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1 Introduction

The elliptic genus [1–4] is a generalized index that codes information on the spectrum

of N = 2 superconformal field theories in two dimensions. It has applications in the

calculation of anomalies and threshold corrections in string theory, in algebraic geometry,

in the theory of modular forms and in the microscopic calculation of black hole entropies.

A basic example of an elliptic genus is the elliptic genus of the compact N = 2 minimal

superconformal field theories. These conformal field theories have a representation as the

infrared fixed point of supersymmetric Landau-Ginzburg models [5, 6], or alternatively as a

gauged Wess-Zumino-Witten model [7–9]. For these prototypical compact superconformal

field theories, it is possible to calculate the elliptic genus in at least three ways. The elliptic

genus of other compact models can then be computed from that basic building block for

instance by taking orbifolded products. One can often compare the algebraic results to

geometric calculations of elliptic genera.

The three ways to compute the elliptic genus of the N = 2 minimal models are as

follows. The first is by identifying the spectrum of the model [7–11], and in particular the

representations that appear in a modular invariant partition function [12, 13]. The elliptic

genus is then the spectrum of left-movers (coded in a sum of irreducible characters) with

the right-movers in a Ramond ground state. A second way to compute the elliptic genus

is by a free field calculation [14] based on the fact that the N = 2 minimal models are the

infrared fixed point of supersymmetric Landau-Ginzburg models [5, 6]. The calculation

gives rise to an alternative expression for the elliptic genus which was shown to agree

with the algebraic formula [15]. A third way of computing the elliptic genus is via the

description of the model as a gauged Wess-Zumino-Witten model [16]. The fields of the

model can be shown to acquire the same transformation properties as the free fields of the

Landau-Ginzburg model, and moreover the path integral localizes, leading to an identical

free field calculation as the one performed in the Landau-Ginzburg description. There are
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many applications to more complicated models based on basic building blocks of central

charge smaller than three.

Our aim in this paper is to get a firmer grip on the elliptic genus1 of a non-minimal

N = 2 superconformal field theory which lies outside the above class of theories. We will

deepen our understanding of the elliptic genus of building blocks with central charge larger

than three from the three perspectives discussed above.

For now, the proposed elliptic genus is based on the calculation of the partition func-

tion of the bosonic SL(2,R) coset model [17]. The supersymmetric generalization was

performed in [18, 19]. This allows for a proposal for the elliptic genus as the algebraic

sum of discrete characters in the Ramond sector [18, 20]. Only discrete characters are

assumed to contribute, since only those allow for a Ramond sector ground state (for the

right-movers). However, the regularization used in both [17] and [18, 19] is not modular

invariant. In [19] is was also shown that keeping track of the multiplicities of descendent

states necessitates a more covariant treatment. An unexploited idea is to regulate the

volume divergence of the non-compact model covariantly by subtraction of the asymptotic

linear dilaton spectrum. In the absence of such an analysis, the fact that the proposed

elliptic genus transforms non-covariantly under modular transformation properties is not

understood. Though it is known from the mathematics literature how to patch up this

annoying feature of the holomorphic part of the elliptic genus [21–23], the physical origin

of the patchwork is obscure.

In this paper, we first strengthen the motivation for the holomorphic part of the elliptic

genus through a free field calculation. Secondly, we derive the holomorphic part of the

elliptic genus from a path integral calculation, and identify its remainder, thus gaining

insight into its modular properties. Indeed, we will identify a non-holomorphic part of the

elliptic genus that is necessary to complete the elliptic genus into a Jacobi form.

This is a neat addition to our understanding of the modular properties of non-rational

conformal field theories (see e.g. [24–26]), as well as the isolation of discrete states from

the continuum in a chiral sector of conformal field theory [27]. Our analysis is also related

to the modular properties of the characters of superconformal algebras [28], invariants of

three-manifolds, and number theory [29], the entropy of Calabi-Yau manifolds [30], and to

the entropy of black holes and the crossing of walls of marginal stability [31, 32].

2 Two perspectives on the holomorphic part of the elliptic genus

2.1 The free field perspective

Recall that the elliptic genus is the trace over the Hilbert space of an N = 2 superconformal

field theory, weighted by the fermion number, the left U(1)R charge and the conformal

dimensions of the states:

Tr(−1)F zJR
0 qL0− c

24 q̄L̄0− c
24 . (2.1)

1We will use the term elliptic genus for the twisted partition function of the theory as defined by a path

integral twisted by U(1) R-charge. An alternative would be to reserve this term for the purely holomorphic

part of the twisted partition function.
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Under suitable conditions on the Hilbert space, the trace projects onto right-moving

ground states.

