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Abstract: Assuming dark matter particles can be pair-produced at the LHC from cascade

decays of heavy particles, we investigate strategies to identify the event topologies based

on the kinematic information of final state visible particles. This should be the first step

towards measuring the masses and spins of the new particles in the decay chains including

the dark matter particle. As a concrete example, we study in detail the final states with

4 jets plus missing energy. This is a particularly challenging scenario because of large

experimental smearing effects and no fundamental distinction among the 4 jets. Based on

the fact that the invariant mass of particles on the same decay chain has an end point

in its distribution, we define several functions which can distinguish different topologies

depending on whether they exhibit the end-point structure. We show that all possible

topologies (e.g., two jets on each decay chain or three jets on one chain and the other

jet on the other chain, and so on) in principle can be identified from the distributions

of these functions of the visible particle momenta. We also consider cases with one jet

from the initial state radiation as well as off-shell decays. Our studies show that the event

topology may be identified with as few as several hundred signal events after basic cuts. The

method can be readily generalized to other event topologies. In particular, event topologies

including leptons will be easier because the end points are expected to be sharper and there

are more distinct invariant mass distributions from different charges.
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1 Introduction

The Large Hadron Collider (LHC) have started taking data and many beyond the stan-

dard model (SM) theories will be tested. Many of these new models contain dark matter

candidates whose stability is protected by some unbroken Z2 symmetry. Examples are the

R-parity in the supersymmetric model [1] and the KK-parity in models with Universal

Extra Dimensions (UEDs) [2–4]. In these models, the dark matter particle is the lightest

Z2-odd particle and may be produced in pairs at the LHC via cascade decays of heavier

Z2-odd particles. At colliders, the dark matter particles escape the detectors and result

in missing energies in the events. Knowing the missing particle mass and its interactions

with the SM particles is crucial for testing whether it can indeed be the major component

of the dark matter in the universe.

Because only the transverse part of the sum of the missing particle momenta can be

measured at hadron colliders, the kinematics can not be fully reconstructed on an event-

by-event basis. It is a challenging task to measure the dark matter particle mass at hadron

colliders. Nonetheless, there have been a lot of progress in developing new techniques to

determine the dark matter particle mass at hadron colliders despite the partially unknown

dark matter particle momenta (see [5] for a review). On a single decay chain, one can use

the end points of visible particle invariant mass distributions to obtain relations among the
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masses of the particles on the same decay chain [6–14]. If one uses both decay chains, the

end point of the variable MT2 can also be used to determine missing particle masses [15–

27]. If the decay chains are long enough and the event topology is known, one can even

solve the kinematics of the full system by combining events [28–32].

In almost all of those analyses, the event topology has been assumed to be known

from the beginning. However, it frequently happens that the same final states can come

from different event topologies arising from the same model or different models. If a wrong

topology is assumed, these mass determination methods will not give sensible results.

Therefore, the first step towards measuring the dark matter mass should be identifying the

dark matter event topology. In this paper, we are trying to clear the topology ambiguities

and close the gap between the real experimental data and the different dark matter mass

measurement techniques.

For a given final state, there are discrete choices of corresponding event topologies.

The kinematic distributions are in general functions of the masses, spins and couplings of

all particles in the process, in addition to the event topology. Therefore, to distinguish

topologies we would like to use binary information in these distributions which is inde-

pendent of the details of the model. An important observation is that the kinematics of

the visible particles from a single decay chain is constrained by the mother particle mass,

and hence the invariant mass distributions of these visible particles will have end points.

On the other hand, the invariant mass combinations of particles from different chains are

not constrained (except by the center-of-mass energy) and are not expected to show the

end-point structure. Using these facts we can design functions of the invariant mass com-

binations of the visible particles to exhibit end points for certain topologies but not for the

others. The correct topology can emerge if there are enough such functions to differentiate

all possible topologies.

If there are different types of visible particles in the event sample (for example, there

are both jets and leptons or leptons with different flavors and different charges), many

different kinds of invariant mass combinations can be formed. By examining whether each

of them has an end point or not, one can easily tell if these objects in the corresponding

invariant mass combination belong to the same decay chain. The task is more difficult if

all the visible objects are jets. Not only there are fewer different types of invariant mass

combinations, but the jets also suffer more from the experimental smearing effects. In this

paper, rather than exhausting all possible final states we choose the quite challenging 4 jets

plus missing transverse energy (MET) scenario as a case study. This final state can have

a large production cross section at the LHC and a good discovery chance even with early

LHC data [33, 34]. Without considering the case in which two jets are from W or Z boson

decays, there are three different topologies for 4j + /ET even without the contamination

of the initial state radiation (ISR): two jets on each decay chain (2⊕2); three jets on one

chain and the other jet on the second chain (3⊕1); all four jets on a single chain and

only the dark matter particle on the other chain (4⊕0). The 4⊕0 topology in principle

can be identified by looking at the invariant mass distribution of all four jets, since only

4⊕0 can have an end point under this function. To identify the other cases one needs to

cleverly define certain functions of the 2-jet or 3-jet invariant masses which can preserve

the end-point structure given that we do not know which 2 jets or 3 jets to use a priori.
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In our detailed study, we consider the case that the four jets have similar energies so

that they can not be divided into different groups based on their ET ’s. We include the

detector effects on the simulations as well as the initial and final state radiations to make

the study more realistic. Furthermore, we will consider two other cases which give rise

to the same final state: two jets on one chain and one jet on the other chain with the

fourth jet coming from ISR; three jets on one chain and zero jet on the other chain with

the fourth jet from ISR. We will show that with the help of two additional functions those

two topologies may also be distinguished.

Our paper is organized as follows. In section 2, we first define four invariant-mass

functions for distinguishing the 4j + /ET event topologies based on some theoretical moti-

vations, and we perform the detailed parton-level studies to show that they indeed exhibit

the behaviors that are expected. In section 3 we perform the realistic particle-level analysis

on these functions. Even though the showering, hadronization, and the detector smearing

make the end points harder to identify, we show that by fitting the slopes of the distri-

butions and comparing the orders we can still distinguish different topologies. We also

study the two ISR cases: 2⊕1⊕ISR and 3⊕0⊕ISR in section 3.1 and off-shell decays in

section 3.2. The cases with mixtures of topologies are considered in section 3.3. We then

discuss strategies to identify event topologies for other final states and conclude our paper

in section 4.

2 Kinematic functions for 4j + /ET event topologies identification

In this section, we construct functions of visible particle momenta which can be useful

to identify event topologies. We use the 4j + /ET final state for a detailed case study.

Similar functions can easily be constructed for other final states. As motivated by the

SUSY-like models, we consider that the signal events come from the pair-production of

heavy parity-odd particles, and then they go through cascade decays which end at the

dark matter particle. We will first consider all those 4 jets coming from heavy parity-odd

particle cascade decays and defer the cases with one jet from ISR in a later section.

Under these assumptions, there are three topologies for this final state: four jets from

one chain and zero jet from the other chain; three jets from one chain and one jet from

the other chain; and two jets from both chains. The Feynman diagrams for those three

cases are depicted in figure 1. In these diagrams, we denote the dark matter particle as

χ and the decaying particles in the cascading chains as Yi. The intermediate particles in

each decay chain can be either on-shell or off-shell, both of which will be covered in the

following sections.

Although we do not restrict ourselves to any particular model, we note that all three

topologies can arise in the popular SUSY scenario. In SUSY models, the lightest neutralino

is usually the lightest supersymmetric particle (LSP) and also the dark matter particle.

