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1 Introduction

Non-perturbative effects are crucial for understanding various problems in Quantum Field

Theory (QFT) and String Theory. Instantons, in particular, provide an elegant explanation

for the spontaneous breaking of classical symmetries in QFT through dynamical generation

of condensates. Particularly well-understood examples are gaugino condensation induced

by fractional gauge instantons in supersymmetric theories, leading to spontaneous breaking

of R-symmetry, or the chiral condensate induced by t’Hooft instantons in QCD, leading

to spontaneous breaking of chiral symmetry. Hence, instanton effects are useful to illu-

minate many problems related to the vacuum structure of QCD, supersymmetry breaking

or technicolor.

In String Theory the landscape of possible instanton effects becomes more intricate.

There are two qualitatively different effects. The first is just the string theory description
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of QFT instantons: Euclidean D(p − 4)-branes (also dubbed E(p − 4)-branes) wrapping

the same cycle in the compact space as a space-time filling stack of Dp-branes realize QFT

instanton effects for the gauge theory in the worldvolume of the Dp-brane. Qualitatively

different type of effects are generated by Eq-branes wrapping a different cycle in the internal

space and intersecting the Dp-brane under consideration, provided that the brane and the

instanton are mutually BPS. Such effects, called stringy instanton effects, arise even for

Abelian gauge groups and are therefore not easily understandable in the language of gauge

theory instantons.

Stringy instanton effects were studied in various contexts of string, M-theory and

F-theory some time ago [1, 2]. Recently, there was a revival of activity concerning phe-

nomenological applications in D-brane models (for reviews, see e.g. [3, 4]). These include

neutrino masses [5, 6], µ-terms in the MSSM [7], moduli stabilization [8], supersymmetry

breaking ([9–12]; for subtleties related to moduli stabilization in such a setup, see [13]) or

fermion masses [14–17]. An important feature of Euclidean brane instantons which con-

tribute to superpotential couplings is that they have to wrap rigid cycles, i.e. they have

no positions in the internal space. This requirement is necessary (although not sufficient)

in order for the instanton to have the minimum number of (two) un-charged fermionic

zero modes θ and to be therefore able to generate non-perturbative contributions to the

superpotential.

As their QFT analogs, stringy instanton effects can induce dynamical condensates and

spontaneous breaking of symmetries in the 4d effective field theory. Consider for instance

two stacks of fractional branes with opposite twisted charge stuck at an orbifold singularity.

Their massless spectrum contains chiral multiplets Φab̄ and Φ̃āb transforming, respectively,

in the (Fund(Ga),Fund(Gb)) and (Fund(Ga),Fund(Gb)) representations of the gauge group

Ga × Gb. The condensate 〈Φab̄Φ̃āb〉 parameterizes the recombination of the two stacks of

branes and the spontaneous breaking of the gauge group to a diagonal subgroup. The

recombined stack of branes has vanishing total twisted charge and therefore can move off

from the singularity, with position modulus related to Φab̄Φ̃āb. A non-trivial condensate

〈Φab̄Φ̃āb〉 can be induced by Euclidean brane instantons placed at distant singularities. The

situation is depicted schematically in figure 1. Varying 〈Φab̄Φ̃āb〉 changes the area of the disc

scattering amplitude spanned by the branes and the instanton and hence the total energy of

the system. Stringy instanton effects may therefore induce non-perturbative destabilization

of a string vacuum and dynamical brane recombination.1 Far away from the singularities,

this phenomenon manifests in the appearance of a non-perturbative superpotential for the

open string moduli of the recombined brane.

The purpose of the present work is to study this phenomenon in detail. We find, in

particular, that if the following conditions are simultaneously satisfied:

- there is an appropriate number of (two) charged instanton zero modes ηi stretched

between the brane and the instanton,

- there is an U(1) or U(2) gauge theory realized on the D-branes,

1See also [5] for related comments.
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(a) (b)
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Figure 1. Non-perturbative Higgs mechanism through a dynamical condensate induced by a stringy

Euclidean brane instanton. (a) Two fractional branes with opposite twisted charge are stuck in a

given singularity. An instanton (represented by the wavy line) sits at a distant singularity. (b)

The instanton may induce a condensate 〈Φab̄Φ̃āb〉 whose VEV parameterizes the position of the

recombined brane j and minimizes the area of the disc amplitude spanned by the branes and the

instanton (shaded region).

- there is a Yukawa coupling η1Φη2, where Φ is a brane field charged under U(1),

then there is a non-perturbatively generated linear superpotential Wn.p. = g(ξ, τi)e
−Sinst.Φ

in the gauge theory, where Sinst. is the instanton action and the coefficient g depends on

the open string moduli ξ and the complex structure moduli τi. As we have just argued, the

dependence on the open string moduli can be interpreted as a force acting on the D-brane

by the singularity where the instanton resides, leading to an F-term contribution to the

vacuum energy of the form ∆V ∼ |g(ξ, τi)e
−Sinst. |2.

In globally consistent models, there are usually several rigid instantons of action S
(α)
inst..

The induced superpotential is then qualitatively of the form

Wn.p. =
∑

α

gα(ξ, τi)e
−S

(α)
inst.Φ . (1.1)

The resulting scalar potential will be minimized for a certain position of the D-brane, which

is typically a symmetric point with respect to the singularities where the various instantons

sit. At these loci, non-perturbative forces are balanced.

In general, the functions gα(ξ, τi) contain also additional effects related to the dynamics

of other D-branes which are needed for global consistency of the model. Even if these

spectator branes do not experience any non-perturbative superpotential generation in their

worldvolume, by moving towards the singularities where instantons sit they can change the

number of instanton zero modes [2] and therefore destroy the instability for the original

D-branes under consideration. Therefore the notation ξ in eq. (1.1) should refer to the

position of all D-branes and not only the ones experiencing the destabilizing force.

The generation of non-perturbative superpotentials for D-brane scalars has many in-

teresting applications. These range from moduli stabilization to phenomenological applica-
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tions such as models of D-brane inflation [18–21] or stringy realizations of composite Higgs

models. In addition, superpotentials of the form eq. (1.1), which have an R-symmetry, have

also been recently employed to realize supersymmetry breaking a la Polonyi and gauge me-

diation within string theory [9–12]; for subtleties related to moduli stabilization in such a

setup, see [13]. In this sense, it is generally accepted that if the number of complex fields

on which gα(ξ, τi) depend is lower than the multiplicity of fields Φ, the superpotential in

eq. (1.1) spontaneously breaks supersymmetry [22, 23]. This is certainly true when gα(ξ, τi)

are arbitrary functions. However, our results suggest that in String Theory compactifica-

tions there are often correlations between the zeros of gα(ξ, τi), allowing for supersymmetric

vacua even in cases where the non-perturbative superpotential preserves an R-symmetry.

The reason is that due to the particular dependence on ξ, the superpotential is not generic.

In this work we focus on toroidal orbifold models with magnetized branes and analyze

the above process of non-perturbative vacuum destabilization, D-brane recombination and

open string moduli stabilization. The requirement of having rigid cycles in models with

magnetized branes implies the existence of a Z2 × Z2 subgroup within the orbifold action

which has discrete torsion [24–27]. One of our main results is the explicit expression

for superpotential (1.1) in these models, provided the three conditions stated above are

simultaneously satisfied.

The organization of the paper is as follows. In section 2 we summarize some of the

ingredients which are needed for the computation of superpotentials like eq. (1.1), namely

the definition of holomorphic fields in compactifications with magnetized D-branes, and

the discrete parameters of stringy instantons in toroidal orbifold models. The explicit

computation of superpotential (1.1) in toroidal orbifold models is performed in section 3,

where we also comment on the general features of non-perturbative D-brane dynamics

induced by stringy instantons and the limitations of the local analysis versus the global

picture. In section 4 we present a simple global model based on the T 6/Z2 × Z2 orbifold

with magnetized branes and rigid cycles, in which linear superpotential couplings can

lead to processes of D-brane recombination and gauge symmetry breaking. We also briefly

comment in this section on a different model with only magnetized D9-branes, where stringy

instantons also generate linear superpotential couplings. We argue that in both cases

supersymmetry is not broken. Section 5 is devoted to the model presented in refs. [25, 27]

where stringy instantons induce mass terms for some of the antisymmetrics. By using these

techniques we explicitly compute the mass terms, determining whether they vanish or not.

Finally, we end in section 6 with some conclusions, where we also comment about the

implications for supersymmetry breaking. Three appendices collect some previous results

on the T 6/Z2 × Z2 orbifold with magnetized branes and rigid cycles, various one-loop

computations needed in the evaluation of the instanton one-loop determinants and details

about the computation of F-terms in the global model of section 4.

2 Some ingredients

In this section we introduce some of the ingredients which are needed for the computation

of superpotentials like eq. (1.1), namely the definition of holomorphic fields in compactifica-
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tions with magnetized D-branes, and discrete configurations of Euclidean brane instantons

in toroidal orbifold models. The computation of superpotential (1.1) will be then performed

in section 3, by making use of these elements.

2.1 Holomorphic fields in magnetized type I strings with Wilson lines

In order to write down the effective superpotential (perturbative or non-perturbative) which

results from a string theory compactification, one typically needs to compute some relevant

physical couplings in the 4d action and to extract the holomorphic part. This procedure,

however, is not in general straightforward. In the presence of D-branes, various non-

holomorphic terms depending on the moduli of the D-branes are absorbed into redefinitions

of the closed string moduli and charged chiral fields. Finding the precise form of these

redefinitions is therefore required to correctly identify the holomorphic variables of the

superpotential and, in a last step, the superpotential itself.

A systematic study of field redefinitions in the context of toroidal type IIB (orientifold)

compactifications with magnetized D-branes and continuous Wilson lines was performed

in [28]. We reproduce here the main results of this paper, which will be relevant for

later computations.

Hence, consider a stack of N =
∑

I NI , I = a, b, . . ., magnetized D9-branes wrapping

a factorizable torus, T 2 × T 2 × T 2, and magnetization given by,

F2 =

3
∑

r=1

πi

Im τr









mr
a

nr
a

INa

mr
b

nr
b
INb

. . .









dzr ∧ dz̄r (2.1)

with nI ∈ N
+, mI ∈ Z, such that g.c.d.(mr

I , n
r
I) = 1. Here, τr is the complex structure

modulus of the r-th 2-torus, dzr = dxr + τrdy
r, and INI

are NI × NI identity matrices.

Magnetization breaks the initial U(N) gauge symmetry to ⊗IU(NI).

In addition, we consider configurations of continuous Wilson lines which do not further

break the gauge symmetry, i.e.

AW.L. =

3
∑

r=1

πi

Im τr







Im(ξr
adz̄

r)INa

Im(ξr
bdz̄

r)INb

. . .






(2.2)

where ξr
I,x, ξ

r
I,y ∈ [0, 1/nr

I ) are the real Wilson line parameters along the r-th 2-torus and

ξr
I = ξr

I,x + τrξ
r
I,y.

In the presence of the above magnetization, |IIJ | chiral multiplets transforming in the

bifundamental representation (NI , N̄J) of the gauge group arise in the massless spectrum,

where IIJ is the intersection number2 between stacks of branes I and J defined as,

IIJ =
3
∏

r=1

Ir
IJ , Ir

IJ = mr
In

r
J − nr

Im
r
J , r = 1, 2, 3 (2.3)

2Although in this paper we work within type I string theory, very often we also refer to the T-dual type

IIA terminology of intersecting branes.
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We denote the physical fields (also dubbed matter fields in what follows) by Φ
~i
IJ , where

~i = (i1, i2, i3) and ir = 0 . . . |Ir
IJ | − 1.

The N = 1 holomorphic variables which appear in the superpotential related to these

fields can be extracted from the expression of the Yukawa couplings, resulting in [28],3

Φ̂
~j
ab = eifab

(

W

W

) 1
4

(

3
∏

r=1

(Im τr)
1
4 e

iπ
ξr
ab

Im ξr
ab

Ir
ab

Im τr

)

Φ
~j
ab (2.4)

where we have introduced the notation

Ir
ab =

Ir
ab

nanb
, ξr

ab = ξr
a − ξr

b (2.5)

The phases fab are unknown real functions of the Wilson line moduli. By demanding

invariance of the 4d action under periodic shifts of the Wilson line moduli, however, their

transformation properties can be derived. More precisely, the holomorphic variable (2.4)

has to transform as

ξr
a → ξr

a + δr
a ⇒ Φ̂

~i
ab → Φ̂

~i
ab , (2.6)

ξr
a → ξr

a + δr
aτr ⇒ Φ̂

~i
ab → e

iπ(δr
a)2τr

Ir
ab

+
2πiξr

ab
δr
a

Ir
ab Φ̂

~i
ab (2.7)

where δr
a = l.c.m.(Ir

ab, I
r
ac, . . . )/n

r
a. From here, we deduce that the phase factors fab = −fba

transform as,

ξr
a → ξr

a + δr
a ⇒ fab → fab −

πδr
aIm ξr

ab

Ir
abIm τr

, (2.8)

ξr
a → ξr

a + δr
aτr ⇒ fab → fab −

πδr
aIm(τ̄rξ

r
ab)

Ir
abIm τr

(2.9)

Closed string moduli are also redefined by the open string moduli (see e.g. [29–32] for

early examples) absorbing non-holomorphic terms in their definition. Redefinitions of the

complex axion-dilaton S and the Kähler moduli Tk can be deduced by looking at non-

perturbative couplings generated by E5 and E1-brane instantons [28]. For factorizable

6-tori, these turn out to be given by,

Ŝ = S +
∑

{I}

3
∑

r=1

crI
ξr
I Im ξr

I

Im τr
(2.10)

T̂k = Tk −
∑

{I}



c0I
ξk
I Im ξk

I

Im τk
−

3
∑

p 6=q 6=k

cqI
ξp
I Im ξp

I

Im τp



 , k = 1, 2, 3 (2.11)

where S and Tk obey the standard definitions for factorizable toroidal orientifold compact-

ifications with O9-planes [29, 33, 34],

S = C6 + ieφ/2
3
∏

r=1

Volr , Tk = C2,k + ie−φ/2Volk (2.12)

3We omit in this expression factors depending on the Kähler moduli or the axion-dilaton. These terms

will not be relevant for the computations in this paper.
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In these expressions, φ is the 10d dilaton, Volr is the volume of the r-th 2-torus and C6

(C2,k) is the component of the RR 6-form (2-form) along the compact space (the k-th

2-torus).

