information on the pattern

of three-flavour chiral symmetry breaking from lattice data on light-meson spectrum and

form factors, with a significant paramagnetic suppression of the quark condensate and

the pseudoscalar decay constant in the three-flavour chiral limit. In the present article,

we aim at confronting the possibility of significant paramagnetic suppression of the quark

condensate with lattice data gathered on the topological susceptibility. In section 3, we

reconsider the derivation of the NLO expression for the topological susceptibility in the

case of a suppression of the LO Nf = 3 chiral order parameters. We also discuss the

implications of this formula for the determination of the quark condensate. In section 4,

we illustrate our approach by fitting results obtained by the RBC/UKQCD data on the

topological susceptibility as well as the pseudoscalar meson spectrum. An important issue

consists in the determination of the lattice spacings and the related discretisation errors,

which we discuss in section 5 before concluding.

2 Resummed Chiral Perturbation Theory and η observables

We have already discussed the salient features of the resummed χPT framework [47]. Let

us briefly recall the basic ideas keeping in mind that no specific hypothesis is made upon

the relative size of LO and NLO.

• First, a subset of observables is chosen for which a “good“ overall convergence is

assumed, i.e. the sum of LO and NLO terms is large compared to the remaining

higher-order (HO) terms of the series (in relation with the correlators described by

χPT): for example, the squared pion and kaon decay constants, F 2
π , F

2
K (related to the

two-point axial correlator 〈AµAν〉), the squared masses, F 2
πM

2
π , F

2
KM2

K (〈∂µAµ∂νA
ν〉)

and the pion electromagnetic form factor, FπF
π
V (〈AνV µAσ〉). Their chiral expansion

is performed in terms of χPT Lagrangian parameters up to NLO, keeping track of

the HO which form the (small) remainders of the series.

• Furthermore, three fundamental LO quantities

X(3) =
2mΣ(3)

F 2
πM

2
π

, Z(3) =
F 2(3)

F 2
π

, r =
ms

m
, (2.1)

as well as HO remainders, are kept free. The first two quantities in eq. (2.1) are of

particular relevance, since they express two main order parameters of Nf = 3 chiral

symmetry breaking, the quark condensate and the pseudoscalar decay constant, in
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physical units. They also assess the saturation of the chiral expansion of F 2
πM

2
π and

F 2
π by their leading order. One of them can be traded for:

Y (3) =
X(3)

Z(3)
=

2mB0

M2
π

. (2.2)

The ratio r measures the relative size of the quark masses in a framework where

the strange quark is supposed to play a peculiar role in the chiral structure of

QCD vacuum.

• Finally, the parameters of the Lagrangian which appear at NLO, the so-called

low-energy constants (LEC) Li, are expressed as functions of X(3), Z(3), r, some

conveniently chosen observables and the remainders. The relations thus obtained can

be inserted into the chiral expansions of other observables, introducing additional

remainders in an appropriate way.

The important point is not to systematically trade leading-order terms for physical ones

(for example 2mB0 is not traded for M2
π), as usually done, but to perform the replacement

only when physical arguments indicate that the convergence of the series will be improved,

and thus higher-order remainders will see their size reduced. For example, the nonanalytic

structure imposed by unitarity should be located at the physical poles, thresholds. . .We

will not further comment on this question here since we only will encounter tadpoles contri-

butions in the following. A thorough discussion of an implementation of exact perturbative

unitarity and exact renormalization scale independence and its illustration for πη scattering

can be found in ref. [48].2

As indicated by eqs. (1.3) and (1.5), the propagation and coupling of the π0 and η

mesons will play a particular role for the analysis of the topological susceptibility. We will

thus include a further element that was not discussed in detail in ref. [47], but presented in

ref. [44], i.e., the decay constant and mass of the η-meson which features as a propagating

mode of the correlator χ. In the physical case and in the isospin limit, we can write down

relationships for the η observables:

F 2
η = F 2

πZ(3) + 8(r + 2)Y (3)M2
π∆L4 +

8

3
(2r + 1)Y (3)M2

π∆L5 (2.3)

+
Y (3)M2

π

48π2



(2r + 1) log

◦

M
2

η

◦

M
2

K

− log

◦

M
2

K

◦

M
2

π



+ F 2
η eη ,

F 2
ηM

2
η =

2r + 1

3
F 2
πM

2
πX(3) +

16

3
(2r + 1)(r + 2)Y 2(3)M4

π∆L6 (2.4)

+
16

3
(2r2 + 1)Y 2(3)M4

π∆L8 +
32

3
(r − 1)2Y 2(3)M4

πL7 + F 2
ηM

2
ηdη .

◦

M
2

P denotes the LO contribution to the mass of the pseudoscalar meson P = π,K, η.

∆Li = Lr
i − L̂i

r
are scale-independent combinations of the NLO low-energy constants

2Let us mention that there are slight differences between refs. [48] and [47] concerning the treatment of

the unitarity part, which affect the corresponding pieces in the form factors and scattering amplitudes, but

not the observables considered here.
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Li and chiral logarithms L̂r
i . Using NLO chiral series with expected good convergence

properties, these combinations can be reexpressed in terms of pseudoscalar masses, decay

constants, LO parameters and HO remainders, as discussed at length in ref. [47] and briefly

recalled in appendix A. The remainders dη, eη are assumed to be small, with the estimate

for the order of magnitude dη, eη = O(m2
s) = O(10%) [in practice, we will follow the

dimensional estimates described in appendix B in ref. [47]].

In ref. [47], we used the relationships between L4,5 and F 2
π , F

2
K , as well as those be-

tween L6,8 and F 2
πM

2
π , F

2
KM2

K to express the NLO low-energy constants (LECs) in terms

of measured quantities, HO remainders as well as the three LO parameters eq. (2.1). Fol-

lowing the same approach, we can invert eq. (2.4) to reexpress the low-energy constant L7

in terms of masses and decay constants:

[Y (3)]2L7 =
1

32(r − 1)2
F 2
π

M2
π

[

3F 2
ηM

2
η − 4F 2

KM2
K + F 2

πM
2
π

F 2
πM

2
π

−dGO−(r−1)2[ǫ(r)+d′]

]

, (2.5)

where Fη is not measured, but can be computed using eq. (2.3). We have introduced the

Gell-Mann-Okubo difference of masses and the equivalent for HO remainders:

∆GO =
3F 2

ηM
2
η − 4F 2

KM2
K + F 2

πM
2
π

F 2
πM

2
π

, dGO =
3F 2

ηM
2
η

F 2
πM

2
π

dη −
4F 2

KM2
K

F 2
πM

2
π

dK + dπ , (2.6)

and the function of r:

ǫ(r) = 2
r2 − r

r2 − 1
, r2 = 2

(

FKMK

FπMπ

)2

− 1 ∼ 36 , (2.7)

so that ǫ(r2) = 0, and ǫ(r1) = 1 with r1 = 2(FKMK)/(FπMπ)− 1 ≃ 8.

In the following, we will consider simulations with 2+1 dynamical flavours (m̃, m̃, m̃s)

and denote X̃ the values obtained from lattice simulations (and X the corresponding value

for physical quark masses). We introduce the ratios:

p =
m̃s

ms
, q =

m̃

m̃s
, (2.8)

in addition to the ratio of physical quark masses r and the chiral parameters arising in the

LO Lagrangian in eq. (2.1). This yields the following expressions for the η mass and decay

constant for lattice simulations:

F̃ 2
η = F 2

πZ(3) + 8pqr

(

1

q
+ 2

)

Y (3)M2
πL

r
4(µ) +

8

3
pqr

(

2

q
+ 1

)

Y (3)M2
πL

r
5(µ) (2.9)

− M2
π

32π2
pqrY (3) log

◦̃

M

2

K

µ
+ F̃ 2

η ẽη ,

F̃ 2
η M̃

2
η =

pqr

3

(

2

q
+ 1

)

F 2
πM

2
πX(3) +

16

3
(pqr)2

(

2

q
+ 1

)(

1

q
+ 2

)

Y 2(3)M4
πL

r
6(µ) (2.10)

+
32

3
(pqr)2

(

1

q
− 1

)2

Y 2(3)M4
πL7 +

16

3

(

2

q2
+ 1

)

(pqr)2Y 2(3)M4
πL

r
8(µ)
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− M4
π

32π2
[pqrY (3)]2

(

1

3

(

2

q
+ 1

)

[

2

(

1

q
+ 1

)

log

◦̃

M

2

K

µ2
+

4

9

(

2

q
+ 1

)

log

◦̃

M

2

η

µ2

]

+

[

log

◦̃

M

2

π

µ2
− 1

3

(

1

q
+ 1

)

log

◦̃

M

2

K

µ2
− 1

9

(

2

q
+ 1

)

log

◦̃

M

2

η

µ2

])

+ F̃ 2
η M̃

2
η d̃η .

where L7 is given by eq. (2.5), and equivalent expressions for Lr
4,5,6,8 can be found in ref. [47]

in terms of r,X(3), Z(3), HO remainders, masses and decay constants (they are recalled in

appendix A). The HO remainders d̃η, ẽη are supposed to scale like m̃2
s for simulations where

the simulated strange quark is much heavier than the other ones. The LO contributions

to the masses of the simulated pseudoscalar mesons read:

◦̃

M

2

π = pqrM2
πY (3) ,

◦̃

M

2

K =
pqr

2

(

1

q
+ 1

)

M2
πY (3) ,

◦̃

M

2

η =
pqr

3

(

2

q
+ 1

)

M2
πY (3) . (2.11)