In this section we give a free field derivation of (the holomorphic part of) the elliptic

genus of a superconformal field theory with central charge c greater than three and of the

form c = 3 + 6
k where k is an integer. The analysis is similar to the compact case [14],

so we mainly concentrate on the differences. We specify the superconformal field theory

in terms of a supersymmetric action with a Liouville potential term. From the potential

term, we derive the necessary properties of the free field that allow us to then compute the

elliptic genus while neglecting the interactions due to the potential.

We consider a two-dimensional N = (2, 2) supersymmetric quantum field theory con-

taining a free chiral superfield Φ with standard kinetic term, supplemented with a super-

potential F-term:

Spot = µ

∫

d2σ d2θ e

q

k
2
Φ
. (2.2)

There is also a supersymmetrized coupling to the background worldsheet Ricci scalar cur-

vature which corresponds to a linear dilaton in the direction Φ with slope Q =
√

2/k. It

renders the superpotential term Spot marginal. The bosonic superfield Φ contains a complex

dynamical bosonic field φ = −ρ + iθ, a complex auxiliary field F and two Weyl fermions

ψ±. We choose the field θ to have radius R =
√

2k.2 For an N = (2, 2) supersymmetric

model in two dimensions with a chiral superfield Φ, the supersymmetry transformation

rules read:3

δφ =
√

2(ǫ+ψ− − ǫ−ψ+)

δψ+ = i
√

2(∂0 + ∂1)φǭ− −
√

2ǫ+

√

k

2
e

q

k
2
φ∗

δψ− = −i
√

2(∂0 − ∂1)φǭ+ −
√

2ǫ−

√

k

2
e

q

k
2
φ∗

. (2.3)

The four supersymmetry parameters are ǫ±, ǭ±. The derivatives with respect to the co-

ordinates σ0,1 are denoted ∂0,1. To compute the elliptic genus, we must determine the

charges of the fields under the left-moving U(1)R group. We assign charge 0 to the right-

moving supersymmetry transformation parameter ǫ− and charge +1 to the supersymmetry

parameter ǫ+. From the supersymmetry transformation rules and the fact that:

δe

q

k
2
φ

=
√
ke

q

k
2
φ
(ǫ+ψ− − ǫ−ψ+), (2.4)

2We work in units where the self-dual radius is
√

2. Note that any integer multiple of the radius

Rmin =
p

2/k is a consistent choice. In particular, for our purposes here the radius Rmin =
p

2/k would

be an equivalent choice, up to the interchange of winding and momentum in the following discussion.
3We use the conventions and notations of [33] where the transformation rules of [34] were reduced to

two dimensions.
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we conclude that the left-moving U(1)R acts on the fields as follows:

ψ− → e−iβψ−

e

q

k
2
φ → e+iβe

q

k
2
φ

ψ+ → ψ+. (2.5)

We draw our first conclusions:

• At radius R =
√

2k we have left-moving momenta pθ,L =
√

1
2k (n − kw) (and right-

moving momenta pθ,R =
√

1
2k (n+ kw)) where n and w are integer.

• The left-moving fermion has charge −1. The right-moving fermion has zero charge.

• The field e
i
q

1
2k

θ
(which for k integer has the minimal left-moving momentum) has

charge + 1
k . The charge is carried by the zero mode of the angular component of the

complex boson.

Remark. To remain formally closer to the compact case, we could have written the

superpotential term as

W = Z−k (2.6)

where Z = e
− 1√

2k
Φ
. A crucial difference with the compact case is that there is a singular

region for the potential near Z = 0. Moreover, the potential leaves the field Z free to

fluctuate at large values in field space. The first difference prompts us to choose the

exponential variable which is better behaved near the origin, along with a standard kinetic

term. This has the crucial consequence that the configuration space is punctured, and that

we can have non-trivial winding configurations around the origin of configuration space.

Moreover, it is now only the zero-mode of the complex boson that carries charge. The

second difference forces us to specify a linear dilaton behaviour at infinity (see e.g. [35]),

in order to obtain the right central charge in the non-compact, free region of configuration

space. Finally, we note that the exponential form of the potential makes it manifest that

strictyly speaking, one cannot continuously dial the coupling constant to zero.