The index I in eqs. (2.10)–(2.11) runs over all D-branes in the compactification, mag-

netized and non-magnetized, whereas the coefficients c0I and ckI , k = 1, 2, 3 correspond,

respectively, to the D9- and D5-brane charges of the stack of branes Î. For magnetized

bulk D9-branes these are given by,

c0I = NIn
1
In

2
In

3
I , c1I = NIn

1
Im

2
Im

3
I , c2I = NIm

1
In

2
Im

3
I , c3I = NIm

1
Im

2
In

3
I . (2.13)

Alternatively, their values can be read from the mixing between different closed string

moduli in the gauge kinetic function, fI .

Any consistent superpotential should be a holomorphic function of the variables (2.10)–

(2.11). However, in order for (2.10)–(2.11) to transform holomorphically under periodic

shifts of the Wilson line moduli, the RR potentials have to transform also non-trivially.

From the 10d supergravity action it can be seen that this is indeed the case. For instance,

integrating over the internal 6-torus the following piece of the 10d supergravity action
∫

[Tr(F2 ∧ F2 ∧ F2 ∧A) ∧ F3 + F7 ∧ F3] (2.14)

where F3 and F7 are respectively the RR 3-form and 7-form field strengths (F7 = ∗F3),

one obtains

1

6

∫

dx4 ǫµνρσFνρσ

[

Re(∂µS) +
∑

I

(

NIm
1
Im

2
Im

3
IA

I
µ +

3
∑

r=1

crI
Im[ξ̄r

I∂µξ
r
I ]

Im τr

)]

(2.15)

The first two terms in the bracket are the ones responsible for the Green-Schwarz mech-

anism. From them we see that a U(1) gauge transformation has to be compensated by a

shift of the closed string axion,

AI
µ → AI

µ + ∂µΛI ⇒ S → S −NIm
1
Im

2
Im

3
IΛ

I (2.16)

Similarly, the third term leads to non-trivial transformations of S under periodic shifts of

the Wilson line moduli,

ξr
a → ξr

a + δr
a ⇒ S → S − cra

δr
aIm ξr

a

Im τr
(2.17)

ξr
a → ξr

a + δr
aτr ⇒ S → S − cra

δr
aIm (ξr

aτ̄r)

Im τr
(2.18)

Plugging these equations into eq. (2.10) we observe that Ŝ indeed transforms

holomorphically,

ξr
a → ξr

a + δr
a ⇒ Ŝ → Ŝ (2.19)

ξr
a → ξr

a + δr
aτr ⇒ Ŝ → Ŝ + 2craδ

r
aξ

r
a + (δr

a)
2craτr (2.20)

providing a good consistency check of eq. (2.10).
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Similar considerations apply to Tk. In this case, under U(1) gauge transformations

AI
µ → AI

µ + ∂µΛI ⇒ Tk → Tk +NIn
p
In

q
Im

r
IΛ

I , p 6= q 6= k (2.21)

whereas under periodic shifts of the Wilson line moduli,

ξr
a → ξr

a + δr
a ⇒ Tk → Tk + cr,ka

δr
aIm ξr

a

Im τr
(2.22)

ξr
a → ξr

a + δr
aτr ⇒ Tk → Tk + cr,ka

δr
aIm(ξr

aτ̄r)

Im τr
(2.23)

where we have defined cr,ka = c0a for r = k and cr,ka = −cpa for r 6= k 6= p. Plugging these

expressions into eq. (2.11) leads to the holomorphic transformation of T̂k,

ξr
a → ξr

a + δr
a ⇒ T̂k → T̂k (2.24)

ξr
a → ξr

a + δr
aτr ⇒ T̂k → T̂k − 2cr,ka δr

aξ
r
a − (δr

a)
2cr,ka τr (2.25)

In this work we will consider N = 1 compactifications of type I string theory on T 6/Γ,

where Γ ⊂ SU(3) is some discrete orbifold action. The above results hold in this case as

long as we take them in the covering space, in the same spirit than [35]. For instance,

consider a field which transforms in an antisymmetric or symmetric representation of the

gauge group of a stack of branes a. Such a field would result from open strings in the

a − a∗ sector, where a∗ is the image of a under the orientifold action. Wilson line moduli

are mapped as ξr
a∗ = −ξr

a [36]. Hence, when performing a shift of the modulus ξr
a, one

has also to shift ξr
a∗ conveniently. From eqs. (2.6)–(2.7) we obtain then the holomorphic

transformation of such a field,

ξr
a → ξr

a + δr
a ⇒ Φ̂

~i
aa∗ → Φ̂

~i
aa∗

ξr
a → ξr

a + δr
aτr ⇒ Φ̂

~i
aa∗ → e

4πi(δr
a)2τr

Ir
aa∗

+
8πiξr

aδr
a

Ir
aa∗ Φ̂

~i
aa∗

2.2 Stringy instantons in toroidal orbifold models

In general, the 4d perturbative effective action of a type I string theory compactification

receives corrections from E1 and E5-branes wrapping, respectively, holomorphic complex

curves or the whole compact space. We are mainly interested on corrections to the su-

perpotential. These are due to Euclidean branes with precisely two fermionic neutral zero

modes, only charged under the gauge group of the instanton (for reviews, see e.g. [3, 4]). In

terms of the 4d effective supergravity, these are identified with the fermionic coordinates of

the N = 1 superspace. Additional fermionic neutral zero modes would render the contri-

bution to the superpotential trivial, as they lead to vanishing Grassman integrals over the

instanton moduli space.4 Notice however that in some cases these extra zero modes can

be removed by interactions between instanton zero modes [47, 51, 52] or/and additional

fluxes [47, 49, 53, 54].

4Such instantons could however contribute to other quantities in the 4d effective theory, such as the

gauge kinetic function [8, 37–39], the Kähler potential [38] or higher order F-terms [40–50].
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Geometrically, the condition of having only two fermionic neutral modes in the massless

spectrum, among other things, requires the cycle wrapped by the instanton to be rigid. For

toroidal orbifold models with magnetized branes this can only be the case if the orbifold

group Γ contains a Z2×Z2 subgroup with discrete torsion [24–27]. We denote the elements

of this subgroup as g, f and h, where each generator reverses the coordinates of two 2-tori

within the T 6,

g : (+,−,−) , f : (−,+,−) , h : (−,−,+) . (2.26)

Thus, in total there are 3 × 16 fixed points of the orbifold action associated to this Z2 ×

Z2 subgroup.

The sign choice for the disconnected modular orbits of g, f and h twisted sectors in

the one-loop partition function leads to discrete torsion. The later is usually parameterized

in terms of three signs (ǫg, ǫf , ǫh). From the point of view of the target space, the choice

of discrete torsion determines the nature of the exceptional divisors at the above 3 × 16

singularities and their parity under the orientifold involution. For ǫgǫf ǫh = + each of the

fixed points leads to a (1,2)-cycle in the blown-up limit, whereas for ǫgǫf ǫh = − it leads

to a (1,1)-cycle. For the sake of concreteness, here we set (ǫg, ǫf , ǫh) = (+,+,−). This

requires the presence of exotic O5+-planes along the 2-torus invariant under h [24]. Other

cases easily follow from this one.

Fractional E1-branes wrapping the third 2-torus and stuck at the 16 fixed points of h

have precisely two fermionic neutral zero modes, and therefore may correct the superpo-

tential. Their wrapping numbers are

(mi, ni) = (1, 0) ⊗ (−1, 0) ⊗ (0, 1) . (2.27)

We choose to parameterize the positions of the 16 fixed points and the configuration of

discrete Wilson lines in the worldvolume of E1-branes by means of three discrete com-

plex parameters,

ξi
E1 = ǫi + τiǫ

i+3 , i = 1, 2, 3 (2.28)

with ǫi taking values 0 or 1/2. Here, i = 1, 2, 3 denote the 2-tori invariant under the action

of g, f and h, respectively. Notice that, contrary to the case of standard Dp-branes, ξi
E1

are not physical fields. The instanton action lacks the corresponding kinetic terms, since

the instanton does not span the non-compact space-time dimensions, and therefore these

fields do not propagate.

In general, the presence of Dp-branes intersecting the instanton gives rise to extra

fermionic zero modes charged under the diagonal U(1) gauge symmetry of the Dp-brane.

The integral over these fermionic zero modes has to be saturated by gauge invariant oper-

ators, where each zero mode appears exactly once. Gauge invariance generically requires

these operators to contain also insertions of matter fields, Φq, localized at the intersections

between stacks of Dp-branes (for reviews, see e.g. [3, 4]). After integrating over the moduli

space of the instanton, a non-perturbative superpotential coupling for the matter fields Φq

is induced.
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3 Non-perturbative D-brane dynamics

3.1 Linear term instabilities

Following our discussion in the introduction, we are interested in compactifications where

Euclidean brane instantons generate linear superpotential couplings for some of the charged

matter fields. Those couplings would signal a non-perturbative instability in the initial

configuration, or in the most favorable case, the spontaneous breaking of the N = 1

supersymmetry and, eventually, gauge mediation transmission.

Hence, consider a Yukawa coupling in the instanton action involving a chiral field, Φab,

which transforms in the bifundamental representation of U(1)a ×U(1)b, and two instanton

charged fermionic zero modes, ηa and ηb, charged under each U(1) factor respectively,

Sinst. = SE1 + g(ξ, τk)ηaΦabηb (3.1)

In this expression, SE1 is the part of the tree level instanton action which only involves

moduli. In the particular case at hand it is given by,

SE1 = T3 (3.2)

where we have set the VEV of blow-up moduli to zero.5 Note that, according to the

discussion in section 2.1, SE1 shifts non-trivially under both, U(1) gauge transformations

and periodic shifts of the Wilson line moduli.

After integration of eq. (3.1) over the instanton charged zero modes, the following

non-perturbative contribution to the effective superpotential results [27],

Wn.p. = g(ξ, τk)e2πiSE1Φab (3.3)

The zeroes of g(ξ, τk) will therefore determine the non-perturbative

supersymmetric vacuum.

Similarly, if the two U(1) factors are identified by some discrete orbifold or orientifold

symmetry, such that the massless spectrum contains chiral fields Aij (S12) transforming

in the antisymmetric (symmetric) representation of U(2) (U(1)) and one (two) instanton

charged fermionic zero modes,

Sinst. = SE1 + g(ξ, τk)

2
∑

i,j=1

ηiAijηj ⇒ Wn.p. = g(ξ, τk)e2πiSE1

2
∑

i,j=1

ǫijAij (3.4)

Sinst. = SE1 + g(ξ, τk)η1S12η2 ⇒ Wn.p. = g(ξ, τk)e2πiSE1S12 (3.5)

Since toroidal orbifold models admit a description in terms of a CFTs, we can make use

of the D-brane instanton calculus [5, 6] to explicitly compute the above non-perturbative

F-terms. Diagrammatically, the physical F-term associated to a chiral field Φab which

results from open strings stretched between two stacks of magnetized branes a and b can

5In the most general case, each term in an instantonic sum would be weighted by an exponential factor

depending on the particular linear combination of blow-up moduli which the instanton couples to.
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be expressed as,

´i ´j

a b

£ exp

"
X

k

"

£

D9k O

hF©i =
X

®

Z
d4xd2µd2´ exp(2¼iSE1®) £

E1®

E1®

E1®

©ab

+

where the sum in α extends over all possible configurations for the position, discrete Wilson

lines and Chan-Paton charge of the instanton. In general, there are |Iab| different F-terms

of this form, corresponding to the chiral fields Φ
~i
ab, ir = 0 . . . |Ir

ab| − 1. Note that the F-

auxiliary field of these chiral multiplets carries a θ2 term, Φab = φ+ FΦθ
2, so the integral

over the instanton fermionic zero modes is non-vanishing. F-terms corresponding to fields

Aij or S12 equally follow from 〈FΦ〉, by modding out its expression with the appropriate

discrete symmetry.

Both, disc and annulus scattering amplitudes, contain arbitrary insertions of open

string moduli, parameterizing the energy change induced by deformations of the D-brane

sector. Thus, 〈FΦ〉 is in general a complicated function of the open string moduli. The

disc scattering amplitude is related to the shaded area in figure 1, responsible for the

destabilizing force. On the other hand, annulus and Möbius scattering amplitudes stretch

between the instanton and other D-branes and O-planes present in the compactification.

From the point of view of the 4d effective theory, these are related to one-loop determinants

of fluctuations around the instanton background (for reviews, see e.g. [3, 4]).

Let us compute 〈FΦ〉 explicitly. Yukawa couplings for toroidal compactifications with

magnetized D-branes have been computed in [55] by dimensionally reducing 10d super

Yang-Mills theory (see also [36, 56–59]). The 3-point disc scattering amplitude involving

two magnetized branes and a rigid E1-brane with two fermionic charged instanton zero

modes takes the form,

D
~i
abE1 ∼ ei(fab+fbE1+fE1a)

3
∏

r=1

exp

[

πiξr
abE1Im ξr

abE1

|Ir
ab|Im τr

]

ϑ

[

ir
Ir
ab

0

]

(ξr
abE1 ; τr|I

r
ab|) (3.6)

We have omitted in this expression normalization factors coming from the Kähler metric

since they are irrelevant for our purposes.