3 The topological susceptibility at next-to-leading order

3.1 Diagrammatic analysis

As discussed in the introduction, the topological susceptibility can be seen as the value at

zero of the two-point winding number density correlator, or as the averaged winding number

density. It can be computed in the effective theory by considering the whole correlator (as

was done in ref. [14] to obtain the leading-order expression) or by considering only the

effective potential for constant sources and determining its dependence on the vacuum

angle θ (like the derivation of the NLO expression in ref. [35]). In the latter case, we

have performed the calculation keeping all orders in strong isospin-breaking (contrary to

ref. [35]) and obtained in the χPT framework [14]:

χeff. pot. = m̄F 2
0B0 + 32m̄(mu +md +ms)B

2
0L

r
6(µ) + 96m̄2B2

0(3L7 + Lr
8(µ)) (3.1)

−m̄2B0

32π2
×
[

∑

i 6=j

(mi +mj)
2B0

mimj
log

B0(mi +mj)

µ2

+

(

mu+md

mumd
+
2 sin ǫ cos ǫ√

3

md−mu

mumd
+
2

3
sin2 ǫ

2mumd−ms(mu+md)

mumdms

)

◦

M
2

π0 log

◦

M
2

π0

µ2

+
(4mumd +ms(mu +md)

3mumdms
− 2 sin ǫ cos ǫ√

3

md −mu

mumd

−2

3
sin2 ǫ

2mumd −ms(mu +md)

mumdms

) ◦

M
2

η log

◦

M
2

η

µ2

]

,

where ǫ is the LO π0η mixing angle, defined as:

tan 2ǫ =

√
3

2

md −mu

ms −m
, m = (mu +md)/2 . (3.2)
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This expression is indeed independent of the renormalisation scale µ and agrees with ref. [35]

in the isospin limit, as expected. However, this result as it stands does not exploit the Ward

identity eq. (1.3), which suggests strongly that one should identify the η, π0 poles in the

chiral expansion of the correlator.

It is straightforward to analyse the correlator χ, eq. (1.2), diagrammatically in NLO

χPT to identify the parts corresponding to propagation, as shown in figure 1. The LO

expression eq. (1.5) comes from the local terms in diagram (a) as well as the propagation

part in diagram (b). At NLO, the local term gets contributions from diagram (c), the

coupling of the flavour-singlet mesons to the winding number density receives corrections

from diagram (d) and the propagation of the mesons is corrected by diagrams (e) and (f),

which are partly absorbed by the redefinition of the pole position, yielding:

χ(q2) =
∑

P=π0,η

RP

M2
P − p2

+ S(q2) , (3.3)

where RP ≡ |〈0|ω|P 〉|2 is the relevant coupling to Goldstone bosons, and S is analytic

up to the next thresholds (the first singularities being the cut from s ≥ 9M2
π and pole at

M2
η′). For the topological susceptibility in the isospin limit and at next-to-leading order,

one obtains the separation:

χpole =
R

M2
η

+ S , R ≡ Rη = |〈0|ω|η〉|2 , S ≡ S(0) . (3.4)

The π0 meson does not couple to the winding number density in this limit, due to G-parity.

Up to next-to-leading order the pole residue and the analytical piece read:

R=− 4

27
B2

0F
2
0 (m−ms)

2

×
[

1 +
1

F 2
0

(
◦

M
2

K

16π2
log

◦

M
2

K

µ2
− 16B0(L

r
4(µ)(2m+ms) +

Lr
5(µ)

3
(m+ 2ms))

)]

+
4

27
B2

0

(m−ms)

16π2

[

3m
◦

M
2

π log

◦

M
2

π

µ2
− 2ms

◦

M
2

K log

◦

M
2

K

µ2
+

1

3
(m− 4ms)

◦

M
2

η log

◦

M
2

η

µ2

]

−256

27
B3

0(m−ms)
[

(Lr
6(µ) + Lr

7(µ))(m−ms)(2m+ms) + Lr
8(µ)(m

2 −m2
s)
]

, (3.5)

S =
1

9
B0F

2
0 (2m+ms)

− B0

144π2

[

3m
◦

M
2

π log

◦

M
2

π

µ2
+ 2(m+ms)

◦

M
2

K log

◦

M
2

K

µ2
+

1

3
(2ms +m)

◦

M
2

η log

◦

M
2

η

µ2
)

]

+
32

9
B2

0

[

(2m+ms)
2(Lr

6(µ) + Lr
7(µ)) + (2m2 +m2

s)L
r
8(µ)

]

, (3.6)

It is easy to check that eq. (3.4) coincides with eq. (3.1) in the isospin limit, up to higher-

order terms in the chiral expansion.
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(a ) (b)

(c ) (d) (e) (f )

Figure 1. Diagrams involved in the evaluation of the correlator χ. The winding number densities

ω are represented by the gray boxes, the propagating η and π0 mesons by the solid lines attached

to the sources, whereas the loops contain any of the eight Goldstone bosons. The black dot in

diagram (e) corresponds to the usual four-point vertex, and the white square in diagram (f) to the

NLO low-energy counterterms.

3.2 Resummed expression (no η pole)

Like in the case of F 2
πM

2
π , the three-flavour quark condensate arises at LO in eq. (3.1),

whereas NLO involves the low-energy constant L6, related to the violation of the Zweig

rule in the scalar sector and enhanced by a factor of ms. This expression (or even its

truncation at LO only) is used to determine the quark condensate, assuming the smallness

of NLO corrections. In refs. [16–18, 43–47], we have argued that the pattern of Nf = 3

chiral symmetry breaking could be affected significantly by vacuum fluctuations of ss̄ pairs,

leading to the suppression of the quark condensate, the enhancement of L6 (and L4) and

finally a numerical competition between LO and NLO contributions in Nf = 3 chiral

expansions. Such a problem would occur for eq. (3.1), which explains why we want to

analyse the topological susceptibility in the ReχPT framework.

We consider now a lattice simulation with dynamical quarks of unphysical masses

(m̃, m̃, m̃s). If we do not isolate the contribution from the η pole and simply reexpress

eq. (3.1) using eqs. (2.1) and (2.8), we obtain:

χ̃no pole =
F 2
πM

2
π

2

pqr

q + 2

[

X(3) + 16[Y (3)]2
M2

π

F 2
π

pr

[

Lr
6(µ)(2q + 1) + 3(3L7 + Lr

8(µ))
q

q + 2

]

− 1

16π2
[Y (3)]2

M2
π

F 2
π

pr

[

3q

q + 2
log

◦̃

M

2

π

µ2
+

(1 + q)2

q + 2
log

◦̃

M

2

K

µ2
+

2q + 1

9
log

◦̃

M

2

η

µ2

]]

+χ̃no poled̃χno pole , (3.7)

where dχ denotes the remainder collecting higher-order contributions. If we replace L6,7,8

by their expressions in terms of LO quantities and physical observables, eq. (2.5) and

appendix A, and if we consider a simulation at the physical point (q = 1/r, p = 1), the

topological susceptibility boils down to:

χno pole =
F 2
πM

2
π

2

r

2r + 1

[

1− ǫ(r)
7r + 2

2r(2r + 1)
+

9

2

r

(r − 1)2(r + 2)
∆GO (3.8)

− 1

16π2
[Y (3)]2

M2
π

F 2
π

r





3

2r + 1
log

◦

M
2

π

µ2
+

(1 + r)2

r(2r + 1)
log

◦

M
2

K

µ2
+

r + 2

9r
log

◦

M
2

η

µ2





+4[Y (3)]2
M2

π

F 2
π

[

L̂r
6(µ)(r + 2) + 3L̂r

8(µ)
r

2r + 1

]

]

+ . . .
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where the ellipsis denotes higher-order remainders, and the combinations of chiral loga-

rithms L̂r
i , which depend on Y (3) and quark masses, are given in appendix A. Eq. (3.8)

shows that in the physical case, the topological susceptibility has no sensitivity on the

three-flavour condensate X(3). Indeed, up to 1/r-suppressed corrections (which are small

since r ≥ 15 [3, 7, 46]), eq. (3.7) combines the (LO) three-flavour condensate and the

(NLO) low-energy constant L6 in the same way as F 2
πM

2
π , or equivalently the two-flavour

condensate X(2):

X(2) = lim
m→0

F 2
πM

2
π

2m
= F 2

πM
2
πX(3) + 16r[Y (3)]2M4

πL
r
6(µ) + . . . (3.9)

which is determined from the study of ππ scattering through Kℓ4 decays [1–7]. As was

discussed in ref. [16], the two-flavour condensate can be significantly different from the

three-flavour one, and its value is strongly correlated to the ratio of quark masses r through

the three-flavour chiral expansion of F 2
πM

2
π . This feature explains both the absence of X(3)

and the r-dependence in eq. (3.8).

Therefore, the topological susceptibility close to the physical point (p = 1, r = 1/q

large) exhibits a rather poor sensitivity to the three-flavour condensate X(3). In a similar

way to pseudoscalar masses and decay constants, simulations aiming at disentangling

the pattern of three-flavour chiral symmetry breaking should be performed not only

for quark masses with a hierarchy similar to the physical case, but also light (almost)

degenerate masses with values between the physical mu,md and ms. The (unphysical)

region where simulations probe X(3) efficiently can be determined by expanding eq. (3.7)

in powers of 1/r:

χ̃no pole =
F 2
πM

2
π

2

pqr

q + 2

[

X(3)[1− p(2q + 1)] + p(2q + 1)− 3pq

2(q + 2)

r2 − r

r

]

+ . . . (3.10)

where the ellipsis denote chiral logarithms and HO remainders. It is clear from this

expression that we need q = O(1) rather than O(1/r) to get a reasonable sensitivity to

X(3): for instance, q = 1 (i.e., m̃ = m̃s yields [1− 3p]X(3) + p[3− (r2 − r)/(2r)], so that

the coefficient of X(3) has a similar size to that of the constant term. This is sketched

in a more quantitative way in figure 2 which compares the topological susceptibility at

X(3) = 0 and X(3) = 1 in some illustrative cases.3 The comparison between the two

values indicates the sensitivity to the size of the three-flavour quark condensate, which

tends to decrease the value of the topological susceptibility. We see that the contributions

from X(3) are at least twice as small as the remaining contributions, and they in particular

might be hidden in the uncertainties if q is small (e.g., of O(1/r) if the simulated quark

masses are tuned to be close to the physical ones).