Free field proposal. We compute the free field elliptic genus in two steps. First, let us

consider the subsector of the Hilbert space in which the left- and right-moving momentum

of the compact boson θ are equal. In other words, we are in the zero winding sector. In the

sector of the Hilbert space where we only allow for real Liouville momenta pρ, the elliptic

genus will be zero. When we allow for imaginary momenta as well, then we can compensate

the right-moving conformal dimension of the operators e
in

q

1
2k

θ
by the Liouville momentum

contribution, and obtain a right-moving ground state. In the left-moving sector, due to

the diagonal spectrum for the Liouville mode, as well as the diagonal subsector we are in,

these modes then act as zero-modes with U(1)R charge +n/k. To compute the partition

function, we must regulate the contribution from these left-moving zero-modes (for instance
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by assigning consistently a slightly non-zero conformal dimension to one of the zero-modes

and taking into account only the modes with positive conformal dimension).4 Thus, in the

diagonal subsector, we have one fermion of charge −1, and one bosonic zero-mode of charge

+1/k. The diagonal partition function weighted on the right with the fermion number and

on the left with the U(1)R charge coded by the power of z = e2πiα is:5

χfree,off−diag =
iθ11(q, z)

η3

1

1 − z1/k
. (2.7)

Note that we evaluated the elliptic genus without regard to the presence of the superpo-

tential term. In a second step, we re-introduce the winding sectors of the model.

Go with the flow. We introduce the winding sectors for the compact boson as follows.

The integer left- and right-moving momenta differ by a multiple of 2k. The winding

sectors can be taken into account by summing independently over an extra integer m on

the left that subtracts 2km units of left-moving momentum. We now want to implement

that extra sum in the partition function. To understand an easy way to implement the

sum, it is convenient to temporarily consider the expressions for the asymptotic N =

2 superconformal algebra (at large values of ρ, where the potential is negligible). The

asymptotic N = 2 superconformal algebra is (see e.g. [37]):

Tas = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(ψρ∂ψρ + ψθ∂ψθ) −

1

2
Q∂2ρ

G±
as =

i√
2
(ψρ ± iψθ)∂(ρ ∓ iθ) +

i√
2
Q∂(ψρ ± iψθ)

JR
as = iQ∂θ − iψρψθ, (2.8)

with slope Q =
√

2/k and central charge c = 3 + 6/k. The real boson ρ parameterizes the

asymptotic linear dilaton direction, and the real field θ the angular direction at infinity. We

also define the bosonized complexified fermions e±iH = 1√
2
(ψρ ± iψθ) and find the algebra

in terms of these variables:

Tas = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(∂H)2 − 1

2
Q∂2ρ

G±
as = ie±iH∂(ρ∓ iθ) + iQ∂e±iH

= ie±iH∂(ρ∓ i(θ −QH))

JR
as = iQ∂θ + i∂H. (2.9)

We introduce the extra left-moving momentum −2km in the field θ by performing a local

U(1)R transformation (since this is consistent with the N = 2 superconformal algebra and

makes it easy to write down the partition sum in the new sector). This is equivalent to

the action of spectral flow on the N = 2 superconformal algebra. Explicitly, we see that

introducing the quantum number m on the left is equivalent to mapping θ → θ − im
√

2kz

4This is as in the compact case [14].
5We use the conventions of [36] for the η- and θ-functions.
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and H → H − imkz where z is the complexified periodic worldsheet coordinate on the

torus. The new asymptotic algebra then reads:

Tas → Tas +
c

6
(km)2 + km(iQ∂θ + i∂H)

G±
as → e∓kmzG±

as

Jas → Jas +
c

3
km. (2.10)

The latter transformation is spectral flow by km units. Therefore, we can restore the off-

diagonal sectors by performing the spectral flow operation on the holomorphic partition

sum (while keeping track of the fact that also the fermion number shifted by km) and

we find:

χhol =
∑

m∈Z

iθ11(q, z)

η3
z2mqkm2 1

1 − z1/kqm
. (2.11)

The interpretation is clear. The right-moving momentum of the angular mode is still

compensated by a diagonal Liouville momentum, but in the process every unit left-moving

momentum mode picks up a conformal dimension m in sector m. The vacuum has obtained

additional left-moving R-charge and it acquired an extra contribution to its conformal di-

mension from the extra left-moving momenta.