Continuous Wilson line moduli of branes a and b along the r-th 2-torus, ξr
I , and discrete

parameters ξr
E1 of the instanton, eq. (2.28), are all combined in the quantity,

ξr
abE1 = Ir

abξ
r
E1 + Ir

E1aξ
r
b + Ir

bE1ξ
r
a , (3.7)
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with Ir
E1a (Ir

bE1) = ±1 denoting the chirality of the charged zero mode localized at the

a − E1 (E1 − b) intersection. Moreover, since there is no exchange of twisted fields at

the disc level, the amplitude is independent of the Chan-Paton charges of the branes and

the instanton.

The contribution of this scattering amplitude to the superpotential can be easily ex-

tracted once the holomorphic N = 1 variables are identified. For that, we make use of the

results in section 2.1. In order W ∼ 〈FΦ〉Φab to be invariant under U(1) gauge transfor-

mations and periodic shifts of the Wilson line moduli, the integration variables ηa and ηb

appearing in 〈FΦ〉 should transform in the same way than the term exp(2πiSE1). Thus,

looking at eqs. (2.22)–(2.23) and (3.2), we observe that under U(1) gauge transformations,

Aa
µ → Aa

µ + ∂µΛa ⇒ ηa → e2πiΛa

ηa , ηb → ηb , (3.8)

Ab
µ → Ab

µ + ∂µΛb ⇒ ηa → ηa , ηb → e−2πiΛb

ηb , (3.9)

whereas under shifts of the Wilson line moduli,

ξr
a → ξr

a + δr
a ⇒ ηa → e−

πiδr
aIr

E1a
Im ξr

a
Im τr ηa , ηb → ηb , (3.10)

ξr
b → ξr

b + δr
b ⇒ ηa → ηa , ηb → e−

πiδr
b

Ir
bE1Im ξr

b
Im τr ηb , (3.11)

and,

ξr
a → ξr

a + δr
aτr ⇒ ηa → e−

πiδr
aIr

E1a
Im(ξr

aτ̄r)

Im τr ηa , ηb → ηb , (3.12)

ξr
b → ξr

b + δr
bτr ⇒ ηa → ηa , ηb → e−

πiδr
b

Ir
bE1Im(ξr

b
τ̄r)

Im τr ηb , (3.13)

with δr
a = l.c.m.(Ir

ab, I
r
ac, . . .)/n

r
a. These transformations allow us to fix the correct nor-

malization for the instanton fermionic charged zero modes (remember that there are not

kinetic terms for these modes in the instanton action). Note, in particular, that eq. (3.6)

is invariant under periodic shifts of the Wilson line moduli ξr
K , reflecting the fact that

it assumes a normalization for the charged zero modes such that they are charged under

U(1) gauge transformations but are invariant under shifts of the Wilson line moduli. Let

us denote these “wrong” variables as λa and λb. Making use of the following identity,

exp

[

iπξr
abE1Im ξr

abE1

|Ir
ab|Im τr

]

ϑ

[

ir
Ir
ab

0

]

(ξr
abE1 ; τr|I

r
ab|) =

exp

[

iπ

(

(Ir
bE1ξ

r
a + Ir

E1aξ
r
b )Im(Ir

bE1ξ
r
a + Ir

E1aξ
r
b )

|Ir
ab|Im τr

+ Ir
bE1

Im(ξr
b ξ̄

r
E1)

Im τr
+ Ir

E1a

Im(ξr
aξ̄

r
E1)

Im τr

)]

× e−iπǫrǫr+3|Ir
ab
|ϑ

[

ir
Ir
ab

+ ǫr+3

Ir
abǫ

r

]

(Ir
bE1ξ

r
a + Ir

E1aξ
r
b ; τr|I

r
ab|)

we can then define,

ηa = exp

[

i

(

fE1a + π

3
∑

r=1

Ir
E1a

Im(ξr
aξ̄

r
E1)

Im τr

)]

λa (3.14)

ηb = exp

[

i

(

fbE1 + π
3
∑

r=1

Ir
bE1

Im(ξr
b ξ̄

r
E1)

Im τr

)]

λb (3.15)
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so that, taking into account the transformation properties of phase factors fIJ given in

eqs. (2.8)–(2.9), one may verify that ηa and ηb defined in (3.14) and (3.15) indeed trans-

form according to (3.8)–(3.13) under U(1) gauge transformations and shifts of the Wilson

line moduli.

We have thus to evaluate,

Wdisc =

∫

dηadηb ηaηbΦ
~i
ab

3
∏

r=1

∑

ǫr ,ǫr+3=0, 1
2

ϑ

[

ir
Ir
ab

+ ǫr+3

Ir
abǫ

r

]

(Ir
bE1ξ

r
a + Ir

E1aξ
r
b ; τr|I

r
ab|)

exp

[

2πiT3 + ifab + iπ
(Ir

bE1ξ
r
a + Ir

E1aξ
r
b )Im(Ir

bE1ξ
r
a + Ir

E1aξ
r
b )

|Ir
ab|Im τr

− iπǫrǫr+3|Ir
ab|

]

(3.16)

which, in terms of the holomorphic variables, eqs. (2.4) and (2.11), leads to,

Wdisc =

3
∏

r=1

∑

ǫr,ǫr+3=0, 1
2

e2πiT̂3−iπ|Ir
ab
|ǫrǫr+3

ϑ

[

ir
Ir
ab

+ ǫr+3

Ir
abǫ

r

]

(Ir
bE1ξ

r
a + Ir

E1aξ
r
b ; τ r|Ir

ab|) Φ̂
~i
ab (3.17)

This is an holomorphic function of the N = 1 chiral variables associated to the physical

fields, periodic under shifts of the Wilson line moduli and U(1) gauge transformations (c.f.

eqs. (2.24)–(2.25) and (2.21)), providing strong checks of its consistency.

Next, let us evaluate the contributions to 〈FΦ〉 coming from one-loop string scattering

amplitudes. One may verify that annulus amplitudes stretching between the instanton

and magnetized (bulk or fractional) branes are independent of the open string moduli and

only correct normalization factors in eq. (3.6). The computation of the remaining one-loop

Möbius and annulus amplitudes is summarized in appendix A for T 6/Z2 × Z2, leading to

the expression,6

exp (AE1 + ME1) ∼
[

η(τ1)
1+2ND52 η(τ2)

1+2ND51 η(τ3)
1+2ND9

]−1
×

×
ND9
∏

K=1

(

exp

[

2πi(ξ3KIm ξ3K + ξ3E1Im ξ3E1)

Im τ3

]

ϑ

[

1
2
1
2

]

(ξ3K + ξ3E1; τ3)ϑ

[

1
2
1
2

]

(ξ3K − ξ3E1; τ3)

)

×

ND51
∏

Q=1

(

exp

[

2πi(ξ2QIm ξ2Q + ξ2E1Im ξ2E1)

Im τ2

]

ϑ

[

1
2
1
2

]

(ξ2Q + ξ2E1; τ2)ϑ

[

1
2
1
2

]

(ξ2Q − ξ2E1; τ2)

)

×

ND52
∏

P=1

(

exp

[

2πi(ξ1P Im ξ1P + ξ1E1Im ξ1E1)

Im τ1

]

ϑ

[

1
2
1
2

]

(ξ1P + ξ1E1; τ1)ϑ

[

1
2
1
2

]

(ξ1P − ξ1E1; τ1)

)

where we have considered the contribution of ND9 non-magnetized bulk D9-branes and

ND5s D5-branes, s = 1, 2, wrapping the s-th 2-torus (also dubbed D5s-branes in what

follows). According to this, ξ3K is the complexified continuous Wilson line modulus of

6Similar results can be obtained from the computation of the gauge threshold corrections for non-

magnetized D5-branes [32, 60, 61].
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the K-th bulk D9-brane along the third 2-torus, and ξ1P (ξ2Q) is the complexified position

modulus of the P -th D52-brane (the Q-th D51-brane) along the first (second) 2-torus. Note

that in general we can distinguish two types of bulk branes, depending on whether they

are charged under one of the twisted sectors or they carry no twisted charge at all. In the

first case the brane can only move along a single 2-torus (the one which is left invariant

by the corresponding orbifold generator), whereas in the second case it can move along

the full compact space. In this regard, we define by convention the number of branes to

be given by the rank of the corresponding gauge group. For instance, ND9 = 1 denotes a

bulk D9-brane with twisted charge under h, so that it can only move along the third torus,

whereas ND9 = 2 denotes a bulk D9-brane with no twisted charge of any twisted sector.

Analogous definitions apply to bulk D5-branes.

The one-loop contribution to the holomorphic superpotential computed from this ex-

pression then reads [28]

Wone−loop =
[

η(τ1)
1+2ND52η(τ2)

1+2ND51 η(τ3)
1+2ND9

]−1
e2πi[ND9(ǫ

3+ǫ3ǫ6)+ND51
(ǫ2+ǫ2ǫ5)+ND52

(ǫ1+ǫ1ǫ4)]

×
ND9
∏

K=1

ϑ2

[

1
2 + ǫ6

1
2 + ǫ3

]

(ξ3K ; τ3) ×

ND51
∏

Q=1

ϑ2

[

1
2 + ǫ5

1
2 + ǫ2

]

(ξ2Q; τ2) ×

ND52
∏

P=1

ϑ2

[

1
2 + ǫ4

1
2 + ǫ1

]

(ξ1P ; τ1)

(3.18)

where, as in eq. (3.17), non-holomorphic prefactors have been absorbed in T̂3 and Φ̂
~i
ab,

according to their definitions, eqs. (2.4) and (2.11).

Putting (3.17) and (3.18) together, we obtain the full expression for the non-

perturbative superpotential in eq. (1.1),

Wn.p. = e2πiT̂3Φ̂
~i
ab

[

η(τ1)
1+2ND52η(τ2)

1+2ND51 η(τ3)
1+2ND9

]−1
×

×
3
∏

r=1

∑

ǫr ,ǫr+3=0,1/2

(

e2πi[ND9(ǫ
3+ǫ3ǫ6)+ND51

(ǫ2+ǫ2ǫ5)+ND52
(ǫ1+ǫ1ǫ4)]e−iπ|Ir

ab
|ǫrǫr+3

ϑ

[

ir
Ir
ab

+ ǫr+3

Ir
abǫ

r

]

(Ir
bE1ξ

r
a + Ir

E1aξ
r
b ; τ r|Ir

ab|) ×
ND9
∏

K=1

ϑ2

[

1
2 + ǫ6

1
2 + ǫ3

]

(ξ3K ; τ3)

×

ND51
∏

Q=1

ϑ2

[

1
2 + ǫ5

1
2 + ǫ2

]

(ξ2Q; τ2) ×

ND52
∏

P=1

ϑ2

[

1
2 + ǫ4

1
2 + ǫ1

]

(ξ1P ; τ1)

)

(3.19)

This expression is holomorphic and periodic under shifts of the D-brane moduli and U(1)

gauge transformations, and behaves as a holomorphic modular form of weight −1 under

SL(2,Z) transformations of the complex structure parameters. Of course, symmetrization

with respect to all the orbifold and orientifold operations should be understood. In section 4

we will present the application of this expression to a concrete orbifold model.

3.2 Local vs. global

From the above analysis we conclude that Euclidean brane instantons may indeed generate

non-trivial scalar potentials for the D-brane moduli through the presence of linear super-
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potential couplings for some charged field. One of the valuable features of this approach is

that it leads to global expressions, valid for arbitrarily large VEV’s of the D-brane moduli.

This allows, therefore, to describe the D-brane dynamics over the full compact space.

Eq. (3.19) is thus given as a sum over Euclidean brane instantons, taking into account

their different locations in the compact space and their configuration of discrete Wilson

lines. From a local perspective, each term in this sum has two types of zeroes:

(a) Points in the moduli space for which the one-loop determinant vanishes due to the

appearance of extra fermionic zero modes which run in the loops.

(b) Points in the moduli space for which the area of the 3-point disc scattering amplitude

becomes zero, leading to a vanishing Yukawa coupling between the two fermionic

charged zero modes of the instanton and the physical chiral field.

The first of these effects has been extensively discussed in the literature, starting

with [2]. From the target space point of view, extra fermionic zero modes arise from

strings stretching between the instanton and non-magnetized bulk D-branes, which become

massless when the brane sits on top of the instanton. The resulting scalar potential for the

moduli of these non-magnetized branes has important implications for D-brane inflationary

models (see e.g. [32, 60, 62, 63]).

The second effect, i.e. zeroes of the superpotential which originate in vanishing disc

amplitudes, is relatively new and leads to non-trivial scalar potentials also for the moduli

of magnetized D-branes. Its physical interpretation was given in the introduction as a

force acting on the magnetized D-branes by the singularities where the instantons reside.

D-branes move in order to reduce the area of the disc and thus minimize the vacuum

energy. In this process the gauge symmetry is generically spontaneously broken, leading

to a reduction in the rank of the gauge group.

Whereas these two effects have a very different origin, the local driving force which

results from them is the same in both cases: in models with linear terms, D-branes are

subject to some attractive or repulsive force from Euclidean brane instantons.

This simple picture is, however, further complicated by global issues. As we have just

commented, in a compact model there are usually several locations on the internal space

where instantons reside. Each of these loci exerts a force on the D-branes. The latter

therefore tend to get stabilized at points where all non-perturbative forces are balanced.

Thus, supersymmetric vacua in global models are generically the result of a combined

cancelation between different non-null instanton contributions.