Another way of escaping the poor sensitivity of the topological susceptibility to the

three-flavour quark condensate consists in simulations involving significant isospin breaking,

which can be easily implemented in particular for twisted-mass fermion actions [32, 50]. An

3For this comparison, we assume that the physical value of Fη is known in order to compute the Gell-

Mann-Okubo contribution ∆GO to L7. In the following sections, we will not make this assumption and we

will use eq. (2.3) to determine Fη.
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0 0.5 1 1.5
q

0

0.005
 χ

[G
eV

4 ]

p=1, X(3)=0
p=1, X(3)=1
p=1.5, X(3)=0
p=1.5, X(3)=1

Figure 2. The topological susceptibility χ̃no pole as a function of the ratio of simulated quark

masses q for X(3) = 0 (solid lines) and X(3) = 1 (dashed lines) for two different values of p (related

to the simulated strange quark mass). For illustration, the remainders are set to be zero, Y (3) = 0.8,

r = 26, FK/Fπ = 1.19 and Fη =130MeV.

expression for the topological susceptibility on the lattice similar eq. (3.7) can be written,

involving the two quantities qu = m̃u/m̃s and qd = m̃d/m̃s instead of q:

χ̃no pole =
F 2
πM

2
π

2

pquqdr

qu + qd + quqd
(3.11)

×
[

X(3)

{

1− pr(1 + qu + qd)

r + 2

}

− ǫ(r)pr

{

3quqd
2(qu + qd + quqd)

+
1 + qu + qd

r + 2

}

+
pr(1 + qu + qd)

r + 2
+

9pquqdr

2(r − 1)2(qu + qd + quqd)
∆GO

]

+ . . .

where we expressed the NLO LECs L6,7,8 using appendix A (we have checked that including

the md−mu difference in the expressions of appendix A would not modify our conclusions).

The ellipsis denotes chiral logarithms and HO remainders. The dependence of χ on the two

quantities qu and qd is illustrated in figure 3. As expected, χ(qu, qd) = χ(qd, qu) vanishes

for qu = 0 or qd = 0 since the theory becomes independent of θ when one of the quark

masses vanishes. The value of the topological susceptibility increases when one of the two

quark masses increases, the other one being kept fixed. As clearly seen in figure 3, the

contribution to the topological susceptibility independent of X(3) increases faster than

the one proportional to X(3), so that a scan through values of (m̃u, m̃d) at fixed m̃s could

help to determine unambiguously the contribution (and thus the value) of the three-flavour

quark condensate.
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Figure 3. The topological susceptibility χ̃no pole (in units of GeV 4) as a function of qu = m̃u/m̃s

and qd = m̃d/m̃s for X(3) = 0 (solid) and X3 = 1 (dashed with colour levels). For illustration, the

remainders are set to be zero, p = 1, Y (3) = 0.8, r = 26, FK/Fπ = 1.19 and Fη =130MeV.

3.3 Resummed expression (identifying the η pole)

Identifying the poles corresponding to the propagation of the pseudoscalar mesons is of par-

ticular relevance within Resummed χPT. In this framework, smaller HO remainders are

expected when singularities of the expansion (and in particular poles) are correctly located

at the physical positions. Let us notice that a similar discussion takes place when one con-

siders the two-point correlators of the axial current and/or pseudoscalar density, where the

propagation of a single Goldstone boson occurs also at LO. Indeed, in refs. [16–18, 43–47],

we have considered the decay constants and masses as they could be obtained from the NLO

expression of 〈AµAν〉 where the propagators are explicitly expressed in terms of the physi-

cal masses, considering either the correlator at 0 (for F 2
π ) or its residue at the pseudoscalar

pole (for F 2
πM

2
π).

Thanks to our diagrammatical analysis of the two-point correlator χ in χPT, we can

easily identify the contribution from the propagation of the η meson in eq. (3.7), and we

obtain the expressions for the pole residue and the analytical piece arising in eq. (3.4):

R̃=−(pr(q − 1))2

27
F 2
πM

4
πX(3)Y (3) +

8

27
(pr)3(1− q)2M6

πY (3)3
[

(2q + 1)Lr
4 +

q + 2

3
Lr
5

]

−32

27
(pr)3Y (3)3M6

π [(L
r
6 + L7)(q − 1)2(2q + 1) + Lr

8(q
2 − 1)(q − 1)] (3.12)

+
(pr)3(q − 1)

864π2
M6

πY (3)3

[

6q2 log

◦̃

M

2

π

µ2
− (1 + q)2 log

◦̃

M

2

K

µ2
+

2

9
(q − 4)(q + 2) log

◦̃

M

2

η

µ2

]

,

S̃ =
pr(2q + 1)

18
F 2
πM

2
πX(3) +

8

9
(pr)2Y (3)2M4

π [(2q + 1)2(Lr
6 + L7) + (2q2 + 1)Lr

8]

− (pr)2

576π2
Y (3)2M4

π

[

6q2 log

◦̃

M

2

π

µ2
+ 2(q + 1)2 log

◦̃

M

2

K

µ2
+

2

9
(2 + q)2 log

◦̃

M

2

η

µ2

]

, (3.13)
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where the counterterms can be expressed in terms of r,X(3), Z(3) and the remainders.

The topological susceptibility then reads:

χ̃pole =
R̃

M̃2
η

+ S̃ + χ̃poled̃χpole . (3.14)

At this stage, one has still to discuss the direct remainder χdχ which corresponds to

higher-order terms, and has been added in eq. (3.14) as well as in eq. (3.7). One wants dχ
to start at NNLO, and thus to be O(m2

q). This expectation can be checked by considering

various chiral limits sending m̃ and/or m̃s to zero. As already explained previously, the

topological susceptibility χ should vanish in the limit where one of the quark masses goes

to zero. In our framework, this can be translated as χ → 0 for the three chiral limits:

• m̃s → 0, m̃ fixed: p → 0, pq fixed,

• m̃ → 0, m̃s fixed: q → 0, p fixed,

• m̃, m̃s → 0, m̃/m̃s fixed: p → 0, q fixed.

By inspection, one can check that the sum of LO and NLO in eq. (3.7) does vanish in these

three limits, whereas eqs. (3.12)–(3.13) do vanish in these limits only up to nonzero higher-

order corrections. Therefore, if we consider the expression for the topological susceptibility

not singling out the η-pole, eq. (3.7), we can add a higher-order remainder of the form

χ̃no poled̃χno pole with d̃no pole
χ = O(m̃2

q) that has no singularities when any m̃q → 0. In the

situations that we consider (one of the masses much larger than the other ones), we expect

d̃no pole
χ to be dominated by m̃2

s contributions.

On the other hand, if we single out the η-pole contributions following eq. (3.7), we

would need d̃poleχ to become singular in the chiral limits considered before, so that χ̃poled̃χpole

does not vanish and cancels the non-vanishing value of eqs. (3.12)–(3.13) coming from

higher-order terms. A more satisfying solution consists in subtracting these higher-order

pieces from the HO remainder, so that dχ does not exhibit singularities in any of the chiral

limits. In other words, using eqs. (3.12)–(3.13), we write the topological susceptibility as:

C(m̃, m̃s) =
R̃

M̃2
η

+ S̃ , χ̃pole = C(m̃, m̃s)− C(0, m̃s)− C(m̃, 0) + χ̃poled̃χpole . (3.15)

One can check that the subtracted terms C(0, m̃s) = O(m̃2
s) and C(m̃, 0) = O(m̃2) are

indeed HO terms. With the definition eq. (3.15), which will be used in the following, d̃poleχ

is regular in the chiral limits described above, and can be considered as O(m̃2
s) for the

simulations considered here.

Finally, one should notice that R̃ and S̃ involve again not only the three-flavour con-

densate X(3) but also NLO LECs, and in particular L6. This dependence is equivalent

to that of eq. (3.7) up to higher orders in the expansion of the quark masses. It is there-

fore of no surprise that we find only small numerical differences between eq. (3.7) and

eqs. (3.12)–(3.13) in the range of quark masses of physical interest, and that the previ-

ous conclusion concerning the potential of the topological susceptibility to determine the

three-flavour quark condensate still applies in this setting.
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3.4 Finite-volume effects

Two different lattice artefacts can affect the results of simulations before considering the

continuum limit. The first corresponds to the finite size of the lattice spacing, which

can be included in principle in the chiral expansion through spurions that depends on the

implementation of the fermion action (see ref. [51] and references therein). For the moment,

we will not include this effect as we will consider data with good chiral properties and only

O(a2) artefacts, even though this issue is naturally of interest [26].