A remark on the individual contributions. It is natural to rewrite the holomorphic

partition sum in terms of a higher level Appell function Kl:

Kl(q, z, y) =
∑

m∈Z

qlm2/2zml

1 − yzqm
. (2.12)

We have:

χhol =
iθ11(q, z)

η3
K2k(q, z

1/k , 1). (2.13)

Above we introduced the winding sectors via a spectral flow operation. It is interesting to

ask how the regularization of the bosonic zero-mode carries over to the non-diagonal sectors

through the spectral flow operation. Given the choice |q| < |z1/k| < 1, we can expand the

elliptic genus, and identify the individual state contributions that we have allowed:

χhol =
iθ11(q, z)

η3

∑

m∈Z

z2mqkm2

1 − z1/kqm

=
iθ11(q, z)

η3





∑

m≥0,p≥0

−
∑

m≤−1,p≤−1



 qkm2+pmz2mzp/k

=
iθ11(q, z)

η3





∑

w≤0,n+kw≥0

−
∑

w≥1,n+kw≤−1



 q−nwz(n−kw)/k. (2.14)

– 6 –
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For zero winding, we recuperate the fact that we allowed positive momentum only. The

generalization is that for negative winding, we allow positive right-moving (angular) mo-

menta, and for strictly positive winding, we allow strictly negative right-moving momenta.

It is possible to understand this as follows. We fix the difference of left- and right-moving

momenta in each sector labelled by w. We then allow for diagonal operators only to act,

and this includes a dimension zero operator with tuned Liouville momentum adapted to

the diagonal angular momentum. We pick a right-moving ground state and can act with

the diagonal operator to create new right-moving ground states. It is the conformal dimen-

sion of the diagonal operators that is regularized in each sector, and therefore, the sign of

the right-moving momentum that determines our regularization scheme. The left-moving

momentum, on the other hand, can be non-zero since the left-movers are not necessarily

in the ground state. It is set by the diagonal operator, and the sector label w, for a total

momentum of n− kw on the left.

2.2 The algebraic perspective

We want to compare the final expression we obtained in the free field analysis with a

proposal [18] that has an algebraic origin [17, 18]. The higher level Appell function is a

sum over extended twisted Ramond sector characters [18] for an N = 2 superconformal

theory with central charge of the form c = 3 + 6
k with k a positive integer. Recall that the

extended twisted R-sector characters are [38]:

ChR̃
d (j, r′; q, z) =

∑

m

iθ11(q, z)

η3

1

1 − zqk(m+(2r′+1)/2k)

z
2j−1

k qk(m+ 2r′+1
2k

)(2j−1)/kz2(m+ 2r′+1
2k

)qk(m+ 2r′+1
2k

)2 . (2.15)

When we evaluate the character for a representation built on a ground state with r′ = −1/2

(which gives rise to zero conformal dimension for the value m = 0 in the infinite sum), and

we sum over spins j that lie in the set {1/2, 1, . . . , k/2} and which appear in a decomposition

of the partition function [17–19], we find the following result [18]:

k−1
∑

2j−1=0

ChR̃
d (j,−1/2; q, z) =

iθ11(q, z)

η3

∑

m

z2mqkm2 1

1 − zqkm

k−1
∑

2j−1=0

z
2j−1

k qm(2j−1)

=
iθ11(q, z)

η3

∑

m

z2mqkm2 1

1 − zqkm

1 − zqkm

1 − z1/kqm

= χhol. (2.16)

It is gratifying that the simple free field derivation agrees with the algebraic perspective.

The algebraic result is based on the idea that only a definite range of spins contribute

to the elliptic genus, and that the elliptic genus is made of extended characters, i.e. that

all spectrally flowed Hilbert spaces must be taken into account. This is consistent with

the analysis of the partition function [17–19]. Moreover, there are various string theory

inspired consistency checks on these assumptions ranging from consistency with linear

dilaton holography [39] to the physics of strings puffing up in AdS3 [40].
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Quandary. The free field and the algebraic perspective on the holomorphic part of the

elliptic genus are well-motivated and give the same result, yet they cannot tell us the

whole story. The modular transformation properties of the higher level Appell function

supplemented with the θ- and η-functions (see e.g. [28]) do not agree with the expectation

that the elliptic genus be a Jacobi form. The anomaly is associated to the non-compactness

of target space which renders the above derivations approximate (though they were exact

in the compact case). We will more carefully regularize the volume divergence to gain

further insight into the modular, or holomorphic anomaly.

3 The path integral and modularity

Since the path integral (or Lagrangian) formulation of the elliptic genus manifestly codes

its modular transformation properties, it will be interesting to compare the path integral

calculation to the holomorphic perspectives given in the previous section. We will perform

the full path integral (in contrast to the compact case, where it was computed through

localization, which reduces the calculation to the free field calculation [16]). Most of the

details of the derivation of the path integral expression are identical to those provided

in [17]. Furthermore, we draw upon the analysis in the compact case [16] to properly

implement the twisting by the left U(1)R charge.