The 4⊕0 case can come from the associated production of the lightest neutralino and gluino

with the gluino going through the cascade decays: pp → g̃+χ with g̃ → ũL+1j → χ2+2j →
ũR +3j → χ+4j. The 3⊕1 case can arise from the squark pair production as pp → ũR+ ũL

with two squarks decaying as ũR → χ + j and ũL → χ2 + 1j → ũR + 2j → χ + 3j. Finally,
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Figure 1. The three event topologies, 4⊕0, 3⊕1 and 2⊕2, for 4j + /ET without specifying the

spins of particles. The production mechanisms are not specified here and represented by a circle.

The dark matter particle is denoted by χ. The intermediated particles in each chain can be either

on-shell or off-shell.

the 2⊕2 case can come from the gluino pair production, pp → g̃+ g̃, with the same decaying

processes on both chains as g̃ → ũR + 1j → χ + 2j. Whether any of these processes occur

and dominate the 4j +/ET signal events depends on the spectrum and details of the specific

model. It is also possible that more than one processes give comparable contributions to

the particular final state. In this section we are looking for functions which can identify

the event topologies, so we will consider the idealized case where all events come from a

single process, and leave the more complicated situations to section 3.3 after we discuss

the realistic implementation of the strategy.

For the illustration purpose, in the following when we define our kinematic functions,

we demonstrate them with a SUSY spectrum such that the LSP mass is mχ = 200 GeV

and in each decay the mother parity-odd particle is heavier than the neighboring daughter

parity-odd particle by 200 GeV in the decay chains for each topology. The jets coming

from these on-shell decays will have similar energies and hence are indistinguishable. This

is the most challenging scenario. If instead there are large hierarchies among these four

jets, we can consider separately the invariant mass combinations of the jets based on their

energy hierarchies and obtain more handles on whether the harder jets and/or softer jets

come from the same decay chain. The partonic event simulations are generated with the

Madgraph/MadEvents [35] package for the 14 TeV center of mass energy of LHC with the

CTEQ 6L1 [36] parton distribution functions.
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Figure 2. The number of events in terms of the function F1 defined in eq. (2.1) at the parton level.

There are totally 10000 events for each topology generated in this plot.

The kinematic functions that we are looking for need to be able to distinguish different

event topologies. As mentioned in the Introduction, the invariant mass combinations of

visible particles coming from the same decay chain are constrained by the mass of the de-

caying mother particle and hence have end points in their distributions, while the invariant

mass combinations of particles from different decay chains are not expected to exhibit the

end-point structure. Therefore we focus on functions of various invariant mass combina-

tions of the 4 jets. The end-point formulae for various invariant mass combinations of

particles from the same decay chain are given in appendix A. We found that the invariant

mass distributions are sufficient and fast enough to achieve our goal. It might be worth

exploring more complicated strategies and other kinematic variables to improve the results.

To identify the 4⊕0 topology, the obvious function to use is the total invariant mass

distribution of all four jets. We should anticipate a sharp end point for the 4⊕0 case but

not for the other two cases. Therefore, we define the first function, which is specifically

sensitive to the 4⊕0 topology, as

F1(p1, p2, p3, p4) = inv[p1, p2, p3, p4] . (2.1)

Here, pi is defined according to the ordering of jet ET in each event and inv[ , · · · , ] means

the total invariant mass of all momenta in the bracket,
√

(
∑

i pi)2. The F1 distributions for

three different topologies are shown in figure 2. One can see a sharp end-point at 800 GeV

for the 4⊕0 topology in figure 2. The sharp end point is expected to get smeared after

showering, hadroniztion, and detector resolution effects. The strategy to deal with the

realistic situations will be discussed in the next section.

For the 3⊕1 topology, we have found two potentially useful functions. The first one is

the smallest 3-particle invariant mass combination:

F2(p1, p2, p3, p4) = min
{

inv[p1, p2, p3], inv[p1, p2, p4], inv[p1, p3, p4], inv[p2, p3, p4]
}

. (2.2)

The minimum of the invariant masses of the four combinations has a high probability to

find the set of three jets on the same chain. Even if it sometimes picks the wrong set, it
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Figure 3. Left panel: the number of events in terms of the function F2 at the parton level. There

are totally 10000 events generated for each topology in this plot. Right panel: the same as the left

one but in terms of F3.

will not exceed the expected end point since it is smaller than the correct combination.

Plotting the event numbers as functions of F2, one may expect a sharp end point for the

3⊕1 case but not for the 2⊕2 case. An end point for the 4⊕0 topology is also expected since

all visible particles come from the same chain. Another function uses 2-particle invariant

masses. Since the invariant mass of 2 particles from different chains can be very large, we

consider the invariant mass of the pair of the particles which is opposite to the pair that

forms the largest invariant mass:

F3(p1, p2, p3, p4) = inv[pk, pl] ,

such that ǫklij 6= 0 and inv[pi, pj ] = max

{

⋃

m,n

inv[pm, pn]

}

. (2.3)

Here, i, j, k, l,m, n = 1, · · · 4 and ǫklij is the totally antisymmetric tensor. For the 3⊕1 case,

this pair of particles has a large chance to come from the same chain. Even if occasionally

they come from different chains, their invariant mass is bounded by an invariant mass from

the same chain and hence will not exceed the corresponding end point. On the other hand,

this combination for the 2⊕2 case is likely to come from opposite chains and is not expected

to have an end point. The event distributions of these two functions are shown in figure 3,

where one can see that both 4⊕0 and 3⊕1 topologies have obvious end points at around

600 GeV for F2 and around 400 GeV for F3. (The exact expected values can be found in

appendix A.) On the contrary, the 2⊕2 distributions have long tails without end points.

In the next section we find that F2 seems to work better than F3 after the experimental

smearing. However, F3 may still be useful for some other final states (e.g., leptons which

do not suffer too much from smearing effects).

To identify the 2⊕2 topology, we define the following function which is sensitive to this

topology:

F4(p1, p2, p3, p4) = min







⋃

i,j

max
(

inv[i, j], inv[k, l]
)







for ǫklij 6= 0 . (2.4)
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Figure 4. The number of events in terms of the function F4 defined in eq. (2.4) at the parton level.

There are totally 10000 events generated for this plot.

For each event there are 3 ways to pair those four jets. One first chooses the pair with

the larger invariant mass for each way of pairing, then calculate the minimum of the larger

invariant masses among those three partitions. For the 2⊕2 case, the partition that each

pair comes from the same decay chain will have both invariant masses of the two pairs to

be bounded from above. Therefore, the correct partition is likely to have a smaller value

for the maximum of the two invariant masses among the three partitions. On the other

hand for the 3⊕1 topology, it is quite possible that the larger invariant mass pairs for the

three partitions all include the only jet from the shorter decay chain and therefore no end

point is expected. The simulated results are shown in figure 4. Indeed one can see a sharp

end point at around 400 GeV for the 2⊕2 topology but not for the 3⊕1 topology. The 4⊕0

topology does have an end point but it is not very sharp.

At the parton level, one can see that the three different topologies can be easily iden-

tified by checking whether there are end points in those four functions F1–F4. However,

including the showering, hadronization, and other experimental smearing effects these end

points become less distinct and more concrete strategies need to be developed to identify

the topologies, which is the subject of the next section.

3 Dealing with realistic particle-level event distributions

In reality, the kinematic distributions proposed in the previous section will receive signif-

icant experimental smearing effects from showering, hadronization, detector resolutions,

backgrounds, and so on. It is important to check whether the distinctive features of these

functions can survive the smearing effects. We also need an unambiguous procedure to

identify the event topology from these kinematic functions rather than just looking for end

points by naked eyes.

To include the experimental smearing effects for our particle-level analysis, we first

generate parton-level events using Madgraph/MadEvents as before. We then process the

parton level events with Pythia [37] for showering and hadronization including initial and
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Figure 5. The number of events as functions of those four variables after passing Pythia and PGS.

