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1 Introduction

The last years have marked a remarkable manifestation of integrability and in particular of

(Thermodynamic) Bethe Ansatz in description of dynamics of gauge and string theories.

A prominent example is the calculation of the spectrum of conformal dimensions in N = 4

super Yang-Mills theory [1] and the exact solution of its AdS/CFT dual given by a non-

linear σ-model [2, 3]. Nowadays this is a wide area of research where the integrability in

the form of spin chain models and Bethe Ansatz plays the crucial role. However, during

the last year several new connections to the integrable world have emerged.

First, Nekrasov and Shatashvili discovered [4, 5] that N = 2 supersymmetric gauge

theories are in one to one correspondence with integrable Hamiltonian systems in such

a way that the supersymmetric vacua of gauge theories are mapped to Bethe states of

the integrable models. Thus, their identification heavily relies on Bethe Ansatz and its

appearance in the description of BPS vacua. Another interesting development has been

done by Alday, Gaiotto and Tachikawa [6] who related the instanton partition functions of
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certain N = 2 SCFTs to conformal blocks of Liouville theory. As was recently demonstrated

in [7], the latter duality is actually closely related to the former one.

On top of that, it was realized in [8] (see also [9, 10]) that the classical problem of

determining the minimal area surface in AdS5 ending on a null polygonal contour, which

provides the strong coupling limit of gluon scattering amplitudes in N = 4 super Yang-

Mills [11], has a solution in terms of Thermodynamic Bethe Ansatz (TBA) [12]. The TBA

free energy then gives the area encoding the scattering amplitudes.

Here we consider another example of the unexpected interplay between gauge/string

theory and integrability whose physical explanation is still lacking. Namely, it was noticed

in [13] (see also [14]) that equations describing the exact moduli space of 4d N = 2 su-

persymmetric gauge theory compactified on a circle coincide with the equations of TBA.

Moreover, exactly the same equations appear also in the twistor description of D-instanton

corrected moduli space of Type II string theory compactified on a Calabi-Yau (CY) three-

fold [15, 16]. Due to this one may hope that the elaborated machinery of integrable systems

will give new insights for these research areas as it did in the above mentioned situations.

However, for this one needs to extend the correspondence beyond just the level of equa-

tions to some interesting physical quantities as well as to understand better the integrable

structure behind this TBA.

In this paper we try to fulfil this goal by pushing forward the relation between TBA

and the instanton corrections to the moduli spaces. In particular, we identify the TBA

free energy with the instanton contribution to the so called contact potential governing the

quaternion-Kähler geometry of the string moduli space. In the gauge theory context the

analogous quantity is the Kähler potential. We show that its most non-trivial part turns

out to be encoded by the Yang-Yang functional [17] of the associated integrable system.

To uncover the integrable structure, we study the S-matrix which can be found from

the TBA equations. Although it is not unitary [13], we show that it satisfies all standard

constraints usually imposed on factorizable S-matrices of integrable systems. They include

Lorentz invariance, crossing symmetry, Yang-Baxter equation and bootstrap identity. Fi-

nally, we derive the Y-system following from our TBA equations.

The paper is organized as follows. In the next section we review the twistor description

of hyperkähler and quaternion-Kähler spaces which is crucial for introducing general in-

stanton corrections to the moduli spaces. These instanton corrections are further described

in section 2.2 where we present the equations determining the non-perturbative geometry of

the moduli spaces and the results for the contact and Kähler potentials. To our knowledge,

the last quantity given in (2.31) was not known before. The equations (2.25) represent our

main starting point and the reader not interested in their origin can pass directly to them.

In section 3 we establish the relation of (2.25) to TBA and express the contact and Kähler

potentials in terms of the free energy and Yang-Yang functional, respectively. After that in

section 4 we investigate the S-matrix associated to our problem, derive the Y-system and

comment on the conformal limit of our TBA. In section 5 we conclude with a discussion and

some open questions. In appendix A we provide some details about evaluation and sym-

plectic invariance of the Kähler potential. Finally, appendix B is devoted to a particular

case of rigid CY where we observe the appearance of the MacMahon function [18].
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2 Non-perturbative moduli spaces in gauge and string theories

2.1 Twistor description of HK and QK spaces

The moduli spaces of compactified gauge and string theories with N = 2 supersymmetry

are examples of manifolds with a quaternionic structure. The supersymmetry restricts the

moduli space to be hyperkähler (HK) in gauge theory [19] and its hypermultiplet sector

to be quaternion-Kähler (QK) in string theory [20]. In both cases the geometry of these

moduli spaces gets perturbative and non-perturbative contributions and, of course, it is

extremely difficult to describe them explicitly as corrections to the metric. It would be

much more convenient to have at our disposal some kind of prepotential, which can encode

all quantum corrections in a systematic way, similarly as does the holomorphic prepotential

F (X) for the vector multiplet moduli space. Thus, we are confronted with the problem of

parametrizing quaternionic geometries.

This problem is solved by considering the twistor space ZM of a quaternionic manifold

M, which is a CP 1 bundle over M and provides its very efficient description. In particular,

it allows to encode all geometric information in a set of holomorphic functions playing

the role of prepotentials we were asking for. Here we briefly review the corresponding

construction and refer to [21, 22] for more details.

The twistor description is so powerful because of the existence of a certain holomorphic

structure on ZM. In the HK and QK cases, these structures are represented locally by

holomorphic forms, a 2-form Ω and a 1-form X , respectively. The former defines a symplec-

tic structure on each fiber of the bundle π : ZM → CP 1, and the latter produces a contact

structure on ZM. As usual, locally it is always possible to choose Darboux coordinates

where these forms take a standard form. In other words, the twistor space can be covered

by a set of open patches Ui such that in each patch one has

HK : Ω[i] = dµ
[i]
Λ ∧ dνΛ

[i], QK : X [i] = dα[i] + ξΛ[i]dξ̃
[i]
Λ , (2.1)

where Λ = 0, 1, . . . , d−1 with 4d = dimR M, and (νΛ
[i], µ

[i]
Λ , ζ) (or (ξΛ[i], ξ̃

[i]
Λ , α

[i])) form a set of

holomorphic Darboux coordinates in the patch Ui of the twistor space of HK (respectively,

QK) manifold. Here ζ is a complex coordinate on CP 1 (also in the QK case) and we will

use the notation xµ to parameterize the base quaternionic manifold M.

In addition to this holomorphic structure, the twistor space carries a real structure

defined in term of the antipodal map τ acting on CP 1 as τ : ζ → −1/ζ̄. To express the

compatibility of the two structures, we assume that the antipodal map sends Ui to Uı̄.

Then the holomorphic forms should satisfy the reality constraint

τ(Ω[i]) = Ω[̄ı], τ(X [i]) = X [̄ı], (2.2)

so that the Darboux coordinates may be chosen to satisfy similar relations, all with sign

plus, under the combined action of the complex conjugation and the antipodal map.

Something non-trivial appears when one considers the overlap of two patches Ui ∩ Uj .