A second effect comes from the finiteness of the volume used for lattice simulations, in-

ducing finite-volume modifications of the chiral expansions. As discussed in ref. [19, 52–55],

the NLO finite-volume effects for chiral perturbation theory amount to a modification of

the chiral logarithms:

◦

M
2

P

16π2
log

◦

M
2

P

µ2
→ 1

2L3

∑

ℓ

1

ωP
=

1

2L3
σP , (3.16)

where ℓ ∈ 2π/L × Z3 and ωP =

√

ℓ2+
◦

M
2

P . The summation over (Fourier conjugates of)

the three spatial directions comes from the quantization of momenta due to the periodic

boundary conditions on the lattice box (making it a torus in practice). We consider simu-

lations where the time component is significantly larger than the spatial components, and

consider only the finite-volume effects related to the latter [53–55]. One can make contact

with the infinite-volume logarithm through the function:

σP
L3

=

◦

M
2

P

8π2
log

◦

M
2

P

µ2
+ ΞP , (3.17)

where ΞP = ξ1/2(L,
◦

M
2

P ) was introduced in ref. [53]. An alternative definition of ΞP was

proposed in ref. [45] and is rediscussed in appendix C.

We will take into account these corrections in the following analysis for all the quantities

of interest. For masses and decay constants, the corrections can be read directly from the

expressions in ref. [47]. For the topological susceptibility, we have the following correction

from finite-volume effects to the expression without singling out the η-pole:

χno pole(L) = χno pole(∞)− 1

8
Y (3)M2

π

pqr

(q + 2)2

[

6Ξπ + 4(q + 1)ΞK +
2

3
(2q + 1)Ξη

]

, (3.18)

and when one singles out the η-pole:

R̃(L) = R̃(∞) +
(pr)2(q − 1)

54
Y (3)2M4

π

[

3qΞπ − (1 + q)ΞK +
1

3
(q − 4)Ξη

]

, (3.19)

S̃(L) = S̃(∞)− (pr)

72
Y (3)M2

π

[

6qΞπ + 4(q + 1)ΞK +
2

3
(2 + q)Ξη

]

. (3.20)

We neglect any dependence of the higher-order remainders on finite-volume effects, effec-

tively identifying the HO remainders at finite and infinite volumes.
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4 A first series of fits to lattice data

We want now to exploit the topological susceptibility to improve our determination of

the pattern of three-flavour chiral symmetry breaking. We have however seen that the

usual setting of lattice simulations is not appropriate, as the topological susceptibility

is then driven by the two-flavour condensate. If we want to extract information on the

three-flavour pattern, we need either to make simulations away from the physical case

(as discussed in section 3.2), or to supplement the topological susceptibility with other

sources of information. We will now take this second option, which is also required due to

the number of parameters involved in the NLO expression of the topological susceptibility

(in particular the parameters of the LO chiral Lagrangian and HO remainders). We will

therefore include pseudoscalar masses and decay constants in our considerations and test

the compatibility of the topological susceptibility with the pattern of three-flavour chiral

symmetry breaking obtained from the latter data.

There are several lattice calculations of the topological susceptibility in the literature,

e.g. refs. [28, 30]. As an illustration of our approach, we will focus on the ones from

RBC/UKQCD following our work, ref. [47], as this collaboration provides all the details

(masses, decay constants and topological susceptibility) necessary for our analysis. Since

the publication of ref. [47], new data from this collaboration have been issued with a new

volume and different quark masses, given in ref. [30], and we will use them as a reference

in the coming sections. We follow the approach of ref. [47] and perform a fit to the two

sets of data in the 243×64 (a−1 = 1.78(3)GeV) and 323×64 volumes (a−1 = 2.28(3)GeV)

with and without including finite volume effects. In this section, the lattice spacings are

fixed to the central values quoted in ref. [30] without uncertainty.

The fits include the data collected in appendix B, i.e. pion and kaon masses and

decay constants as well as the topological susceptibility (unfortunately, no lattice data on

the η meson is available, even though it would improve the analysis of the topological

susceptibility in a significant way). We build a χ2 depending on the following parameters:

• the three leading-order parameters r,X(3), Z(3),

• a reference ratio between a simulated strange quark (chosen conventionally to be for

the 243 simulations) and the physical strange quark mass,

• the HO remainders associated with the pion and kaon masses and decay constants

(denoted d, e, d′, e′),

• the ratio FK/Fπ (on the other hand, we set Fπ = 92.2MeV),

• if the topological susceptibility is included, the corresponding HO remainders for the

η mass and decay constant (dη, eη) as well as the one for the topological susceptibil-

ity (dχ).

HO remainders are restricted to remain within a range based on a naive dimensional

analysis, as described in ref. [47]. At this stage, we include no discretisation error effects

in our three-flavour chiral expansions, but we will come back to this issue in section 5.
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As shown in table 1, the pattern of Nf = 3 chiral symmetry breaking with low quark

condensate and decay constant observed in that reference is confirmed by this new anal-

ysis, whether we include or not the topological susceptibility in our fit. The outcome of

the fit is thus mainly driven by the spectrum of pseudoscalar mesons, but the quality of

the agreement is not modified by the inclusion of the topological susceptibility, which thus

exhibits a good compatibility with the rest of the fit and is consistent with the pattern

of chiral symmetry breaking described in ref. [47]. As in our previous work, L4 and L6

do not show any sign of Zweig suppression and the competition between LO and NLO

in three-flavour chiral expansions is clearly seen. We obtain values for the Nf = 2 chi-

ral order parameters in agreement with expectations from two-flavour chiral perturbation

theory [13] as well as experimental information on ππ scattering, such as that from Kl4

decays [1–7]. The values of ℓ̄3 and ℓ̄4 given there can be compared to the one obtained from

the RBC/UKQCD collaboration, ref. [30]: ℓ̄3 = 2.82(16), ℓ̄4 = 3.76(9) in infinite-volume

χPT and ℓ̄3 = 2.57(18), ℓ̄4 = 3.83(9) in finite-volume χPT. One can also recall the value

quoted by the Flavour Lattice Averaging Group [15] for ℓ̄3 = 3.2(8) (no value was quoted

for ℓ̄4 in this reference). Finally, one notices that singling out the η-pole or not in the ex-

pression of the topological susceptibility does not modify significantly the analysis — the

values obtained with eqs. (3.7) and (3.12)–(3.13) are very close numerically for the ranges

of parameters considered here.

Focusing on the results including χpole with finite-volume effects, we obtain the follow-

ing convergence at χ2
min with the relative LO, NLO and HO contributions:

F 2
π : 0.65 + 0.40− 0.05 , F 2

πM
2
π : 0.35 + 0.79− 0.14 ,

F 2
K : 0.47 + 0.56− 0.03 , F 2

KM2
K : 0.24 + 0.86− 0.10 ,

F 2
η : 0.40 + 0.57 + 0.03 , F 2

ηM
2
η : 0.23 + 0.80− 0.03 ,

χpole : 0.22 + 0.63 + 0.15 ,

(4.1)

showing that the global convergence is good (small HO remainders), but the LO and NLO

contributions are indeed competing numerically, confirming the results obtained in ref. [47].

However, fitting the RBC/UKQCD data in the two volumes, we obtain a rather poor fit

of χ2/d.o.f.=29.4/12 without finite-volume effects, which can be seen as a 2.9σ discrepancy

in a naive (purely Gaussian) statistical interpretation. The fit improves when one includes

finite-volume effects, getting down to a 1.7σ effect, as can be seen by comparing the fits

A1 and A2 (or A4 and A5) in table 1. Indeed, even though these effects are rather small

in the ranges of quark masses considered here, they tend to bring the various quantities in

better agreement with the lattice data (more on this issue can be found in appendix C).

The main contribution to χ2
min comes from Fπ (we will come back to this issue in the next

section) whereas the topological susceptibility contributes only marginally.

In figure 4, we illustrate the results of the fit for the topological susceptibility as a

function of the simulated light-quark mass. Finite-volume effects have little impact, since at

large m̃, the product of M̃πL is much larger than 1 and thus finite-volume effects are small,

whereas at small m̃, the topological susceptibility (with or without finite volume effects)

goes to 0 linearly. One notices also the linearity of the three curves, related to the fact that
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Fit name A1 A2 A3 A4 A5

