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1 Introduction

Multi-centered black holes (BH) are a fascinating subject, dealing with several aspects of

quantum gravity, when this theory is defined through supergravity, and its high-energy,

fundamental completions, namely superstrings and M -theory. The discovery of the split

attractor flow and of walls of marginal stability [1–3] and the corresponding issue of

microstate BH counting [4]-[6], have been some remarkable achievements in this field, also

characterized by some puzzling and yet not fully understood features, such as anti-marginal

stability and entropy enigmas (see also [7]-[19]; for studies on N > 2, see [20]-[25]). Earlier

studies on composite (super)gravity solutions and marginal stability, were done in [28–32],

while [33] provides a recent review on wall-crossing formulæ.

This paper continues the investigation of geometric aspects of BH physics, by exploiting

the (classical) duality symmetries of the underlying supergravities [34], which are the con-

tinuum limit of the U-duality [36] governing the non-perturbative string dynamics, in the

context of two-centered BH solutions. The ultimate aim is to show that different aspects of

multi-centered BH dynamics are encoded into different values of (and constraints among)

certain multi-centered duality polynomial invariants. These duality invariants character-

ize some multi-centered charge orbits, which generalize the electric-magnetic charge orbits

encoding all the main features of single-centered BH solutions, such as the Bekenstein-

Hawking entropy [37, 38], the ADM mass [39] and the BPS (supersymmetry-preserving)

properties [40–43].

The single-centered orbits [40] are known to provide a stratification of the space of the

irrep. R of the d = 4 classical U -duality group G4 of the f -dimensional electric-magnetic
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charge vector Q ≡
(
pΛ, qΛ

)
(Λ = 1, ..., f/2). Analogously, the p-centered orbits are expected

to stratify the space R1 × · · · × Rp, for p BH constituents, with electro-magnetic fluxes

given by

QM
a ≡

(
pΛ

a , qa Λ

)
a = 1, . . . , p, , M = 1, . . . , f . (1.1)

Interestingly, it has been recently uncovered [44, 45] that a p (> 2)-centered BH solution

in d = 4 space-time dimensions enjoys an “horizontal” symmetry SLh (p, R) among the

centers of the BH constituents. As a consequence of this symmetry, further invariant

polynomials in the charges beside the usual U -duality invariants acquire an important

role, and they provide a tool to achieve a finer classification of the allowed two-centered

configurations.1

As commented in [45], the analysis can be performed for a generic number p of centers,

but, due to the structure of the split flow in multi-center (super)gravity solutions [1–4],

the case p = 2 is already fully illustrative, at least regarding marginal stability. It is then

natural to explore the charge orbits for the horizontal doublet (Q1,Q2), and to classify

the allowed quantum numbers for the extremal BH two-centered compounds by suitable

invariant constraints among horizontal invariant-polynomials.

For p = 2, the simplest example of such “horizontal invariants” is provided by the

symplectic product of two charge vectors [1, 45]

W ≡ 〈Q1,Q2〉 =
1

2
QM

a QN
b CMNǫab, (1.2)

where a, b = 1, 2, CMN is the symplectic metric

CMN ≡

(
0 −I

I 0

)
, (1.3)

and ǫ is the usual SL (2, R) ∼ Sp (2, R) rank-2 invariant tensor. By considering (Q1,Q2) as

a doublet Qa (spin s = 1/2, fundamental irrep. 2) of SLh (2, R) [44], it is evident from (1.2)

that W is manifestly invariant under both the U -duality and the horizontal symmetry. It

is known that W enters the description of many physical properties of the two-centered BH

compound states, such as the equilibrium distance between the two centers, the intrinsic

overall (orbital) angular momentum, and the marginal stability condition [1, 3]. Indeed,

a crucial feature of two-centered BH physics is that their physical properties turn out to

depend not only on Q1+Q2, as for the BPS ADM mass [47], but also on other combination

of charges, such as the symplectic product (1.2). Another important instance is the entropy

at the (split) horizon, which is the sum of the entropies of the two single-centered BH

constituents [3]:
S1+2

π
=
√

|I4 (Q1)| +
√

|I4 (Q2)|, (1.4)

where I4 is the unique quartic invariant polynomial of the irrep. R of the U -duality group

G4,

I4 (Q) =
1

2
KMNPQQ

MQNQPQQ, (1.5)

1The horizontal symmetry has recently been investigated within the fascinating connections with Quan-

tum Information Theory in [46]
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and KMNPQ is the so-called K-tensor [48]. As a natural two-centered generalization of the

quartic invariant I4(Q), for p = 2 one considers the contraction of the K-tensor with four

a priori different charge vectors, which gives rise to the symmetric Iabcd tensor [44, 45],

sitting in the spin s = 2 irrep. 5 of SLh (2, R):

Iabcd ≡
1

2
KMNPQQ

M
a QN

b QP
c Q

Q
d . (1.6)

If G4 is a simple group, one can define the symmetric object in the horizontal indices [45]

Tα
(ab) = tαMNQM

a QN
b (1.7)

where tαMN (α = 1, ...,d ≡dimR (Adj (G4))) is the symplectic representation of the gener-

ators of the Lie algebra g4 of G4. Using these tensors, one has

I(abcd) = −
1

6τ
tα(MN tα|PQ)Q

M
a QN

b QP
c Q

Q
d = −

1

6τ
Tα

(abTα|cd) (1.8)

where τ is a model-dependent parameter [48]:

τ ≡
2d

f (f + 1)
. (1.9)

A similar structure arises also when G4 is a semisimple group factorized as SL(2, R) ×

SO(m,n), characterizing the reducible symmetric models listed in table 1. Indeed, within

the so-called Calabi-Vesentini basis [49, 50] symplectic frame, one can define the T-

tensor [44]

T(ab)[ΛΣ] = pΛ(aqb)Σ − qΛ(apb)Σ =

(
T11 T12

T12 T22

)

ΛΣ

, (1.10)

where indices are raised with the the pseudo-Euclidean SO(m,n) metric ηΛΣ. This is a

symmetric object in the horizontal indices, whose components are the triplet of T-tensors

of the reducible models (called T1, T2, T12 in [44]). They constitute a two-centered gener-

alization of the product TΛΣ = pΛqΣ − qΛpΣ, which appears in the single-centered fourth

order invariant written as [51–54]

I4 =
1

2
TΛΣTΓ∆ηΛΓηΣ∆ = −

1

2
Trη

(
T

2
)

= p2q2 − (p · q)2 , (1.11)

where “Trη” denotes the η-trace, namely the trace in which the indices are contracted with

η. For two centers, in reducible models it generalizes to

Iabcd =
1

2
T(ab|ΛΣT|cd)Γ∆ηΛΓηΣ∆ = −

1

2
Trη

(
T(abTcd)

)
. (1.12)

The study of two-center extremal BH charge orbits associated to a generic horizontal

doublet Q1,Q2 has been initiated in [44, 45]. It was found that in d = 4 supergravity

theories with symmetric scalar manifolds and for generic charge vectors for each of the two

centers, the dimension of a complete basis of U -duality invariant-polynomials is seven,

and it includes both the horizontal singlet W and the quintet Iabcd. The minimum number
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of invariant polynomials has been shown to decrease to four if only polynomials invariant

under both U -duality and horizontal symmetry are taken into account. The dimension of

this G4 × SLh(2, R) invariant basis further reduces in some specific cases, for instance, for

some rank-2 and rank-1 symmetric scalar manifolds pertaining to the so-called st2 and

t3, N = 2, d = 4 models, and for theories whose BH charge irrep. admits a quadratic

invariant polynomial |I2| =
√

|I4|, namely, N = 2 minimally coupled [64] and for N = 3

supergravity theories [55], which will not be dealt with in this paper. Interestingly, the

“pure” N = 4, d = 4 supergravity, despite having a scalar manifold SL(2,R)
U(1) of rank 1, has

a complete basis formed by seven duality invariants [44].