We select the signal events by requiring: at least 4 jets with ET > 100GeV and missing transverse

energy /ET > 200GeV. The continuous lines are fitted lines using the log-normal function. Only

bins with a height above 1/2 of the peak height on the left side and above 1/4 of the peak height

on the right side are included in the fit.

final state radiations, and PGS [38] (with the default CMS detector card) for the detector

simulation. Some basic cuts are imposed on all signal events after the detector simulation.

We start with the same spectra used in the previous section with all on-shell decays and

generate 10000 events for each topology. We require at least four jets with ET > 100 GeV

and the missing transverse energy /ET > 200 GeV on the events. This set of cuts are utilized

just for the illustration purpose, and our following analysis is insensitive to those cuts. The

signal selection efficiencies of 4⊕0, 3⊕1 and 2⊕2 are 19.3%, 10.1% and 13.1%, respectively.

The event distributions in terms of those four functions Fi with i = 1, · · · 4 are shown

in figure 5. Compared to the parton level distributions in figure 2, 3, 4, we can still roughly

tell some of the end points for the first three functions. The end point structure for the last

function F4 is not so clear on the other hand. Nevertheless, for the distributions which were

supposed to have end points, the after-peak slopes look steeper than the ones without end

points. We will explore this observation to come up with a concrete procedure to identify

different topologies.

To find the falling slopes after the peaks of these distributions, we will try to fit the

histograms in figure 5 with some simple functions. The first fitting function that we consider
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bin size = 30 GeV bin size = 40 GeV

Topologies a2(F1) a2(F2) a2(F3) a2(F4) a2(F1) a2(F2) a2(F3) a2(F4)

4⊕0 0.16(0.02) 0.29(0.02) 0.48(0.03) 0.32(0.02) 0.16 0.29 0.52 0.30

3⊕1 0.40(0.06) 0.32(0.03) 0.53(0.05) 0.43(0.05) 0.39 0.30 0.51 0.43

2⊕2 0.52(0.10) 0.44(0.05) 0.52(0.05) 0.32(0.03) 0.52 0.48 0.51 0.29

Table 1. The fitted values for a2 of the log-normal function in eq. (3.1), which determine the

steepness of the slopes of the histograms after the peak. The bin size has been chosen to be 30GeV

(left), and 40GeV (right). We have also shown the 1 σ statistical uncertainties for the 30GeV bin

size in the parenthesis.

is the following log-normal function:

h1(Fi) = a0 × exp

{

−
(

ln[Fi/a1]

a2

)2
}

. (3.1)

This log-normal function has a peak structure with asymmetric half-height widths. The

three parameters a0, a1 and a2 determine the peak height, the peak location and the falling

slope after the peak. The last parameter a2 can be used to distinguish different topologies.

A smaller value of a2 means a steeper slope after the peak. Given the large statistical

uncertainties on the tails of those distributions and also potentially large contaminations

from backgrounds, we only include bins with a height above one half of the peak height on

the left side and above one quarter of the peak height on the right side into the fit. The

χ2 in our fit is defined as

χ2 =
∑

ibin

(hibin

1 − sibin)2

sibin

, (3.2)

to only take into account the statistical uncertainties from the signal events. The asym-

metric choice of bins around the peak is to minimize the effects of cuts, which affect the

left side of the peak more severely. The fitted curves are shown in the continuous lines

in figure 5 for the 30 GeV bin size. As one can see, except the F3 distributions all other

histograms are well fitted by the log-normal functions.

The fitted values of a2 are listed in table 1 for 30 GeV and 40 GeV bin sizes. Smaller

values of the bin size introduce larger fluctuations of the number of events in each bin,

and make the fit unreliable. Comparing those numbers for the 30 GeV and the 40 GeV bin

sizes, we can see that the fitted slopes are fairly consistent.

To examine the sensitivity on the functions used to do the fits, we also try to fit the

histograms with two straight lines around the peak. This fit also gives an estimate of the

end point value at the point when the right straight line crosses zero. The “broken-line”

function used in the fits is given by

h2(Fi) =

{

−c (Fi − a) + b for Fi ≥ a ,

d (Fi − a) + b for Fi < a ,
(3.3)
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Figure 6. The same as figure 5 but using the broken-line function defined in eq. (3.3) to fit the

distributions.

with all parameters being positive. The parameters “(a, b)” determine the location of the

peak and “c” and “d” determine the slopes of curves on the right side and the left side

of the peak. For the 30 GeV bin size, we compare the fitted results with the simulated

distributions in figure 6. We see that the “broken-line” function can fit all histograms

including F3 pretty well. The slope “c” depends on the number of events and the overall

scale of the invariant mass functions. To quantify the differences of the slopes on the

right side of the peaks for different topologies and functions, we define the dimensionless

combination b/(ac) to be inverse of the normalized slope, which is independent of the

number of events and the overall scale. A smaller value of b/(ac) means a steeper slope on

the right side of the peak. For two different bin sizes, 30 GeV and 40 GeV, we present the

fitted values of b/(ac) in table 2. Similarly, the fitted results are insensitive to the choices

of bin sizes.

One can näıvely define the end point to be the intersecting point of the right branch

of the broken-line with the x-axis, which is given by F end
i ≡ a + b/c, as a simple estimate

of the true end point. The fitted values of the end points in terms of different functions are

listed in table 3. As one might have expected, this definition tends to give a larger value

of the end point than the actual value for most of the cases having a real end point.

After fitting the shapes of distributions, we can now use the information in table 1

and 2 to identify different topologies. From these tables, one can see that the topology

can be identified by finding “i” of the minimum of all four a2(Fi) for the log-normal fit or
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bin size = 30 GeV bin size = 40 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)
b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

4⊕0 0.26(0.02) 0.42(0.04) 0.52(0.03) 0.62(0.04) 0.24 0.48 0.47 0.49

3⊕1 0.95(0.19) 0.47(0.06) 0.69(0.09) 0.70(0.10) 0.95 0.49 0.70 0.70

2⊕2 1.10(0.30) 1.09(0.15) 0.96(0.14) 0.52(0.05) 1.09 1.09 1.21 0.53

Table 2. The fitted values for b/(ac) of the “broken-line” function in eq. (3.3), which determine

the normalized steepness of the slope of the histogram after the peak. The bin size has been chosen

to be 30GeV (left), and 40GeV (right). We have also shown the 1 σ statistical uncertainties for the

30GeV bin size in the parenthesis, based on 1932, 1013 and 1313 events after cuts for 4⊕0, 3⊕1

and 2⊕2, respectively.

bin size = 30 GeV bin size = 40 GeV

F end
1 F end

2 F end
3 F end

4 F end
1 F end

2 F end
3 F end

4

4⊕0 885±19 (800) 592±19 (600) 415±10 (394) 422±11 (397) 886 603 408 409

3⊕1 1332 647±30 (600) 436±25 (<458) 509 1329 652 441 512

2⊕2 1668 894 520 484±17 (387) 1670 898 554 483

Table 3. The fitted values (in GeV) of the end points, which are the right intersection point of

broken lines with the x-axis. The bin size has been chosen to be 30GeV (left), and 40GeV (right).

The numbers in the parenthesis are the end-point values at the parton level. We have also shown

the 1 σ statistical uncertainties for the same event samples as in table 2 for the 30GeV bin size.

b/(ac)(Fi) for the broken-line fit. If i = 1, then the topology is 4⊕0; if i = 2 (or 3), it is

3⊕1; if i = 4, it is 2⊕2. The procedure described above to identify the dark matter event

topologies with 4j + /ET is summarized in the flow chart in figure 7. The two choices of the

fitting functions give similar results, so we will only use the broken-line fits in the rest of

the paper.

Based on the central values and 1σ statistical uncertainties in table 2, we estimate

the required numbers of events to achieve 90% of time correct for the topology 4⊕0 to

be 446, 3⊕1 to be 777 and 2⊕2 to be 740. All of those numbers are defined after the

basic kinematic cuts and assuming negligible SM backgrounds. A more complete analysis

requires simulations of SM backgrounds and is beyond the scope of this paper.