We can illustrate more explicitly this phenomenon with a simple toy model. Consider

a toroidal compactification with D53-branes equally distributed and sitting on top of the

E1-instantons at the singularities. In this case E1-instantons correspond to standard QFT

instantons for the gauge theory in the worldvolume of the D53-branes. In addition, consider

that there are also four non-magnetized bulk D51-branes in the model, i.e. ND51 = 4 and

ND9 = ND52 = 0 in eq. (3.18). The induced non-perturbative superpotential is in this
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Figure 2. Non-perturbative supersymmetric flat directions for the motion of D51-branes along the

second torus. The branes can only move along the continuous lines, where gauge group is USp(2)4.

Points with special gauge symmetry group have been also marked: (blue) squares for USp(4)2

points, and (red) rhombus for U(1)8 points. The four branes can only move in a correlated way, so

that they approach an USp(4)2 point all at the same time, each one through a different direction.

case [28],

Wn.p. = e2πiT̂3
[

η(τ1)
1η(τ2)

9η(τ3)
1
]−1 ∑

ǫ2,ǫ5=0,1/2

4
∏

q=1

ϑ2

[

1
2 + ǫ5

1
2 + ǫ2

]

(ξ2q ; τ2) (3.20)

where ξ2q are the positions of the D51-branes on the second torus.

Let us analyze the non-perturbative dynamics for the D51-branes. From previous local

considerations (point (a) above) it is clear that when the D51-branes sit on top of the

instantons, i.e.

ξ21 = 0 , ξ22 =
1

2
, ξ23 =

τ2
2
, ξ24 =

1

2
+
τ2
2
, (3.21)

each term in the sum over instantons in eq. (3.20) vanishes. We therefore expect a non-

perturbative supersymmetric vacuum (〈FT̂3
〉 = 0) at this point of the moduli space. The

gauge symmetry is U(1)8. Outside this locus one or more E1-instantons have the right

number of neutral zero modes to give a non-null contribution to the superpotential. Hence,

from this local analysis we would conclude that (3.21) is a supersymmetric minimum of

the scalar potential, with no flat directions.

The global analysis, however, reveals that the vacuum structure is actually more com-

plicated. Even if each single instanton contribution in eq. (3.20) is non-zero, there can

be cancelations between different terms leading to new supersymmetric vacua. In the toy

model at hand one may check that eq. (3.21) actually belongs to a one-parameter family

of supersymmetric vacua,

ξ21 =
ρ

2
+
ρτ2
2
, ξ22 =

1 − ρ

2
+
ρτ2
2
, ξ23 =

ρ

2
+

(1 − ρ)τ2
2

, ξ24 =
1 − ρ

2
+

(1 − ρ)τ2
2

(3.22)
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with ρ ∈ [0, 1). Plugging (3.22) into (3.20) leads to Wn.p. = 〈FT̂3
〉 = 0.

We have represented in figure 2 the supersymmetric locus along which D51-branes

can move without any cost of energy. Interestingly, D51-branes move in a correlated way,

accordingly to a Z4 discrete symmetry which has emerged non-perturbatively. At the

special point ρ = 0 the theory is in the U(1)8 phase and the supersymmetric vacuum can

be explained in terms of extra neutral instanton zero modes, as before. Outside this locus,

the vacuum can only be understood in terms of interactions between different instanton

effects. The gauge group on the D51-branes becomes USp(2)4, except at the locus ρ = 1/2

on which the gauge symmetry is enhanced to USp(4)2.

This simple model thus reveals that the global non-perturbative D-brane dynamics can

in general differ substantially from the local analysis. Similar statements can be equally

made for stringy instanton effects (point (b) above). In this case, however, there are some

differences. Indeed, we have noted that there are |Iab| F-terms, corresponding to different

degenerate charged fields. Whereas, for each of these degenerate fields, it is in principle

possible to set 〈FΦ〉 = 0 by changing the VEV’s of the Wilson line moduli of branes a and

b, from eq. (3.17) we see that the value for which this occurs is different for each degenerate

field (it depends on the value of ir in eq. (3.17)). Thus, in general, in toroidal models it is

not possible to set to zero all the F-terms by this mechanism.

The situation is perhaps better depicted in the type IIA T-dual with intersecting

D6-branes. Consider for instance a model where Euclidean brane instantons induce lin-

ear superpotential couplings for fields in the antisymmetric representation of the U(2)

gauge symmetry of a brane. For simplicity, let us take this brane to have magnetization

(m,n) = (1, 1) along one of the 2-torus. We have represented in figure 3 the corresponding

configuration in terms of D6-branes. There are two degenerate antisymmetrics, localized at

each of the two intersections between the brane and its orientifold/orbifold image. The po-

sition of the brane for which the relevant Yukawa coupling in the instanton action vanishes

has been represented in figures 3 (a) and (b). These positions are indeed incompatible with

each other, so a supersymmetric minimum cannot be achieved by stabilizing the position of

the brane. Nevertheless, combining the contribution of both types of F-terms to the scalar

potential, we observe that there is a minimum at the symmetric position with respect to

all the singularities, where all forces are balanced.

4 Global model with brane recombination

In this section we apply the above ideas in a fully consistent model. For that, we consider

compactifications of type I string theory on T 6/Z2×Z2 with discrete torsion [25–27], where

the Z2 × Z2 acts in the way described in section 2.2.

As we have already commented, one can distinguish various types of branes in these

models. Bulk branes are neutral under some of the twisted fields and therefore can move

in the bulk. Branes which are charged under a single twisted sector can only move on a

T 2, whereas branes with no twisted charge of any kind can move in the full compact space.

On the other hand, fractional branes carry a non-trivial charge of all kind of twisted fields

and therefore are stuck at the singularities.
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a aa¤ a¤

Ep

Ep

(a) (b)

Figure 3. Brane positions for which the F-term of one of the two degenerate antisymmetric fields

in a (m,n) = (1, 1) toy model vanishes. We have represented with a waving (red) line the instanton.

Antisymmetrics are localized at the intersection between brane a and its orientifold image a∗, and

are denoted by a square and a circle.

The twisted charge of a given stack of fractional branes can be parameterized by the

64 choices of discrete Wilson lines, described in section 2.2, and four inequivalent choices

for the Chan-Paton charge. Here, following [27], we consider two particular choices of

Chan-Paton charges. These are given in terms of complex charges pa and qα as,

Na,o = pa + p̄a ,

Na,g = i(pa − p̄a) ,

Na,f = i(pa − p̄a) ,

Na,h = pa + p̄a ,

Nα,o = qα + q̄α ,

Nα,g = i(qα − q̄α) ,

Nα,f = −i(qα − q̄α) ,

Nα,h = −qα − q̄α ,

(4.1)

The resulting gauge group is the product of unitary factors

GCP =
∏

a

U(pa) ×
∏

α

U(qα) . (4.2)

The remaining types of fractional branes can be obtained by considering branes with the

above choices of Chan-Paton charge, but magnetization (mr, nr) → (−mr, nr), r = 1, 2, 3.

We summarize the spectrum of charged chiral fields in table 1, where the orientifold

acts in the usual way on the magnetization numbers,

a :(m1, n1) ⊗ (m2, n2) ⊗ (m3, n3)

a∗ :(−m1, n1) ⊗ (−m2, n2) ⊗ (−m3, n3)

The intersection between the brane and the orientifold planes is defined as,

IAO = 8
(

m1
Am

2
Am

3
A −m1

An
2
An

3
A − n1

Am
2
An

3
A + n1

An
2
Am

3
A

)

(4.3)
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Multiplicity Representation Relevant Indices
1
8(Iaa∗ + IaO − 4I1

aa∗ − 4I2
aa∗ + 4I3

aa∗)
(

pa(pa−1)
2 , 1

)

∀a

1
8 (Iαα∗ + IαO − 4I1

αα∗ − 4I2
αα∗ + 4I3

αα∗)
(

1, qα(qα−1)
2

)

∀α

1
8(Iaa∗ − IaO − 4I1

aa∗ − 4I2
aa∗ + 4I3

aa∗)
(

pa(pa+1)
2 , 1

)

∀a

1
8 (Iαα∗ − IαO − 4I1

αα∗ − 4I2
αα∗ + 4I3

αα∗)
(

1, qα(qα+1)
2

)

∀α

1
4 (Iaα∗ − Saα

g I1
aα∗ + Saα

f I2
aα∗ − Saα

h I3
aα∗) (pa, qα) ∀a,∀α

1
4 (Iaα + Saα

g I1
aα − Saα

f I2
aα − Saα

h I3
aα) (pa, q̄α) ∀a,∀α

1
4 (Iab∗ − Sab

g I
1
ab∗ − Sab

f I
2
ab∗ + Sab

h I
3
ab∗) (pa, pb) a < b

1
4(Iab + Sab

g I
1
ab + Sab

f I
2
ab + Sab

h I
3
ab) (pa, p̄b) a < b

1
4(Iαβ∗ − Sαβ

g I1
αβ∗ − Sαβ

f I2
αβ∗ + Sαβ

h I3
αβ∗) (qα, qβ) α < β

1
4(Iαβ + Sαβ

g I1
αβ + Sαβ

f I2
αβ + Sαβ

h I3
αβ) (qα, q̄β) α < β

1 (pa, q̄α) + (p̄a, qα) if (mi
a, n

i
a) = (mi

α, n
i
α) ∀i

1 (pa, qα) + (p̄a, q̄α) if (mi
a, n

i
a) = (−mi

α, n
i
α) ∀i

Table 1. Representations and multiplicities of charged chiral superfields on a T 6/Z2 × Z2 orbifold

with discrete torsion, in the presence of magnetic backgrounds. SAB
i=g,f,h denotes the number of

fixed points of the generator i = g, f, h that both branes A and B intersect.

The whole set of D-branes and magnetization numbers in a given model have to sat-

isfy stringent conditions coming from supersymmetry and cancelation of tadpoles and

non-homological K-theory charges. These conditions can be found e.g. in [26, 27]. For

completeness we also summarize them in appendix B.

4.1 The model

The particular model considered in this section was first presented in ref. [27]. It consists

of four stacks of fractional D9-branes with identical magnetization,

1 : (mi, ni) = (−2, 1) ⊗ (−1, 1) ⊗ (1, 1) ,

2 : (mi, ni) = (−2, 1) ⊗ (−1, 1) ⊗ (1, 1) ,

3 : (mi, ni) = (2, 1) ⊗ (1, 1) ⊗ (−1, 1) ,

4 : (mi, ni) = (2, 1) ⊗ (1, 1) ⊗ (−1, 1) ,

(4.4)

Branes 1 and 3 are of type (pa, qα) = (2, 0) in eq. (4.1), whereas branes 2 and 4 are of type

(pa, qα) = (0, 2). This setup has vanishing total twisted and non-homological K-theory

charges. In particular, recombining the four fractional branes leads to a magnetized bulk

brane, as it will be described in the next subsection.

Cancelation of untwisted tadpoles require, in addition, four non-magnetized D9-branes
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Multiplicity Representation field

12 (1̄, 1, 1, 1) A1

12 (1, 1̄, 1, 1) A2

12 (1, 1, 1̄, 1) A3

12 (1, 1, 1, 1̄) A4

4 (2̄, 2̄, 1, 1) Φ1̄2̄

4 (1, 1, 2, 2) Φ34

1 (2, 2̄, 1, 1) + (2̄, 2, 1, 1) Φ12̄ + Φ̃1̄2

1 (1, 1, 2, 2̄) + (1, 1, 2̄, 2) Φ34̄ + Φ̃3̄4

1 (2, 1, 1, 2) + (2̄, 1, 1, 2̄) Φ14 + Φ̃1̄4̄

1 (1, 2, 2, 1) + (1, 2̄, 2̄, 1) Φ23 + Φ̃2̄3̄

1 (2, 1, 2, 1) + (2̄, 1, 2̄, 1) Φ13 + Φ̃1̄3̄

1 (1, 2, 1, 2) + (1, 2̄, 1, 2̄) Φ24 + Φ̃2̄4̄

Table 2. Charged massless spectrum with respect to the U(2)2 × U(2)2 subgroup of the U(2)2 ×

U(2)2 ×USp(4)2 ×USp(4)2 gauge group, where the field Ai is in the antisymmetric representation

of the i-th SU(2) factor. To lighten the notation we have not explicitly listed the U(1) charges.

They can be easily derived from the U(2) representations.

and four D51-branes to be present in the model, of wrapping numbers

c : (mc
i , n

c
i) = (0, 1) ⊗ (0, 1) ⊗ (0, 1) ,

d : (md
i , n

d
i ) = (0, 1) ⊗ (1, 0) ⊗ (−1, 0) .

(4.5)

In order to simplify the formalism as much as possible, we have considered D5-branes as

particular cases of magnetized D9-branes. This interpretation is particularly natural in the

light of the type IIA dual picture, where both objects become D6-branes.

The gauge group which results is,

G = U(2)2 × U(2)2 × USp(4)2 × USp(4)2 (4.6)

Each pair of unitary groups live on a stack of fractional branes, while the symplectic

factors originate from the non-magnetized D9 and D5-branes that, as anticipated, can be

displaced in the bulk. Charged matter corresponds to chiral supermultiplets transforming

in bi-fundamental and antisymmetric representations of the gauge group. We have listed

in table 2 the part of the spectrum which is charged under the unitary factors of the gauge

group. Aside from these modes, the model also includes open strings stretched between

non-magnetized (D9 and/or D5) branes and open strings stretched between non-magnetized

branes and fractional (magnetized) ones. Their generic massless excitations are omitted

for space considerations but can be found in [27].
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4.2 D-brane recombination and Higgsing

Let us describe in more detail the recombination of the four stacks of fractional branes (4.4).

More generically, consider four stacks of fractional branes at an orbifold singularity with,

1 : (m1, n1) ⊗ (m2, n2) ⊗ (m3, n3) ,

2 : (m1, n1) ⊗ (m2, n2) ⊗ (m3, n3) ,

3 : (−m1, n1) ⊗ (−m2, n2) ⊗ (−m3, n3) ,

4 : (−m1, n1) ⊗ (−m2, n2) ⊗ (−m3, n3) .