The present investigation completes the previous analysis in that it determines the

restrictions and constraints on such invariants when at least one of the two centers is

occupied by a “small” black hole, having I4 (Q) = 0. Small black holes, corresponding to

horizonless solutions in Einstein two-derivatives (super)gravity, have zero entropy and they

don’t show an attractor behavior [40]. However, they are an interesting sector of the BH

spectrum that has been recently examined in [42, 56], in particular regarding the different

supersymmetry features of the allowed orbits.

Large black hole charge orbits, with I4 6= 0 are described by a minimum of four charges,

and in this sense the corresponding orbits are “rank four”. More precisely, the rank of the

orbit (or of the charge vector Q spanning it) is here the minimal number of charges which

compose an orbit representative. Mathematically speaking, this defines the rank of Q

as element of the associated Freudenthal triple system [57, 58]. However, large orbits

can become “lightlike” when they satisfy the condition I4 = 0, and their rank reduces to

three. If a further differential constraint ∂I4/∂Q = 0 is imposed, the rank further reduces

to two (critical orbits), and it becomes one for doubly-critical orbits, having a suitable

projection of ∂2I4/(∂Q)2 vanishing [59]. In section 2 we shall revisit and add new results

to the manifestly U -invariant constraints defining the rank, ranging from 4 to 1, of the

single-centered charge vector Q, which gives rise to the stratification of the representation

space of the U -duality group. When combining two centers, these constraints will clearly

reflect in a number of combinations for the orbits of the compound system, which will be

thoroughly investigated.

In section 3 we shall deal with relations and properties of the invariant polynomials

characterizing a two-centered (extremal) BH compound, which admit a natural interpre-

tation and classification in terms of the horizontal symmetry group SLh (2, R).

Then, the results of sections 2 and 3 are used to perform a detailed analysis of all pos-

sible two-centered (extremal) BH charge configurations, by considering all possible combi-

nations of the ranks of the charge vectors Q1 and Q2 pertaining to the two single-centered

BH constituents.

This analysis is carried out for all supergravity theories (with symmetric scalar man-

ifold) whose d = 4 U -duality group G4 is a “group of type E7”, namely a group with a

symplectic representation R admitting a completely symmetric rank- 4 invariant structure
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N G4
mcs(G4)

rank
J3

reducible

2 SLv(2,R)
U(1) × SO(2,n)

SO(2)×SO(n) , n ∈ N 1 + min (2, n) R ⊕ Γ1,n−1

4 SLv(2,R)
U(1) × SO(6,n)

SO(6)×SO(n) , n ∈ N ∪ {0} 1 + min (6, n) R ⊕ Γ5,n−1

Table 1. Reducible symmetric d = 4 supergravity models. “mcs” stands for maximal compact

subgroup (with symmetric embedding). The rank of the scalar manifold, as well as the related

reducible Euclidean rank-3 Jordan algebra J3 are also given (for further elucidation, see e.g. [70]

and refs. therein). The subscript “v” stands for “vertical”, and it has been introduced in order to

distinguish the S-duality SLv (2, R) group from the horizontal symmetry group SLh (2, R)

N G4
mcs(G4)

rank
J3

irreducible

2

(t3 model)

SLv(2,R)
U(1) 1 R

2 Sp(6,R)
U(3) 3 JR

3

2 SU(3,3)
S(U(3)×U(3)) 3 JC

3

2
“twin”
↔ 6 SO∗(12)

U(6) 3 JH
3

2
E7(−25)

E6(−78)×U(1) 3 JO

3

5 SU(1,5)
U(5) 1 M1,2 (O)

8
E7(7)

SU(8) 7 JOs

3

Table 2. Irreducible symmetric d = 4 supergravity models. N = 2 magical quaternionic Maxwell-

Einstein supergravity and N = 6 “pure” supergravity are “twin”, namely they share the same

bosonic sector [71–75]. M1,2 (O) is the Jordan triple system (not upliftable to d = 5) generated

by 2 × 1 matrices over O [76, 77]. Note that, with the exception of the reducible - but triality

symmetric - stu model [52, 78], irreducible models are all ones for which the treatment of [48]

holds (see e.g. table 1 therein)

q such that the invariant polynomial I4 can be defined as2 [61]

I4 (Q) ≡
1

2
q (q1,q2,q3,q4)|q1=q2=q3=q4≡Q

≡
1

2
KMNPQQ

MQNQPQQ . (1.13)

It is also worth recalling that the “group of type E7” G4 is a symmetry group of Jordan

2The normalization of q used here is the same as in [60], and thus it differs by a factor 2 with respect

to the one adopted e.g. in [48, 61] and [45]. The same holds e.g. for eq. (3.1) further below.
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algebra-related structures, namely:

G4 ∼ Aut (M (J3)) ∼ Conf (J3) , (1.14)

where Aut (M (J3)) is the automorphism group of the vector space M (J3) ≡ R ⊕ R ⊕

J3⊕J3 constructed over the Euclidean rank-3 Jordan algebra J3, whose conformal group is

Conf (J3) (see e.g. [62, 63] for recent reviews and lists of refs.). On the other hand, the G4’s

of minimally coupled N = 2 , and N = 3 [65] supergravities, omitted in this investigation,

do not enjoy an interpretation in terms of (rank-3 Euclidean) Jordan algebras.

The groups of type E7 G4’s (which are U -duality groups of supergravity theories in

d = 4 space-time dimensions with symmetric scalar manifolds) may be grouped into two

classes, depending on whether G4 is a semisimple Lie group, or it is a simple Lie group

itself. The former case, analyzed in section 4, corresponds to the reducible symmetric

models, whose scalar manifolds3 are grouped into two infinite sequences, reported in table

1. The first (n = 1) element of the N = 2 sequence in table 1, namely the so-called

st2 model, is non-generic, and it deserves a separate treatment, given in section 4.2. The

corresponding two-centered (extremal) BH charge orbits with both Q1 and Q2 “large” have

been studied in [44]. Generally, the number of independent G4-invariant is seven, and a

complete basis can be taken to be [44]

W, X , Iabcd, (1.15)

where the quartic polynomial X is defined by eq. (3.20).

The latter case, analyzed in section 5, corresponds to the irreducible symmetric models,

namely to the so-called N = 2 t3 model, to the N = 2 magical Maxwell-Einstein super-

gravity theories as well as to N = 5, 6, 8 “pure” supergravities, whose scalar manifolds

are reported in table 2. The t3 model is non-generic and it deserves a separate treatment,

given in section 5.2.