χ No No χnopole χpole χpole

Finite volume No Yes No No Yes

r 23.0± 0.7 23.4± 0.7 23.0± 0.7 23.0± 0.7 23.4± 0.7

X(3) 0.33± 0.10 0.34± 0.05 0.33± 0.06 0.33± 0.06 0.34± 0.05

Y (3) 0.49± 0.15 0.53± 0.07 0.49± 0.08 0.49± 0.08 0.53± 0.07

Z(3) 0.68± 0.03 0.65± 0.03 0.68± 0.03 0.68± 0.03 0.65± 0.03

FK/Fπ 1.17± 0.01 1.17± 0.01 1.17± 0.01 1.17± 0.01 1.17± 0.01

Rem. at limit d d d, e, dχ d, e, dχ d, eη, dχ

m̃s(24
3)/ms 1.12± 0.02 1.12± 0.02 1.12± 0.02 1.12± 0.02 1.12± 0.02

ms(2 GeV)[MeV] 98.1± 1.7 98.4± 1.8 98.0± 1.7 98.0± 1.7 98.4± 1.8

m(2 GeV)[MeV] 4.3± 0.1 4.2± 0.1 4.3± 0.1 4.3± 0.1 4.2± 0.1

Σ
1/3
0 (2 GeV)[MeV] 186± 19 211± 7 186± 11 186± 12 189± 10

B0(2 GeV)[GeV] 1.12± 0.34 1.22± 0.17 1.11± 0.21 1.12± 0.21 1.22± 0.17

F0[MeV] 75.9± 1.3 74.4± 1.4 75.9± 1.3 75.9± 1.3 74.5± 1.4

Fη[MeV] − − 117± 16 128± 10 124± 6

χ · 104[GeV4] − − 0.51± 0.01 0.49± 0.02 0.50± 0.02

m̃s(32
3)/ms 1.08± 0.02 1.09± 0.02 1.07± 0.02 1.08± 0.02 1.07± 0.02

L4(µ) · 103 1.12± 0.46 0.65± 0.45 1.13± 0.30 1.12± 0.30 0.60± 0.43

L5(µ) · 103 2.13± 0.78 2.05± 0.40 2.14± 0.53 2.13± 0.53 2.04± 0.39

L6(µ) · 103 3.00± 3.05 2.55± 0.89 3.13± 1.44 3.10± 1.42 2.52± 0.88

L7(µ) · 103 − − −2.60± 1.02 −1.82± 0.47 −1.70± 0.40

L8(µ) · 103 4.12± 2.74 3.39± 1.13 4.17± 1.79 4.12± 1.77 3.35± 1.11

X(2) 0.90± 0.01 0.90± 0.01 0.90± 0.01 0.90± 0.01 0.90± 0.01

Y (2) 0.99± 0.01 1.00± 0.01 0.99± 0.01 0.99± 0.01 1.00± 0.01

Z(2) 0.91± 0.01 0.91± 0.01 0.91± 0.01 0.91± 0.01 0.90± 0.01

Σ1/3(2 GeV)[MeV] 260± 3 261± 3 260± 2 260± 3 261± 2

B(2 GeV)[GeV] 2.26± 0.07 2.31± 0.06 2.26± 0.07 2.26± 0.07 2.31± 0.06

F [MeV] 88.0± 0.4 87.8± 0.2 88.1± 0.2 88.0± 0.22 87.8± 0.14

ℓ̄3 −1.6± 1.4 −0.5± 0.9 −1.6± 1.2 −1.6± 1.2 −0.5± 0.9

ℓ̄4 3.0± 0.3 3.2± 0.1 3.0± 0.1 3.0± 0.2 3.2± 0.1

Σ/Σ0 = Σ(2)/Σ(3) 2.72± 0.78 2.64± 0.35 2.74± 0.46 2.72± 0.46 2.62± 0.35

B/B0 = B(2)/B(3) 2.02± 0.56 1.89± 0.23 2.03± 0.32 2.02± 0.33 1.89± 0.22

F/F0 = F (2)/F (3) 1.16± 0.02 1.18± 0.02 1.16± 0.02 1.16± 0.02 1.18± 0.02

χ2/N 28.7/11 18.7/11 29.2/12 29.4/12 19.2/12

Gaussian equiv. 3.0σ 1.8σ 2.9σ 2.9σ 1.7σ

Table 1. Results of fits performed on the data from RBC/UKQCD collaboration on pseudoscalar

masses and decay constants, including or not the topological susceptibility [30]. In two cases, finite-

volume effects are taken into account. In all cases, we considered only data with light pions and

only statistical errors are shown. The LECs are given at the scale µ = Mρ.
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Figure 4. The topological susceptibility χ̃pole as a function of the light quark mass. The black

[red] points correspond to the (24)3× 64 volume [(32)3× 64], using the estimates of lattice spacings

quoted in ref. [30]. The dashed curves correspond to the best fit using χpole with finite-volume

effects, as indicated in the last column of table 1 (removing finite-volume effects would lead to

almost identical curves). We have not included the lightest point in our analysis, as discussed in

the text. As a reference, we have also indicated the same variation when the strange quark mass is

set to its physical value.

q remains small (≤ 0.4) in this range of m̃, so that χ in eq. (3.7) or (3.12)–(3.13) can be

expanded in powers of q with only small O(q2) corrections. As is clear from eq. (3.7), the

slopes of these curves at zero are not directly related to the three-flavour quark condensate,

as it involves also the NLO LEC Lr
6 as well as chiral logarithms (once again, this feature

is more related to the two-flavour quark condensate).

The authors of ref. [30] noticed that their value for the topological susceptibility

obtained from the simulation with the lightest quark mass may suffer from “long auto-

correlations in Q that are not well resolved in [their] finite Markov chain of configurations”.

Indeed, the uncertainty attached to this particular point is much smaller than the other

ones, which might indicate underestimated systematic effects. In addition, one notices that

it is much lower than the other points, so that it would be very difficult to draw a smooth

curve going through all the points as well as the origin (as required by the vanishing of

the topological susceptibility when one quark mass is set to zero). For these reasons, we

did not include this data point in our analyses. We have however checked that including

this additional point leads only to a worse χ2 without affecting the outcome for the LO

parameters of the chiral Lagrangian in a significant way.
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Figure 5. The pion decay constant as a function of the light-quark mass. Blue [red] points

correspond to the data for the (24)3 × 64 volume [(32)3 × 64], using the estimates of lattice spacing

given in ref. [30]. Purple [orange] points correspond to the same points, using our own estimates of

lattice spacing discussed in section 4. The dashed curves indicate our best fit in each case (A5 and

B5), as given in the last columns of tables 1 and 2 respectively. They are interrupted for M̃πL ≤ 2

where our description of finite-volume effects becomes unreliable. The solid curves indicate the

corresponding variations for the physical value of the strange quark mass, without finite-volume

effects. In both cases (estimate of the lattice spacings from ref. [30] or section 5), the position of

the physical point (mphys, Fπ) is indicated with a square.

5 The role of lattice spacing

Our approach, allowing for a numerical competition between LO and NLO contributions

to three-flavour chiral series, has provided a good, but not completely satisfying, fit of

masses, decay constants and topological susceptibility from the RBC/UKQCD data. This is

illustrated in the lower part of figure 5, where we plot F̃π as a function of m̃ (as given by the

equivalent of eqs. (2.9)–(2.10) for F̃ 2
π and F̃ 2

πM̃
2
π , see section 5.1 in ref. [47]). The (dashed)

curves correspond to our best fit (last column in table 1) and the solid line indicates the

dependence of Fπ for a physical ms in an infinite volume. Indeed, in spite of this broad

agreement, we notice that we get a large contribution to χ2
min from the F̃π data points. This

is a reminder of the problem encountered in ref. [30], where neither a chiral nor an analytic

extrapolation formula was able to accommodate the observed dependence of F̃π on m̃ with

the physical point (mphys, Fπ). Our formalism can include both pieces of information with

a reasonable χ2
min, but we can improve the latter by letting the physical value of Fπ vary

as a free parameter. We obtain the results indicated as fit B1 in the first column of table 2

with a very low value of Fπ = 86.4MeV, in agreement with the results in ref. [30].
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This discrepancy between lattice and physical values of Fπ hints at a more general issue

concerning the determination of the absolute scale of lattice quantities, which is obtained

by converting the lattice spacing into physical units. In ref. [30], it was determined by

identifying “scaling trajectories” corresponding to lines in the (a, m̃, m̃s) space with fixed

M̃π/M̃Ω and M̃K/M̃Ω ratios. An iterative interpolation method was used to reach values

of Mπ,MK ,MΩ corresponding to physical values of their ratios, which was identified as

the physical point for the quark masses. The lattice spacings were then determined by

requiring that 1/a = 1.672/(aM̃Ω)GeV where 1.672GeV is the physical mass of this baryon

and aM̃Ω is the mass of the Ω as measured in lattice units. The actual interpolation was

performed through two kinds of interpolating formulae for the hadron masses in terms of

quark masses, either based on NLO three-flavour χPT or an analytic (polynomial) ansatz,

fitted to partially-quenched data (where sea- and valence-quark masses are different). This

led to values of the lattice spacing that were compatible and quoted with an accuracy at

the level of a few percents.

However, such determinations based on the quark-mass dependence of light-meson

quantities might be affected significantly if one takes into account a numerical competition

between LO and NLO contributions to three-flavour chiral series. In this particular case,

one should consider at the same time the chiral expansions of F 2
PM

2
P and F 2

P and include

HO remainders, to determine the dependence of Mπ and MK on the quark masses. As far

as the Ω mass is concerned, we will follow ref. [30] and take a linear dependence on the

quark masses:4

M̃Ω = MΩ + c1(m̃s −ms) + c2(m̃−m) , (5.1)

inspired by the analysis of RBC/UKQCD. A fully consistent treatment should include a

treatment of the baryon masses in our ReχPT framework, extending eq. (5.1) to chiral

logarithms and HO remainders. Such an analysis, beyond the scope of the present article,

is under way [26] (in the present case, we have checked that adding a quartic term in

eq. (5.1) does not change the results discussed below).

In addition, since we are interested in effects related to lattice spacing, we should also

consider discretisation errors, which could reach 10–15% in the analysis of ref. [30]. We

follow the latter analysis and include only leading-order discretisation effects affecting the

decay constants:5

F̃ 2
π (a, V, m̃, m̃s) = F̃ 2

π (0, V, m̃, m̃s) + F 2
πZ(3)cFπa

2 , (5.2)

F̃ 2
K(a, V, m̃, m̃s) = F̃ 2

K(0, V, m̃, m̃s) + F 2
πZ(3)cFK

a2 , (5.3)

4The Ω mass was analysed as a function of mu,d in Nf = 2 chiral perturbation theory in ref. [56]. The

Ω− field is an isoscalar under SU(2), which prevents it from interacting with other baryons (contrary to

other hyperons like Ξ,Σ,Λ) in two-flavour χPT. This makes the dependence of MΩ on Mπ much simpler

than for other nucleons, with a constant term supplemented with quadratic and quartic terms in Mπ (the

quartic term including a chiral logarithm).
5In principle, one should consider all the terms coming from discretisation effects and due to the breaking

of chiral symmetry, and also add correction terms for the masses. This would however increase the number

of free parameters and lead to fits with a poorly stability, due to flat directions in the subspace of correction

terms and the limited number of data points.
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where the correction term is defined with respect to the leading-order term in the chiral

expansion.