(4.7)

Branes 1 and 3 are of type (pa, qα) = (s, 0) in eq. (4.1), whereas branes 2 and 4 are of

type (pa, qα) = (0, s). The gauge group is U(s)1 × U(s)2 × U(s)3 × U(s)4. Notice in

particular that the twisted and untwisted charges of the system are exactly the same as

that of a bulk U(s) brane, sitting in an arbitrary position in the internal space. It is

actually straightforward to prove that this system of fractional branes can recombine into

the corresponding bulk brane, by giving VEV’s to fields transforming in the bifundamental

representation of the gauge group. These VEV’s correspond to the positions of the bulk

brane after recombination. To check this, we start from the spectrum in the U(s)4 gauge

theory. It contains all type of fields transforming in bifundamental, antisymmetric and

symmetric representations under all gauge factors. Among the bifundamentals, there are

twelve complex fields,

Φ12̄ : (s, s̄, 1, 1) Φ̃1̄2 : (s̄, s, 1, 1) Φ34̄ : (1, 1, s, s̄) Φ̃3̄4 : (1, 1, s̄, s) (4.8)

Φ14 : (s, 1, 1, s) Φ̃1̄4̄ : (s̄, 1, 1, s̄) Φ23 : (1, s, s, 1) Φ̃2̄3̄ : (1, s̄, s̄, 1) (4.9)

Φ13 : (s, 1, s, 1) Φ̃1̄3̄ : (s̄, 1, s̄, 1) Φ24 : (1, s, 1, s) Φ̃2̄4̄ : (1, s̄, 1, s̄) (4.10)

After turning on VEV’s for these fields, the complex Wilson line moduli ξi
a, i = 1, 2, 3, of

the recombined bulk brane are identified as

Φ12̄ = Φ̃1̄2 = ξ1α,x , Φ34̄ = Φ̃3̄4 = ξ1α,y ,

Φ13 = Φ̃1̄3̄ = ξ2α,x , Φ24 = Φ̃2̄4̄ = ξ2α,y ,

Φ14 = Φ̃1̄4̄ = ξ3α,x , Φ23 = Φ̃2̄3̄ = ξ3α,y ,

ξ̂r
α = ξr

α,x + τr ξ
r
α,y (4.11)

Hence Wilson lines correspond to the three chiral fields which are left massless in the

Higgsing U(s)4 → U(s), whereas the remaining nine fields are eaten up, giving masses to

the broken U(s)3 generators.

Apart from the above fields transforming in bifundamental representations, there are

also fields transforming in antisymmetric and symmetric representations of the gauge group

with multiplicities (see also table 1),

N fr
A =

1

8
(Iaa∗ + IaO − 4I1

aa∗ − 4I2
aa∗ + 4I3

aa∗) , (4.12)

N fr
S =

1

8
(Iaa∗ − IaO − 4I1

aa∗ − 4I2
aa∗ + 4I3

aa∗) , (4.13)
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respectively. After recombination, these become part of the fields transforming in antisym-

metric or symmetric representations of the bulk brane, with multiplicities

NA = 4N fr
A +Nbi

A = 2Iaa∗ +
1

2
IaO , NS = 4N fr

S +Nbi
S = 2Iaa∗ −

1

2
IaO . (4.14)

where Nbi
A,S is the contribution to the multiplicities for the bulk (anti)-symmetrics arising

from charged bifundamentals via brane recombination. More precisely,

Nbi
A = Nbi

S =
3

2
Iaa∗ + 2(I1

aa∗ + I2
aa∗ − I3

aa∗) . (4.15)

We therefore succeeded to follow precisely the recombination of the fractional branes (4.7)

into a bulk brane from the point of view of Higgs mechanism in the effective gauge theory.

Hence, in the particular model eq. (4.4), by giving VEV’s to the bilinears 〈ΦM Φ̃M̄ 〉,

fractional D9-branes 1, . . . , 4 can recombine into a bulk brane a and move along one or

more T 2 in the T 6/Z2 × Z2. In the most general case where all the bilinears 〈ΦM Φ̃M̄〉 get

a VEV, the gauge group in eq. (4.6) is broken to,

U(2)2 × U(2)2 × USp(4)2 × USp(4)2 → U(2)diag. × USp(4)2 × USp(4)2 (4.16)

After recombination, the fields 〈ΦM Φ̃M̄ 〉 become the degrees of freedom of three complex

scalars transforming in the adjoint representation of U(2)diag., according to eq. (4.11), and

parameterizing the continuous Wilson line deformations of the recombined brane. Each

of the chiral fields Φ1̄2̄ and Φ34 leads to fields in the symmetric and the antisymmetric

representation of U(2)diag.. Thus, the chiral spectrum of the recombined brane a consists

of 4× 14 = 56 antisymmetrics and 4× 2 = 8 symmetrics, which we denote, respectively, as

AM,(i2,i3), M = 1 . . . 14, and SQ,(i2,i3), Q = 1, 2, with i2,3 = 0, 1.

In what follows we will see that instanton effects in this model can actually trigger

this recombination through the generation of linear superpotential couplings for the fields

AM,(i2,i3).

4.3 Non-perturbative D-brane dynamics

We can now turn to the analysis of the superpotential induced by rigid E1-brane instantons.

The twisted charge of the instanton is parameterized by the 64 possible choices for the

discrete Wilson lines and positions described in section 2.2, plus four different choices for

the Chan-Paton charge. In this case we choose to parameterize the latter as,

D1,o = k1 D2,o = k2 D3,o = k3 D4,o = k4

D1,g = k1 D2,g = k2 D3,g = −k3 D4,g = −k4

D1,f = −k1 D2,f = k2 D3,f = k3 D4,f = −k4

D1,h = −k1 D2,h = k2 D3,h = −k3 D4,h = k4 (4.17)

For O(1) instantons ki = 1 (see [27] for more details). If non-magnetized branes are a

distance away from the singularities, E1-branes localized at the orbifold singularities have
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CP choice Representation Zero mode

1 (2, 1, 1, 1, 1, 1, 1, 1) η1
i

2 (1, 2, 1, 1, 1, 1, 1, 1) η2
i

3 (1, 1, 2̄, 1, 1, 1, 1, 1) η3
i

4 (1, 1, 1, 2̄, 1, 1, 1, 1) η4
i

Table 3. Charged zero-mode structure for O(1) E1-brane instantons in the U(2)2 × U(2)2 ×

USp(4)2 × USp(4)2 model. The index i refers to the (anti)fundamental representation of U(2).

the right structure to generate linear couplings in the superpotential for the antisymmetrics.

We list in table 3 the spectrum of charged fermionic zero modes.

Hence, consider the gauge invariant action of a single instanton with Chan-Paton

charge of the first type in table 3. Before recombination of branes (4.4), the action has

the expression,

Sinst = SE1 +

2
∑

i,j=1

[

f1[ΦΦ̃, ξ] η1
i A

1
ij η

1
j + g1[ΦΦ̃, ξ]

2
∑

k=1

η1
i (Φ̃1̄2)ki (Φ1̄2̄)kj η

1
j

]

(4.18)

where f1[ΦΦ̃, ξ] and g1[ΦΦ̃, ξ] are functions of the bilinears ΦM Φ̃M̄ in table 2 and of the

adjoint scalars which parameterize the position and Wilson line deformations of the non-

magnetized bulk D9 and D5-branes. For simplicity, we have omitted indices running over

the multiplicities of the fields. Similar actions can be written for the three other types of

Chan-Paton choices in table 3.

Summing over all possible instanton configurations and integrating over the instanton

charged zero modes ηM
i , M = 1, . . . , 4, the following non-perturbative contribution to the

superpotential arises

Wn.p. =
∑

α

2
∑

i,j=1

ǫij

[

4
∑

M=1

e
−SE1α,M fM [ΦΦ̃, ξ] AM

ij

+
2
∑

k=1

(

e−SE1α,1 g1[ΦΦ̃, ξ](Φ̃1̄2)ki + e−SE1α,2 g2[ΦΦ̃, ξ](Φ12̄)ki

)

(Φ1̄2̄)kj

+

2
∑

k=1

(

e
−SE1α,3g3[ΦΦ̃, ξ](Φ34̄)ki + e

−SE1α,4g4[ΦΦ̃, ξ](Φ̃3̄4)ki

)

(Φ34)kj

]

(4.19)

where g2, g3 and g4 are generated by the other type of instantons in table 3. Bilinears

〈ΦM Φ̃M̄ 〉 and the moduli of the non-magnetized bulk D9 and D5-branes may acquire a

VEV in order to minimize the vacuum energy.

For arbitrary VEV’s 〈ΦM Φ̃M̄ 〉 the four stacks of fractional branes, eq. (4.4), recombine,

as described in section 4.2. The linear (in the charged fields) superpotential after complete

recombination is given by eq. (3.19) with ND9 = ND51 = 4. After symmetrization with
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respect to all the orbifold and orientifold generators, the resulting superpotential reads,

Wn.p =
[

η(τ1)η(τ2)3η(τ3)3
]−1 ∑

i2,i3=0,1

14
∑

M=1

e2πiT̂3ÂM,(i2,i3) FAM,(i2,i3) (4.20)

Notice in particular that the 8 fields transforming in symmetric representations after re-

combination do not get a linear term. The same conclusion could have been reached by

gauge invariance of the instanton action. On the contrary, the 56 antisymmetrics in the

massless spectrum after recombination appear linearly in the superpotential. The explicit

expression for the functions FAM,(i2,i3) can be found in appendix C. These factorize in

products of three functions, describing the motion of the branes on each of the 2-tori.

The superpotential (4.20) preserves an R-symmetry. Note, in particular, that the num-

ber of complex fields on which the functions FAM,(i2,i3) depend (36, neglecting the complex

structure moduli) is much lower than the multiplicity of the antisymmetrics. Hence, ac-

cording to the general arguments in [22, 23], if FAM,(i2,i3) were arbitrary functions the

above superpotential would spontaneously break the supersymmetry. We may show, how-

ever, that this is not the case. The reason is that there are strong correlations between the

zeroes of the functions FAM,(i2,i3) .

Let us be more precise. We can easily see from the expressions in appendix C that

the F-terms associated to 12 antisymmetrics (〈FA4,(i2,i3)〉, 〈FA8,(i2,i3)〉 and 〈FA14,(i2,i3)〉) are

independent of the moduli of the recombined brane, and therefore of the VEV of the

bilinears ΦM Φ̃M̄ . In the T-dual compactification with intersecting D6-branes this can be

understood geometrically by noticing that some of the antisymmetrics cannot be moved out

of the worldvolume of the instanton by displacing the recombined brane. A good strategy

for looking at supersymmetric minima (∂AM,(i2,i3)Wn.p = Wn.p = 0) is then to first looking

for zeroes of these 12 F-terms, fixing in this way the moduli of the non-magnetized bulk

D9-branes and/or D5-branes. From eqs. (C.6) and (C.10) in the appendix, one may check

that the zeroes correspond to one of the following situations:

• The discrete Wilson lines of non-magnetized bulk D9-branes in the third 2-torus are

equally distributed among the four possible choices

ξ31 = 0 , ξ32 =
1

2
, ξ33 =

τ3
2
, ξ34 =

1

2
+
τ3
2

(4.21)

• Bulk D5-branes are equally distributed among the four singularities in the second

2-torus

φ2
1 = 0 , φ2

2 =
1

2
, φ2

3 =
τ2
2
, φ2

4 =
1

2
+
τ2
2

(4.22)

In any of these two cases extra instantonic zero modes are generated and one may check

that all the remaining 44 F-terms also vanish, leading to a non-perturbative supersymmet-

ric vacuum.7

7One might worry about potential run-away directions for the closed string moduli. It is possible to

show, however, that if eqs. (4.21) or (4.22) are satisfied, the F-terms of the complex structure and Kähler

moduli also vanish, with 〈W 〉 = 0. The VEV of these moduli remain as flat directions of the low energy

effective action. In addition, D-term conditions are satisfied in the usual way.
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The VEVs of the Wilson line moduli of magnetized D9-branes in this model remain

as flat directions of the scalar potential in the non-perturbative supersymmetric vac-

uum. From the point of view of the gauge theory, the gauge symmetry associated to

non-magnetized bulk D9-branes or D5-branes is necessarily spontaneously broken at the

non-perturbative vacuum,

U(2)2 × U(2)2 × USp(4)2 × USp(4)2 → U(2)2 × U(2)2 × U(1)8 × USp(4)2 (4.23)

Fluctuations of non-magnetized bulk D9-branes or D5-branes moduli around this vac-

uum, however, induce a non-trivial scalar potential also for the Wilson line moduli of

magnetized D9-branes. We have plotted in figure 4 (a) the non-perturbative scalar po-

tential for the complex position modulus, φ2
1, of the D5-brane at the origin in eq. (4.22).

Its VEV determines the position of the D-brane along the second 2-torus, keeping fixed

the positions of the other branes. When the brane sits at the origin, the system is in

the supersymmetric vacuum and there is no scalar potential for the Wilson line moduli

of the magnetized D9-branes. Outside this locus, however, magnetized D9-branes feel a

potential. We have plotted in figure 4 (b) the non-perturbative scalar potential for the

complex Wilson line modulus of the magnetized D9-brane along the second 2-torus, ξ2a, for

an arbitrary VEV of φ2
1. The minimum of this potential is at,

ξ2a =
1

4
+
τ2
4

(

mod
1

2
,
τ2
2

)

(4.24)

Hence, while φ2
1 is rolling down towards the supersymmetric vacuum at the origin, the

recombination moduli of the fractional magnetized branes feel a potential, inducing the

spontaneous breaking of the gauge symmetry, eq. (4.16). Fluctuations around the non-

perturbative vacuum in this model will favor a gauge group U(2) × U(1)18.