The two-centered (extremal) BH “large” charge orbits of generic irreducible symmetric

models and of t3 model have been studied respectively in [45] and in [44]. Generically, the

number of independent G4-invariant is seven, and a complete basis can be taken to be [45]

W, Iabcd, I6, (1.16)

where the sextic polynomial I6 is defined by eq. (3.15). The main difference between

the sets (1.15) and (1.16) is that X = 0 (3.21) in irreducible cases, where also the con-

straint (4.8) of degree twelve in the charges does not hold. It will be emphasised in section 3

that the existence of X in reducible models can be traced back to the semi-simple nature

of the U -duality group G4, giving rise to two independent quartic polynomials I′ and I′′

with vanishing horizontal helicity, and related to I0 by eq. (3.9).

The outcome of this analysis is that the number of independent duality- and horizontal-

invariant polynomials is decreased when one or both charge vectors are “small”, since the

3In matter coupled theories, we consider vector multiplets’ scalar manifolds; for instance, this is the case

for all models of table 1, with the exception of “pure” N = 4 supergravity.
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vanishing of the quartic form (1.5) for one center or both gives rise to various polynomial

relations among otherwise independent invariants. For example, as yielded by the analysis

of sections 4 and 5, if at least one of the two charge vectors Q1 and Q2 is doubly-critical

(i.e. rank 1, see section 2; in the N = 8 language, this is 1
2 -BPS), then only one independent

horizontal invariant, say the symplectic product W (1.2), exists. This is one of the few

examples known in the literature [3].

Notice that the results concerning the st2 and t3 models are consistent with the “ stu →

st2 → t3 reduction” (see e.g. the discussion in [44, 66, 67], and the recent analysis in [46]).

Finally, in section 6 we make some comments on some “small + small” two-centered

charge configurations corresponding to I4 (Q1 + Q2) < 0, i.e. to a BH compound that,

regarded as a single-centered solution, is a “large” non-BPS (extremal) BH, making contact

with recent literature, such as [11] and [68].

2 U -invariant constraints on Q

We start by giving a résumé (with original results) of the U -invariant constraints defining

the charge orbits of a single-center (extremal) BH, namely of the G4-invariant conditions

defining the rank of the dyonic charge vector Q ∈ R as an element of the corresponding

Freudenthal triple system (FTS) (see [57, 58], and refs. therein); as mentioned above, G4

is the d = 4 U -duality group “of type E7” [61], and R is its relevant BH charge irrep. The

symplectic indices M = 1, ..., f (f ≡dimRR (G4)) are raised and lowered with the symplectic

metric CMN defined by ( 1.3). By recalling the definition (1.5) of the unique (quartic) G4-

invariant polynomial constructed with Q ∈ R, the rank of a non-null Q as an element

of FTS (G4) range from four to one, and it is manifestly G4 -invariantly characterized as

follows:

1. rank(Q) = 4: “large” extremal BHs, with non-vanishing area of the event horizon:

I4 (Q) ≷ 0. (2.1)

2. rank(Q) = 3: “small” lightlike extremal BHs, with vanishing area of the event hori-

zon:

I4 (Q) = 0; (2.2)

∂I4

∂QM
6= 0 ⇔ KMNPQQ

NQPQQ 6= 0, at least for some M . (2.3)

3. rank(Q) = 2: “small” critical extremal BHs:

∂I4

∂QM
= 0 ⇔ KMNPQQ

NQPQQ = 0, ∀M ; (2.4)

∂2I4

∂QM∂QN

∣∣∣∣
Adj(G4)

6= 0, at least for some M,N . (2.5)
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4. rank(Q) = 1: “small” doubly-critical extremal BHs [59, 79]:

∂2I4

∂QM∂QN

∣∣∣∣
Adj(G4)

= 0 ⇔ (3KMNPQ + CMP CNQ)QPQQ = 0, ∀M,N. (2.6)

Let us consider the doubly-criticality condition (2.6) more in detail. At least for

“groups of type E7” [61] which are U -duality groups G4 of irreducible symmetric mod-

els in d = 4, it holds that

(R× R)s = Adj + S; (2.7)

(R× R)a = 1 + A, (2.8)

where the subscripts “s” and “a” clearly stand for symmetric and skew-symmetric. The

presence of the singlet (which is nothing but CMN defined in (1.3)) in the skew-symmetric

part (2.8) characterizes the BH charge irrep. R to be symplectic. For example, for G4 = E7

(R = 56, Adj = 133) one gets (see e.g. [80]; the subscripts ”s” and ”a” respectively stand

for symmetric and antisymmetric)

(56 × 56)s = 133 + 1463; (2.9)

(56 × 56)a = 1 + 1539. (2.10)

For such groups, one can construct the projector operator on Adj (G4):

P CD
AB = P

(CD)
(AB) ; (2.11)

P CD
AB

∂2I4

∂QC∂QD
=

∂2I4

∂QA∂QB

∣∣∣∣
Adj(G4)

; (2.12)

P CD
AB P EF

CD

∂2I4

∂QE∂QF
= P EF

AB

∂2I4

∂QE∂QF
, (2.13)

where (recall (2.7))

∂2I4

∂QA∂QB
=

∂2I4

∂QA∂QB

∣∣∣∣
Adj(G4)

+
∂2I4

∂QA∂QB

∣∣∣∣
S(G4)

; (2.14)

∂2I4

∂QA∂QB

∣∣∣∣
Adj(G4)

= 2 (1 − τ) (3KABCD + CACCBD)QCQD; (2.15)

∂2I4

∂QA∂QB

∣∣∣∣
S(G4)

= 2 [3τKABCD + (τ − 1) CACCBD]QCQD, (2.16)

where the model-dependent parameter τ is defined by (1.9). The explicit expression of

P CD
AB reads4 (α = 1, ...,d):

P CD
AB = τ

(
3C

CE
C

DF
KEFAB + δC

(AδD
B)

)
= −tα|CDtα|AB , (2.17)

4For related results in terms of a map formulated in the “4D/5D special coordinates” symplectic frame

(and thus manifestly covariant under the d = 5 U -duality group G5), see e.g. [81, 82].
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where the relation [48] (see also [69])

KMNPQ = −
1

3τ
tα(MN tα|PQ) = −

1

3τ

[
tαMN tα|PQ − τCM(P CQ)N

]
, (2.18)

where

tαMN = tα(MN); tαMNC
MN = 0 (2.19)

is the symplectic representation of the generators of the Lie algebra g4 of G4. Notice that

τ < 1 defined in (1.9) is just the ratio of the dimensions of the adjoint Adj and rank-2

symmetric (R × R)s (2.7) reps. of G4, or equivalently the ratio of upper and lower indices

of tαMN ’s themselves. It should also be noted that, with respect to the treatment given

in [48], the result (2.18) has been supplemented with the relation ξ = − 1
3τ

[45], obtained

as a consistency condition within the computations yielding to (2.17).

The result (2.17) is a direct consequence of the fact that tαMN is the projector of

(R× R)s onto Adj (recall (2.7)). More precisely, it holds that

P CD
AB tαCD = tαAB , (2.20)

where the normalization (see e.g. eq. (2.5) of [48])

tα C
F tβ F

C = gαβ (2.21)

has been used.

3 Two-centered relations

In order to study multi-centered charge configurations, it is worth considering some gen-

eral relations for p(> 2)-center (extremal) BHs, which are manifestly covariant under the

horizontal symmetry SLh (p, R) introduced in [44]; we will here focus on the case p = 2.