In this region the holomorphic forms defined in different patches must be related as

Ω[i] = f2
ij Ω[j] mod dζ [i], X [i] = f̂2

ij X
[j], (2.3)

– 3 –
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where fij are (fixed and simple) transition functions of the O(1) bundle on CP 1, whereas

f̂ij are fixed later. This implies that the local Darboux coordinates are related by sym-

plectic and contact transformations, respectively. Such transformations are generated by

holomorphic functions on ZM, which we call transition functions H [ij]. It is these func-

tions that play the role of the prepotentials. They establish relations between Darboux

coordinates in different patches, which together with the reality constraints and suitable

boundary conditions allow to find these coordinates as functions of ζ and xµ. These solu-

tions, called twistor lines, contain all geometric information and are the starting point to

find the metrics on M and its twistor space.

In the following we restrict our attention only to those transition functions which in the

QK case are independent on the coordinates α[i]. Physically, for the hypermultiplet moduli

space of compactified Type II string theory this means that we ignore the contributions due

to NS5-brane instantons [23]. Such restriction brings great simplifications. In particular,

the coefficients f̂ij left undetermined above are actually given by

f̂2
ij = 1 − ∂α[j]H [ij] (2.4)

and thus reduce to 1 in this case. What is important for us is that given this restriction the

equations determining the twistor lines in HK and QK cases become equivalent. Indeed,

in the QK case for α-independent H [ij] they look as

ξΛ[j] = ξΛ[i] − ∂
ξ̃
[j]
Λ

H [ij], ξ̃
[j]
Λ = ξ̃

[i]
Λ + ∂ξΛ

[i]
H [ij], (2.5)

whereas in the HK case they are the same provided one replaces ξΛ[i] by ηΛ
[i] ≡ (iζ)−1f2

+iν
Λ
[i]

and ξ̃
[i]
Λ by µ

[i]
Λ . Here the index + refers to some fixed patch U+ which we choose to be the

one around the north pole ζ = 0. The coincidence of the equations allows us to consider the

HK and QK cases simultaneously. The notations mostly used in the following correspond

to the QK case.

The gluing conditions (2.5) for the twistor lines can be rewritten in a form more

convenient for a perturbative treatment as the following integral equations [16]1

ξΛ[i](ζ, x
µ) = AΛ + ζ−1Y Λ − ζȲ Λ −

1

2

∑

j

∮

Cj

dζ ′

2πiζ ′
ζ ′ + ζ

ζ ′ − ζ
∂
ξ̃
[j]
Λ

H [ij](ζ ′),

ξ̃
[i]
Λ (ζ, xµ) = BΛ +

1

2

∑

j

∮

Cj

dζ ′

2πiζ ′
ζ ′ + ζ

ζ ′ − ζ
∂ξΛ

[i]
H [ij](ζ ′), (2.6)

where ζ ∈ Ui, Cj is the contour surrounding Uj in the counterclockwise direction, whereas

complex Y Λ and real AΛ, BΛ are free parameters playing the role of coordinates on M.2

The sum in (2.6) goes over all patches including those which do not intersect with Ui.

1Comparing to [13, 15], we changed some normalizations to avoid some numerical factors and to make

the symplectic invariance more explicit. In particular, X , µΛ, ξ̃Λ, α and H [ij] are renormalized by factor

−2i, Ω, eφ by 2, and νΛ by i.
2Actually in the QK case the phase of Y 0 can be absorbed into ζ so that it becomes real. The missing

coordinate is provided by the real part of the constant coefficient Bα in the expansion of α[+], which we do

not write here explicitly.
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In that case the transition functions are defined by the cocycle condition and by analytic

continuation [21].

Once these integral equations are solved, there is a straightforward procedure to extract

the metric [15, 22]. On this way the prominent role is played by the Kähler potential KM

in the HK case and the so called contact potential Φ[i] in the QK case, which provides a

Kähler potential for the metric on the twistor space ZM

K
[i]
Z = log

1 + ζζ̄

|ζ|
+ Re Φ[i]. (2.7)

The contact potential appears as a certain coefficient in the expansion of the contact one-

form

X [i] = 2
eΦ[i]

iζ

(

dζ + p+ − ip3 ζ + p− ζ
2
)

, (2.8)

where ~p is the SU(2) part of the Levi-Civita connection on M, and generically it is a

function Φ[i](x
µ, ζ) holomorphic on the CP 1 fiber, but defined only locally what is reflected

by the patch index. However, in the case under consideration when the transition functions

are α-independent, it becomes real, globally defined and independent on ζ, Φ[i] = φ(xµ).

The remaining function on the base manifold is given by

eφ =
1

8π

∑

j

∮

Cj

dζ

ζ

(

ζ−1Y Λ − ζȲ Λ
)

∂ξΛ
[i]
H [ij] + cα, (2.9)

where cα is a constant called anomalous dimension, which encodes a boundary condition

for the twistor line α[+].

In the HK case the Kähler potential can also be expressed as an integral of transition

functions. In our notations the representation found in [16] can be summarized as

KM =
1

4π

∑

j

∮

Cj

dζ

ζ

[

H [ij] −
(

µ
[j]
Λ −BΛ

)

∂
µ

[j]
Λ

H [ij] −AΛ∂ηΛ
[i]
H [ij]

]

. (2.10)

By simple manipulations using the integral equations (2.6), it can be rewritten in the

following form

KM =
1

4π

∑

j

∮

Cj

dζ

ζ

[

H [ij] − ηΛ
[i]∂ηΛ

[i]
H [ij] +

(

ζ−1Y Λ − ζȲ Λ
)

∂ηΛ
[i]
H [ij]

]

. (2.11)

This shows that in the physically important case of transition functions homogeneous of

degree one, relevant when the HK space is the hyperkähler cone of a QK space [22, 24],

the Kähler potential essentially coincides with the contact potential (2.9).

We close this subsection by noting that although all integration contours Cj appearing

in the formulae above are closed since they surround open patches, under some conditions

it is possible to generalize these results to include also open contours. Typically, such open

contours can be viewed as a leftover of some discontinuity cuts in transition functions of

a “more fundamental” construction using only open patches and closed contours. The

former arises from the latter when one shrinks the contour surrounding the cut so that

its contribution reduces to an integral of the discontinuity of the initial integrand. Such

description in terms of open contours turns out to be relevant in the discussion of the

instanton corrected moduli spaces in the next subsection.
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2.2 Instanton contributions to the moduli spaces

The low energy dynamics of N = 2 supersymmetric gauge and string theories is completely

determined by the geometry of their moduli spaces. For a 4d N = 2 gauge theory with the

gauge group G of rank d, which is compactified on a circle of radius R, the moduli space is

parameterized by complex scalars zΛ from the vector multiplet and by Wilson lines of the

gauge potential around the circle, which have “electric” ζΛ and “magnetic” components ζ̃Λ
and are all periodic.3 It is a hyperkähler manifold whose perturbative metric follows from

the simple 3d truncation of the 4d vector multiplet Lagrangian and thus is completely

defined by the holomorphic prepotential F (z). However, it gets instanton contributions

from the massive spectrum due to BPS particles going around the compactification circle.