To test the robustness of our variables for identifying different event topologies, we also

consider another example with a different mass spectrum. Specifically, we choose the two

mass splittings to be 300 GeV and two mass splittings to be 200 GeV. The LSP mass is still

kept to be 200 GeV. For example, to generate 2⊕2 type events, we choose mg̃ = 700 GeV,

MũR
= 400 GeV and mχ = 200 GeV; for 3⊕1, we choose MũL

= 1000 GeV, mg̃ = 700 GeV,

MũR
= 400 GeV and mχ = 200 GeV; for 4⊕0, mg̃ = 1200 GeV, MũL

= 900 GeV, mχ2
=

600 GeV, MũR
= 400 GeV and mχ = 200 GeV. After imposing the same cuts as before,

at least four jets with ET > 100 GeV and the missing transverse energy /ET > 200 GeV,
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calculate Fi

events with

4 jets + MET

fit to Fi

distributions

find i such that a2(Fi) =

min[a2(F1), a2(F2), a2(F3), a2(F4)]

i = 1

i = 2

i = 4

4⊕0 2⊕23⊕1

Figure 7. The flow chart of our procedures to identify the event topologies with 4j+/ET when using

the log-normal function to fit the Fi distributions. For the broken-line fit, one needs to replace a2

by b/(ac).

bin size = 30 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

4⊕0 0.18(0.02) 0.28(0.02) 0.59(0.05) 0.51(0.03)

3⊕1 0.75(0.12) 0.65(0.09) 1.03(0.13) 0.66(0.07)

2⊕2 1.25(0.26) 0.99(0.14) 1.04(0.13) 0.30(0.03)

Table 4. The fitted values for b/(ac) of the “broken-line” function in eq. (3.3) for another mass

spectrum. The bin size has been chosen to be 30GeV. We have also shown the 1 σ statistical

uncertainties for the 30GeV bin size in the parenthesis, based on 2943, 1961 and 2013 events after

cuts for 4⊕0, 3⊕1 and 2⊕2, respectively.

and repeating the same analysis, we obtain the fitted values of b/(ac) in table 4 for this

spectrum. From table 4, one can see that this mass spectrum with unequal mass splittings

in decay chains can also have their event topologies determined by the flow chart in figure 7.

If the hierarchies among those jet ET ’s are even larger, one can order these jets according

to their ET ’s and then define more invariant mass functions to help identifying the event

topologies accordingly, which will be briefly discussed in section 4.
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3.1 Initial state radiation

There exist other possibilities to have the 4j + /ET final state after passing the basic kine-

matic cuts. For example, two of the jets come from a resonance like the W boson. For this

case, one can first check the two-body invariant mass distribution which should have an

obvious mass peak, and then translate the 4j+/ET final state to the W +2j+/ET final state.

It could be easier to identify the three topologies for the W + 2j + /ET final state following

a similar method described before. Another possibility is to have the partonic events to be

5j +/ET but with one jet being soft and lost by basic cuts. If this indeed happens a lot, two

dark matter parity-odd particles in the same decay chain may have masses close to each

other. For this case, one can only treat those events as real 4j + /ET events and apply the

procedure proposed earlier to at least understand the relative positions of the four hard

jets, though the end points become less sharp and the formulae in appendix A may not be

accurate.

The third possibility is to have only 3 jets coming from the decay chains but the fourth

jet from ISR. There are two types of topologies, 3⊕0⊕ISR (three jets from a single chain)

and 2⊕1⊕ISR (two jets from one chain and another jet from the other chain). In this

subsection, we describe the additional procedures for identifying those two new topologies

with one ISR jet.

The 3⊕0⊕ISR topology is very similar to the 3⊕1 topology. The only difference is

that the isolated jet comes from ISR instead of from the decay of a heavy particle. Indeed,

the fitted slopes for the 3⊕0⊕ISR topology have the same pattern as the 3⊕1 topology,

with the F2 function giving the steepest slope. To distinguish it from the 3⊕1 topology,

we should examine the ET distribution of the isolated jet. If it comes from the ISR, it

should have a falling ET distribution starting from the kinematic cut. On the other hand,

a jet coming from a heavy particle decay should have a peak value determined by the

mass difference. Because the 3 jets from the same decay chain are likely to have a smaller

invariant mass, we define the following 3⊕0⊕ISR-specified function:

F5(p1, p2, p3, p4) = ET (pk) ,

such that ǫklij 6= 0 and inv[pl, pi, pj ] = min

{

⋃

r,s,t

inv[pr, ps, pt]

}

. (3.4)

The distributions of F5 for different topologies are shown in figure 8. There, we use the

broken-line function to fit various distributions with 30 GeV bin size. As can be seen from

this plot, 3⊕1 and 3⊕0⊕ISR have different locations of the peak with a lower value for the

3⊕0⊕ISR case. To quantify this difference, we compare the dimensionless parameter d/c,

which measuring the ratio of the rising slope before the peak and the falling slope after

the peak. The numerical values of the b/(ac) and d/c for those five topologies and five

functions are listed in table 5. We see that the 3⊕0⊕ISR and 3⊕1 can be distinguished

by examining d/c(Fi). The 3⊕0⊕ISR has the largest value in F5 while the largest value

for 3⊕1 occurs at F1. For the 2⊕1⊕ISR topology, it is not expected to have an end point

for any of these functions. Indeed, we find that all four b/(ac)(Fi) are comparable and

none of them takes a value as small as those ones with end points for the corresponding
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Figure 8. The distributions of F5 for different topologies. 10000 events are generated for each

topology before the cuts. There are 826 3⊕0⊕ISR events and 699 2⊕1⊕ISR events after the cuts.

b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)
b
ac

(F5)

4⊕0 0.26(0.02) 0.42(0.04) 0.52(0.03) 0.62(0.04) 1.65(0.14)

3⊕1 0.95(0.19) 0.47(0.06) 0.69(0.09) 0.70(0.10) 1.24(0.16)

2⊕2 1.10(0.30) 1.10(0.15) 0.96(0.14) 0.52(0.05) 1.37(0.24)

3⊕0⊕ISR 0.84(0.22) 0.48(0.08) 0.60(0.11) 0.93(0.13) 1.98(0.26)

2⊕1⊕ISR 1.00(0.35) 0.96(0.28) 1.14(0.29) 1.31(0.28) 1.63(0.36)

d
c
(F1)

d
c
(F2)

d
c
(F3)

d
c
(F4)

d
c
(F5)

4⊕0 0.93(0.26) 0.81(0.19) 0.41(0.11) 1.27(0.24) 3.39(0.76)

3⊕1 3.14(0.92) 0.81(0.29) 0.67(0.23) 1.36(0.33) 1.56(0.49)

2⊕2 1.76(0.47) 2.52(0.63) 1.29(0.32) 0.95(0.24) 0.97(0.26)

3⊕0⊕ISR 1.51(0.58) 0.98(0.41) 0.46(0.17) 2.39(0.92) 4.68(1.70)

2⊕1⊕ISR 1.18(0.59) 1.70(0.60) 0.90(0.34) 2.29(0.82) 1.73(0.65)

Table 5. The fitted values of b/(ac), which determine the normalized steepness of the slopes of

the histograms after the peak, and the fitted values of d/c, which determine the ratios of the rising

slopes and the falling slopes around the peak. The broken-line function in eq. (3.3) is used to fit

the distributions. The bin size has been chosen to be 30GeV.

topology. That it is not any of the other topologies which should have at least one end

point among the 4 functions can be taken as a sign for the 2⊕1⊕ISR topology. It is also

not so easy to identify the ISR jet for this topology. To unambiguously distinguish it from

other topologies is more challenging and probably requires additional functions. We will

have more discussion on this topology in appendix B.