From [44, 45] and the Introduction, we recall Iabcd and

Q̃M |abc ≡
1

4

∂Iabcd

∂QM
d

=
1

2
KMNPQQ

N
a QP

b Q
Q
c = Q̃M |(abc), (3.1)

respectively sitting in the spin s = 2 and s = 3/2 of SLh (2, R) (the horizontal indices

a = 1, 2 are raised and lowered with ǫab, with ǫ12 ≡ 1). For clarity’s sake, we report the

explicit expressions of the various components of Iabcd, as well as their relations with the

components of Q̃abc (3.1) (the subscripts “+2,+1, 0,−1,−2” denote the horizontal helicity
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of the various components [44, 45]):

I+2 ≡ I4 (Q1) ≡ I1111 =
〈
Q̃111,Q1

〉
; (3.2)

I+1 ≡ I1112 =
〈
Q̃111,Q2

〉
=
〈
Q̃112,Q1

〉
; (3.3)

I0 ≡ I1122 =
〈
Q̃112,Q2

〉
=
〈
Q̃122,Q1

〉
; (3.4)

I−1 ≡ I1222 =
〈
Q̃122,Q2

〉
=
〈
Q̃222,Q1

〉
; (3.5)

I−2 ≡ I4 (Q2) ≡ I2222 =
〈
Q̃222,Q2

〉
. (3.6)

Note that in reducible symmetric models, due to the semi-simple nature of G4, there

are two independent components of Iabcd with vanishing horizontal helicity, namely I′ and

I′′ [44]:

I′ ≡ −
1

2
Trη (T11T22) ; (3.7)

I′′ ≡ −
1

2
Trη

(
T

2
12

)
, (3.8)

and related to I0 by the relation (4.4) of [44]:

I0 =
1

3

(
I′ + 2I′′

)
. (3.9)

Thus, one can consider the following symplectic product of spin 3/2 horizontal charge

tensors: 〈
Q̃abc, Q̃def

〉
≡ Q̃M |abcQ̃N |defC

MN . (3.10)

A priori,
〈
Q̃abc, Q̃def

〉
should project onto spin s = 3, 2, 1, 0 irreps. of SLh (2, R) itself;

however, due to the complete symmetry of the K-tensor (and to the results of [48, 61]),

the projections on spin s = 3 and 1 do vanish:

s = 3 :
〈
Q̃(abc, Q̃def)

〉
= 0; (3.11)

s = 2 :
〈
Q̃(ab|c, Q̃d|ef)

〉
ǫcd =

2

3
WIabef ; (3.12)

s = 1 :
〈
Q̃(a|bc, Q̃de|f)

〉
ǫbdǫce = 0; (3.13)

s = 0 :
〈
Q̃abc, Q̃def

〉
ǫadǫbeǫcf = 8I6, (3.14)

where the symplectic product W is defined by (1.2), and in (3.14) the definition of the

sextic horizontal polynomial I6 [45] (given by eq. (3.24) of [45]) has been recalled:

I6 ≡
1

8

〈
Q̃abc, Q̃def

〉
ǫadǫbeǫcf =

1

4

〈
Q̃111, Q̃222

〉
+

3

4

〈
Q̃122, Q̃112

〉
. (3.15)
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The complementary relation to (3.15), namely 1
4

〈
Q̃111, Q̃222

〉
− 3

4

〈
Q̃122, Q̃112

〉
consistently

turns out to be proportional (through W) to the zero helicity component of Iabcd ; indeed,

by setting (a, b, e, f) = (1, 1, 2, 2) in (3.12), one obtains:

1

2
I0W =

1

4

〈
Q̃111, Q̃222

〉
−

3

4

〈
Q̃122, Q̃112

〉
. (3.16)

Furthermore, at least in reducible symmetric models (listed in table 1), the sextic

invariant is naturally defined within the T-tensor formalism as follows (see section 3 of [44]

for further detail):

I′6 = −Trη (T11T22T12) . (3.17)

As denoted by the prime, I′6 (3.17) does not coincide with the I6 given by (3.14) (or

equivalently by (3.15)); indeed, irreducible and reducible symmetric models, the following

relation respectively holds:

I6 = I′6 +
1

12
W3; (3.18)

I6 = I′6 +
1

12
W3 +

1

6
XW. (3.19)

This can be traced back to a crucial difference (pointed out in section 3 of [45]) between

reducible and irreducible symmetric models, concerning the horizontal invariant polynomial

(of degree four in charges) X . In reducible models, X is defined by eq. (4.13) of [44]:

X ≡ Trη

(
T

2
12

)
− Trη (T11T22) −

1

2
W2, (3.20)

and it generally does not vanish. On the other hand, in irreducible models it is defined by

eq. (3.10) of [45], and it vanishes identically:

Xirred = 0. (3.21)

Thus, it is here worth remarking that the relations (3.11)–(3.16) hold both in irreducible

models (characterized by (3.21) and in reducible models (generally having non-vanishing

X (3.20)). On the other hand, in presence of X 6= 0, I′6 undergoes the renormalization

I′6 → I′6 + 1
6XW, and this explains eq. (3.19) from eq. (3.18).

Before analyzing and classifying the two-center extremal BH configurations and the

corresponding defining constraints in terms of G4- and [SLh (2, R) × G4]- invariant poly-

nomials, in light of previous definitions and findings, we conclude this section by pointing

out some consequences of the rank of a charge vector, say Q1, on the set of G4- and

[SLh (2, R) × G4]- invariant polynomials of the two-centered configuration (Q1,Q2), both
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in irreducible and reducible symmetric models:

rank (Q1) = 3 ⇒ I+2 = 0; (3.22)

rank (Q1) = 2 ⇒ Q̃111 = 0 ⇒





I+2 = I+1 = 0;

I′6 = −1
2I0W − 1

12W
3 − 1

6XW ⇔ I6 = −1
2I0W;

(3.23)

rank (Q1) = 1 ⇒





I+2 = I+1 = 0;

I0 = −1
6W

2;

I′6 = 0 ⇔ I6 = −1
2I0W = 1

12W
3;

X = 0 (in reducible models).

(3.24)

Ça va sans dire that analogous relations, involving components of opposite horizontal

helicity, hold for Q2. Eqs. (3.22)–(3.24) will be used extensively in sections 4 and 5 (as

given by (3.21), X = 0 identically in reducible models). The non-generic cases of st2 and

t3 N = 2, d = 4 models will be be considered in sections 4.2 and 5.2, respectively.

4 Reducible models

As given by table 1, the reducible symmetric d = 4 supergravity models5 have the following

d = 4 U -duality group:

G4 = SLv (2, R) × SO (m,n)

m

SLh (2, R) × G4 ∼ SOv
h (2, 2) × SO (m,n) ,

m =





2 (N = 2, n ∈ N) ;

6 (N = 6, n ∈ N∪{0}) ,

(4.1)

where the isomorphism (see section 8 of [44])

SLh (2, R) × SLv (2, R) ∼ SOv
h (2, 2) (4.2)

has been used. The corresponding scalar manifolds thus belong to the sequence ST [m,n],

of particular relevance for superstring compactifications (see e.g. the analysis in section 3.1

and appendix C of [83], and refs. therein).