For large R these contributions are exponentially suppressed since for a particle of charge

γ = (qΛ, p
Λ) they are weighted by e−2πR|Zγ | where

Zγ(z) = qΛz
Λ − pΛFΛ(z) (2.12)

is the central charge function giving the mass of the BPS particle.

The low energy physics of Type IIA string theory compactified on a CY threefold X

is a bit different. Its complete moduli space is factorized to the moduli spaces of vector

and hypermultiplets. The former is tree level exact so that our interest is concentrated on

the hypermultiplet sector. It comprises d = h2,1(X)+1 hypermultiplets, which include the

complex structure moduli XΛ =
∫

γΛ Ω, FΛ =
∫

γΛ
Ω, the RR scalars ζΛ, ζ̃Λ representing the

RR three-form integrated along a symplectic basis (γΛ, γΛ) of A and B cycles in H3(X,Z),

the four-dimensional dilaton eφ = 1/g2
(4) and the Neveu-Schwarz (NS) axion σ, dual to the

NS two-form B in four dimensions. Whereas XΛ provide a set of homogeneous coordinates

for complex structure deformations, they may be traded for the inhomogeneous coordinates

za = Xa/X0. As we mentioned above, this moduli space is a quaternionic-Kähler manifold.

Its tree level metric is determined by the holomorphic prepotential F (z) as in gauge theory

and receives one-loop [25, 26] and instanton corrections [23]. The latter arise either from

D2-branes wrapping non-trivial 3-dimensional cycles of X or from the NS5-brane wrapping

the whole Calabi-Yau. In this work we ignore the second type of instantons so that we

remain only with membrane contributions. Since cycles in H3(X,Z) are parameterized

by the symplectic vector γ = (qΛ, p
Λ) and the weight of the corresponding instanton is

determined by the same function (2.12) (with z0 ≡ 1), one may expect that the D-instanton

corrected hypermultiplet moduli space and the exact gauge theory moduli space from above

have a similar description.

This indeed turns out to be the case. Such description is provided by the twistor

formalism from the previous subsection, which as we have seen works in the same way for

HK and QK spaces. Below we review the corresponding construction for the gauge and

string moduli spaces [13, 15]. It essentially amounts to provide a covering of CP 1 and a

set of transition functions. First, we present it for the moduli spaces at the perturbative

level and then show how the instantons are included.
3We use different notations than those of [13]. The fields are denoted by the same letters which are used

to parametrize the moduli space of Type IIA string theory since in all equations they appear in exactly the

same way. Besides, the Wilson lines are normalized to have period 1.
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To construct the perturbative moduli space, let us cover the Riemann sphere by the

following three patches: the first patch U+ surrounds the north pole, the second patch

U− surrounds the south pole and the rest is covered by U0 (see figure 1a). There are two

non-trivial transition functions associated with such covering.

H [+0] = F (ξ[+]), H [−0] = F̄ (ξ[−]). (2.13)

As usual, in the gauge theory case one should replace ξ[i] by η[i].
4 On the other hand,

in the string theory case one should add information about the anomalous dimension cα
(see (2.9)). It turns out to be determined by the Euler number of CY, cα = χX/(96π), and

incorporates the one-loop correction [22]. Then the equations (2.6) provide an explicit rep-

resentation for the twistor lines. Identifying properly the abstract coordinates ZΛ, AΛ, BΛ

of the twistor approach with the physical fields, in the patch U0 (in string notations) one

finds

ξΛ[0] = ξΛ(pert) ≡ ζΛ + R
(

ζ−1zΛ − ζ z̄Λ
)

,

ξ̃
[0]
Λ = ξ̃

(pert)
Λ ≡ ζ̃Λ + R

(

ζ−1FΛ(z) − ζ F̄Λ(z̄)
)

,
(2.16)

where R = R/2 in the gauge theory case and can be expressed through the dilaton, using

eφ =
R2

2
K(z, z̄) +

χX
96π

(2.17)

with K(z, z̄) ≡ −2 Im (z̄ΛFΛ), in string theory. Remarkably, the contact potential (2.9)

turns out to coincide with the dilaton, which is in turn related to the four-dimensional string

coupling g(4). On the other hand, R is inversely proportional to the ten-dimensional string

coupling g(10). These identifications will survive the instanton corrections. Altogether the

above results are sufficient to extract the metric in a straightforward way [22].

Let us include the instanton contributions from a set of 2N BPS particles (or D2-

branes) with charges {γa}
2N
a=1. The number of particles is taken even because every particle

is accompanied by its antiparticle with the opposite charge. Eventually we are interested in

the limit N → ∞. We assume that the charges are ordered in accordance with decreasing

of the phase of Zγ (2.12) and that these phases for the charges γa which are not mutually

local, i.e. for those which have non-vanishing symplectic invariant scalar product

〈γ1, γ2〉 = q1,Λp
Λ
2 − q2,Λp

Λ
1 , (2.18)

4In fact, in the gauge theory case the holomorphic prepotential contains a logarithmic term and thus it

is only a quasi-homogeneous function of second degree

z
Λ
FΛ = 2F +

1

2
QΛΣz

Λ
z
Σ
, (2.14)

where QΛΣ is a matrix constructed from charges of hypermultiplets whose explicit form will not be important

in the following. On the other hand, the tree level transition functions should not contain logarithmic

singularities. Due to this, the functions (2.13) should be actually replaced by

H
[+0] = ζ

−2
F (ζη[+]), H

[−0] = ζ
2
F̄ (ζ−1

η[−]). (2.15)
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Figure 1. Covering of CP 1 and transition functions of the perturbative and instanton corrected

twistor spaces.

are all different. For mutually local charges with coinciding phases of Zγ the order is

not important.

Each charge vector γ defines a “BPS ray” ℓγ on CP 1 going between the north and

south poles as

ℓγ = {ζ : Z(γ)/ζ ∈ iR−}. (2.19)

These rays split the patch U0 into 2N sectors which we call Ua, so that the covering of CP 1

consists now of these connected parts divided by the contours ℓγa and the usual patches

U± (see figure 1b).

What we have to provide is the transition function through the BPS ray associated

with a charge γa. For that purpose we define

Ξ[ab]
γc

≡ qc,Λξ
Λ
[a] − pΛ

c ξ̃
[b]
Λ . (2.20)

Then the transition function through the BPS ray is [16]

H [a a+1](ξ[a], ξ̃
[a+1]) = Gγa −

1

2
qa,Λp

Λ
a (G′

γa
)2, (2.21)

where Gγa(Ξγa) with Ξγa ≡ Ξ
[aa]
γa is defined in term of the dilogarithm function as

Gγ(Ξγ) =
nγ

(2π)2
Li2
(

e−2πiΞγ
)

. (2.22)

The coefficient nγ encodes the spectrum of the gauge theory or carries a topological in-

formation about Calabi-Yau. In the former case it was identified with the second helicity

supertrace in [13] and in general it can be related to the generalized Donaldson-Thomas

invariants introduced in [27]. For us two facts are important: nγ are integer numbers

and do not depend on the sign of the charge, nγ = n−γ . The presence of the second

– 8 –
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(non-symplectic invariant) term in (2.21) is related to the fact that the arguments of tran-

sition functions should be Darboux coordinates from different patches. Therefore, the r.h.s.

of (2.21) should be expressed through ξ̃
[a+1]
Λ . This is achieved by solving

Ξ[aa+1]
γa

= Ξγa − qa,Λp
Λ
aG

′
γa

(Ξγa) (2.23)

for Ξγa which, of course, cannot be done explicitly. Nevertheless, this is sufficient to define

the derivatives of H [a a+1] which lead to the following simple symplectic transformations

ξΛ[a+1] = ξΛ[a] + pΛ
aG

′
γa
, ξ̃

[a+1]
Λ = ξ̃

[a]
Λ + qa,ΛG

′
γa
. (2.24)

To complete the construction we need also to provide H [±a]. They are given by (2.13) plus

instanton contributions which are known but quite complicated. We refer to [16] for their

explicit expressions.