A careful discussion of the calculation of the elliptic genus in the Lagrangian formula-

tion of compact N = 2 superconformal Wess-Zumino-Witten models was given in [16]. The

analysis is mostly valid for non-compact target space groups as well. If we introduce an

SL(2,R) group valued field g, two (right- and left-moving) fermions χ± which take values

in the algebra sl(2,R) (mod u(1)), and a generator U of the U(1) gauge group, then the

fields are argued to transform under the left-moving U(1)R symmetry with parameter γ as:

δχ+ = − iγ
k
χ+

δχ− =
iγ(k + 1)

k
χ−

δg =
iγ

k
(Ug − gU). (3.1)

We will not review the derivation of these formulas, based on the chiral anomalies of the

two-dimensional model, but we indicate the main differences with the compact case. When

we compare to equation (25) of [16], we have made the following changes. By convention,

we work with the supersymmetric level k of the model, namely the level that takes into

account both bosons and fermions.6 Moreover we work with a non-compact model which

formally corresponds to changing the sign of the total level k. When we take those changes

into account, we find the formulas quoted above from the analysis of [16] adapted to an

axially gauged non-compact model. We conclude that in some suitable normalizations the

charges of the right-moving fermion χ+ and of the (non-Cartan) complex boson agree (and

are 1/k), while the charge of the other fermion is bigger by a factor k + 1.

6Therefore for a compact model our level krmSU(2) would be related to the level kHen as krmSU(2) =

kHen + 2.
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The other ingredient we use is the path integral with ordinary boundary conditions in

the NSNS sector of the theory as computed in [17–19]. It consists of a contribution from

the non-compact coset, from the fermions, and from Wilson lines s1,2 for the gauge field

on the torus. However, in comparison to [17–19], we make the following changes. It will be

more intuitive to gauge the direction T-dual to the one gauged in those papers. We must

also take into account the fact that the right-moving boson and fermion oscillators cancel

out against each other. The result of the path integral calculation of the elliptic genus

(which in the coordinate choice found in [42] reduces to the evaluation of a Ray-Singer

torsion, a twisted fermion partition function, and zero modes) is then:

χ =
∑

m,w

∫ 1

0
ds1ds2

θ11(τ, s1τ + s2 − k+1
k α)

θ11(τ, s1τ + s2 − 1
kα)

e2πiαw/ke
− π

kτ2
|(m+ks2)+τ(w+ks1)|2. (3.2)

The θ11 functions have a twisted argument that depends on the holonomies of the gauge

field on the torus, and on the twist by the U(1)R charges, with a weight determined by

the charges of the left-moving bosons and fermions (analyzed above). The last factor

codes the coupling of the oscillators to the bosonic zero-modes at radius R =
√

2/k via

the holonomies s1,2. The twist of the bosonic zero-modes also introduces and extra phase

factor e2πiαw/k.

Note that the result is not holomorphic. This possibility is opened up by the cancella-

tion of bosonic and fermionic oscillators on the right, in the presence of further zero modes.

The cancellation is one between a right-moving fermionic zero-mode and a volume diver-

gence. Moreover, the expression is formal at this stage, since at non-zero twist α, there are

poles in the theta-function in the denominator that are not compensated by zeroes in the

numerator (in contrast to the case α = 0, where the calculation gives a Witten index equal

to k). Thus, the integral and the result are divergent. We will provide a regularization.

A first look at modularity. In a first step though we check the modular transformation

properties of the formal integral expression for the elliptic genus. We show that the path

integral result satisfies the expected modular covariance properties. We have a Jacobi form

of weight 0 and index k(k + 2)/2 = k2c/6.7

The expected modular covariance properties are [41], from the boundary conditions on

the path integral and the factorization of the U(1)R current algebra:

χ(τ + 1, α) = χ(τ, α)

χ(−1

τ
,
α

τ
) = e2πi c

6
α2/τχ(τ, α). (3.3)

If all U(1)R charges in the NS sector are multiples of 1/k, then we expect, with µ ∈ kZ:

χ(τ, α + µ) = (−1)
c
3
µχ(τ, α) (3.4)

and from mapping the Ramond sector states into the Ramond sector states after an integer

number of spectral flows (with λ ∈ kZ):