We now give a complete analysis of all possible two-center charge configurations

(Q1,Q2) (with symplectic product (1.2) W 6= 0, i.e. mutually non-local), by providing

for each configuration a “minimal” sets of independent G4-invariant and [SLh (2, R) × G4]-

invariant polynomials. The analysis will be carried out in the bare charges Q basis, by

exploiting, for each of the two centers, the duality-invariant definitions of rank of Q re-

called in section 2. The definitions and notation of [44] are used. The prototype of a generic

(N = 2) reducible symmetric model is the stu model, studied in some detail in section 2

of [44]. The non-generic case of the N = 2, d = 4 st2 model is considered in section 4.2.

5Marginal stability for these models was studied e.g. in [12, 21].
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4.1 Generic reducible models

1. (Q1,Q2) = (rank 4, rank 4). This is the configuration supporting the generic 2 -

center charge orbits, studied in some detail in [44]. The number of independent

G4-invariant is seven, a complete basis can be taken to be given by eq. (1.15). On

the other hand, the number of independent [SLh (2, R) × G4] -invariant is four, and

one can choose a complete basis to be [44]

[SLh (2, R) × G4] -inv (# = 4) : W, X , T r
(
I2
)
, T r

(
I3
)
, (4.3)

where

Tr
(
I2
)

= I+2I−2 + 3I2
0 − 4I+1I−1; (4.4)

Tr
(
I3
)

= I3
0 + I+2I

2
−1 + I−2I

2
+1 − I+2I−2I0 − 2I+1I−1I0. (4.5)

Different choices are of course possible. E.g., equivalent duality-invariant and

horizontal-invariant complete bases respectively read

G4-inv : W, X , I′6, I±2, I4 (Q1 + Q2) , T r
(
I2
)
; (4.6)

[SLh (2, R) × G4] -inv : W, X , I′6, T r
(
I2
)
. (4.7)

The choice (4.6)–(4.7) is characterized by the fact that the horizontal basis is a

subset of the duality basis. Furthermore, the duality basis contains quantities related

both to the single-center BH entropy π
√

|I4 (Q1 + Q2)| and to the two-centered BH

entropy (1.4). In general, I′6 is related to the elements of the basis (4.3) by means

of the polynomial constraint of degree twelve in charges given by eq. (5.6) of [44],

which we recall here (see also the analysis in [46]):

(
I′6
)2

+ WX I′6 + Tr
(
I3
)

+
1

12
W2Tr

(
I2
)
−

1

3
XTr

(
I2
)
−

1

432
W6

+
1

36
XW4 +

5

36
W2X 2 +

4

27
X 3 = 0. (4.8)

2. (Q1,Q2) = (rank 3, rank 4). The complete duality and horizontal bases can respec-

tively be taken to be

G4-inv (# = 6) : W, X , I−2, I±1, I0; (4.9)

[SLh (2, R) × G4] -inv (# = 4) : W, X , T r
(
I2
)
, T r

(
I3
)
, (4.10)

where now

Tr
(
I2
)

= 3I2
0 − 4I+1I−1; (4.11)

Tr
(
I3
)

= I3
0 + I−2I

2
+1 − 2I+1I0I−1. (4.12)

3. (Q1,Q2) = (rank 3, rank 3):

G4-inv (# = 5) : W, X , I±1, I0; (4.13)

[SLh (2, R) × G4] -inv (# = 4) : W, X , T r
(
I2
)
, T r

(
I3
)
, (4.14)
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where Tr
(
I2
)

is given by (4.11), and Tr
(
I3
)

is further simplified to

Tr
(
I3
)

= I0

(
I2
0 − 2I+1I−1

)
. (4.15)

4. (Q1,Q2) = (rank 2, rank 4):

G4-inv (# = 4) : W, X , I−2, I−1; (4.16)

[SLh (2, R) × G4] -inv (# = 2) : W, X . (4.17)

This case actually splits in two subcases. Indeed, by plugging (3.23) into (4.8), this

latter factorizes as

(
W2 − 4X + 6I0

) (
W2 + 2X + 6I0

)
= 0, (4.18)

thus admitting two solutions:

I :





I0 = −1
6W

2 + 2
3X ;

I′6 = −1
2XW;

Tr
(
I2
)

= 3I2
0 = 1

3

(
1
4W

4 + 4X 2 − 2W2X
)
;

Tr
(
I3
)

= I3
0 = 1

3

(
− 1

72W
6 + 8

9X
3 + 1

2W
4X − 2

3W
2X 2

)
.

(4.19)

II :





I0 = −1
6W

2 − 1
3X ;

I′6 = 0;

Tr
(
I2
)

= 3I2
0 = 1

3

(
1
4W

4 + X 2 + W2X
)
;

Tr
(
I3
)

= I3
0 = −1

9

(
1
24W

6 + 1
3X

3 + 1
4W

4X + 1
2W

2X 2
)
.

(4.20)

5. (Q1,Q2) = (rank 2, rank 3):

G4-inv (# = 3) : W, X , I−1; (4.21)

[SLh (2, R) × G4] -inv (# = 2) : W, X . (4.22)

The same splitting into subcases I and II, as given by (4.19) and (4.20), occurs.

6. (Q1,Q2) = (rank 2, rank 2). By recalling (3.23), the complete duality and horizontal

bases can be taken to coincide:

G4-inv and [SLh (2, R) × G4] -inv (# = 2) : W, X . (4.23)

The same splitting into subcases I and II, as given by (4.19) and (4.20), occurs. For

this configuration, a third subcase III turns out to occur, namely:

III :





X = 0;

I′6 = 0;

I0 = −1
6W

2 < 0;

Tr
(
I2
)

= 3I2
0 = 1

12W
4;

Tr
(
I3
)

= I3
0 = − 1

216W
6.

(4.24)

Thus, for subcase III (4.24) W is the only relevant polynomial invariant.
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7. (Q1,Q2) = (rank 1, rank 4):

G4-inv (# = 3) : W, I−2, I−1; (4.25)

[SLh (2, R) × G4] -inv (# = 1) : W. (4.26)

Indeed, for this configuration (3.24) trivially implies (4.24). Thus, the configurations

(Q1,Q2) = (rank 2, rank 2) (subcase III) and (Q1,Q2) = (rank 1, rank 4) both

implies (4.24), but they do differ at the level of G4-invariant polynomials: in the

former case only W matters, whereas in the latter case, as given by (4.25), the

complete duality basis is three-dimensional.

8. (Q1,Q2) = (rank 1, rank 3):

G4-inv (# = 2) : W, I−1; (4.27)

[SLh (2, R) × G4] -inv (# = 1) : W, (4.28)

with eq. (4.24) holding true.

9. (Q1,Q2) = (rank 1, rank 2). By recalling (3.23) and (3.24), one obtains that the

only relevant polynomial invariant is the symplectic product W:

G4-inv and [SLh (2, R) × G4] -inv (# = 1) : W, (4.29)

with eq. (4.24) holding true.

10. (Q1,Q2) = (rank 1, rank 1). eq. (4.24) still holds true, and one obtains that the

only relevant polynomial invariant is the symplectic product W. An example of this

configuration is the D0+D6 two-constituents solution of the stu model studied in [11]

(see also [9]).