Note that this construction realizes the option mentioned in the end of the previous

subsection. Namely, the transition functions (2.21) are to be integrated along open contours

given by the BPS rays. There exists also a version with closed contours [15], which however

does not bring anything new.

Another useful comment is that this picture gives an interesting geometric interpreta-

tion of the wall crossing phenomenon. The lines of marginal stability where it takes place

arise at the moduli configurations where the phases of the central charge (2.12) of two

BPS states align. This happens precisely when the two BPS rays (2.19) cross each other.

Since in general different order of BPS rays leads to inequivalent constructions, this is a

clear origin of discontinuities. On the other hand, crossing a line of marginal stability, the

BPS spectrum, encoded in the coefficients nγ , also changes discontinuously. A formula

recently found by Kontsevich and Soibelman [27] ensures that the two effects compensate

each other and the resulting metric is continuous [13].

Although the presented construction uniquely defines the twistor space and the under-

lying quaternionic manifold, to actually compute the metric one needs to solve the integral

equations (2.6) for the twistor lines. In our case, they can be reduced to the following

system5

Ξγa(ζ)=Θγa +R
(

ζ−1Zγa − ζZ̄γa

)

+
1

8π2

∑

b6=a

nγb
〈γa, γb〉

∫

ℓγb

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′
log
(

1 − e−2πiΞγb
(ζ′)
)

(2.25)

where

Θγ ≡ qΛζ
Λ − pΛζ̃Λ. (2.26)

These equations encode all non-trivialities of the problem. For large R (large circle radius

or small 10d string coupling), they can be analyzed perturbatively and their solution,

represented by the set of variables Ξγa(ζ), contains all orders of the instanton expansion.

5Here we ignore an additional issue of sign in front of the exponent in the logarithm appearing in the

gauge theory context. It is related to some subtleties in the fermion number of bound states and can be

taken into account by the so called “quadratic refinement” [13]. It affects the solution in a simple way and

is not important for our discussion.
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Note that due to the reality conditions on twistor lines and the fact that Uā is the patch

associated with the charge γā = −γa, the functions Ξγa(ζ) satisfy

Ξγa
(ζ) = −Ξ−γa

(

−ζ−1
)

. (2.27)

Once the functions Ξγa(ζ) are known, the twistor lines easily follow as [16]

ξΛ[a] = ξΛ(pert) +
1

8π2

∑

b

nγb
pΛ
b Jγb

(ζ),

ξ̃
[a]
Λ = ξ̃

(pert)
Λ +

1

8π2

∑

b

nγb
qb,ΛJγb

(ζ),

(2.28)

where ζ ∈ Ua and

Jγ(ζ) =

∫

ℓγ

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′
log
(

1 − e−2πiΞγ (ζ′)
)

. (2.29)

The general formula for the contact potential (2.9) gives the following result

eφ=
R2

2
K(z, z̄) +

χX
96π

−
iR

16π2

∑

a

nγa

∫

ℓγa

dζ

ζ

(

ζ−1Zγa−ζZ̄γa

)

log
(

1−e−2πiΞγa (ζ)
)

(2.30)

and can be used to trade R for the dilaton. Similarly, one can get an explicit expression for

the Kähler potential (2.11), which to our knowledge did not appear so far in the literature.

Some details of its derivation can be found in appendix A. Here we just present the final

result6

KM =
R2

2
K(z, z̄) −

1

2
ImFΛΣ



ζΛζΣ +
1

64π4

∑

a,b

nγanγb
pΛ
a p

Σ
b

∫

ℓγa

Daζ

∫

ℓγb

Dbζ
′





−
1

16π3

∑

a

nγa

∫

ℓγa

dζ

ζ

[

Li2
(

e−2πiΞγa
)

− 2πiζΛ
(

qa,Λ − pΣ
a ReFΛΣ

)

log
(

1− e−2πiΞγa
)]

+
i

128π4

∑

a6=b

nγanγb
〈γa, γb〉

∫

ℓγa

Daζ

∫

ℓγb

Dbζ
′ ζ + ζ ′

ζ − ζ ′
, (2.31)

where we abbreviated

Daζ =
dζ

ζ
log
(

1 − e−2πiΞγa (ζ)
)

. (2.32)

As we shall see, both quantities, (2.30) and (2.31), appear naturally also in the context of

TBA in the next section. Besides, note that since Ξγa is symplectic invariant, the twistor

lines (2.28) form a vector under symplectic transformations, the contact potential is invari-

ant, whereas the Kähler potential can be shown to be invariant up to a Kähler transfor-

mation (see appendix A). Thus, the whole construction respects the symplectic symmetry.

6In our normalization the Kähler potential differs from the one in [13, 19] by a constant R-dependent

factor.
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3 Moduli space geometry and TBA

3.1 Relation to TBA

As was noticed in [13] (appendix E of the revised version), the equations (2.25), which

encode the geometry of the instanton corrected moduli space, turn out to coincide with

the equations of TBA. These are equations for an integrable system of particles in 1 +

1 dimensions. The particles are characterized by spectral densities ǫa(θ) considered as

functions of the rapidity parameter θ which defines their two-dimensional momentum.

TBA imposes the following non-linear integral equations on the spectral densities [12]:

maβ cosh θ = ǫa(θ) +
1

2π

∑

b

∫ ∞

−∞
dθ′ φab(θ − θ′) log

(

1 + eβµb−ǫb(θ
′)
)

, (3.1)

where β is the inverse temperature, ma are mass parameters for the particles of type a,

µa are their chemical potentials, and φab(θ) = −i∂ logSab

∂θ is defined by the two-particle

S-matrix Sab(θ).

To establish a relation between (2.25) and (3.1), we set

ǫa(θ) = 2πi
(

Ξγa(ieiψa+θ) − Θa

)

, (3.2)

where ψa = argZγa . This implies that for every charge one changes the coordinate on CP 1

as ζ = ieiψa+θ so that the BPS ray ℓγa is mapped to the real axis. Then plugging these

changes into (2.25), one obtains

4πR|Zγa | cosh θ=ǫa(θ)−
i

4π

∑

b6=a

nγb
〈γa, γb〉

∞
∫

−∞

dθ′
eθ−θ

′

+Ψab

eθ−θ′−Ψab
log
(

1−e−2πiΘb−ǫb(θ
′)
)

, (3.3)

where Ψab = ei(ψb−ψa). Comparing (3.3) with (3.1), one finds that they have the same form

if one identifies

βma = 4πR|Zγa |, βµa = −2πiΘb + πi, φab(θ) = −
i

2
〈γa, γb〉

eθ + Ψab

eθ − Ψab
, (3.4)

whereas the additional factor nγb
in the sum is considered as a weight of the particles

of type b.