The ISR jets are typically softer than other jets from particle cascade decays. The

hierarchies of hard jets can make the identification of the 3⊕0⊕ISR (or 2⊕1⊕ISR) topology
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d
c
(F1)

d
c
(F2)

d
c
(F3)

d
c
(F4)

d
c
(F5)

4⊕0 0.57(0.12) 1.02(0.21) 0.39(0.11) 0.72(0.17) 2.51(0.58)

3⊕1 2.10(0.49) 0.31(0.08) 0.96(0.27) 1.56(0.36) 1.58(0.40)

2⊕2 7.33(1.81) 3.35(0.77) 1.19(0.32) 0.25(0.07) 3.02(0.78)

3⊕0⊕ISR 1.17(0.28) 0.46(0.14) 0.26(0.07) 1.44(0.28) 4.17(0.90)

2⊕1⊕ISR 1.85(0.39) 3.05(0.80) 0.77(0.19) 3.05(0.62) 7.69(1.90)

Table 6. The fitted values of d/c for another mass spectrum. The broken-line function in eq. (3.3)

is used to fit the distributions. The bin size has been chosen to be 30GeV. The number of events

after the cuts are 848, 625, 725, 469, and 381 respectively.

more difficult. For example, if the ISR jet is much softer than other jets, the function

defined in eq. (3.4) may not pick out the ISR jet for the 3⊕0⊕ISR topology. Noticing

this difficulty, we generate the two ISR events with a different spectrum: for 2⊕1⊕ISR,

mg̃ = 700 GeV, MũR
= 400 GeV and mχ = 200 GeV; for 3⊕0⊕ISR, MũL

= 1000 GeV,

mg̃ = 700 GeV, MũR
= 400 GeV and mχ = 200 GeV, and compare them to the three

topologies without ISR as discussed around table 4. The detailed analysis turns out to be

sensitive to the ET cuts on the jets. If the ET cuts are too low, the event topologies with

ISR should have the fourth jet to have a simple exponential decreasing ET distribution.

For other event topologies without ISR, the fourth jet should have a peak structure in

the ET distribution. Only when the ET cut is sufficient high, one can not use this simple

fact to distinguish ISR event topologies from others. Imposing cuts, at least four jets

with ET > 150 GeV and the missing transverse energy /ET > 200 GeV, we have the fitted

values of d/c for different variables in table 6. Again, we see that the 3⊕0⊕ISR and 3⊕1

can be distinguished by examining d/c(Fi). The 3⊕0⊕ISR has the largest value in F5.

Alternatively, a more sophisticated ISR tagging method [39] may be used to select the

potential ISR jet for comparison.

3.2 Off-shell decays

It frequently happens in models with dark matter that some particles have the dominant

decays to be three-body processes. For example in SUSY, if squarks are heavier than the

gluino, the dominant decay channel of the gluino is to two quarks plus one neutralino

via off-shell squarks. In this subsection, we use the SUSY model to generate events with

off-shell decay processes in the decay chains with the assistance of the Monte-Carlo tool

BRIDGE [40]. For the 2⊕2 event topology, the events are generated by pair producing

two gluinos, and then decaying each one to ū + u + χ via off-shell squarks. For 3⊕1, we

first generate events with ũL + ũR in the final state, and then we require ũL → ū + u + ũR

via the off-shell gluino or neutralino and ũR → u + χ. For 4⊕0, we first generate events

with g̃ + χ in the final state, and then we require g̃ → ū + u + χ2 and χ2 → ū + u + χ via

off-shell squarks. To produce events with similar visible kinematics for all three topologies,
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bin size = 25 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

4⊕0 0.40(0.08) 0.93(0.12) 0.92(0.12) 0.82(0.08)

3⊕1 0.96(0.35) 0.62(0.13) 0.80(0.13) 0.80(0.16)

2⊕2 1.47(0.54) 1.09(0.22) 0.84(0.12) 0.74(0.13)

bin size = 30 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

4⊕0 0.44(0.07) 0.85(0.10) 0.82(0.11) 0.78(0.08)

3⊕1 0.80(0.26) 0.67(0.12) 0.58(0.11) 0.84(0.14)

2⊕2 1.47(0.45) 1.15(0.20) 0.83(0.11) 0.81(0.12)

Table 7. The fitted values of b/(ac) for the off-shell decay case. The broken-line fit is used to

obtain those numbers. Again each topology has 10000 events before the cuts, and there are 1152,

671 and 915 events passing the cuts for 4⊕0, 3⊕1 and 2⊕2 respectively.

the LSP χ is fixed to have a mass of 200 GeV, and the mass difference between the mother

superparticle and the daughter superparticle is chosen to be 200 GeV for two-body decays

and 400 GeV for three-body decays. As a consequence, all four jets should have similar ET

distributions on average.

After the basic cuts on all signal events: at least four jets with ET > 100 GeV and the

missing transverse energy /ET > 200 GeV, the acceptance efficiencies are 11.5%, 6.7% and

9.2% for 4⊕0, 3⊕1 and 2⊕2, respectively. Those efficiencies are lower than the on-shell

decay cases simply because jets in the off-shell case have a larger probability to become soft.

Repeating the same procedure as in the on-shell decay case, we have fitted the slopes

of the distributions after the peak in table 7. Comparing table 7 with table 2 for the

on-shell case, we can see that the differences of b/(ac)(Fi) are reduced for the off-shell case.

Although a similar selection criterion like figure 7 can still be used to identify those three

topologies, more signal events or a higher integrated luminosity at the LHC are required

to identify the topologies for the off-shell case. After the event topology is identified, the

on-shell and off-shell decay cases may be distinguished by examining the correlations of

the invariant masses [13] and/or the function MT2,max [15, 16, 18–20].

For completeness, we also report the fitted end-point values in table 8 for the 30 GeV

bin size.

3.3 The cases of mixtures of different event topologies

It may also happen that the signal events of the same final state come from a combination

of two or more different event topologies. The method discussed in this paper should work

when one topology dominates over the others. To quantify the limit at which the topology

can be identified by our method, we use a mixture of 2⊕2 and 3⊕1 topologies as a case
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bin size = 30 GeV

F end
1 F end

2 F end
3 F end

4

4⊕0 977 (800) 660 (< 754∗) 411 (< 754∗) 438 (< 754∗)

3⊕1 1343 669 (600) 413 (< 600∗) 538

2⊕2 1680 806 485 483 (400)

Table 8. The fitted values (in GeV) of the end points, which are the right intersection points

of broken lines with the x-axis. The bin size has been chosen to be 30GeV. The numbers in the

parenthesis are the end-point values at the parton level. The numbers with ∗ occur in the soft

limit of some jet(s) which in practice will not pass the cuts. Therefore the actual end points are

much smaller.
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Figure 9. The fitted values of b/(ac) for different functions Fi as functions of x, where x is the

fraction of 2⊕2 type events in a mixture of 3⊕1 and 2⊕2 topologies with 1000 combined events

(after the basic cuts). The bin size is 30GeV. Only bins with a height above 1/2 of the peak height

on the left side and above 1/4 of the peak height on the right side are included in the fit.

study. Fixing the total number of events after the basic cuts to be 1000, we study the

patterns of the fitted b/(ac) as a function of the mixture fraction, x. For x = 0, all events

are from the 3⊕1 topology, while for x = 1 all events are from the 2⊕2 topology. For

the 4 functions F1–F4, the fitted values of b/(ac) as functions of the mixture fraction are

shown in figure 9. As x increases, one can see from figure 9 that there is a transition of the

function with the smallest b/(ac) from F2 to F4. The transition happens around x ≈ 50%

with a mixture of equal amount of 2⊕2 and 3⊕1 events. It is not surprising that if the

signal is indeed a mixture of 2⊕2 and 3⊕1 with comparable weights, one can not identify

the topology unless additional kinematic information can split the signal events into the

two categories. The abrupt changes of lines in figure 9 are due to changes of bins during

the fit procedure by only including bins with a height above 1/2 of the peak height on the
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Figure 10. The same as figure 9 but for a mixture of 2⊕1⊕ISR and 2⊕2 topologies with 1000

combined events (after the cuts). Here, x is the fraction of 2⊕2 type events in a mixture of 2⊕1⊕ISR

and 2⊕2 topologies.

left side and above 1/4 of the peak height on the right side. The statistical errors of these

curves depend on the number of events. For 1000 total events the errors are about 15%.