As already advanced, the minimum in eq. (4.24) admits a nice geometric interpretation

in the T-dual setup with intersecting D6-branes, corresponding to the equidistant position

of the recombined D6-brane to the Z2×Z2 singularities. At this locus, the non-perturbative

forces which different instantons exert on the recombined brane are balanced. We have

represented this situation in figure 5.

4.4 A model with only magnetized branes

The above results suggest that non-magnetized branes may play an important role in

restoring the supersymmetry in models where linear superpotential couplings for some

charged field are induced by rigid instantons. It is therefore natural to wonder about the

existence of consistent models with only magnetized branes, but where linear superpotential

couplings are still non-perturbatively generated. In this subsection we present one of such

models, containing only magnetized D9-branes. Whereas in this case one cannot restore

supersymmetry through the mechanism presented in the previous subsection, since there

are no bulk non-magnetized D9 or D5 branes, we will give arguments based on the explicit

form of the superpotential why supersymmetry is probably restored.
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(a) (b)

Á21;x

Á21;y

»2a;x

»2a;y

Figure 4. (a) Non-perturbative scalar potential for the complex field φ2

1
, parameterizing the

position of one of the D5-branes along the second 2-torus. Other D5-branes are equally distributed

over the singularities in the second 2-torus, except for the origin. (b) Non-perturbative scalar

potential for the complex Wilson line modulus of the recombined D9-brane along the second 2-

torus, for an arbitrary VEV of φ2

1
.

a

a¤
ag
a¤g

af
a¤f

ah
a¤h

Figure 5. Position of the recombined D6-brane and its images under the orientifold and orbifold

actions on the second 2-torus, for the minimum of the scalar potential given in eq. (4.24).

The model consists of four stacks of magnetized D9-branes with the following wrapping

numbers

1p : (mi, ni) = (−1, 1) ⊗ (−4, 1) ⊗ (1, 2) ,

1q : (mi, ni) = (−1, 1) ⊗ (−4, 1) ⊗ (1, 2) ,

2 : (mi, ni) = (−2, 1) ⊗ (−2, 3) ⊗ (1, 2) ,

3 : (mi, ni) = (6, 1) ⊗ (−2, 1) ⊗ (−1, 2) .

(4.25)
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Branes 1p and 2 are of type (pa, qα) = (2, 0) and (pa, qα) = (1, 0) in eq. (4.1), whereas

branes 1q and 3 are of type (pa, qα) = (0, 2) and (pa, qα) = (0, 1), respectively. The gauge

group is [U(2)×U(1)]2. One may check that, among other fields, the massless spectrum of

this model contains 30 degenerate fields transforming in the antisymmetric representation

of U(2)1q , and that E1-brane instantons wrapping the third 2-torus have the right structure

of zero modes to generate linear superpotential couplings for these fields.

Stacks 1p and 1q have the same magnetizations and therefore they can recombine,

1p + 1q → 1, allowing for continuous Wilson line deformations in the first 2-torus. The

gauge group is broken to

U(2) × U(1) × U(1) (4.26)

This recombination process is parameterized by VEV’s of fields Φ1p1̄q
and Φ̃1̄p1q

, which

are also in the massless spectrum. After recombination, the Wilson line modulus of the

recombined brane in the first torus is related to the VEV of the bilinear ξ11 ∼ 〈Φ1p1̄q
Φ̃1̄p1q

〉

which is contained in the adjoint representation of U(2). We can follow the recombination

from the point of view of the Higgs mechanism, as we did in subsection 4.2. The multi-

plicity of fields transforming in the antisymmetric and symmetric representations of the

two U(2) factors of the initial gauge group is given by eqs. (4.12) and (4.13), respectively.

However, the number of symmetric and antisymmetrics arising after recombination from

bifundamentals is no longer given by eq. (4.15), since recombination in this model occurs

along only one of the three 2-tori. We have instead,

Nbi
A = Nbi

S =
1

4

(

Iaa∗ − 4I1
aa∗ + 4I2

aa∗ − 4I3
aa∗

)

(4.27)

Hence, after recombination the total number of symmetrics and antisymmetrics of U(2) is

given respectively by,

NA = 2N fr
A +Nbi

A =
1

2

(

Iaa∗ +
1

2
IaO − 4I1

aa∗

)

, (4.28)

NS = 2N fr
S +Nbi

S =
1

2

(

Iaa∗ −
1

2
IaO − 4I1

aa∗

)

. (4.29)

We reproduce in table 4 the complete spectrum of this model which results after recombi-

nation. Similarly, we present in table 5 the spectrum of instanton charged zero modes.

With this information at hand, we can then write the following superpotential,

W = Wp +W2 +W3 +W4 (4.30)

where Wp denotes the perturbative superpotential and W2,3,4 are non-perturbative super-

potentials corresponding to different choices of CP factor for the E1-brane instanton. Their
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Multiplicity Representation Field

1 (4, 1, 1)(0,0,0) ξ11

66 (1, 1, 1)(2,0,0) A1

6 (3, 1, 1)(2,0,0) S1

11 (1, 1, 1)(0,2,0) S2

15 (1, 1, 1)(0,0,2) S3

10 (2̄, 1, 1̄)(−1,0,−1) Φ1̄3̄

14 (2, 1, 1̄)(1,0,−1) Φ13̄

90 (2, 1, 1)(1,1,0) Φ12

2 (2, 1̄, 1)(1,−1,0) Φ12̄

12 (1, 1̄, 1̄)(0,−1,−1) Φ2̄3̄

48 (1, 1̄, 1)(0,−1,1) Φ2̄3

Table 4. Charged massless spectrum of the model after recombination. The gauge group is broken

to U(2) × U(1) × U(1). We have also specified U(1) charges as subscripts.

CP choice Multiplicity Representation

1 − −

2 1 (1, 1̄, 1)(0,−1,0)

1 (1, 1, 1)(0,0,1)

3 1 (2̄, 1, 1)(−1,0,0)

2 (1, 1̄, 1)(0,−1,0)

4 1 (2̄, 1, 1)(−1,0,0)

Table 5. Charged zero-mode structure for O(1) E1-brane instantons in the U(2) × U(1) × U(1)

model after recombination. Chan-Paton choices are defined in eq. (4.17).

explicit expression read,

Wp = Φ1̄3̄

[

S3
(

Φ13̄ + Φ1̄3̄S
1 + Φ1̄3̄A

1 + Φ12Φ2̄3̄

)

+ Φ2̄3

(

Φ12 + S2Φ12̄

)]

+ S2Φ2̄3̄

(

Φ2̄3 + S3Φ2̄3̄

)

(4.31)

W2 = S2Φ1̄3̄ (Φ12̄ + Φ13̄Φ2̄3) (4.32)

W3 = S2
(

Φ12Φ12̄ + S3(Φ13̄Φ13̄ + Φ13̄Φ12Φ2̄3̄)
)

(4.33)

W4 = A1(1 + Φ1̄3̄S
3Φ13̄ + Φ1̄3̄Φ12Φ2̄3 + S2Φ2̄3̄Φ2̄3) + S1(Φ1̄3̄S

3Φ13̄ + Φ1̄3̄Φ12Φ2̄3)

+ Φ13̄

(

S3Φ13̄ + Φ12Φ2̄3 + S2Φ12̄Φ2̄3 + S3Φ12Φ2̄3̄

)

+ S2Φ12̄Φ12̄ + Φ12Φ12Φ2̄3Φ2̄3̄

(4.34)

Note that we have set all coefficients equal to 1. In a complete analysis, like the one

performed in previous sections, these coefficients are actually functions of the complex

adjoint field which parameterize complex Wilson line deformations of the recombined brane

along the first 2-torus.
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Whereas a detailed analysis of the non-perturbative D-brane dynamics in this model

is beyond the scope of this paper, we can make some observations which strongly suggest

the existence of non-perturbative supersymmetric vacua also in this model. First of all, we

can cast the superpotential (4.30) into the form

W = Xifi(φa) + g(φa) , (4.35)

where Xi, i = 1 · · ·NX are fields participating to supersymmetry breaking having R-

charge two, whereas φa, a = 1 · · ·Nφ, of R-charge zero, enforce FXi
6= 0. This happens

for NX > Nφ and for fi generic functions of φa. Notice that whereas g(φa) breaks R-

symmetry, this does not change supersymmetry breaking, which is entirely governed by

fi(φa). Comparing (4.35) with (4.30), we find that contrary to the model presented in

previous subsections, superpotential (4.30) does not preserve an R-symmetry. From the

expressions (4.31)–(4.34) we may easily identify the fields which appear linearly in the

superpotential. These are A1 and S1, with total multiplicity 72. The multiplicity of

the other fields coupling to them in the superpotential is much larger. From table 4

and expressions (4.31)–(4.34) we observe that the total number of fields which couple

to these fields is 174. Thus, it is expected that supersymmetry can be restored in this

model by giving VEV’s to these fields [22, 23]. This, in particular, involves processes of

recombination between branes and their orientifold images, so that we expect the gauge

group in eq. (4.26) to be completely broken to a discrete subgroup at the non-perturbative

supersymmetric vacuum.

5 Global model with mass terms

In this section we consider a model, first presented in refs. [25, 27], with gauge group U(4).

Hence, the second of the three conditions stated in the introduction for having linear super-

potential terms is not satisfied, and quadratic superpotential terms are non-perturbatively

generated instead. We can, however, easily extend the techniques of the previous sections

to explicitly compute the mass matrix of this model, and to determine whether the mass

terms vanish or not for particular values of the Wilson line moduli. The explicit compu-

tation of quadratic superpotential terms is particularly relevant in models where neutrino

Majorana masses and/or supersymmetric µ-terms are perturbatively forbidden by some

global symmetry and have to be generated by non-perturbative effects [5–7].

The model that we consider is given by a stack of branes in the bulk with magnetization,

(mi, ni) = (1, 1) ⊗ (1, 1) ⊗ (−1, 1) . (5.1)

The spectrum consists of 32 fields transforming in the antisymmetric representation of U(4),

which we shall denote AM , M = 1, . . . , 32, and 3 complex adjoint fields which contain the

Wilson line moduli of the brane for each of the three 2-tori.
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One may easily verify that E1-brane instantons wrapping the third 2-torus in this

model lead to mass terms for the antisymmetrics,

Wn.p. =
∑

α

∫

d4xd2θd4η e
2πiSE1−

P

M〈ηiAM
ij ηj〉

α,disc (5.2)

=
∑

α

∫

d4xd2θ e2πiT̂3
∑

M,K

ǫijkl

〈

AM
ij

〉

α

〈

AK
kl

〉

α

where we sum over repeated SU(4) indices i, j, k, l. The sum over α denotes a sum over all

instanton configurations. As before, this is a sum over the 64 possible configurations for

the discrete Wilson lines and positions of the instanton, eq. (2.28), and the 4 choices for

the Chan-Paton charge eq. (4.17).

The disk amplitudes which appear in eq. (5.2) are given by,

〈

AM
ij

〉

α
= DM

α AM
ij (5.3)

We can naturally split the index M into {k, (i1, i2, i3)} with k = 1, . . . , 4 labeling the four

orbifold invariant combinations,

D1,(i1,i2,i3)
α = D

(i1,i2,i3)
aa∗E1 + D

(i1,i2,i3)
aga∗

gE1 + D
(i1,i2,i3)
af a∗

f
E1 + D

(i1,i2,i3)
aha∗

h
E1 (5.4)

D2,(i1,i2,i3)
α = D

(i1,i2,i3)
aa∗

gE1 + D
(i1,i2,i3)
aga∗E1 + D

(i1,i2,i3)
af a∗

h
E1 + D

(i1,i2,i3)
aha∗

f
E1 (5.5)

D3,(i1,i2,i3)
α = D

(i1,i2,i3)
aa∗

f
E1 + D

(i1,i2,i3)
aga∗

h
E1 + D

(i1,i2,i3)
af a∗E1 + D

(i1,i2,i3)
aha∗

gE1 (5.6)

D4,(i1,i2,i3)
α = D

(i1,i2,i3)
aa∗

h
E1 + D

(i1,i2,i3)
aga∗

f
E1 + D

(i1,i2,i3)
af a∗

gE1 + D
(i1,i2,i3)
aha∗E1 (5.7)

where,

D
(i1,i2,i3)
ABE1 =

3
∏

r=1

e−iπ|Ir
AB

|ǫrǫr+3
ϑ

[

ir
Ir
AB

+ ǫr

Ir
ABǫ

r+3

]

(Ir
BE1ξ

r
A + Ir

E1Aξ
r
B ; τ r|Ir

AB |) (5.8)

The notation for the different brane images is specified in appendix C. Indices ir = 0, 1,

r = 1, 2, 3 denote degenerate antisymmetrics localized at the various intersections in each

of the three 2-tori (|Ir
aa∗ | = 2).

We have then the following holomorphic superpotential

Wn.p. = e2πiT̂3
∑

α

4
∑

k,l=1

1
∑

i1,i2,i3,
j1,j2,j3=0

Dk,(i1,i2,i3)
α Dl,(j1,j2,j3)

α Âk,(i1,i2,i3)Âl,(j1,j2,j3) (5.9)

where holomorphic (‘hatted’) variables are defined as in section 2.1.

Let us analyze the structure of these mass terms. For that, let us define

g(ir)
r (ξr

a, τr, ǫr, ǫr+3) = e−2iπǫrǫr+3

(

ϑ

[ ir
2 + ǫr
2ǫr+3

]

(2ξr
a ; 2τr) + ϑ

[ ir
2 + ǫr
2ǫr+3

]

(−2ξr
a ; 2τr)

)

.