3.2 Potentials, free energy and Yang-Yang functional

The curious relation observed in [13] and presented in the previous subsection can be deepen

by considering some quantities playing an important role in TBA and comparing them with

potentials of quaternionic geometries of the moduli spaces, the contact potential (2.30) and

the Kähler potential (2.31).

First, the most important quantity, which is usually considered in the context of TBA,

is the free energy of the integrable system. It is given by

F(β) =
β

2π

∑

a

ma

∫ ∞

−∞
dθ cosh θ log

(

1 + eβµa−ǫa(θ)
)

. (3.5)
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It is straightforward to check that it coincides with the instanton part of the contact

potential so that one has the following relation

eφ =
R2

2
K(z, z̄) +

χX
96π

−
1

16π2
F(β). (3.6)

On the other hand, the Kähler potential of the gauge theory turns out to be related

to the so called Yang-Yang functional [17]. This is a functional which generates the action

principle for the Bethe equations following from it by varying with respect to the spectral

densities. It can be conveniently written as [5]

W[ϕ, ρ] =
1

8π2

∑

a,b

∫

dθ

∫

dθ′ φab(θ − θ′)ρa(θ)ρb(θ
′)

+
1

2π

∑

a

∫

dθ
[

ρa(θ)ϕa(θ) − Li2

(

eλa(θ)−ϕa(θ)
)]

. (3.7)

Here ϕa(θ) is the interacting part of the spectral density and λa(θ) encodes its free part

together with the chemical potential

ϕa(θ) = ǫa(θ) −maβ cosh θ, λa(θ) = β(µa −ma cosh θ) − πi. (3.8)

Varying (3.7) with respect to ϕa and ρa and using (3.8), one indeed gets the equations of

TBA (3.1). The critical value of the Yang-Yang functional is then given by

Wcr = −
1

8π2

∑

a,b

∫

dθ

∫

dθ′ φab(θ − θ′) log
(

1 − eλa(θ)−ϕa(θ)
)

log
(

1 − eλb(θ
′)−ϕb(θ

′)
)

−
1

2π

∑

a

∫

dθ Li2

(

eλa(θ)−ϕa(θ)
)

.

(3.9)

Comparison of this expression with the exact Kähler potential (2.31) of the gauge theory

moduli space reveals that it reproduces two instanton symplectic invariant terms of the

latter. Thus, one has the following relation

KM =
R2

2
K(z, z̄) −

1

4
NΛΣ(wΛ − w̄Λ)(wΣ − w̄Σ)

+
1

64π4

∑

a,b

nγanγb
Qab

∫

ℓγa

Daζ

∫

ℓγb

Dbζ
′ +

1

8π2
Wcr, (3.10)

where NΛΣ is the inverse of NΛΣ = −2 ImFΛΣ, Qab is constructed in terms of charges as

Qab =
1

4
NΛΣp

Λ
a p

Σ
b +NΛΣ

(

qa,Λ − pΘ
a ReFΛΘ

) (

qb,Σ − pΞ
b ReFΣΞ

)

, (3.11)

and we used the holomorphic coordinates wΛ defined in (A.10). Although we found that

the Yang-Yang functional does not coincide with the full instanton contribution to KM, it

captures the most non-trivial part of the Kähler potential. In general, since KM is subject

to Kähler transformations, the exact equality should not be expected and the appearance

of the additional terms is not surprising.
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4 Integrable structure of instanton contributions

4.1 The S-matrix

The S-matrix corresponding to TBA (3.3) can be easily obtained by integrating φab(θ)

from (3.4). In this way, one finds

Sab(θ) = Cab

[

sinh

(

1

2
(θ + i(ψa − ψb))

)]〈γa,γb〉

, (4.1)

where Cab is an integration constant. As was noticed in [13], this S-matrix is non-unitary.

However, it is not necessarily a problem since nowadays there are many non-unitary in-

tegrable models. On the other hand, integrability and consistent physical interpretation

require the S-matrix to satisfy a set of severe conditions. In this section we show that our

S-matrix (4.1) fulfils all of them. Checking these properties, it will be important that the

angles ψā associated to antiparticles differ from the particle angles as ψā = ψa ± π. This

relation is clear from figure 1b.

The conditions imposed on a two-particle S-matrix include (see, for example, [28, 29]):

• Lorentz invariance — It simply means that the S-matrix depends on the rapidity

difference of two particles θ = θa − θb, what is clearly true in our case.

• Zamolodchikov algebra — It means that the particle creation operators must satisfy

Φa(θ)Φb(θ
′) = Sab(θ − θ′)Φb(θ

′)Φa(θ). Applying this identity twice, one gets the

following restriction on the S-matrix

Sab(θ)Sba(−θ) = 1. (4.2)

In the case of unitary theories, this relation can be seen as a combination of two

conditions: unitarity and Hermitian analyticity [29]. As easy to see, our S-matrix

satisfies only the combination (4.2) as soon as the integration constants are chosen

so that

CabCba = (−1)〈γa,γb〉. (4.3)

• Crossing symmetry — It relates the scattering in the s- and t-channels and requires

that

Sbā(πi − θ) = Sab(θ). (4.4)

Again the matrix (4.1) fulfils this constraint if

Cbā = (−1)〈γa,γb〉Cab. (4.5)

• Yang-Baxter equation — It means that the order in which the particles are scattered

does not matter and can be depicted as follows
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Sab(θ)Sac(θ + θ′)Sbc(θ
′) = Sbc(θ

′)Sac(θ + θ′)Sab(θ), (4.6)

When particles do not have additional degrees of freedom, as in our case, the S matrix

is purely diagonal and this equations is trivially satisfied.