In our analysis, the SM backgrounds are neglected. Since there is no reason to antici-

pate SM backgrounds to have end points in terms of those functions Fi, the pattern of the

fitted slopes for different Fi should not be modified much if the signal events dominate over

the backgrounds. As an illustration, we treat the events from 2⊕1⊕ISR as the backgrounds

of 2⊕2 signals, and show the patterns as a function of percentage of 2⊕2 in figure 10. If

the signal events are over around 50% of the total number of events, the b/(ac)(F4) is the

smallest among all Fi functions. In this situation, we still can determine the signal events

are from the 2⊕2 topology.

4 Discussion and conclusions

Although we focus on the 4 j +/ET final state in this paper, a similar set of functions can be

used to identify event topologies of n j + /ET with n ≥ 3. Without ISR, there are [n/2] + 1

different topologies with two decay chains. For n = 2k + 1, one can define k + 1 functions

to find the minimum of all possible invariant masses of m jets for m = k + 1, · · · , 2k + 1.

For n = 2k, other than the k functions defined to be the minimum of all possible invariant

masses of m jets for m = k + 1, · · · 2k + 1, one additional function can be defined as the

minimum of the maximum of two invariant masses of k jets among all possible combinations

(similar to the function F4). One can also define functions analogous to F3 by removing

some jets which form the largest invariant mass and looking at the the invariant mass of

the other jets. For the cases with ISR, the general strategy would be to first identify the

existence of an ISR jet by the jet ET distribution and then define functions based on the

remaining n − 1 jets. From our study of the 4 j + /ET example, we found that some cases
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with ISR are difficult to identify without lowering the ET cuts on jets. For 2 j + /ET , the

general strategy does not work. The case with 2 jets on the same chain may be checked

by finding the end point of the 2-jet invariant mass. On the other hand, the topology with

one jet on each decay chain can not be identified with invariant mass functions. Other

kinematic functions like MT2 or MCT [41] might be useful for this topology.

If the final states also contain leptons in addition to jets plus /ET , their charges, flavors

and good energy resolutions can give better handles for the event topology identification.

The lepton number and flavor conservations (if they are good symmetries) may already

give us some hints on the type of topologies. For instance, consider the 2 j+2 ℓ++2 ℓ−+/ET

final state. The SUSY-like theories suggest that the leptons from the same decay chain

should have the same flavor and opposite charges. However, one can imagine more general

models which may contain doubly charged particles and/or large lepton flavor violations

and hence invalidate the argument. Nevertheless, the strategies taken in this paper should

be able to identify event topologies without these assumptions. We can first take the

four leptons and use the methods in this paper to find out their distribution on the two

chains. The case with 4 leptons on the same chain can be identified with the function

F1. The function F2 (which is the minimum of the 3-lepton invariant masses) can be used

to identify the case with 3 leptons from one chain and the other lepton from the other

chain. The functions F3 and F4 can be divided into more functions based on whether

we take the invariant mass of the 2 leptons of the same charge or the opposite charges.

For example, the function F4 restricted to opposite-charge invariant masses can identify

the case with 2 opposite-charged leptons on each chain, while the pair of the same-charge

2-lepton invariant masses can identify the case with the same-sign leptons on each chain.

Once the relative distribution of the leptons on the 2 chains has been fixed, one can check

the existence of the end point for the invariant mass distribution of two jets. If there is

no end point, one simply assigns one jet on each chain. If there is an end point, the 2 jets

are on the same chain. If the lepton distribution is not symmetric (for example, 3 leptons

on one chain and one lepton on the other chain), one can then check the invariant mass

combination of the 2 jets together with the 3 leptons to see if they come from the same

chain. In this way, we know how the visible particles distributed between the two chains.

To remove the order ambiguity of the jets and leptons on a single chain probably requires

much more sophisticated analysis which may depend on the details of the event kinematic

distributions.

In this paper we have generated events from SUSY models with certain specific spectra.

The strategies employed in this paper should work for general dark matter models with

an unbroken Z2 discrete symmetry [3, 4, 42–45], or even models with more complicated

symmetries (e.g., ref. [46–48]) as long as the events contain 2 decay chains which end with

missing particles. Additional missing particles like neutrinos coming from the decay chains

may be difficult to be identified themselves, but should not prevent us from identifying the

topology of the visible particle part. There could also be accompanied events with neutrinos

replaced by its charged lepton partners which may be used to identify the topology. The

invariant mass distributions may have different behaviors for different models. Depending
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on the spins of the intermediate particles, the sharpness of the end points of invariant mass

distributions varies [49]. For example, comparing the processes of g̃ → q̄ + q̃ → q̄ + q + χ

in SUSY and g(1) → q̄ + q(1) → q̄ + q + B(1) in the UED model, the invariant mass

distribution of two jets in the UED model has a sharper end-point than in SUSY because

it has a spin-1/2 intermediate particle, in contrast to the spin-0 particle in the SUSY case.

In general, our method will work better if the invariant mass end points are sharper as we

saw by comparing the cases of on-shell and off-shell decays. In addition, the production

cross section can vary a lot among different models with different spectra. Therefore, the

actual required luminosity at the LHC to identify a particular topology depends on the

specific model and requires a detailed study for the individual model. (For a general study

of model discriminations at the LHC, see [50, 51].)

Although we have concentrated on identifying event topologies in this paper, we would

like to point out that the functions defined in this paper can also be useful for reducing the

combinatorial problems. Once a particular topology is identified. The functions in which

this topology has end points can be used to determine the end points of some invariant

masses of particles from the same decay chain. Then the end points can be used to cut

wrong combinations [31, 52, 53] by performing an event-by-event analysis and removing

combinations with the invariant masses above the corresponding end-point value. The

order of the visible particles from a single chain for each individual event remains a difficult

problem without additional handles. We also note that the signal events often have peak

structure in these functions. The backgrounds, on the other hand, are not expected to

have peak structure in general and should be falling rapidly above the kinematic cut. A

cut around the peak of the signal region may increase the signal-to-background ratio which

could help the discovery and/or the follow-up signal analysis.

In conclusion, we have studied how to identify different event topologies with dark

matter particles produced in pairs from cascade decays of heavy particles. Setting 4 j +/ET

as a case study, we have shown that one can identify all event topologies based on the

existence of end points of several functions of invariant mass distributions defined in this

paper. We have also extended our studies to include the cases with ISR and off-shell

particles in the decay chains. It is found that most of those topologies can be identified

with O(103) signal events after basic kinematic cuts. We believe that this study should be

the first step towards measuring the masses and spins of the dark matter particles, and

similar studies should be performed for events with other final states.
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M A

pV

Figure 11. The general Feynman diagram with a mother particle M cascade decays into visible

particles and a single missing particle A.

A Invariant mass end point formulae

In this appendix we summarize the formulae for various (up to four particles) invariant

mass end points in a decay chain, with either on-shell or off-shell intermediate particles.