(5.10)
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Then for the model under consideration, eq. (5.1), it is possible to see that eqs. (5.4)–(5.7)

can be expressed as

D1,(i1,i2,i3)
α = g

(i1)
1 (ξ1a, τ1, ǫ1, ǫ4)g

(i2)
2 (ξ2a, τ2, ǫ2, ǫ5)g

(i3)
3 (0, τ3, ǫ3, ǫ6) (5.11)

D2,(i1,i2,i3)
α = g

(i1)
1 (ξ1a, τ1, ǫ1, ǫ4)g

(i2)
2 (0, τ2, ǫ2, ǫ5)g

(i3)
3 (ξ3a, τ3, ǫ3, ǫ6) (5.12)

D3,(i1,i2,i3)
α = g

(i1)
1 (0, τ1, ǫ1, ǫ4)g

(i2)
2 (ξ2a, τ2, ǫ2, ǫ5)g

(i3)
3 (ξ3a, τ3, ǫ3, ǫ6) (5.13)

D4,(i1,i2,i3)
α = g

(i1)
1 (0, τ1, ǫ1, ǫ4)g

(i2)
2 (0, τ2, ǫ2, ǫ5)g

(i3)
3 (0, τ3, ǫ3, ǫ6) (5.14)

Thus, analogously with the linear terms studied in the preceding section, mass terms for

eight of the thirty-two antisymmetric fields are non-zero and independent of the Wilson

lines of the magnetized bulk brane.

Moreover, note that superpotential (5.9) can be cast into the form

Wn.p. = e2πiT̂3
∑

α

Aα Aα , (5.15)

with

Aα =
∑

k

∑

i1,i2,i3

Dk,(i1,i2,i3)
α Âk,(i1,i2,i3) . (5.16)

Therefore each instanton gives mass to one linear combination Aα of the antisymmetric

fields. Since there are more instantons (64) than antisymmetric fields (32) one can in

principle generate mass terms to enough independent linear combinations Aα to get masses

for all antisymmetrics from instanton effects. In particular, the rank of the mass matrix is

expected to increase.

6 Conclusions

The main subject addressed in this paper is the fate of (linear) non-perturbative brane in-

stabilities generated by instanton effects. These are usually invoked in various applications

within QFT and String Theory, such as supersymmetry breaking, moduli stabilization and

inflation. By using CFT techniques and transformation properties of closed string moduli

and charged fields under monodromies of brane moduli, we were able to determine the

consistent way of summing over discrete instanton configurations in the superpotential.

This allowed us to find the structure of non-perturbative vacua of such models, which in

the examples we study turn out to be supersymmetric and interpreted in terms of D-brane

recombination, gauge symmetry breaking and partial open string moduli stabilization.

Thus, the results of this work suggest that non-perturbative vacuum destabilization

in String Theory compactifications generically leads to spontaneous breaking of gauge

symmetries rather than to supersymmetry breaking. Whereas we cannot exclude the latter,

it remains to be seen if there are models where the non-perturbative D-brane recombination

that we have described can give rise to supersymmetry breaking vacua, as advocated in [9–

12]; for subtleties related to moduli stabilization in such a setup, see [13]. Note that in this

case, even if the open string sector were to admit supersymmetry breaking, there might

still be runaway directions in the closed string sector.

– 31 –



J
H
E
P
0
6
(
2
0
1
0
)
0
6
2

Related to this, we have also pointed out the importance of global aspects when an-

alyzing non-perturbative effects. D-branes generically intersect rigid instantons in various

singularities (contractible cycles) of the compact space. The local non-perturbative dynam-

ics induced on the branes is usually the result of forces exerted by instantons located at

different positions in the compact space. This is particularly relevant for toroidal models,

where intersecting/magnetized branes, being fully rotated in the three internal tori, nec-

essarily intersect rigid instantons in all singularities of the compact space. Non-standard

geometries, such as highly-warped spaces [64, 65], are therefore required in order for a local

description of non-perturbative effects to be reliable.

There are various potential applications of the processes of brane recombination and

gauge symmetry breaking which we have presented. These include the breaking of gauge

symmetries of hidden sector(s) or the reduction of the rank of the gauge group, leading to

open string moduli stabilization. In this sense, the tendency of brane recombinations to

erase instanton effects raises further question marks about explicit implementations of the

KKLT scenario of moduli stabilization [66].

Another interesting application of the non-perturbative dynamics discussed in this

work, and more precisely of the motion of D-branes generated by instantonic forces, is to

D-brane inflationary models. Indeed, under some assumptions, this motion can be slow

enough to induce an inflationary universe. In this context, notice that relative phases

between different instanton contributions are crucial in obtaining consistent global super-

potentials. We have determined these phase factors by exploiting invariance of the superpo-

tential under monodromies of the D-brane scalars (Wilson line and geometric moduli), but

it would be also desirable to compute them by more direct means, such as the localization

techniques of [67], which have been recently extended to String Theory instantons [39, 50].

The role of relative phase factors in inflationary models with several condensates or instan-

ton effects awaits more dedicated studies.

Finally, the fact of having generically various instantons which contribute at the same

order to a given superpotential coupling can also be relevant in a broader context. As we

argued in section 5, the summation over instanton positions increases the rank of the mass

matrix. Similar considerations may apply to other couplings, such as Yukawa couplings.

Hence, global aspects can also have a potential impact on the phenomenological features

of quasi-realistic brane models.
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A Computation of one-loop amplitudes

In this appendix we present the computation of the one-loop amplitudes involving the

fractional E1-brane instantons wrapping the third 2-torus and non-magnetized bulk D9-

branes and D5-branes, contributing to the determinant of the one-loop fluctuations (for

an analogous IIA computation, see e.g. [68]). For simplicity we only explicitly consider

bulk D5-branes wrapping the first 2-torus. Generalization to bulk D5-branes wrapping the

second 2-torus is straightforward. Similar results could have been obtained by computing

the gauge threshold corrections of a D5-brane wrapping the third torus [32, 60, 61] (see

also [69–72]).

Möbius amplitude. The Möbius amplitude for E1-brane instantons wrapping the third

2-torus is the following

ME1 =
1

8
Dh;o

∫ ∞

0

dt

t

(

2η̂

ϑ̂2

)2
{

− T̂ ∗
ooW1W2P3+

[

−T̂ ∗
og W1−T̂

∗
of W2−T̂

∗
oh P3

]

(

2η̂

ϑ̂2

)2
}

.

(A.1)

where Wi and Pi represent the standard winding and momentum lattice sums, and

T̂ ∗
oo =

1

2η̂4

∑

αβ

cαβ ϑ̂

[

α

β + 1/2

]

ϑ̂

[

α

β − 1/2

]

ϑ̂2

[

α

β

]

= 0 (A.2)

T̂ ∗
ok =

1

2η̂4

∑

αβ

cαβ ϑ̂
2

[

α

β + 1/2

]

ϑ̂2

[

α

β − 1/2

]

= −

(

ϑ̂2

η̂

)4

(A.3)

with k = g, f, h, cαβ = (−1)2(α+β+2αβ) and α, β taking values 0 or 1/2. Hatted functions

indicate that the parameter is the standard Möbius parameter, it
2 + 1

2 . For more details in

the conventions we use see [73, 74]. From the evaluation of eq. (A.1) we obtain

ME1 = 2Dh;o

∫ ∞

0

dt

t
(W1 +W2 + P3) (A.4)

with Dh;o the untwisted Chan-Paton charge of the instanton, which for our purposes will

be equal to one. Notice, in particular, that since the instanton is placed on top of the

orientifold planes, the Möbius amplitude is independent of the position of the instanton.

The integral can be evaluated by introducing an ultraviolet cut-off, Λ, and an infrared

regulator, µ, using the formulas in [75–77]

∫ ∞

1/Λ2

dt

t
P3e

−2πµt = Im T3Λ
2 − ln

(

8π3µ Im T3 Im τ3 |η(τ3)|
4
)

(A.5)

∫ ∞

1/Λ2

dt

t
W1,2e

−2πµt =
Λ2

2Im T1,2
− ln

(

4π3µ Im τ1,2

Im T1,2
|η(τ1,2)|

4

)

(A.6)
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Annulus amplitudes. The annulus amplitude between a E1-brane instanton wrapping

the third 2-torus and a non-magnetized bulk D9-brane with a Wilson line also in the third

torus and untwisted Chan-Paton charge 2(n1 + n2) reads

AE1−D9 =
1

8

∫ ∞

0

dt

t

(

η

ϑ4

)2
{

Dh;o(n1 + n2)
η

ϑ
[

α
β

]

ϑ4
[

α+ 1
2

β

]

ϑ
[

α
β

]

η5

(

η

ϑ4

)2

+Dh;h(n1 − n2)
η

ϑ
[

α
β

]

ϑ2
[

α+ 1
2

β

]

ϑ

[

α+ 1
2

β+ 1
2

]

ϑ

[

α+ 1
2

β− 1
2

]

ϑ
[

α
β

]

η5

(

η

ϑ3

)2
}

×
(

P
~m3−~θE1+~θD9

+ P
~m3+~θE1−~θD9

)

(A.7)

Using the identity
∑

αβ

cαβ ϑ
4

[

α+ 1/2

β

]

= −2ϑ4
4 (A.8)

and n1 = n2 = ND9 for ND9 bulk D9-branes, we get

AE13−D9 = −
ND9

2

∫ ∞

0

dt

t

(

P
~m3−~θE1+~θD9

+ P
~m3+~θE1−~θD9

)

(A.9)

In this case the integral is finite in the infrared (for ~θE1 − ~θD9 6= 0) and only regularization

of the ultraviolet is required [75–77]

∫ ∞

1/Λ2

dt

t
P~m3±~θE1∓~θD9

= Im T3Λ
2 − ln

∣

∣

∣

∣

ϑ1(ξ
3
D9E1; τ3)

η(τ3)

∣

∣

∣

∣

2

+ 2π

(

Im ξ3D9E1

)2

Im τ3
(A.10)

where ξ3D9E1 = ξ3q − ξ3E1.

Similarly, annulus amplitudes between the E1-brane instanton and non-magnetized

D5-branes wrapping the first 2-torus, with untwisted Chan-Paton charge 2(d1 + d2) and a

Wilson line in the second torus reads

AE1−D51 =
1

8

∫ ∞

0

dt

t

(

η

ϑ4

)2
{

Dh;o(d1 + d2)
η

ϑ
[

α
β

]

ϑ3
[

α+ 1
2

β

]

ϑ
[

α
β

]

ϑ
[

α+ 1
2

β

]

η5

(

η

ϑ4

)2

+Dh;f (d1 − d2)
η

ϑ
[

α
β

]

ϑ2
[

α+ 1
2

β

]

ϑ

[

α+ 1
2

β+ 1
2

]

ϑ
[

α
β

]

ϑ

[

α+ 1
2

β− 1
2

]

η5

(

η

ϑ3

)2
}

×
(

W~n2−~εE1+~εD5
+W~n2+~εE1−~εD5

)

(A.11)

Using the same identity as before and d1 = d2 = ND51 for ND51 bulk D5-branes one gets

AE1−D51 = −
ND51

2

∫ ∞

0

dt

t

(

W~n2−~εE1+~εD5
+W~n2+~εE1−~εD5

)

(A.12)
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Then we can evaluate the integral as [75–77]

∫ ∞

1/Λ2

dt

t
W~n2∓~εE1±~εD5

=
Λ2

Im T2
− ln

∣

∣

∣

∣

ϑ1(φ
2
E1D5; τ2)

η(τ2)

∣

∣

∣

∣

2

+ 2π

(

Im φ2
E1D5

)2

Im τ2
(A.13)

where φ2
E1D5 = φ2

q − φ2
D5.

One-loop determinant. Putting everything together one obtains

−AE1−D9 −AE1−D51 −ME1

=

∫ ∞

0

dt

t

{

ND9

2

(

P
~m3−~θE1+~θD9

+ P
~m3+~θE1−~θD9

)

+
ND51

2

(

W~n2−~εE1+~εD5
+W~n2+~εE1−~εD5

)

− 2(W1 +W2 + P3)

}

= ND9

[

− ln

∣

∣

∣

∣

ϑ1(ξ
3
E1D9; τ3)

η(τ3)

∣

∣

∣

∣

2

+ 2π

(

Im ξ3E1D9

)2

Im τ3

]

+ND51

[

− ln

∣

∣

∣

∣

ϑ1(φ
2
E1D5; τ2)

η(τ2)

∣

∣

∣

∣

2

+ 2π

(

Im φ2
E1D5

)2

Im τ2

]

−Λ2

[

1

Im T1
+

1 −ND51

Im T2
+ (2 −ND9)Im T3

]

+2 ln

[(

4π3µ Im τ1
Im T1

|η(τ1)|
4

)(

4π3µ Im τ2
Im T2

|η(τ2)|
4

)

(

8π3µ Im T3 Im τ3 |η(τ3)|
4
)

]

(A.14)

This expression should be interpreted with a gauge threshold. The normalization can

be fixed by imposing that the chiral fermions becoming massless when ξ3E1D9 = 0 or

φ2
E1D5 = 0, contribute in the right amount to the coefficient of the β-function, given by the

field theory formula,

4π

g2
=

4π

g2
0

+
1

2

(

3C2(G) −
∑

R

T (R)

)

ln
µ

Ms
(A.15)

The gauge threshold will be then identified with the real part of the logarithm of the

quantity which enters in 〈FA〉, obtaining

exp (AE1α + ME1α) = N
[

η(τ1)η(τ2)
1+2ND51 η(τ3)

1+2ND9
]−1

× (A.16)

ND9
∏

k=1

(

exp

[

2πi(ξ3kIm ξ3k+ξ3E1α
Im ξ3E1α

)

Im τ3

]

ϑ

[

1
2
1
2

]

(ξ3k + ξ3E1α
; τ3)ϑ

[

1
2
1
2

]

(ξ3k − ξ3E1α
; τ3)

)

×

ND51
∏

q=1

(

exp

[

2πi(φ2
qIm φ2

q+φ2
E1α

Im φ2
E1α

)

Im τ2

]

ϑ

[

1
2
1
2

]

(φ2
q + φ2

E1α
; τ2)ϑ

[

1
2
1
2

]

(φ2
q − φ2

E1α
; τ2)

)

where N is an irrelevant normalization factor.