4.2 The st2 model

We now proceed to consider the non-generic case of the N = 2, d = 4 st2 model, which

has a rank-2 vector multiplets’ scalar manifold, namely
[

SL(2,R)
U(1)

]2
, first (n = 1) element of

the N = 2 sequence in table 1. Thus, the U -duality group is

G4,st2 = SLv (2, R) × SO (2, 1) ∼ SLv (2, R) × SL (2, R) . (4.30)

This model may be obtained as a rank-2 truncation (also named “ st2 degeneration”; see

e.g. [44, 66, 67]) of the prototype of generic reducible N = 2 symmetric models which, as

observed above, is the stu model.

1. (Q1,Q2) = (rank 4, rank 4). This is the configuration supporting the generic 2 -

center orbit, studied (in the BPS case) in some detail in section 6 of [44]. The

number of independent G4-invariant is six, a complete basis can be taken to be [44]

[SLv (2, R) × SO (2, 1)] -inv (# = 6) : W, X , I±2, I±1. (4.31)
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On the other hand, the number of independent [SLh (2, R) × G4]-invariant is three,

and a complete basis can be taken to be [44]

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 3) : W, X , T r

(
I2
)
. (4.32)

Two polynomial constraints, of degree sixteen and eight in charges, hold in the st2

model; they are given by eqs. (6.10)-(6.12) of [44], which we recall here (see also the

analysis in [46]):

0 = 16Tr2
(
I2
)

+ 64Tr
(
I3
)
W2 +

8

3
Tr
(
I2
)
W4 −

1

27
W8

−
32

3
Tr
(
I2
)
X 2 +

8

9
W4X 2 +

64

27
W2X 3 +

16

9
X 4; (4.33)

0 = 12Tr
(
I2
)
− 24I′6W −

(
W2 + 2X

)2
. (4.34)

By means of (4.33) and (4.34), I′6 and Tr
(
I3
)

can be expressed in terms of the

horizontal invariants of the basis (4.32).

2. (Q1,Q2) = (rank 3, rank 4):

[SLv (2, R) × SO (2, 1)] -inv (# = 5) : W, X , I−2, I±1; (4.35)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 3) : W, X , T r

(
I2
)
, (4.36)

with (4.11) and (4.12) holding true, as well.

3. (Q1,Q2) = (rank 3, rank 3):

[SLv (2, R) × SO (2, 1)] -inv (# = 4) : W, X , I±1; (4.37)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 3) : W, X , T r

(
I2
)
, (4.38)

where Tr
(
I2
)

is given by (4.11) and Tr
(
I3
)

is further simplified to (4.15).

4. (Q1,Q2) = (rank 2, rank 4):

[SLv (2, R) × SO (2, 1)] -inv (# = 4) : W, X , I−2, I−1; (4.39)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 2) : W, X . (4.40)

The splitting into subcases I (4.19) and II (4.20), characterizing the generic reducible

models (see e.g. point 4 of section 4, does not occur in the st2 model. Indeed, in

such a model the unique solution of the polynomial constraints (4.33) and (4.34) for

(Q1,Q2) = (rank 2, rank 4) is given by eq. (4.20) (namely, only case II holds).

5. (Q1,Q2) = (rank 2, rank 3):

[SLv (2, R) × SO (2, 1)] -inv (# = 3) : W, X , I−1; (4.41)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 2) : W, X . (4.42)
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6. (Q1,Q2) = (rank 2, rank 2):

[SLv (2, R) × SO (2, 1)] -inv and [SOv
h (2, 2) × SO (2, 1)] -inv (# = 2) : W, X .

(4.43)

For this configuration, there is actually a second subcase given by the subcase

III (4.24) of the generic models, in which then W is the only relevant polyno-

mial invariant. In the st2 model, (4.24) is realized in the configuration (Q1,Q2) =

(rank 2, rank 2) for instance by setting the charges of the two vector multiplets to

coincide; in the “d = 4/d = 5 special coordinates” symplectic frame, a particular

realization of this is the “t3 degeneration” (see e.g. [44, 66, 67]) in which p1 = p2 ≡ p

and q1 = q2 ≡ q/2.

7. (Q1,Q2) = (rank 1, rank 4):

[SLv (2, R) × SO (2, 1)] -inv (# = 3) : W, I−2, I−1; (4.44)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 1) : W. (4.45)

Indeed, also in the st2 model eq. (4.24) holds true.

8. (Q1,Q2) = (rank 1, rank 3). As for the generic reducible models, eq. (4.24) does

hold for Q1, and the complete duality and horizontal bases can respectively be taken

to be

[SLv (2, R) × SO (2, 1)] -inv (# = 2) : W, I−1; (4.46)

[SOv
h (2, 2) × SO (2, 1)] -inv (# = 1) : W. (4.47)

9. (Q1,Q2) = (rank 1, rank 2). eq. (4.24) does hold for Q1, and the only relevant

polynomial invariant is W, as given by eq. (4.29).

10. (Q1,Q2) = (rank 1, rank 1). eq. (4.24) does hold for Q1 and for Q2, and eq. (4.29)

also holds, i.e. the only relevant polynomial invariant is W.

5 Irreducible models

We now proceed to consider the irreducible symmetric models (see table 2), by providing a

complete analysis of all possible two-center charge configurations (Q1,Q2) (with symplectic

product (1.2) W 6= 0, i.e. mutually non-local), in the very same way as done for reducible

symmetric models in section 4. The definitions and notation of [44] and [45] are used. The

non-generic case of the N = 2, d = 4 t3 model is considered in section 5.2.

5.1 Generic irreducible models

1. (Q1,Q2) = (rank 4, rank 4). This is the configuration supporting the generic 2 -

center orbits, studied in some detail in [45]. As mentioned in section 3 and derived

in [45] (see eq. (3.10) therein), the quartic horizontal-invariant polynomial Xirred

vanishes identically in the class of models under consideration. Furthermore, (an
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analogue with Xirred = 0 of) the polynomial constraint (4.8) does not hold in these

models. As discussed in [45], the number of independent G4-invariant is seven, a

complete basis can be taken to be given by eq. (1.16). On the other hand, the

number of independent [SLh (2, R) × G4]-invariant is four, and one can choose the

following complete basis [45]:

[SLh (2, R) × G4] -inv (# = 4) : W, I6, T r
(
I2
)
, T r

(
I3
)
. (5.1)

As for the reducible models analyzed in section 4, different choices are of course

possible. E.g., an equivalent duality-invariant complete basis respectively reads

G4-inv : W, I6, I±2, I4 (Q1 + Q2) , T r
(
I2
)
, T r

(
I3
)
. (5.2)

The choice (5.2) is characterized by the fact that the horizontal basis is a subset

of the duality basis. Furthermore, in this case the duality basis contains quantities

related both to the single-center BH entropy and to the two-centered BH entropy.

2. (Q1,Q2) = (rank 3, rank 4):

G4-inv (# = 6) : W, I6, I−2, I±1, I0; (5.3)

[SLh (2, R) × G4] -inv (# = 4) : W, I6, T r
(
I2
)
, T r

(
I3
)
, (5.4)

where Tr
(
I2
)

and Tr
(
I3
)

are respectively given by (4.11) and (4.12).