We are not in a position to perform the same joint determination of lattice spacings

and quark masses as the RBC/UKQCD collaboration to include the dependence of the pion

and kaon masses on the light-quark mass inferred from ReχPT from scratch. However, we

can perform a combined fit of the pion and kaon masses and decay constants, as well as

the Ω mass (collected in appendix B), with the following parameters:

• the three leading-order parameters r,X(3), Z(3),

• a reference ratio between a simulated strange quark (chosen conventionally to be for

the 243 simulations) and the physical strange quark mass,

• the HO remainders associated with the pion and kaon masses and decay constants

(denoted d, e, d′, e′),

• the ratio FK/Fπ (on the other hand, we set Fπ = 92.2MeV),

• if the lattice spacings are left free, the two effective constants c1, c2 for the Ω mass,

• if discretisation errors are included, the two effective constants cFπ , cFK
for the de-

cay constants,

• if the topological susceptibility is included, the corresponding HO remainders for the

η mass and decay constant (dη, eη) as well as the one for the topological susceptibil-

ity (dχ).

Our approach is not very different in its spirit from the “combined scaling and chiral fitting”

performed in ref. [30], up to the following modifications: we include information on the

values of the masses and decay constants at the physical point, we consider F 2
PM

2
P and F 2

P

rather than M2
P and FP , we use three-flavour ReχPT rather than two-flavour expansions

to perform the interpolation of the data, we include the presence of HO remainders, we

do not include partially-quenched data, we fix at the same time m,ms and the lattice

spacings in contrast with the two-step procedure in ref. [30] (physical masses first, lattice

spacing afterwards).

The results are given in table 2 including finite-volume effects.6 First we consider fits

B2, 3, 4 without the topological susceptibility, including or not discretisation errors and

lattice spacing determined from MΩ. Discretisation errors remain generally small (at most

5 %) apart for F 2
π in fit B4 (20% effect, in good agreement with the results of ref. [30]), but

lead to enlarged uncertainties on the other parameters. We notice that these discretisation

effects are compatible with zero within error bars, which explains that the fits A2 and B3

(differing only through the effect of discretisation errors) yields very similar results. The

6Contrary to section 4, including or not finite-volume effects affects the value of χ2
min only marginally,

because the small changes due to finite-volume effects can be mimicked at the level of the fit by a slight shift

in the values of the lattice spacings. This was also observed in the fits of the RBC/UKQCD collaboration

on their own results [30].
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Fit name B1 B2 B3 B4 B5

χ No No No No χpole

Finite volume Yes Yes Yes Yes Yes
Lattice spacing Fixed From MΩ Fixed From MΩ From MΩ

O(a2) corr No No Yes Yes Yes

Fπ[MeV] 86.5± 2.2 92.2⋆ 92.2⋆ 92.2⋆ 92.2⋆

r 25.6± 1.1 26.1± 1.1 23.3± 0.8 25.6± 1.1 25.6± 1.0

X(3) 0.40± 0.04 0.54± 0.05 0.35± 0.07 0.55± 0.04 0.55± 0.04

Y (3) 0.79± 0.10 0.86± 0.08 0.52± 0.05 0.91± 0.06 0.91± 0.07

Z(3) 0.50± 0.07 0.62± 0.05 0.68± 0.07 0.60± 0.05 0.60± 0.04

FK/Fπ 1.23± 0.03 1.25± 0.03 1.17± 0.02 1.25± 0.02 1.25± 0.02
Rem. at limit − d e d, e d, e, dη, eη, dχ
m̃s(24

3)/ms 1.14± 0.03 1.62± 0.16 1.12± 0.03 1.71± 0.13 1.71± 0.13

a−1(243)[GeV] 1.73⋆ 2.14± 0.12 1.73⋆ 2.02± 0.08 2.19± 0.08

a−1(323)[GeV] 2.28⋆ 2.76± 0.13 2.28⋆ 2.82± 0.09 2.81± 0.09

c1 − 9.08± 0.44 − 8.98± 0.37 8.98± 0.37

c2 − 1.42± 0.43 − 1.44± 0.44 1.44± 0.43

cFπ
[GeV2] − − 0.13± 0.14 −1.09± 1.19 −1.09± 1.19

cFK
[GeV2] − − 0.13± 0.17 0.09± 0.48 0.09± 0.48

ms(2 GeV)[MeV] 96.5± 2.2 83.9± 8.1 97.9± 2.2 81.2± 6.0 81.2± 6.0

m(2 GeV)[MeV] 3.8± 0.2 3.2± 0.4 4.2± 0.1 3.2± 0.3 3.2± 0.3

Σ
1/3
0 (2 MeV)[GeV] 197± 7 240± 16 191± 2 243± 12 243± 12

B0(2 GeV)[GeV] 2.03± 0.32 2.60± 0.52 1.21± 0.12 2.81± 0.39 2.81± 0.38

F0[MeV] 61.5± 5.2 72.8± 2.8 76.0± 3.7 71.3± 2.4 71.3± 2.4

Fη[MeV] − − − − 123± 3

χpole
· 104[GeV4] − 0.33± 0.03 0.41± 0.03 0.33± 0.03 0.43± 0.03

m̃s(32
3)/ms 1.09± 0.03 1.52± 0.15 1.08± 0.03 1.61± 0.12 1.61± 0.12

L4(µ) · 10
3 0.28± 0.29 −0.11± 0.14 0.99± 0.17 −0.08± 0.09 −0.08± 0.09

L5(µ) · 10
3 1.62± 0.19 2.13± 0.21 2.03± 0.43 2.00± 0.20 2.01± 0.20

L6(µ) · 10
3 0.47± 0.35 0.09± 0.10 2.53± 0.79 0.05± 0.07 0.04± 0.07

L7(µ) · 10
3

− − − − −0.25± 0.14

L8(µ) · 10
3 1.08± 0.38 1.13± 0.20 3.42± 0.88 1.04± 0.14 1.04± 0.09

X(2) 0.89± 0.02 0.89± 0.01 0.90± 0.01 0.88± 0.01 0.88± 0.01

Y (2) 1.03± 0.02 1.03± 0.01 0.99± 0.01 1.04± 0.01 1.04± 0.01

Z(2) 0.86± 0.02 0.86± 0.01 0.91± 0.01 0.86± 0.01 0.85± 0.01

Σ1/3(2 GeV)[MeV] 258± 4 248± 2 261± 3 285± 7 285± 8

B(2 GeV)[GeV] 2.68± 0.16 3.13± 0.42 1.90± 0.18 3.18± 0.28 3.18± 0.27

F [MeV] 80.2± 2.9 85.5± 0.50 88.0± 0.4 85.2± 0.4 85.2± 0.4

ℓ̄3 4.0± 1.5 4.5± 0.9 −1.0± 0.9 4.6± 0.7 4.6± 0.7

ℓ̄4 4.2± 0.4 4.7± 0.3 3.1± 0.3 4.9± 0.3 4.9± 0.3

Σ/Σ0 = Σ(2)/Σ(3) 2.24± 0.22 1.66± 0.14 2.54± 0.02 1.61± 0.11 1.61± 0.11

B/B0 = B(2)/B(3) 1.32± 0.17 1.20± 0.10 1.90± 0.18 1.13± 0.09 1.13± 0.08

F/F0 = F (2)/F (3) 1.30± 0.08 1.17± 0.05 1.15± 0.06 1.19± 0.04 1.19± 0.04

χ2/N 12.1/10 17.3/12 18.1/9 16.0/10 16.2/11
Gaussian equiv. 1.1σ 1.5σ 2.1σ 1.6σ 1.5σ

Table 2. Results of fits performed on the data from RBC/UKQCD collaboration on pseudoscalar

masses, decay constants and topological susceptibility [30]. The first fit lets Fπ vary freely. The

other columns either a determination of the lattice spacings using the Ω mass or O(a2) discretisation

effects for the decay constants. The star superscript indicates a quantity set to a fixed value (no

uncertainty). These results should be compared with fits A2 and A5 in table 1.
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(re)determination of lattice spacing through MΩ performed in B2 and B4 has a much more

significant impact, as it tends to decrease the lattice spacings significantly (20-30%) as well

as the value of the physical quark masses, and to increase Fπ/FK noticeably. In these

fits, the simulated quark masses stand much further away from the physical value than

quoted in ref. [30], implying that HO remainders at the simulated quark masses (scaling

generically as p2 with respect to the HO at the physical point) play a significant role

in the chiral expansion of observables (up to 40% for the heaviest m̃s). The large error

bars for dimensionful quantities is a reflection of the uncertainty on the lattice spacings

determined from MΩ. The significant difference between the value obtained the lattice

spacings obtained here and in ref. [30] suggests a reanalysis the lattice data following the

same procedure as the RBC/UKQCD collaboration (with the determination of the scaling

trajectories and an iterative determination of masses and lattice spacings) but using the

ReχPT formulae instead of analytic or standard χPT ones. Such a study would be very

welcome to establish the effect observed in our fits, but is clearly beyond the scope of the

present article.

Finally, we include the topological susceptibility among the inputs in fit B5. As in

section 4, the role of this input in the fit is marginal compared to the other data, and the

outcome of fits B4 and B5 is very similar. Indeed, the χ2
min obtained from fit B5 gets

similar contributions from Fπ, FπMπ, FKMK and MΩ, whereas the contribution from the

topological susceptibility is small. The rest of the analysis is unchanged, with a competition

between LO and NLO contributions for the observables of interest:

F 2
π : 0.60 + 0.25 + 0.15 , F 2

πM
2
π : 0.55 + 0.30 + 0.15 ,

F 2
K : 0.38 + 0.52 + 0.10 , F 2

KM2
K : 0.37 + 0.52 + 0.11 ,

F 2
η : 0.33 + 0.58 + 0.09 , F 2

ηM
2
η : 0.35 + 0.66− 0.01 ,

χpole : 0.50 + 0.35 + 0.15 .