χ(τ, α+ λτ) = (−1)
c
3
λe−2πi c

6
(λ2τ+2λα)χ(τ, α). (3.5)

7Strictly speaking, for odd level k, the index is 2k(k + 2).
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Finally, we have

χ(τ, α) = χ(τ,−α) (3.6)

for a charge conjugation invariant Ramond spectrum. To check the modular properties, it

is convenient to first doubly Poisson resum the path integral result. We obtain:

χ = k
∑

m,w

∫ 1

0
ds1ds2

θ11(τ, s1τ + s2 − k+1
k α)

θ11(τ, s1τ + s2 − 1
kα)

e−2πis2kwe2πis1(km−α)e
−πk

τ2
|(m−α

k
)+τw|2

. (3.7)

Under the simultaneous transformations (implied by following the holonomies and winding

numbers under the modular action):

τ → τ + 1 s2 → s2 − s1 m→ m− w, (3.8)

the elliptic genus is invariant. Under the transformations:

τ → −1

τ
s1 → −s2 w → −m

α→ α

τ
s2 → s1 m→ w, (3.9)

we pick up the expected factor:

eπi((s1τ+s2− k+1
k

α)2−(s1τ+s2−α
k
)2)/τe2πiαs2/τe2πis1α = eπi/τα2(1+ 2

k
). (3.10)

One similarly verifies that the elliptic genus satisfies the periodicity and parity requirements

as well. These properties make the elliptic genus χ a Jacobi form of weight zero and index

k2c/6 = (k + 2)k/2, at least formally.

Distinguishing two contributions. The path integral result can be related to the
holomorphic perspective through an analysis similar to [17–19] while keeping track of the
degeneracies of descendent states as in [19]. We perform the following manipulations on
the path integral result. We singly Poisson resum on m in equation (3.7) to find:

χ=
√

kτ2
∑

n,w

∫ 1

0

ds1

∫ 1

0

ds2
θ11(τ, s1τ+s2− k+1

k α)

θ11(τ, s1τ+s2− 1
kα)

e2πiα n

k
−2πis2kwq(kw−(n+ks1))2/4k q̄(kw+(n+ks1))2/4k.

We now regularize the path integral by assuming that 1 > |qs1z−
1
k > |q|. We take |z|

very close to one, and cut off the boundaries of the integration over the holonomy s1 such

as to satisfy the above equation. This regularization allows us to expand the θ11 function

in the denominator in terms of the special functions Sr(τ) which are known to code the

degeneracies of descendant states in the discrete characters of the SL(2, R)/U(1) coset

conformal field theory [43–46]. The definition of the series Sr (which are related to Hecke

indefinite modular forms) is:

Sr(τ) =

+∞
∑

n=0

(−1)nq
n(n+2r+1)

2 . (3.11)

– 10 –
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After the expansion, we obtain the expression:

χ = −
√

kτ2
1

η3

∑

m,n,w,r

∫

ds1

∫

ds2(−1)mq(m−

1

2
)2/2(z1+ 1

k e−2πis2q−s1)m−1/2(e2πis2qs1z−
1

k )r+ 1

2Sr

e−2πis2kwz
n

k q(kw−(n+ks1))2/4k q̄(kw+(n+ks1))2/4k. (3.12)

The integral over s2 implies that we must have m − r − 1 + kw = 0 to get a non-zero

contribution. We shift the summation variable n to v = n+ kw and find:

χ = −
√

kτ2
1

η3

∑

m,v,w,r

∫

ds1

∫

ds2(−1)mq(m− 1
2
)2/2zm− 1

2Sr

z−2w+ v
k e−2πis2(m−r−1+kw)qkw2−vw(qq̄)(v+ks1)2/4k. (3.13)

We can then introduce an integral over continuous momenta s to make the exponent linear

in s1:

χ = −2τ2
1

η3

∑

m,v,w,r

∫

ds1

∫

ds2

∫ +∞

−∞
ds(−1)mq(m− 1

2
)2/2zm− 1

2Srz
−2w+ v

k qkw2−vw

e2πis2(r−kw−m+1)(qq̄)s1(is+ v
2
)+ s2

k
+ v2

4k , (3.14)

which allows us to easily perform the integrations over both holonomies s1,2:

χ =
1

π

1

η3

∑

m,v,w

∫

R−iǫ

ds

2is + v
(−1)mq(m− 1

2
)2/2zm− 1

2 (qq̄)
s2

k
+ v2

4k z−2w+ v
k qkw2−vw

Skw+m−1((qq̄)
is+ v

2 − 1). (3.15)