3. (Q1,Q2) = (rank 3, rank 3):

G4-inv (# = 5) : W, I6, I±1, I0; (5.5)

[SLh (2, R) × G4] -inv (# = 4) : W, I6, T r
(
I2
)
, T r

(
I3
)
, (5.6)

where Tr
(
I2
)

and Tr
(
I3
)

are respectively given by (4.11) and (4.15).

4. (Q1,Q2) = (rank 2, rank 4):

G4-inv (# = 4) : W, I−2, I−1, I0; (5.7)

[SLh (2, R) × G4] -inv (# = 2) : W, T r
(
I2
)

= 3I2
0. (5.8)

Furthermore, the limit I+1 = 0 of (4.15) yields

Tr
(
I3
)

= I3
0. (5.9)

Note that in generic irreducible generic models, differently from what occurs in generic

reducible generic models (see e.g. point 4 of section 4.1), the splitting in subcases does

not occur.

5. (Q1,Q2) = (rank 2, rank 3):

G4-inv (# = 3) : W, I−1, I0; (5.10)

[SLh (2, R) × G4] -inv (# = 2) : W, T r
(
I2
)

= 3I2
0, (5.11)

with eq. (5.9) holding true.
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6. (Q1,Q2) = (rank 2, rank 2):

G4-inv (# = 2) : W, I0; (5.12)

[SLh (2, R) × G4] -inv (# = 2) : W, T r
(
I2
)

= 3I2
0, (5.13)

with eq. (5.9) holding true. Equivalently, as done for the same configuration in

generic reducible models as well as in the st2 model (see point 6 of sections 4.1

and 4.2, respectively), the complete duality and horizontal bases can be taken to

coincide:

G4-inv and [SLh (2, R) × G4] -inv (# = 2) : W, T r
(
I2
)

= 3I2
0. (5.14)

7. (Q1,Q2) = (rank 1, rank 4). As for generic reducible models as well as for the st2

model (see point 7 of sections 4.1 and 4.2, respectively), by recalling (3.24), the

complete duality and horizontal bases can respectively be taken to be

G4-inv (# = 3) : W, I−2, I−1; (5.15)

[SLh (2, R) × G4] -inv (# = 1) : W, (5.16)

with I0 = −1
6W

2 < 0, and

Tr
(
I2
)

= 3I2
0 =

1

12
W4; (5.17)

Tr
(
I3
)

= I3
0 = −

1

216
W6. (5.18)

8. (Q1,Q2) = (rank 1, rank 3). Eqs. (5.17)–(5.18) hold true, and, as for generic re-

ducible models as well as for the st2 model (see point 8 of sections 4.1 and 4.2, re-

spectively), the complete duality and horizontal bases can respectively be taken to be

G4-inv (# = 2) : W, I−1; (5.19)

[SLh (2, R) × G4] -inv (# = 1) : W. (5.20)

9. (Q1,Q2) = (rank 1, rank 2). Eqs. (5.17)–(5.18) hold true, and, as for generic

reducible models as well as for the st2 model (see point 9 of sections 4.1 and 4.2,

respectively), the only relevant polynomial invariant is W, as given by eq. (4.29).

10. (Q1,Q2) = (rank 1, rank 1). Eqs. (5.17)–(5.18) hold true, and, as for generic

reducible models as well as for the st2 model (see point 10 of sections 4.1 and 4.2,

respectively), the only relevant polynomial invariant is W, as given by eq. (4.29).

5.2 The t3 model

We now proceed to consider the non-generic case of the N = 2, d = 4 t3 model, which

has a rank-1 vector multiplets’ scalar manifold, namely SL(2,R)
U(1) (see the first line of table

2. Thus, the U -duality group is

G4 = SLv (2, R) . (5.21)
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As mentioned above, this model provides a simple yet interesting example, because it may

be obtained both as the rank-1 truncation of the reducible N = 2 symmetric models,

as well as the first (q = 0), non-generic element of the sequence of irreducible N = 2

symmetric models, which contains the four rank-3 magical supergravity theories [76, 77].

1. (Q1,Q2) = (rank 4, rank 4). This is the configuration supporting the generic 2 -

center orbit,6 studied (in the BPS case) in some detail in section 7 of [44] (see also

the comment in the Introduction of [45]). The number of independent G4-invariant

is five, a complete basis can be taken to be [44]

SLv (2, R) -inv (# = 5) : W, I6, I±2, I+1. (5.22)

However, other equivalent choices read

SLv (2, R) -inv (# = 5) :





W, I6, I±2, I0;

or

W, I6, I±2, I4 (Q1 + Q2) .

(5.23)

On the other hand, the number of independent [SLh (2, R) × G4]-invariant is two,

and a complete basis can be taken to be [44] (recall isomorphism (4.2))

SOv
h (2, 2) -inv (# = 2) : W, I6. (5.24)

Three polynomial constraints, of degree sixteen, eight and four in charges, hold in

the t3 model; they are given by eqs. (6.12), (7.18), (7.17) and (7.16) of [44] (see also

appendix A therein, and the analysis in [46]), which we recall here:

0 = 16Tr2
(
I2
)

+ 64Tr
(
I3
)
W2 +

8

3
Tr
(
I2
)
W4 −

1

27
W8;

0 = 24I′6W − 12Tr
(
I2
)

+ W4;

X = 0. (5.25)

Note that in (5.25) X ≡ Xirred, and its identical vanishing consistently characterizes

the t3 model as a non-generic irreducible symmetric model. Due to (5.25), I′6 and I6

are related through eq. (3.18). By means of (5.25), (5.25) and (3.18), Tr
(
I2
)

and

Tr
(
I3
)

can be expressed in terms of the horizontal invariants of the basis (5.24).

2. (Q1,Q2) = (rank 3, rank 4):

SLv (2, R) -inv (# = 4) : W, I6, I−2, I+1; (5.26)

SOv
h (2, 2) -inv (# = 2) : W, I6. (5.27)

3. (Q1,Q2) = (rank 3, rank 3):

SLv (2, R) -inv (# = 3) : W, I6, I+1; (5.28)

SOv
h (2, 2) -inv (# = 2) : W, I6. (5.29)

6This charge configuration has been considered in literature [4, 6] but, within SLv (2, R)-invariant poly-

nomials (see e.g. the second possible basis of (5.23)), the role of I6 is not completely clear yet (concerning

this, see the recent study in [46]).
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4. (Q1,Q2) = (rank 2, rank 4). This charge configuration has been considered in [3].

The complete duality and horizontal bases can respectively be taken to be

SLv (2, R) -inv (# = 2) : W, I−2; (5.30)

SOv
h (2, 2) -inv (# = 1) : W. (5.31)

By recalling (5.25)–(5.25), in the t3 model the configuration (Q1,Q2) =

( rank 2, rank 4) implies





I′6 = 0
(3.18)
⇔ I6 = 1

12W
3;

I0 = −1
6W

2 < 0;

Tr
(
I2
)

= 1
12W

4;

Tr
(
I3
)

= − 1
216W

6.

(5.32)

Consistent with the fact that the t3 model can be obtained as a “rank-1 degeneration”

(see e.g. [44, 66, 67]) of the reducible symmetric N = 2, d = 4 models, (5.32) matches

the X = 0 limit of subcases I (4.19) and II (4.20) or, equivalently, it matches the

subcase III (4.24).