(5.4)

The competition between LO and NLO terms of the chiral expansions observed in the

previous fits remains though a bit less pronounced: Y (3) is closer to one, and the value of

L6 is closer to zero, but there is still an enhancement of NLO contributions to observables.

Indeed, this enhancement is parametrised by msB0∆L4 and msB0∆L6 rather than L4 and

L6 themselves, as can be seen for instance in eqs. (2.3)–(2.4) (with the typical values ∆L4 =

Lr
4(Mρ) + 0.50 · 10−3 and ∆L6 = Lr

6(Mρ) + 0.25 · 10−3 for r = 25 and Y (3) = 1) [17, 18].

Our fit B5 features a fairly good χ2
min/N compared to the results in ref. [30], taking into

account that our fit reproduces the physical values of the pseudoscalar masses and Fπ by

construction. We agree with ref. [30] on the size of discretisation errors, but obtain different

results concerning the determination of the lattice spacings from MΩ. The main difference

stems from our use of ReχPT in the fit, as can be illustrated by performing the same fit as

B5 but constraining X(3) and Z(3) to remain between 0.9 and 1.05. This last constraint

mimics the usual assumption made in three-flavour χPT that both Fπ and Mπ are nearly

saturated by their LO term. The minimum of the fit may look satisfying with r = 26.1,

X(3) = 0.9, Y (3) = 0.97, Z(3) = 0.93, FK/Fπ = 1.18 and values of the lattice spacings

compatible at the 5% level with ref. [30], but the value at the minimum is rather awful
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with χ2
min = 151/11. This shows clearly that allowing for a numerical competition between

LO and NLO is mandatory to reach decent fits to the whole set of data considered here.

The results from fit B5 are also illustrated in the upper part of figure 5. The change

in the value of the lattice spacings rescales all lattice data points, which fall on the dashed

curves corresponding to the best ReχPT fit including finite-volume effects (responsible for

most of the curvature at small m̃) more easily than in section 4. The values of p = m̃s/ms

and Y (3) are larger than in fit A5: from eq. (2.3) (which has a similar structure to the

ReχPT expression for F̃π), we see that NLO contributions are proportional to the product

pY (3) and tend thus to drive the (dashed) curves corresponding to the two volumes further

apart than in the previous section. We also display the (solid) curve corresponding to

the physical value of ms in an infinite volume, which by construction passes through the

physical point Fπ = 92.2MeV (this point corresponds to a slightly different value of m̃

from section 4). The curvature is then essentially tied to the value at the origin, i.e., Z(2):

a lower value of Z(2) will yield a steeper increase of F̃π when m̃ increases. The dependence

of Z(2) on the various parameters can be read from the three-flavour expansion of F 2
π in

the chiral limit mu = md = 0 [44]:

Z(2) =
r

r + 2
[1− η(r)] +

2

r + 2
Z(3)− r

r + 2
Y (3)g1 + . . . (5.5)

where g1 denotes a small positive combination of chiral logarithms (around 7% near the

physical point) and the ellipsis indicate HO remainders. Therefore, a dependence with a

stronger curvature around the physical point and a flatter behavior above can be achieved

by taking a larger value Y (3) or a smaller value of Z(3), as illustrated in figure 6 and

observed in fit B5 compared to A5. As an illustration, we indicate on the same figure the

curves obtained with the same inputs as the best values for fit B5 of table 2, but setting

Y (3) = 1 and/or Z(3) = 1. The case of a complete saturation of the chiral series for F 2
π

and F 2
πM

2
π by their LO contribution (X(3) = Z(3) = 1) yields a higher Z(2) and a flatter

curve than our best fit. Finally, we notice that an increase of r (at fixed p) yields a slight

increase of Z(2), but more importantly an upward shift of the physical value of m̃, so that

the corresponding line remains above the best-fit curve over a larger range of m̃. The

combination of these effects allows our formulae to reproduce a diversity of behaviours for

the dependence of F̃π on m̃, including the one exhibited by the RBC/UKQCD data.

Since the results presented in table 1 do not include effects related to lattice spacings

and since the determination of the lattice spacings involves assumptions on the form of

chiral extrapolation, we consider the most complete fit B5 in table 2 as the final result

of our analysis, featuring a satisfying χ2
min/N . Interestingly, these results show a good

compatibility with what was obtained in ref. [47] for the parameters of the LO chiral

Lagrangian according to the results of the PACS-CS collaboration [40]. The value of the

condensate in the Nf = 3 chiral limit is

(Σ(3; 2GeV))1/3 = 243± 12MeV , (5.6)

on the lower side of was obtained by the RBC/UKQCD collaboration (i.e., 256±6MeV) [30],
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Figure 6. The pion decay constant as a function of the light-quark mass, according to the best fit

in the last column of table 2 (solid), with the same inputs but setting Y (3) = 1 and/or Z(3) = 1

(dashed and dashed-dotted curves), and with the same inputs but setting r = 35 (dotted curve).

The physical point according to the fit result is indicated with a square.

while the condensate in the two-flavour limit is

(Σ(2; 2GeV))1/3 = 285± 8MeV , Σ(2; 2GeV)/Σ(3; 2GeV) = 1.51± 0.11 , (5.7)

which illustrates the paramagnetic suppression of the Nf = 3 condensate with respect to

the Nf = 2 one (a similar statement holds for the pseudoscalar decay constant).

6 Conclusion

We have studied the topological susceptibility, a very interesting quantity related to chiral

properties of QCD vacuum, and in particular to the quark condensate. This has led lattice

collaborations to use this observable to determine the quark condensate, in addition to

studies of the spectrum and dynamics of the light pseudoscalar mesons. However, it is

important to assess higher-order corrections to the deceivingly simple connection between

the topological susceptibility and the three-flavour quark condensate at leading order. Fol-

lowing our recent work on potential issues in three-flavour chiral extrapolations of lattice

data [47], we have reassessed the information that can be extracted from this quantity

allowing for a significant paramagnetic suppression of the Nf = 3 quark condensate using

the Resummed χPT (ReχPT) framework. We have noticed that for lattice simulations

close to the physical situation (with a significant mass hierarchy between the dynamical

strange and u, d quarks), the topological susceptibility would involve essentially the same
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combination of low-energy constants as the two-flavour quark condensate, and thus would

not provide access to the three-flavour quark condensate as naively expected. In particular,

using the leading-order three-flavour χPT formula would be particularly misleading if there

is indeed a significant paramagnetic suppression of the three-flavour quark condensate.

In order to escape this problem, two alternatives can be considered. A first possi-

bility consists in performing further lattice simulations with hierarchy of quark masses

different from the physical case, for instance with three dynamical quark masses of similar

masses, or with a very significant strong isospin breaking. A second possibility relies on

the combination of the topological susceptibility together with other sources of information

on three-flavour chiral symmetry breaking, such as the spectrum of pseudoscalar mesons.

Following this path, we have focused on RBC/UKQCD recent results [30] which provide

data on pseudoscalar masses and decay constants as well as the topological susceptibility

for two different volumes. Analysing the RBC/UKQCD unitary data points and including

finite-volume effects, we have confirmed that these data do suggest such a suppression of

the leading order Nf = 3 chiral order parameters (quark condensate and pseudoscalar de-

cay constant) and the enhancement of next-to-leading order contributions related to the

violation of the Zweig rule in the scalar sector (L4 and L6 contributions). The outcome of

this first series of fits is mainly driven by the input from pseudoscalar masses and decay

constants, and the data on topological susceptibility shows a good compatibility with the

pattern of three-flavour chiral symmetry breaking already found in ref. [47]. In addition,

we confirm the difficulties (though at a lesser degree) encountered by the RBC/UKQCD

collaboration to accommodate the dependence of Fπ on the light-quark mass given by their

data and the physical value of Fπ at the same time.

This problem has led us to reconsider the procedure used to determine the lattice

spacing using our expressions to describe the dependence of the pseudoscalar observables

on the quark masses. We were not able to follow the same procedure as RBC/UKQCD for

the determination of the lattice spacings (based on the determination of scaling trajectories

and the dependence of the Ω baryon on quark masses). However, we performed a joint fit of

pion, kaon and Ω observables to fix the lattice spacings. We also considered leading-order

discretisation errors that may affect the kaon and pion decay constants. We finally per-

formed a fit combining these two effects and adding data on the topological susceptibility.

We obtained thus our final results given by the fit B5 in table 2. We noticed a significant

enhancement (20%-30%) of the inverse of lattice spacings compared to the values quoted in

ref. [30], as well as small discretisation errors (5% or less, and compatible with zero). Like

in the previous analysis, the data on the topological susceptibility play a marginal role, but

show a good compatibility with the rest of the data, yielding a satisfying χ2
min/N . Since

they include the largest sets of data and use ReχPT consistently for the fit of the data and

the determination of the lattice spacings, the results of fit B5 should thus be considered as

the actual outcome of our analysis.

The impact of our analysis on the determination of the lattice spacings is remarkable,

and it calls for a confirmation by reanalysing the lattice data following the same procedure

as the RBC/UKQCD collaboration (with the determination of the scaling trajectories and

an iterative determination of masses and lattice spacings) but using the ReχPT formulae.
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However such a cross-check would go beyond the scope of the present article and our

abilities. Let us add hat the inclusion of these effects does not modify the emerging picture

of three-flavour chiral symmetry breaking already obtained in ref. [47], with a significant

competition between leading and next-to-leading orders in the chiral series for masses,

decay constants and topological susceptibility.