Note that we slightly shifted the integration over the momentum s off the real axis for

future convenience. Drawing inspiration from [17] on how to disentangle contributions with

continuous radial momentum from discrete contributions, we now distinguish between two

parts in the path integral. One which we will call the remainder term χrem, and a second

one which will turn out to be holomorphic:

χ = χhol + χrem

χhol =
1

π

1

η3

∑

m,v,w

∫

R−iǫ

ds

2is+ v
(−1)mq(m− 1

2
)2/2zm− 1

2 (qq̄)
s2

k
+ v2

4k z−2w+ v
k qkw2−vw

(1 − Skw+m−1(1 − (qq̄)is+
v
2 )

χrem = − 1

π

1

η3

∑

m,v,w

∫

R−iǫ

ds

2is+ v
(−1)mq(m− 1

2
)2/2zm− 1

2 (qq̄)
s2

k
+ v2

4k z−2w+ v
k qkw2−vw. (3.16)

We first massage the holomorphic part, using the property Sr = S−r−1−1 and shifting the

summation variable m by one:

χhol =
1

π

1

η3

∑

m,v,w

∫

R−iǫ

ds

2is+ v
(−1)mq(m− 1

2
)2/2zm− 1

2 (qq̄)
s2

k
+ v2

4k z−2w+ v
k qkw2−vw

(S−m−kw − zqm+is+ v
2 q̄is+ v

2Skw+m) (3.17)

– 11 –
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and using furthermore the formula qrSr = S−r we find:

χhol =
1

π

1

η3

∑

m,v,w

∫

R−iǫ

ds

2is + v
(−1)mq(m− 1

2
)2/2zm− 1

2 (qq̄)
s2

k
+ v2

4k z−2w+ v
k qkw2−vwS−m−kw

(1 − zq−kw+is+ v
2 q̄is+ v

2 ). (3.18)

The neat property of the second term in this expression is that it can be rewritten as an in-
tegral over the real axis, shifted upward by k/2, if we simultaneously shift the momentum v:

χhol =
1

π

1

η3

∑

m,v,w

(

∫

R−iǫ

−
∫

R+i k

2
−iǫ

)

ds

2is+v
(−1)mq(m−

1

2
)2/2zm−

1

2 (qq̄)
s
2

k
+ v

2

4k z−2w+ v

k qkw2
−vwS

−m−kw.

Splitting the integral, and performing the spectral flow operation has disentangled dis-

crete characters from the continuum. Indeed, the good convergence properties at infinity

allow us to interpret our formula for χhol as a contour integral that picks up the poles in

2is + v that lie between −iǫ and ik/2 − iǫ. The poles lie at Liouville momenta that give

rise to right-moving ground states. After some further algebraic operations, this gives the

announced holomorphic result:

χhol =
1

η3

k−1
∑

2j−1=0

∑

w,m

(−1)mq(m− 1
2
)2/2zm− 1

2 z−2wqkw2
S−m−kw(z−

1
k qw)2j−1

=
1

η3

∑

m∈Z

iθ11(q, z)

1 − z
1
k qm

z2mqkm2
. (3.19)

Thus we see that the path integral does partially agree with the intuitive derivation of

the (holomorphic part of the) elliptic genus from the free field (see equation (2.11)) and

algebraic perspectives (see equation (2.16)).

The remainder term: from mock theta-functions to Jacobi forms. We do also

have the remainder term χrem. The expression (3.16) for the remainder term can be read

as a trace over the asymptotic continuum of states with weighting by the left U(1)R-charge

and the conformal weights, in which the right-moving oscillators of fermions and bosons

have cancelled out. The cancellation has left a measure factor which is given by one

over the total right-moving momentum, which is formally the ratio of the right-moving

fermionic zero mode and a right-moving supercharge (as can be seen from the analogue of

equation (2.9) for the right-moving superconformal algebra). The measure is such that the

contributions which localize in momentum space are holomorphic. However, the integral

over the continuum associated to the non-compactness of the target space is non-zero and

non-holomorphic. The expression provides a Hamiltonian viewpoint on the holomorphic

anomaly. We evaluate the integral over the continuum of momenta s to obtain:

χrem = − iθ11(q, z)
2η3

∑

v,w

z−2w+ v
k qkw2−vw

(

sgn(v + ǫ) − Erf

(

v

√

πτ2
k

))

, (3.20)

where Erf is the error function. The role of the remainder term in the path integral is

to render the elliptic genus modular covariant. Indeed, we can now make our analysis