5. (Q1,Q2) = (rank 2, rank 3). The complete duality and horizontal bases can be taken

to coincide, and W is the only relevant invariant polynomial in charges:

SLv (2, R) -inv and SOv
h (2, 2) -inv (# = 1) : W. (5.33)

6. (Q1,Q2) = (rank 2, rank 2). Again, the complete duality and horizontal bases can

be taken to coincide and be given by (5.33).

Since the t3 model lacks of an independent doubly-critical “small” charge orbit (namely,

criticality implies doubly-criticality in this model; see e.g. [84] for a recent account within a

d = 3 timelike-reduced formalism), the cases given by points 7, 8, 9 and 10 are all missing

for this model.

6 A comment on bound states with negative discriminant

The treatment given in sections 4 and 5 allows one to discuss in fair generality two-centered

extremal BH compound states with a given value of I4 (Q1 + Q2). Here, we would like to

comment shortly on some two-centered charge configurations corresponding to a negative

I4 (Q1 + Q2), i.e. to a BH compound that, regarded as a single-centered solution, is a

“large” non-BPS (extremal) BH.

By recalling the sum rule (cf. eq. (4.7) of [44])

I4 (Q1 + Q2) = I+2 + 4I+1 + 6I0 + 4I−1 + I−2, (6.1)

from the analysis of previous sections one can single out some two-charge configurations

which necessarily imply

I4 (Q1 + Q2) = −W2 < 0. (6.2)
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Note that in this case I4 (Q1 + Q2) becomes horizontal invariant, as well.

For all symmetric reducible models (see table 1), these configurations are the ones with

reducible : rank (Q1,Q2) =





(2, 2)III ;

(1, 2) ;

(1, 1) ,

(6.3)

namely the subcase III of point 6, and points 9 and 10 of section 4.1 (and analogue cases

for the non-generic st2 model treated in section 4.2).

For generic irreducible models, these configurations are the ones in which at least one

center is doubly-critical, namely the ones with

irreducible : rank (Q1,Q2) =

{
(1, 2) ;

(1, 1) ,
(6.4)

i.e. points 9 and 10 of section 5.1. In the non-generic irreducible t3 model, treated in

the section 5.2, the unique configuration of the kind under consideration is given by

rank(Q1,Q2) = (2, 2) (point 6 above), because, as mentioned in section 5.2, in such a

model criticality implies doubly-criticality.

As an illustrative example (which can be realized in heterotic string theory), let us

consider the “small + small” two-centered charge configuration (in Calabi-Vesentini sym-

plectic frame [50]; Λ = 1, ....,m + n)

Q1 ≡
(
pΛ, 0

)
; Q2 ≡ (0, QΛ) (6.5)

in d = 4 supergravity coupled to n vector multiplets (N = 2 and N = 4 theories are

obtained for m = 2 and 6, respectively), implying that7 [51–54]

I4 (Q1 + Q2) = I4 (p,Q) = p2Q2 − (p · Q)2 . (6.6)

From the analysis of single-centered charge orbits [42, 56, 85], the charge vector Q1 of (6.5)

enjoys the following properties, depending on the nature of the SO (m,n)-vector pΛ:

p2 ≡ pΛpΣηΛΣ > 0 ⇒ Q1rank = 2, 1
2 -BPS;

p2 < 0 ⇒ Q1rank = 2, non-BPS;

p2 = 0 ⇒ Q1rank = 1, 1
2 -BPS,

(6.7)

and the same holds for Q2 of (6.5), by replacing pΛ with QΛ (η is the SO (m,n) metric). By

using e.g. the formulæ derived of [44], one can easily compute that in the heterotic charge

configuration (6.5) there unique two independent horizontal-invariant polynomials read:

W = −p · Q 6= 0; X = −
1

2
p2Q2 ⋚ 0, (6.8)

where the two centers are assumed to have mutually non-local fluxes (and thus it is

assumed that W 6= 0).

7In string theory, the quartic invariant I4 (Q) of reducible models is usually named “discriminant” of

the charge vector Q (see e.g. [86]).
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(
sgn

(
p2
)
, sgn

(
Q2
))

sgn (I4 (Q1 + Q2)) constraint
horizontal

orbit O/SOv
h (2, 2)

(+,+) + X < −1
2W

2 SO(m,n)
SO(m−2,n)

(+,+) − X > −1
2W

2 SO(m,n)
SO(m−1,n−1)

(−,−) + X < −1
2W

2 SO(m,n)
SO(m,n−2)

(−,−) − X > −1
2W

2 SO(m,n)
SO(m−1,n−1)

(+,−) − X > 0 SO(m,n)
SO(m−1,n−1)

(−,+) − X > 0 SO(m,n)
SO(m−1,n−1)

Table 3. Two-centered charge configuration of the type (6.5) with rank(Q1,Q2) = (2, 2)II in

reducible symmetric models (N = 2 and N = 4 supergravity theories are obtained for m = 2 and

m = 6, respectively). The cases with I4 (Q1 + Q2) = 0 are not considered.

By considering both Q1 and Q2 of configuration (6.5) to be timelike or spacelike (this

corresponds to rank(Q1,Q2) = (2, 2)II , given by subcase II of point 6 of section 4.1)), and

recalling the analysis done in the second part od section 4 of [45], one obtains the case study

reported in table 3 (in which the cases with I4 (Q1 + Q2) = 0 have been disregarded), in

which the sign of I4 (Q1 + Q2) (second column) is equivalent to the constraint on X (third

column), because it holds that

I4 (Q1 + Q2) = I4 (p,Q) = −W2 − 2X . (6.9)

On the other hand, when pΛ and/or QΛ of (6.5) are lightlike (or, equivalently, when Q1

and/or Q2 are rank 1; see eq. (6.7)), namely in the mutually non-local cases

p2 > 0, Q2 = 0 : rank = (2, 1) ;

p2 = 0, Q2 > 0 : rank = (1, 2) ;

p2 = 0, Q2 = 0 : rank = (1, 1) ,

(6.10)

I4 (Q1 + Q2) is strictly negative (because X = 0), and it is given by eq. (6.2). Note that

for the cases (6.10) I4 (Q1 + Q2) = 0 is equivalent to mutually local centers.

Thus, the two-centered charge configurations (Q1,Q2) of the heterotic type (6.5) given

by the second, fourth, fifth and sixth line of table 3, and by eq. (6.10), are all characterized

by the corresponding BH compound that, regarded as a single-centered (extremal) BH, is

“large” and non-BPS, with a negative quartic duality invariant I4 (Q1 + Q2). These con-

figurations are (the semiclassical limit, with real, continuous charges of) some of the cases

recently analyzed by Sen in8 [68] in N = 4, d = 4 supergravity; furthermore, the case

rank(Q1,Q2) = (1, 1) encompasses the D0 + D6 configuration in the N = 2 stu model,

which has been studied in [11]. Since both (6.2) and (6.9) are manifestly horizontal-

invariant expression, the most general supporting two-centered configurations can be com-

8In the notation of [68], m ≡ R and n ≡ L.
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puted by acting on the relevant case of the heterotic configuration (6.5) with a generic

[SOv
h (2, 2) × SO (m,n)]-transformation (also, recall (4.2)).
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