We start with a general consideration. Consider that a mother particle M goes through

cascade decays by emitting several visible particles and end up with a single missing particle

A as shown in figure 11. Denote the total momentum of all visible particles by pV , the

invariant mass-squared of all visible particles is given by

p2
V = (pM − pA)2 = m2

M + m2
A − 2pM pA

→ m2
M + m2

A − 2mMEA, in the rest frame of the mother particle M . (A.1)

We see that the maximum of p2
V occurs when EA is minimized in the rest frame of M . In

particular, if it is possible to make A at rest in the M rest frame, then EA,min = mA and

p2
V,max = (mM − mA)2. However, it is not always possible to make A at rest if one of the

on-shell decay produces a large boost in some direction which can not be compensated by

the boosts in the opposite direction from other stages of the decays. In this case, to reach

the maximum of p2
V we still would like to have the other decays to boost A in the opposite

direction from the largest-boost decay to minimize EA in the M rest frame. We will see

some examples in the invariant mass end point formulae.

Many invariant mass end point formulae (up to three particles) can be found in the

literature [7–11, 13, 14]. For our study, we extend the formulae to any invariant mass

combinations in a decay chain with four visible particles, shown in figure 12. For simplicity

we assume that all visible particles are massless, p2
1 = p2

2 = p2
3 = p2

4 = 0, which is a

good approximation for most cases. The intermediate particles D, C, B may be off shell.

The modifications of the end point formulae for off-shell decays will be remarked when it

is relevant. As a rule of thumb, when an end point formula contains a mass parameter

explicitly, it applies to the case when the corresponding intermediate particle is on shell.

If a mass parameter does not appear in an end point formula, then the formula applies

for either that particle being on shell or off shell. We follow the notations in ref. [14] by

defining Rij ≡ m2
i /m

2
j , where i, j = A,B,C,D,E.
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Figure 12. The Feynman diagram with a mother particle E cascade decays into four jets ji and

a single missing particle A.

C
B 2

A1
B

Figure 13. The extremal configuration for m2

12,max
.

C
B 2

A1
B

D
3C

Figure 14. The extremal configuration for m2

13,max
.

A.1 Two-particle invariant masses

1. m2
12,max:

The extremal configuration is shown in figure 13. The invariant mass end point for

on-shell B is given by the well-known formula

m2
12,max =

(m2
C − m2

B)(m2
B − m2

A)

m2
B

= m2
C(1 − RBC)(1 − RAB). (A.2)

In the case that B is off shell, it is possible to make A at rest in the C rest frame, so

m2
12,max = (mC − mA)2 = m2

C(1 −
√

RAC)2, if B is off shell. (A.3)

2. m2
13,max:

The extremal configuration for on-shell decays is shown in figure 14. The corre-

sponding invariant mass end point is

m2
13,max =

(m2
D − m2

C)(m2
B − m2

A)

m2
B

= m2
D(1 − RCD)(1 − RAB). (A.4)
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Figure 15. The extremal configuration for m2

14,max
.

If C or B is off shell, then the invariant mass end point occurs in the soft limit of

visible particle 2, p2 → 0. The invariant mass end point formula can be obtained in

the same way as m2
12,

m2
13,max =

{

m2
D(1 − RBD)(1 − RAB), if C is off shell,

m2
D(1 − RCD)(1 − RAC), if B is off shell.

(A.5)

However, unless the initial particle D is highly boosted, the particle 2 is likely to be

too soft to pass the cut in this limit. The end point distribution will not be very

sharp on an event sample which includes a hard-enough particle 2. The formula only

works as an upper bound in practice and the actual end point may be much smaller

depending on the jet ET cut. Similar consideration also applies to other cases where

only one of the two visible particles coming from an off-shell decay is included in

the invariant mass calculation. The invariant mass maximum occurs in the soft limit

of the other visible particle from that decay. The invariant mass end point is the

same as the case with that soft visible particle removed, though in practice it will be

smaller and not be as sharp.

3. m2
14,max:

The extremal configuration for on-shell decays is shown in figure 15. The corre-

sponding invariant mass end point is

m2
14,max = m2

E(1 − RDE)(1 − RAB). (A.6)

When some of the D,C,B intermediate particles are off shell, m2
14,max occurs in the

soft limit of particle 2 or 3. The configurations become equivalent to the previous

cases and one can use the results in these cases with replacements of the appropri-

ate masses.

A.2 Three-particle invariant masses

1. m2
123,max:

First we consider that all three decays are on shell. If A can be put at rest in the D

rest frame by combining three boosts, then the end point formula is simply given by
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Figure 16. The general extremal configuration for m2

124,max.

(mD−mA)2. On the other hand, if one of the decays gives a large boost which can not

be compensated by the other two boosts, the end point occurs when the two smaller

boosts are in the opposite direction of the largest boost. If one of the intermediate

particle is off shell, the two visible particles coming from that three-body decay can

have a boost ranging from 0 to the maximal value. Therefore, A can not be put at

rest only if the other on-shell decay gives a boost larger than the maximum boost

from the three-body decay.

(a) If RCD < RAC , the boost from D → C decay can not be compensated by the

boost from C → A (irrespective of whether B is on shell or off shell). The end

point of m2
123 is given by

m2
123,max = m2

D(1 − RCD)(1 − RAC). (A.7)

(b) If RBC < RABRCD, the largest boost comes from C → B decay and the end

point of m2
123 is given by

m2
123,max = m2

D(1 − RBC)(1 − RABRCD). (A.8)

(c) If RAB < RBD, irrespective of whether C is on shell or not, the end point of

m2
123 is given by

m2
123,max = m2

D(1 − RAB)(1 − RBD). (A.9)

(d) In other cases when there is no single large boost and A can be put at rest in

the D rest frame, the end point of m2
123 is given by the standard formula,

m2
123,max = m2

D(1 −
√

RAD)2. (A.10)

2. m2
124,max:

If C or D is off-shell, the end point occurs in the soft limit of visible particle 3.

Then it reduces to the previous case (case 1) and the end point formulae can be

easily obtained by replacing the appropriate masses. In the following discussion we

assume that both C and D are on shell. The general extremal configuration is shown

in figure 16. The double arrow represents the total momentum of particles 1 and

2, while individual particles may go in different directions depending on the relative

mass parameters.
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Figure 17. The general extremal configuration for m2
134,max.

(a) If RAC(1 −RDE + RCE) > RCE , the extremal configuration is that particles 1

and 2 move in the same direction, which is opposite to particles 3 and 4. The

end point of m2
124 in this case is given by

m2
124,max = m2

E(1 − RDE)(1 − RAC). (A.11)

The intermediate particle B can be either on shell or off shell, while other

intermediate particles C and D need to be on shell.

(b) If all intermediate particles (B,C,D) are on shell and R2
BC(1−RDE + RCE) >

RAE , and if RAB > RBC , the extremal configuration is that particles 1, 3 and

4 move in the same direction which is opposite to particle 2. The end point of

m2
124 in this case is given by

m2
124,max = m2

E(1 − RBC)[1 − RDE + RCE(1 − RAB)]. (A.12)

(c) If all intermediate particles are on shell and RAB(1−RDE +RCE) > RBE , and

if RAB < RBC , the extremal configuration is that particles 2, 3 and 4 move in

the same direction which is opposite to particle 1. The end point of m2
124 in this

case is given by

m2
124,max = m2

E(1 − RAB)[1 − RDE + RCE(1 − RBC)]. (A.13)

(d) In other cases, particles 1, 2 and 4 are not collinear in the extremal configuration.

The end point is given by

m2
124,max = m2

E(
√

1 − RDE + RCE −
√

RAE)2. (A.14)

3. m2
134,max:

If B or C is off-shell, the end point occurs in the soft limit of visible particle 2.