– 12 –
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of the modular transformation properties rigorous by comparing our results to techniques

developed in the mathematics literature in the context of the definition and analysis of

mock theta functions. See e.g. [29] for a review and [30] for a recent application to the

entropy of Calabi-Yau manifolds. Here we closely follow the presentation of [21, 22] where

the definition of the level l Appell-Lerch sums is taken to be:

Al(u, v; τ) = al/2
∑

n∈Z

(−1)lnqln(n+1)/2bn

1 − aqn
(3.21)

where a = e2πiu and b = e2πiv . It is known that there exists a correction term for the

Appell function that completes it into a Jacobi form of weight 1 and index

(

−l 1

1 0

)

. The

Jacobi form is the Appell sum plus a remainder term:

Âl(u, v; τ) = Al(u, v; τ)+
i

2l
a(l−1)/2

∑

m mod l

θ11

(

v+m

l
+
l−1

2l
τ ;
τ

l

)

R

(

u− v+m

l
− l−1

2l
τ ;
τ

l

)

(3.22)

where

R(u; τ) =
∑

ν∈Z+ 1
2

(sgn(ν) − Erf(
√

2πτ2(ν + Imu/τ2))(−1)ν−
1
2 a−νq−

ν2

2 . (3.23)

We first express the holomorphic part of the elliptic genus as proportional to an Appell-

Lerch sum:

χhol = z−1 iθ11(q, z)

η3
A2k(z

1
k , z2q−k; q). (3.24)

It is now a matter of straightforward calculation to show that our remainder term χrem

precisely agrees with the correction term of [21, 22] when we evaluate the latter at l =

2k, a = z1/k, b = q−kz2 and multiply by z−1iθ11/η
3. The fact that Â2k is a Jacobi form

was rigorously proven. We have the modular properties [21, 22]:

Âl(u+ 1, v) = (−1)lÂl(u, v) Âl(u, v + 1) = Âl(u, v)

Âl(u+ τ, v) = (−1)lalb−1q
l
2 Âl(u, v) Âl(u, v + τ) = a−1Âl(u, v) (3.25)

Âl(u, v; τ + 1) = Âl(u, v; τ) Âl

(

u

τ
,
v

τ
;−1

τ

)

= τeπi(2v−lu)u/τ Âl(u, v; τ).

Thus the chosen regularization of the path integral is indeed modular covariant. The non-

holomorphic elliptic genus as coded in the regularized path integral is a Jacobi form with

weight zero and index k(k + 2)/2. Multiplication by the θ- and η-function indeed gives

the expected weight and index to the elliptic genus. To check this it is useful to use the

periodicity of the generalized Appell-Lerch sum and write:

χ =
iθ11(q, z)

η3
Â2k(z

1
k , z2; q), (3.26)

and then use the modular covariance properties listed above to complete the proof of

modularity.

– 13 –
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4 Conclusions

In this paper we gave a free field derivation of the holomorphic part of the elliptic genus of a

basic N = 2 superconformal field theory with central charge c larger than three and equal to

c = 3+ 6
k with k integer. The holomorphic part of the elliptic genus is directly related to an

Appell-Lerch sum. We also explicitly evaluated the path integral over the coset conformal

field theory that corresponds to the non-compact Landau-Ginzburg model. We showed that

it contains a holomorphic part which agrees with the free field and the algebraic analysis.

The full path integral result though is non-holomorphic and modular. The holomorphic

anomaly satisfied by the elliptic genus finds its origin in the non-compactness of target

space. The path integral provides a physical origin for the remainder term postulated in

the mathematics literature to complete mock theta-functions into Jacobi forms. Our result

provides a modular covariant regularization to a problem plagued by a volume divergence

that cannot be factored out as the volume of a symmetry group. It gives rise to an

expression that can consistently be integrated over moduli space.

There are many directions that open up thanks to this elementary result. We mention

only three. The derivation can be extended to N = 4 models, to combinations of compact

and non-compact N = 2 or N = 4 models, and orbifolds thereof. One may also attempt to

extend our analysis to fractional values of the level, where in analogy with the conformal

field theory of compact bosons, we may expect a relation to the Appell sums at level

equal to the product of denominator and numerator. Secondly, we can analyze further the

holomorphic anomaly differential equation that is satisfied by the remainder term (when

we derive with respect to τ̄). Thirdly, we can apply the insight we gained into modular

covariant regularization to the bulk modular invariant partition function (of the bosonic

or supersymmetric coset model).
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