• Bootstrap identity — This is the most non-trivial requirement on the S-matrix which

relates its singularity structure to the spectrum. Namely, it demands that if Sab(θ)

has a pole7 in the physical strip, i.e., at θ = iucab where ucab ∈ (0, π), then the spectrum

should contain the bound state c̄ with the mass

m2
c̄ = m2

a +m2
b + 2mamb cos ucab, (4.7)

appearing in the fusing process a+ b→ c̄. The crossing symmetry then leads to the

existence of other two fusing processes, b + c → ā and c + a → b̄, with the fusing

angles satisfying

ucab + uabc + ubca = 2π. (4.8)

But the most important condition is that it does not matter whether an additional

particle, say d, scatters with the bound state c̄ or consequently with the two particles

a, b

J
J

JJ

J
J
JJ



















J
J
JĴ

J
J
JĴ








�








�

HHHHHHHHj
HHHHHHHHj

a ad

d

bb

c̄ c̄
=

Sda(θ − iūbca)Sdb(θ + iūabc) = Sdc̄(θ), ūcab = π − ucab. (4.9)

In our case the poles of the S-matrix (4.1) correspond to

ucab = ψb − ψa. (4.10)

7Usually it is taken in the strong form of a pole of order one, but experience in the field of S matrix

shows that this principle has to be usually extended to poles of order greater than one [30].
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The condition that the pole is on the physical strip is equivalent to sinucab > 0. The

mass formula (4.7) together with its expression (3.4) in terms of the central charge

Zγ yields

βmc̄ = 4πR|Zγa+γb
|, (4.11)

so that we deduce that the bound state c̄ has the charge γa+γb consistently with the

physical interpretation. Moreover, since 〈γb, γc〉 = 〈γc, γa〉 = 〈γa, γb〉, the S-matrix

elements Sbc and Sca have poles of the same degree as in Sab. By simple manipulations

one finds that the corresponding fusing angles8 uabc = ψc − ψb, u
b
ca = ψa − ψc + 2π

also belong to the physical strip due to

sinuabc =
ma

mb
sinubca =

ma

mc
sinucab > 0 (4.12)

and satisfy the constraint (4.8). This means that the other two fusing processes ob-

tained by crossing also exist. Finally, it is straightforward to check that the bootstrap

identity (4.9) does hold provided

CdaCdb = Cdc̄. (4.13)

The three conditions (4.3), (4.5) and (4.13) on the integration constants fix them to

be Cab = σabC
〈γa,γb〉 where σab is a Z2-valued function on the square of the charge

lattice satisfying the same conditions (4.3), (4.5) and (4.13). Given a polarization into

electric and magnetic charges, it can be chosen, for example, as σab = (−1)qa,Λp
Λ
b . It

reminds a lot the quadratic refinement introduced in [13] and mentioned in footnote 5.

Thus, our S-matrix (4.1) satisfies all necessary requirements of an integrable model

in 1 + 1 dimensions.

4.2 Y-system

Y-system [31, 32] is a system of functional algebraic relations on the exponentials of the

spectral densities which, although equivalent to the integral equations of TBA, play an

important role in the analysis of integrable models. In particular, it may be viewed as an

intermediate step between TBA and the transfer matrix approach. Therefore, it would be

nice to have such relations at our disposal.

Let us introduce the Y-functions as9

Ya(θ) = −eβµa−ǫa(θ). (4.14)

Using ψā = ψa + π and Θā = −Θa, it is easy to check that (3.3) leads to the following

relations

Ya

(

θ +
πi

2

)

Yā

(

θ −
πi

2

)

=
∏

ā<b<a

[

1 − Yb
(

θ + i
(

π
2 + ψa − ψb

))

]nγb
〈γa,γb〉

. (4.15)

8These definitions are valid for ψa < ψc. Otherwise the shift 2π will appear in one of the other fusing

angles.
9Note the additional minus sign in the definition of the Y-function. It is introduced to ensure that

Ynγ = Y n
γ and hints that the bosonic version of TBA might be more relevant in this context (see the end

of section 5).
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This is our Y-system. Of course, for a general configuration of charges, it is extremely com-

plicated. We would like to point out however a few unusual features of this Y-system (4.15)

comparing to the standard Y-systems appearing in the literature on integrable models:

• First, on the l.h.s. of (4.15) one multiplies functions associated with a particle and

its antiparticle, whereas usually one has only one function. This feature is related to

the absence of the parity symmetry in our case and to the unusual reality conditions.

Notice that the reality conditions (2.27) in terms of the spectral densities and the

Y-functions read

ǭa(θ) = ǫā(−θ), Ȳa(θ) = Yā(−θ). (4.16)

As a result, the Y-functions are not necessarily real on the real axis of the spectral

parameter. Neither is the combination on the l.h.s. of (4.15).

• Second, on the r.h.s. the Y-functions are all evaluated at different points, whereas

usually their arguments do not contain any shifts. Moreover, usually the fusing angles

and the only shifts appearing in functional relations are rational multiples of π. Here

they are completely arbitrary and vary continuously with the moduli zΛ.10

• Third, usually the power of each element of the product on the r.h.s is related to the

incidence matrix of a graph which structure is severely constrained by the periodicity

of the Y-system [32, 33]. This incidence matrix is equivalently described by the ma-

trix Nab =
∫ +∞
−∞ φab(θ)dθ. In our case it is just not defined because the kernel is not

integrable. However, this describes only a particular class of the Y-systems which

are known nowadays. It is known that the general mathematical structure which lies

behind Y-systems is related to cluster algebras [34, 35]. Such general Y-systems are

defined by skew-symmetrizable matrices having to satisfy some mutation identities.

Our matrix nγb
〈γa, γb〉 is also skew-symmetrizable and originates in some mathe-

matical structures also having relations with cluster transformations [27]. Therefore,

it would be quite interesting to understand what is the precise connection between

cluster algebras and the Y-system appearing in our case.

4.3 Remarks on the strong coupling limit

Usually, TBA is a very effective tool to get the conformal or high temperature limit of

the integrable model. This is a limit where the parameter β (3.1) goes to zero. Given the

identification (3.4), this is equivalent to vanishing of the parameter R, which means either

the small radius limit in gauge theory, where it becomes effectively three-dimensional,

or the strong coupling limit in string theory, where the ten-dimensional string coupling

becomes large.

The standard derivation tells us that in this limit the Y-functions become constant and

real for a wide range of the rapidity parameter θ [12]. The values of these functions can

10It is interesting that there is a case where many of these complications disappear. We present it in

appendix B. This is probably one of the simplest possible examples of the TBA systems of the type

considered in this paper.
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then be easily found from the Y-system which reduces to a system of algebraic equations.

Finally, there is a nice formula

F(β) = −
1

π

∑

a

L(Ya) +O(β) (4.17)

which gives the free energy in terms of these constant values, where L is the Rogers dilog-

arithm defined by L(x) = Li2(x) + 1
2 log(x) log(1 − x). Thus, if the same story was valid

in our case, we could hope to find the strong coupling limit of, for example, the contact

potential in an easy way.

However, the TBA (3.3) has several features which distinguish it from the usual inte-

grable models and make the story much more complicated. In particular, one has:

• more complicated reality conditions (4.16) than the ones appearing usually,

• the kernel φab(θ) (3.4) is not decaying at infinity,

• the system is supplied by arbitrary imaginary chemical potentials µa.

On the other hand, the standard derivation of the free energy in the conformal limit relies

on the absence of these features. In fact, it can be extended to include some of them.

For example, [36, 37] gave a generalization for non-vanishing chemical potentials leading

to the same formula (4.17) with a simple modification of the Rodgers function L: in log Ya
in the second term one should subtract the contribution of the chemical potential, i.e., it

can be replaced by −ǫa. But altogether the above features give rise to the appearance of

new phenomena. Most importantly is that the Y-functions are not constant anymore in

this limit. This can be seen analytically and has been also verified by a numerical analysis

of the simplest example proposed in appendix B. As a result, the derivation of the free

energy must be seriously reconsidered and we leave the detailed investigation of this issue

for a future work.