It also reduces to the case 1 and the end point formulae can be easily obtained by

replacing the appropriate masses. In the following discussion we assume that both

B and C are on shell. The general extremal configuration is shown in figure 17. The

double arrow represents the total momentum of particles 3 and 4, while individual

particles may go in different directions depending on the relative mass parameters.
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(a) If
√

RBE(1 − RAB) > (1 − RCE), the extremal configuration is that particles

2, 3 and 4 move in the same direction, which is opposite to particle 1. This is

independent whether D is on shell or not. The end point of m2
134 in this case is

given by

m2
134,max = m2

E(1 − RCE)(1 − RAB). (A.15)

(b) If all intermediate particles are on shell and
√

RBE(1 − RAB) < |RCD − RDE |,
and if RCD > RDE , the extremal configuration is that particles 1 and 3 move

in the same direction, which is opposite to particles 2 and 4. The end point of

m2
134 in this case is given by

m2
134,max = m2

E(1 − RDE)(1 − RCDRAB). (A.16)

(c) If all intermediate particles are on shell and
√

RBE(1 − RAB) < |RCD − RDE |,
and if RCD < RDE , the extremal configuration is that particles 1 and 4 move

in the same direction, which is opposite to particles 2 and 3. The end point of

m2
134 in this case is given by

m2
134,max = m2

E(1 − RCD)(1 − RDERAB). (A.17)

(d) In other cases, particles 1, 3 and 4 are not collinear in the extremal configuration.

The end point is given by

m2
134,max = m2

E(1 −
√

RCERAB)2. (A.18)

A.3 Four-particle invariant masses

1. m2
1234,max:

Again, the end point depends on whether there is a large boost from one of the

on-shell decays which can not be compensated by the combined boost from other

decays.

(a) If RDE < RAD (B, C can be on shell or off shell), the end point is given by

m2
1234,max = m2

E(1 − RDE)(1 − RAD). (A.19)

(b) If RCD < RACRDE (B can be on shell or off shell), the end point is given by

m2
1234,max = m2

E(1 − RCD)(1 − RACRDE). (A.20)

(c) If RBC < RABRCE (D can be on shell or off shell), the end point is given by

m2
1234,max = m2

E(1 − RBC)(1 − RABRCE). (A.21)

(d) If RAB < RBE (C, D can be on shell or off shell), the end point is given by

m2
1234,max = m2

E(1 − RAB)(1 − RBE). (A.22)

(e) In other cases when there is no single large boost and A can be made at rest in

the E rest frame, the end point of m2
1234 is given by the standard formula,

m2
1234,max = m2

E(1 −
√

RAE)2. (A.23)
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A.4 End point formulae for functions F1, F2, F3, F4

Now we can write down the formulae for the end points (if they exist) for the functions

F1, F2, F3, F4 defined in section 2 for various topologies.

For the 4⊕0 topology, the invariant mass end points come from the decay chain with

4 jets. It has exactly the topology in figure 12. The end points for F1–F4 are

F1,max =
√

m2
1234,max, (A.24)

F2,max = min
{√

m2
123,max,

√

m2
124,max,

√

m2
134,max,

√

m2
234,max

}

, (A.25)

F3,max =
√

m2
ij,max, with max

{

⋃

m,n

m2
mn,max

}

= m2
kl,max and ǫijkl 6= 0, (A.26)

F4,max = min







⋃

i,j

max
(√

m2
ij,max,

√

m2
kl,max

)







for ǫklij 6= 0. (A.27)

For the 3⊕1 and 3⊕0⊕ISR topologies, the invariant mass end points come from the

decay chain with 3 jets, which are labeled as 1, 2, 3. The end points for F1–F4 are

F1,max : no end point, (A.28)

F2,max =
√

m2
123,max, (A.29)

F3,max ≤ max
{

√

m2
12,max,

√

m2
13,max,

√

m2
23,max

}

, (A.30)

F4,max : no end point. (A.31)

For the three visible particles from the same decay chain, the maximum of
√

m2
12,max,

√

m2
13,max,

√

m2
23,max occurs when two of the three particles are parallel and the other one

is anti-parallel. However, the definition of F3 will take the more energetic one away from

the 2 parallel particles to pair with the particle from the other decay chain, so the actual

F3,max will in general be smaller than the above formula.

For the 2⊕2 topology, the invariant mass end points can come from either decay chain.

We assume that the two decay chains are symmetric and label the two jets on the same

chain as 1 and 2. The end points for F1–F4 are

F1,max : no end point, (A.32)

F2,max : no end point, (A.33)

F3,max : no end point, (A.34)

F4,max =
√

m2
12,max. (A.35)

The 2⊕1⊕ISR topology is not expected to have a sharp end point in any of F1–F4

functions.

For the parameters used in section 2, mA = 200 GeV, mB = 400 GeV, mC = 600 GeV,

mD = 800 GeV, and mE = 1000 GeV, the various end points (in GeV) are listed in table 9.
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Topology F1 F2 F3 F4

4⊕0 800 600 394 397

3⊕1 — 600 < 458 —

2⊕2 — — — 387

Table 9. Theoretical predictions of the end points in terms of the functions Fi for the spectrum

chosen in section 2. All numbers are in GeV.
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Figure 18. The distributions of F6 for different topologies. We require at least 4 jets with

ET > 50GeV and missing transverse energy /ET > 100GeV.

B Identifying the 2⊕1⊕ISR topology

To identify the 2⊕1⊕ISR topology, we need to find a way to pick out the ISR jet and

distinguish it from the other cases without ISR. The ISR jets should have a falling ET

distribution, while other jets from heavy particle on-shell decays should have an ET distri-

bution with peak structure if the peak is above the cut. In order to keep the peak structure

of those energetic jets, the cut on the jet ET can not be too strong. Therefore, in this sec-

tion, we impose a softer cut on the basic kinematics: at least 4 jets with ET > 50 GeV and

missing transverse energy /ET > 100 GeV.

To increase the probability of finding the ISR jet for the 2⊕1⊕ISR topology, we only

choose those events in which the two pairs with the largest invariant masses contain the

same jet. We then plot the ET distribution of the remaining one which does not appear in

the two largest invariant masses. We use the following function to describe this procedure

F6(p1, p2, p3, p4) = ET (jl) ,

such that ǫijkl 6= 0 and mij,mik = two largest invariant masses. (B.1)

The event distributions for different topologies in terms of F6 are shown in figure 18. By
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bin size = 40 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

3⊕0⊕ISR 0.99(0.09) 0.81(0.06) 1.58(0.08) 0.98(0.05)

2⊕1⊕ISR 1.11(0.14) 1.37(0.10) 1.54(0.13) 1.27(0.08)

bin size = 50 GeV

Topologies b
ac

(F1)
b
ac

(F2)
b
ac

(F3)
b
ac

(F4)

3⊕0⊕ISR 1.00(0.08) 0.81(0.05) 1.65(0.08) 0.97(0.05)

2⊕1⊕ISR 1.20(0.12) 1.37(0.09) 2.20(0.12) 1.35(0.07)

Table 10. The fitted values of b/(ac), which determine the normalized steepness of the slopes of

the histograms after the peak. The broken-line function in eq. (3.3) is used to fit distributions.

The bin size has been chosen to be 40GeV (upper), and 50GeV (lower). Again each topology has

10000 events before the cuts, and there are 3841 and 3632 events passing the cuts for 3⊕0⊕ISR and

2⊕1⊕ISR, respectively.

choosing a proper bin size, we can see from figure 18 that the two topologies with ISR have

the largest number of events at the first bin, which can be used to distinguish them from

topologies without ISR.

To further distinguish 2⊕1⊕ISR from 3⊕0⊕ISR, we can simply check their patterns of

the parameters of the first four functions. If b/(ac)(F2) is smaller than the other values, we

can then identify the topology as 3⊕0⊕ISR. On the other hand for the 2⊕1⊕ISR topology,

none of the normalized inverse slopes exhibit a particularly small value and b/(ac)(F2) is

not significantly smaller than others. In this case the topology can be 2⊕1⊕ISR or with

even more ISRs,
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