We have used the RBC/UKQCD data as a case study for chiral extrapolations on

the lattice, including both the pseudoscalar spectrum and the topological susceptibility,

which can (and should) be extended to the results of other lattice collaborations. Our

present analysis suggests also the inclusion of additional observables, e.g., other topolog-

ical quantities such as the topological coefficient c4 as well as baryon observables, in our

framework [26]. But even before considering this extension, the generation of further data

points at lower quark masses would help clarifying the issue of the determination of lattice

spacing as well as confirming the pattern of three-flavour chiral symmetry breaking emerg-

ing from our studies, with significant contributions from strange sea quarks leading to a

non-trivial structure of Nf = 3 chiral expansions.
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A NLO low-energy constants

As recalled in ref. [47] and outlined in section 2, the exact mass and decay constant identities

obtained within the ReχPT framework for F 2
π , F

2
K , F 2

πM
2
π and F 2

KM2
K can be inverted

to reexpress NLO LECs in terms of LO parameters of the chiral Lagrangian, physical

quantities, and HO remainders:

Y (3)∆L4 =
1

8(r + 2)

F 2
π

M2
π

[1− η(r)− Z(3)− e] , (A.1)

Y (3)∆L5 =
1

8

F 2
π

M2
π

[η(r) + e′] , (A.2)

Y 2(3)∆L6 =
1

16(r + 2)

F 2
π

M2
π

[1− ǫ(r)−X(3)− d] , (A.3)

Y 2(3)∆L8 =
1

16

F 2
π

M2
π

[ǫ(r) + d′] . (A.4)

with ǫ(r) defined in eq. (2.7), d, d′, e and e′ combinations of remainders associated with

the chiral expansions of π, K masses and decay constants respectively and

η(r) =
2

r − 1

(

F 2
K

F 2
π

− 1

)

, (A.5)
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L a−1 ∆q ∆s Zq
m Zs

m m̃q m̃s ms p q

24 1.73 0.005 0.04 1.4980 1.4707 0.0211 0.1098 0.0962 1.1420 0.1924

0.010 0.0342 0.3111

32 2.28 0.004 0.03 1.527 1.510 0.0163 0.1056 0.0962 1.0976 0.1539

0.006 0.0232 0.2196

0.008 0.0302 0.2859

Table 3. Parameters of the unitary lattice sets taken from ref. [30].

∆Li = Lr
i (µ)− L̂i(µ) is independent of the renormalisation scale µ and combine the (renor-

malized and quark-mass independent) constants L4,5,6,8 together with chiral logarithms:

32π2L̂4(µ) =
1

8
log

◦

M
2

K

µ2
− 1

8(r − 1)(r + 2)

[

(4r + 1) log

◦

M
2

K

◦

M
2

π

+ (2r + 1) log

◦

M
2

η

◦

M
2

K

]

, (A.6)

32π2L̂5(µ) =
1

8

[

log

◦

M
2

K

µ2
+ 2 log

◦

M
2

η

µ2

]

+
1

8(r − 1)

[

3 log

◦

M
2

η

◦

M
2

K

+ 5 log

◦

M
2

K

◦

M
2

π

]

, (A.7)

32π2L̂6(µ) =
1

16

[

log

◦

M
2

K

µ2
+

2

9
log

◦

M
2

η

µ2

]

− 1

16

r

(r + 2)(r − 1)

[

3 log

◦

M
2

K

◦

M
2

π

+ log

◦

M
2

η

◦

M
2

K

]

, (A.8)

32π2L̂8(µ) =
1

16

[

log

◦

M
2

K

µ2
+

2

3
log

◦

M
2

η

µ2

]

+
1

16(r − 1)

[

3 log

◦

M
2

K

◦

M
2

π

+ log

◦

M
2

η

◦

M
2

K

]

. (A.9)

where
◦

M
2

P are the LO contributions to the pseudoscalar masses, see eq. (2.11).

B Lattice inputs

We take our data points for pseudoscalar decay constants and masses as well as from

topological susceptibility from the recent work of the RBC/UKQCD collaboration [30].

They considered 2+1 dynamical flavours of domain wall fermions for two different lattice

volumes 243×64×16 and 323×64×16 (where the 16 corresponds to the extent of the fifth

dimension inherent in the domain-wall fermion formulation of QCD). We consider only

unitary sets where the masses of the sea and valence quarks are identical, with parameters

recalled in table 3 and observables in table 4.

We denote ∆q = a(m̃q −mres) the combination corresponding to bare masses (before

addition of the residual mass mres and the conversion into the MS-bar scheme by a multi-

plication by Zm). We give a−1 and quark masses in units of GeV, χ in units of 10−4 GeV4,

F 2
P in units of 10−3 GeV2, F 2

PM
2
P in units of 10−3 GeV4. The dimensionful quantities have

been converted from the lattice results by multiplying by the appropriate power of the

lattice spacing, assuming for the latter the values quoted in the table. When the lattice
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L p q χ · 10−4 F 2
π F 2

K F 2
πM

2
π F 2

KM2
K

24 1.1420 0.1924 2.90(14) 10.41(13) 13.47(14) 1.129(16) 4.459(50)

0.3111 4.58(25) 12.26(14) 14.85(18) 2.152(25) 5.471(68)

32 1.0976 0.1539 [1.48(14)] 9.799(96) 12.99(11) 0.820(10) 3.988(36)

0.2196 3.22(55) 10.65(10) 13.51(11) 1.265(13) 4.390(38)

0.2859 3.63(72) 11.53(10) 14.16(12) 1.788(18) 4.895(42)

Table 4. Lattice data for the pseudoscalar masses and decay constants as well as topological

susceptibility taken from ref. [30].

L a−1 ∆q ∆s aMΩ

24 1.73 0.005 0.04 1.013(3)

0.010 1.028(4)

32 2.28 0.004 0.03 0.760(2)

0.006 0.765(2)

0.008 0.766(3)

Table 5. Lattice data for the Ω baryon taken from ref. [30].

spacings are allowed to vary and included in the parameters of the fits in section 5, these

quantities are naturally rescaled by the appropriate power of the relevant lattice spacing.

In table 4, we do not include uncertainties coming from the determination of the lattice

spacings, as these uncertainties would be completely correlated. Moreover, as explained

at the end of section 4, we do not include the value of the topological susceptibility at a

lighter quark mass given in ref. [30], since it is likely to be affected by large systematics of

unknown origin. In section 5, we discuss the determination of the lattice spacings performed

in ref. [30] using the mass of the Ω baryon, gathered in table 5.

A last comment is in order concerning the determination of the topological susceptibil-

ity in ref. [28], based on gauge configurations for a smaller volume (16)3×32 in refs. [36, 57].

In principle, this work could provide valuable additional information, but we have not been

able to obtain consistent fits of the masses and decay constants of pions and kaons with the

three ensembles (16)3×32, (24)3×64, (32)3×64, leading us to suspect an underestimation

of the errors attached to the data for (16)3 × 32. We have thus decided to keep only data

for (24)3×64, (32)3×64, which were obtained for larger volumes and lighter quark masses,

and thus less likely to be affected by sizable systematics.

C Finite-volume effects

As discussed in refs. [19, 52–55] and recalled in section 3.4, for simulations where the

time direction is much larger than the spatial ones, the finite-volume effects amount at

NLO to a modification of the chiral (tadpole) logarithms. One can make contact with the

infinite-volume integral (and the corresponding tadpole logarithm) in the following way,
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see eq. (3.17):

ΞP =
σP
L3

−
◦

M
2

P

8π2
log

◦

M
2

P

µ2
= ξ1/2(L,

◦

M
2

P ) . (C.1)

We have already analysed this expression in ref. [45]. ξ1/2 contains a divergence of the

form 1/(L3

√

◦

M
2

P ) in the chiral limit. However, one expects σP to diverge like 1/(L3MP )

due to the propagation of pion zero modes, and in ref. [45], the alternative definition:

ΞP =

[

ξ1/2(L,
◦

M
2

P )−
1

L3

√

◦

M
2

P

]

+
1

L3MP
, (C.2)

was proposed to reduce the size of HO corrections to the chiral expansions (the term in

square brackets is analytic in quark masses) and it was used to determine the contribution

of finite-volume effects in Resummed χPT for pseudoscalar masses and decay constants.

In the present article, we define the HO remainders of the chiral expansions in the limit

L → ∞, and we assumed that even at finite volume, the variation of these remainders with

respect to the volume would be very small, considering that the simulations are performed

in the p-regime where 2mB0L
2 ≫ 1 [58–60]. This is the reason for not including a volume-

dependence on our expressions for the HO remainders. In a similar spirit, the choice

between eqs. (3.17) and (C.2) amounts to a redefinition of what would be considered as

HO terms, for instance:

ẽπ → ẽπ − 1

4F̃ 2
πL

3







4

[

1

Mπ
− 1
√

◦

M
2

π

]

+ 2

[

1

MK
− 1
√

◦

M
2

K

]







, (C.3)

inducing only a small numerical correction of the acceptable range of variation for these

remainders in the p-regime. This would not be the case in the ǫ-regime, where 2mB0L
2 ≪ 1,

which deserves a separate study [26] and where the distinction between eqs. (3.17) and (C.2)

could induce large differences in the acceptable range for HO remainders.

Indeed, we have checked on the fits considered in the present paper that the outcome

of finite-volume corrections according to eqs. (3.17) and (C.2) led to very similar results if

we allow reasonably large ranges of variation for the HO remainders. For convenience, we

quote only the results obtained with eq. (3.17), using for HO remainders the dimensional

estimates described in ref. [47].
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