There is also another problem to handle in order to find the strong coupling limit of

the free energy, which comes from the fact that the lattice of charges is infinite. Indeed,

the formula (4.17) gives the free energy as a sum over all particles in the spectrum so that

we will have to sum over all charges. This sum is usually divergent and requires a certain

resummation [38]. But the resummation should be performed before the limit since these

two procedures are not commuting.

This issue can easily be exemplified if one considers the contributions of only D(-1)-

instantons to the hypermultiplet moduli space of string theory. In this case TBA can be

solved exactly since the scalar product of two charges is always vanishing leaving us with

ǫq(θ) = 4πR|q| cosh θ. (4.18)

Then plugging this result into (3.5) and extracting the limit or using (4.17) with Yq =

e−2πiqζ0 , one finds (with nq = χX)

F(0) = −
χX
π

∑

q 6=0

Li2

(

e−2πiqζ0
)

(4.19)
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which is clearly divergent. On the other hand, the same limit can be found by a Poisson

resummation of the initial expression obtained by taking the integral in (3.5) explicitly in

terms of Bessel functions [15, 39]. This leads to [40]

F(β) = −
χX
4π

ζ(3)β−1 +O(β), (4.20)

where we identified β with R. The leading contribution has a different scaling in β than

the one of the usual result (4.17) and reflects the divergence of the latter.

Thus, the study of the strong coupling limit is supplied here with two problems: first,

our TBA is much more general than one usually considers and, second, the infinite spectrum

requires a resummation technique to be applied.

5 Discussion

In this paper we demonstrated that the relation noticed in [13] between the equations de-

scribing the non-perturbative geometry of moduli spaces and the equations of TBA goes

beyond the formal analogy. To this end, we provided an identification of the physically

relevant quantities at the two sides of the correspondence, showed that the S-matrix un-

derlying this TBA fulfills all usual constraints imposed by integrability, and derived the

associated Y-system.

Of course, these results are only a first small step towards a deeper understanding of

this relation. However, already at this point we seem to open new interesting connections

with other developments. First, quite similar TBA equations and Y-systems to those

considered in this paper appear in the context of minimal area surfaces in AdS5 [9, 10].

In fact, the TBA for the full AdS5 problem found in [9] possesses all features listed in

section 4.3 which complicate the evaluation of the conformal limit. Nevertheless, it has

been successfully computed in [9]. This was possible due to an additional Z4 symmetry,

which considerably simplifies the corresponding Y-systems, and additional restrictions on

the chemical potentials. The TBA with generic chemical potential seems to experience the

same phenomena which were mentioned in section 4.3 and thus requires much more care.

Second, the Yang-Yang functional, providing for us the Kähler potential on the gauge

theory moduli space, plays also a prominent role in the relation of BPS vacua of certain

N = 2 gauge theories to Bethe states of integrable models [5]. In that correspondence

it has been identified with the twisted effective superpotential of the low energy effective

theory. Since the context of the two stories is very similar, it is tempting to assume that

the Kahler potential and the twisted effective superpotential are also related.

Besides, a somewhat intriguing observation is that the Y-system presented in ap-

pendix B leads to the MacMahon function, the generating function of 3d partitions. This

hints that there might be a relation with the beautiful duality between melting crystals

and topological strings [18].

A set of interesting questions arises if one tries to draw physical consequences from

the fact that the S-matrix (4.1) is consistent with the bootstrap. Usually, the latter can

be used to generate the complete spectrum out of some “elementary” particles. Can it be

used in the same way, for example, for gauge theory? Which singularities of the S-matrix

– 18 –
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should be taken into account, all or only those which belong to the physical strip, as in the

main text? Do zeros of the S-matrix play some role?

The last two questions become especially relevant, if one remarks that there are actually

two versions of TBA, for fermionic and bosonic particles. Here we used the fermionic

version. The bosonic equations differ only by two signs: one should flip the sign in front of

the integral in (3.1) and the sign in the logarithm inside the integral. This does not change

much. The second sign leads to disappearance of the shift by πi in the chemical potential

µa (3.4). But the first sign gives the S-matrix which is the inverse of (4.1). As a result, the

zeros and poles are exchanged between each other. What version of TBA is relevant for

our problem? Is it related to the signs of the invariants nγ or to the quadratic refinement

of [13]? Is it important at all? These are just few questions which arise naturally.
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A The Kähler potential

In this appendix we derive the exact instanton corrected Kähler potential (2.31) and after

that discuss its transformation under symplectic symmetry.

A.1 Evaluation

The starting point for evaluation of the Kähler potential is the representation (2.10), which

in our case takes the following form

KM = −
1

4π

∮

ζ=0

dζ

ζ3

(

F (ζη[+]) − ζAΛFΛ(ζη[+])
)

−
1

4π

∮

ζ=∞
dζ ζ

(

F̄ (ζ−1η[−]) − ζ−1AΛF̄Λ(ζ−1η[−])
)

+
1

16π3

∑

a

nγa

∫

ℓγa

dζ

ζ

[

Li2
(

e−2πiΞγa
)

+
nγa

2
qa,Λp

Λ
a

(

log
(

1 − e−2πiΞγa
))2

+2πipΛ
a

(

µ
[a]
Λ −BΛ

)

log
(

1 − e−2πiΞγa
)

]

, (A.1)

where Ξγa = qa,Λη
Λ
[a] − pΛ

aµ
[a]
Λ , the twistor lines ηΛ

[a], µ
[a]
Λ can be read off from (2.28), (2.16),

and the coordinates AΛ, BΛ are related to the physical fields as follows [16]

AΛ = ζΛ, BΛ = ζ̃Λ − ζΣ ReFΛΣ −
i ImFΛΣ

8π2

∑

a

nγap
Σ
aJγa(0). (A.2)

– 19 –



J
H
E
P
0
6
(
2
0
1
0
)
0
6
6

The expressions for ηΛ
[±] will not be needed explicitly. For our purposes it is enough to

know that

ηΛ
[±](ζ) = ηΛ

[a](ζ) +O(ζ±2). (A.3)

Plugging all definitions into (A.1), evaluating the first two integrals by residues and taking

into account the quasi-homogeneity property (2.14), it is straightforward to obtain that

the Kähler potential is given by the first two lines in (2.31) plus the following contribution

−
1

32π3

∑

a

nγap
Λ
a

∫

ℓγa

Daζ

[

nγaqa,Λ log
(

1−e−2πiΞγa
)

−
1

2πi

∑

b

nγb
qb,Λ

∫

ℓγb

Dbζ
′ ζ+ζ

′

ζ−ζ ′

]

(A.4)

with the measure Daζ defined in (2.32). First, let us concentrate on the second term for

b 6= a. The double integral is antisymmetric in a, b so that it reproduces the remaining

contribution to KM from the third line of (2.31). Second, the term with b = a seems to

be singular. However, it is easy to realize that it can be represented as a difference of two

double integrals such that the first integral goes over a contour which is either to the left

or to the right of the second. As a result, it gives just the residue at ζ ′ = ζ which exactly

cancels the first term in (A.4).

A.2 Symplectic invariance

The Kähler potential on the moduli space is expected to respect the symplectic invariance

of the gauge theory. However, the potential (2.31) is clearly not invariant under symplectic

transformations. This is true already at the tree level. This phenomenon was explained

in [41] where it was shown that KM is actually invariant up to a Kähler transformation so

that the moduli space metric does not change. Here we would like to generalize this result

to the non-perturbative level.

To this end, let us review how the symplectic transformations affect various quanti-

ties [41, 42]. These transformations are represented by 2d × 2d matrices acting on the

symplectic vectors as
(

zΛ

FΛ

)

7→

(

A B

C D

)(

zΛ

FΛ

)

(A.5)

whose blocks satisfy

ATB − BTA = ATC − CTA = BTC − CTB = BTD −DTB = 0,

ATD − CTB = 1.
(A.6)

It is convenient to introduce the holomorphic matrices

SΛ
Σ(z) = AΛ

Σ + BΛΘFΘΣ(z), ZΛΣ(z) = [S−1(z)]ΛΘB
ΘΣ. (A.7)

The nice feature of the matrix Z is that it is symmetric whereas S encodes transformation

properties of various quantities such as

FΛΣ 7→ (DΛ
ΞFΞΘ + CΛΘ)[S−1]ΘΣ,

ImFΛΣ 7→ ImFΘΞ[S−1]ΘΛ[S̄−1]ΞΣ,

ζ̃Λ − FΛΣζ
Σ 7→

(

ζ̃Θ − FΘΣζ
Σ
)

[S−1]ΘΣ,

qΛ − FΛΣp
Σ 7→

(

qΘ − FΘΣp
Σ
)

[S−1]ΘΣ.

(A.8)
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Using these results, one can show that the variation of the Kähler potential (2.31) under a

finite symplectic transformation is given by

∆KM = −
i

4
ZΛΣ(z)wΛwΣ +

i

4
Z̄ΛΣ(z̄)w̄Λw̄Σ, (A.9)

where

wΛ ≡ µ
[+]
Λ |ζ=0 = ζ̃Λ − FΛΣζ

Σ −
1

8π2

∑

a

nγa(qΛ − FΛΣp
Σ)

∫

ℓγa

Daζ (A.10)

together with zΛ = −iνΛ
[+]|ζ=0 provide the complex coordinates on the moduli space M.

This demonstrates that the change of KM is described by a Kähler transformation in

agreement with symplectic invariance.

B Example: rigid Calabi-Yau

Let us consider a particular simple case of a compactification on a rigid Calabi-Yau X

with the vanishing Hodge number h2,1(X). Then the hypermultiplet sector consists only

from one hypermultiplet known as the universal hypermultiplet. As a result, the lattice of

charges is two-dimensional, γ = (q, p). In addition, the holomorphic prepotential is simply

F (X) = − τ
2 X

2 where τ is a fixed complex coefficient determined by the holomorphic

3-form of the Calabi-Yau [43]. As a result, the central charge function becomes

Zγ = q + τp. (B.1)

Let us restrict ourselves only to the two sets of charges: pure “electric” (q, 0) and pure

“magnetic” (0, p). In other words, we ignore all possible “dyons” with both electric and

magnetic charges non-vanishing. From (B.1) it is clear that in this case there are only four

sets of angles in the game (q, p > 0)11

ψ(q,0) = 0, ψ(0,p) = ψτ , ψ(−q,0) = π, ψ(0,−p) = ψτ + π, (B.2)

where ψτ = arg τ . Since Yq,0 = Y q
1,0 and Y0,p = Y p

0,1, in fact one has only two unknown

functions. As a result, in this sector the TBA equations read as follows

4πR cosh θ + 2πiζ = − log Y1,0(θ)

−
i

4π

∑

p>0

n0,pp

∞
∫

−∞

dθ′

[

eθ−θ
′

+ τ ′

eθ−θ′ − τ ′
log
(

1 − Y p
0,1(θ

′)
)

−
eθ−θ

′

− τ ′

eθ−θ′ + τ ′
log
(

1 − Ȳ p
0,1(−θ

′)
)

]

,

4πR cosh θ − 2πiζ̃ = − log Y0,1(θ) (B.3)

+
i

4π

∑

q>0

nq,0q

∞
∫

−∞

dθ′

[

eθ−θ
′

+ τ̄ ′

eθ−θ′ − τ̄ ′
log
(

1 − Y q
1,0(θ

′)
)

−
eθ−θ

′

− τ̄ ′

eθ−θ′ + τ̄ ′
log
(

1 − Ȳ q
1,0(−θ

′)
)

]

,

11One could ask whether the restriction to only electric and magnetic charges is consistent with the

bootstrap, which as we know leads to the bound states of charges γa + γb. Remarkably, for Im τ > 0, all

fusing angles corresponding to the poles of the S-matrix (4.1) with ψa from (B.2) turn out to be outside of

the physical strip. Therefore, if such poles are not required to satisfy the bootstrap identities, our restriction

is consistent.
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where we defined τ ′ = eiψτ . The corresponding Y-system (4.15) takes in this case the

following form

Y1,0

(

θ +
πi

2

)

Y−1,0

(

θ −
πi

2

)

=
∏

p>0

[

1 − Y p
0,1

(

θ + i
(

π
2 − ψτ

))

]pn0,p

,

Y0,1

(

θ +
πi

2

)

Y0,−1

(

θ −
πi

2

)

=
∏

q>0

[

1 − Y q
−1,0

(

θ − i
(

π
2 − ψτ

))

]qnq,0

.

(B.4)

Especially simple the above equations become when the parameter τ is pure imaginary,

i.e., ψτ = π/2. Then, all angles (B.2) are multiples of π/2 and all fusing angles are multiples

of π and moduli independent, as in the usual integrable models! Moreover, in this case the

Y-system loses one of its unusual features. Namely, in (B.4), as in the standard Y-systems,

all functions on the r.h.s. appear without any shifts in the arguments.

To analyze the resulting Y-system, it is useful to take into account that nq,0 = χX [15].

One may assume that n0,p is also p-independent. Then the r.h.s. of (B.4) is described by

the MacMahon function12

S(y) =
∞
∏

n=1

1

(1 − yn)n
. (B.5)

This is the generating function of plane partitions which describes also the large volume

limit of the topological string partition function as Z(gs) = [S(e−gs)]χX/2 [44]. This fact

played the prominent role in the duality between topological strings and melting crys-

tals [18]. Remarkably, in our example not only this function appears, but even the power

is also given by the Euler characteristic of the Calabi-Yau. This suggests that there might

be a deep interplay between our story on one side and random partitions and topological

strings on the other.

To exemplify some properties of the TBA systems introduced in this paper, it might

be useful to consider a further truncation of this example, where one drops the sum over

the infinite set of charges and considers, for example, only charges with q = ±1 or p = ±1.

Such a truncated system is particularly suitable for numerical analysis, but still possesses

most of the non-trivial features of the full problem such as non-decaying kernels, arbitrary

chemical potentials, non-trivial reality conditions, etc.
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