– 35 –



J
H
E
P
0
6
(
2
0
1
0
)
0
6
2

B SUSY, tadpoles and K-theory constraints

Compactifications with discrete torsion involve at least one exotic O-plane, with both

positive tension and charge. In order to cancel the RR tadpoles ones has therefore to

include also a suitable number of D5-branes and magnetized D9-branes, with constant

magnetic fields Hi along the i-th T 2,

Hi =
mi

vini
i = 1, 2, 3 (B.1)

where vi is the volume of the i-th T 2. Moreover, in order for N = 1 supersymmetry to

be preserved in four dimensions, the magnetic fields for the D9 branes must satisfy the

following conditions,

H1 +H2 +H3 = H1H2H3

H1H2 +H1H3 +H2H3 ≤ 1. (B.2)

The first condition guarantees that an N = 1 supersymmetry is preserved whereas the

latter condition guarantees that the same N = 1 supersymmetry is preserved by all stacks.

We shall focus on the specific choice of discrete torsion discussed in section 2.2, namely

(ǫg, ǫf , ǫh) = (+,+,−). The RR tadpole cancelation conditions then read

∑

A

NA n
1
An

2
An

3
A = 16 ,

∑

A

NA n
1
Am

2
Am

3
A = −16 ,

∑

A

NAm
1
An

2
Am

3
A = −16 ,

∑

A

NAm
1
Am

2
An

3
A = 16 ,

(B.3)

where the sums run over all the stacks of D5-branes and D9-branes. The unusual sign of

last equation is due to the exotic O5-plane wrapping the third 2-torus.

Due to the coupling to twisted fields, fractional branes have also to satisfy twisted

tadpole conditions for each of the 3 × 16 fixed points. For the choice of Chan-Paton

charges (4.1) these conditions read,

∑

a

pam
1
aǫ

(a),g
l +

∑

α

qαm
1
αǫ

(α),g
l = 0 ,

∑

a

pam
2
aǫ

(a),f
l −

∑

α

qαm
2
αǫ

(α),f
l = 0 ,

∑

a

pa n
3
aǫ

(a),h
l −

∑

α

qα n
3
αǫ

(α),h
l = 0 ,

(B.4)

where ǫ
(A),g
l is equal to 1 if brane A passes through the l-th point fixed under the action of

the g generator, and equals zero otherwise. In addition to the tadpole constraints, a model

must also satisfy K-theory constraints [78].
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In addition to tadpole constraints, self-consistent string models must also satisfy K-

theory constraints. We shall follow a similar approach to that of refs. [26, 78, 79], which is to

consider all of the possible D-brane probes that can be introduced with a USp(2) ≃ SU(2)

gauge group in their world-volume. The constraints can then be derived by requiring that

the number of fundamentals of SU(2) arising from the intersections of the probe branes

and the physical branes must be even. For the choice of discrete torsion considered in this

paper, we have the standard K-theory constraints,
∑

A

PA m1
Am

2
Am

3
A ∈ 8Z

∑

A

PA m1
An

2
An

3
A ∈ 8Z (B.5)

∑

A

PA n1
Am

2
An

3
A ∈ 8Z.

In addition, because of the discrete torsion in the third torus, we also an additional set of
constraints namely,
∑

a

pa(n1

an
2

am
3

a − Sa
gn

1

a − Sa
fn

2

a + Sa
hm

3

a) +
∑

α

qα(n1

αn
2

αm
3

α − Sα
g n

1

α + Sα
f n

2

α − Sα
hm

3

α) ∈ 8Z

∑

a

pa(n1

an
2

am
3

a − Sa
gn

1

a + Sa
fn

2

a − Sa
hm

3

a) +
∑

α

qα(n1

αn
2

αm
3

α − Sα
g n

1

α − Sα
f n

2

α + Sα
hm

3

α) ∈ 8Z

∑

a

pa(n1

an
2

am
3

a + Sa
gn

1

a − Sa
fn

2

a − Sa
hm

3

a) +
∑

α

qα(n1

αn
2

αm
3

α + Sα
g n

1

α + Sα
f n

2

α + Sα
hm

3

α) ∈ 8Z

∑

a

pa(n1

an
2

am
3

a + Sa
gn

1

a + Sa
fn

2

a + Sa
hm

3

a) +
∑

α

qα(n1

αn
2

αm
3

α + Sα
g n

1

α − Sα
f n

2

α − Sα
hm

3

α) ∈ 8Z

(B.6)

where Si
j refers to the number of shared fixed points of the jth orbifold action between

the ith physical brane and a D5 probe brane wrapping the third 2-torus. So for example,

a bulk physical brane would have Sj = 0.

The constraints in eq. (B.6) must also be supplemented by considering the effects of

discrete Wilson lines on the D5 probe branes wrapping the third 2-torus. The net effects

of these Wilson lines will be to change which fixed points the probe branes pass through.

This has the potential to change the Si
j terms. For the setup considered in this paper,

the only Si
j terms that can possibly be affected by discrete Wilson lines are those equal to

two or four (with those equal to two being affected by a discrete Wilson line in one torus

and those equal to four being affected by discrete Wilson lines in two torii). In order to

verify that a collection of branes satisfies the K-theory constraints, one may just verify that

eq. (B.6) is satisfied for every choice of discrete Wilson line.

The requirement that eq. (B.6) be satisfied even when discrete Wilson lines are consid-

ered may seem to onerous to satisfy for any set of non-trivial K-theory charges. However,

the twisted tadpole constraints guarantee that no fixed point is only intersected by only

a single physical brane. This implies that only collections of Si
j will change simultane-

ously when these discrete Wilson lines are considered. As such, even in the presence of

non-trivial K-theory charges collections of branes can still be found which satisfy the K-

theory constraints.
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It is interesting to note that as the most stringent K-theory constraints come from

probe branes with the same wrapping numbers as the E1 instantons that these constraints

also constrain the possible operators that are instantonically generated. We note that

eq. (B.6) implies that there can be no net odd charged operators generated by instantons

in these models.

C F-terms for the model of section 4

In this appendix we perform the symmetrization of the disc contributions to the superpo-

tential with respect to all the orbifold operations, for the example in section 4. For that,

one has to take into account that the orbifold generators act on the magnetization numbers,

on the position and Wilson line moduli and on the vector ~i denoting the intersection on

which the corresponding chiral field is localized.

Let us consider the recombined brane a and its images under the orbifold and orien-

tifold operations,

a : (m1, n1) ⊗ (m2, n2) ⊗ (m3, n3) a∗ : (−m1, n1) ⊗ (−m2, n2) ⊗ (−m3, n3)

ag : (m1, n1) ⊗ (−m2,−n2) ⊗ (−m3,−n3) a∗g : (−m1, n1) ⊗ (m2,−n2) ⊗ (m3,−n3)

af : (−m1,−n1) ⊗ (m2, n2) ⊗ (−m3,−n3) a∗f : (m1,−n1) ⊗ (−m2, n2) ⊗ (m3,−n3)

ah : (−m1,−n1) ⊗ (−m2,−n2) ⊗ (m3, n3) a∗h : (m1,−n1) ⊗ (m2,−n2) ⊗ (−m3, n3)

We can express the holomorphic part of the disc amplitude by considering invariant am-

plitudes between the brane and different images. For that it is convenient to define

the functions,

ψ1,(i1,i′1,i2,i3) = F
(i1,i2,i3)
aa∗E1 + F

(i1,i2,i3)
aga∗

gE1 + F
(i′1,i2,i3)
af a∗

f
E1 + F

(i′1,i2,i3)
aha∗

h
E1 (C.1)

ψ2,(i1,i′1,i2,i3) = F
(i1,i2,i3)
aa∗

gE1 + F
(i1,i2,i3)
aga∗E1 + F

(i′1,i2,i3)
af a∗

h
E1 + F

(i′1,i2,i3)
aha∗

f
E1 (C.2)

ψ3,(i1,i′1,i2,i3) = F
(i1,i2,i3)
aa∗

f
E1 + F

(i1,i2,i3)
aga∗

h
E1 + F

(i′1,i2,i3)
af a∗E1 + F

(i′1,i2,i3)
aha∗

gE1 (C.3)

ψ4,(i1,i′1,i2,i3) = F
(i1,i2,i3)
aa∗

h
E1 + F

(i1,i2,i3)
aga∗

f
E1 + F

(i′1,i2,i3)
af a∗

gE1 + F
(i′1,i2,i3)
aha∗E1 (C.4)

where

F
(i1,i2,i3)
ABE1 =





3
∏

r=1

∑

ǫr ,ǫr+3=0,1/2

e−2πi[ND9(ǫ
6+ǫ3ǫ6)+ND51

(ǫ5+ǫ2ǫ5)]e2πi(T3+Mα)−iπ|Ir
AB|ǫrǫr+3

ϑ

[

ir
Ir
AB

+ ǫr

Ir
ABǫ

r+3

]

(Ir
BE1ξ

r
A + Ir

E1Aξ
r
B ; τr|I

r
AB|)

)

×
ND9
∏

k=1

ϑ2

[

1
2 + ǫ3

1
2 + ǫ6

]

(ξ3k; τ3) ×

ND51
∏

q=1

ϑ2

[

1
2 + ǫ2

1
2 + ǫ5

]

(φ2
q ; τ2) (C.5)
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where i1 = 0 . . . 3, i2,3 = 0, 1, denote the intersections in each of the three 2-torus, from

left to right. Let us define in what follows the functions

f
(i1i′1)
1 (ξ1a, τ1) =

∑

ǫ1,ǫ4

e−4iπǫ1ǫ4

(

ϑ

[ i1
4 + ǫ1
4ǫ4

]

(2ξ1a; 4τ1) + ϑ

[

i′1
4 + ǫ1
4ǫ4

]

(−2ξ1a; 4τ1)

)

,

f
(i2)
2 (ξ2a, φ

2
q , τ2, ND51) =

∑

ǫ2,ǫ5

e−2iπ[ǫ2ǫ5+ND51
(ǫ5+ǫ2ǫ5)] ×

(

ϑ

[ i2
2 + ǫ2
2ǫ5

]

(2ξ2a; 2τ2) + ϑ

[ i2
2 + ǫ2
2ǫ5

]

(−2ξ2a; 2τ2)

) ND51
∏

q=1

ϑ2

[

1
2 + ǫ2

1
2 + ǫ5

]

(φ2
q ; τ2) ,

f
(i3)
3 (ξ3a, ξ

3
k, τ3, ND9) =

∑

ǫ3,ǫ6

e−2iπ[ǫ3ǫ6+ND9(ǫ6+ǫ3ǫ6)] ×

(

ϑ

[ i3
2 + ǫ3
2ǫ6

]

(2ξ3a; 2τ3) + ϑ

[ i3
2 + ǫ3
2ǫ6

]

(−2ξ3a; 2τ3)

) ND9
∏

k=1

ϑ2

[

1
2 + ǫ3

1
2 + ǫ6

]

(ξ3k; τ3) .

(C.6)

in terms of which the previous wavefunctions are given by

ψ
(i1,i′1,i2,i3)
1 = f

(i1i′1)
1 (ξ1a, τ1) f

(i2)
2 (ξ2a, φ

2
q , τ2, ND51) f

(i3)
3 (0, ξ3k, τ3, ND9) , (C.7)

ψ
(i1,i′1,i2,i3)
2 = f

(i1i′1)
1 (ξ1a, τ1) f

(i2)
2 (0, φ2

q , τ
2, ND51) f

(i3)
3 (ξ3a, ξ

3
k, τ3, ND9) , (C.8)

ψ
(i1,i′1,i2,i3)
3 = f

(i1i′1)
1 (0, τ1) f

(i2)
2 (ξ2a, φ

2
q , τ2, ND51) f

(i3)
3 (ξ3a, ξ

3
k, τ3, ND9) , (C.9)

ψ
(i1,i′1,i2,i3)
4 = f

(i1i′1)
1 (0, τ1) f

(i2)
2 (0, φ2

q , τ2, ND51) f
(i3)
3 (0, ξ3k, τ3, ND9) . (C.10)

To prove this we have made use of the identities,

ξi
aM

= ξi
a , ξi

a∗

M
= ξi

a∗ = −ξi
a , M = g, f, h , i = 1, 2, 3 (C.11)

In order to write the contributions of the disc and one-loop amplitudes to the superpotential

of the 56 antisymmetrics and 8 symmetrics in this model, we observe that under an orbifold

generator which reverses all the coordinates but the ones of the k-th 2-torus, accordingly

to eq. (2.26), the vector ~i transforms as,

ip → |Ip
aa∗ | − ip (mod |Ip

aa∗ |) , ik → ik , p 6= k (C.12)

Then, the orbifold/orientifold invariant contributions read,

FA1,(i2,i3) = ψ1,(0,0,i2,i3) , FA2,(i2,i3) = ψ2,(0,0,i2,i3) , (C.13)

FA3,(i2,i3) = ψ3,(0,0,i2,i3) , FA4,(i2,i3) = ψ4,(0,0,i2,i3) ,

FA5,(i2,i3) = ψ1,(2,2,i2,i3) , FA6,(i2,i3) = ψ2,(2,2,i2,i3) ,

FA7,(i2,i3) = ψ3,(2,2,i2,i3) , FA8,(i2,i3) = ψ4,(2,2,i2,i3) ,

FA9,(i2,i3) = ψ1,(1,3,i2,i3) , FA10,(i2,i3) = ψ2,(1,3,i2,i3) ,

FA11,(i2,i3) = ψ1,(3,1,i2,i3) , FA12,(i2,i3) = ψ2,(3,1,i2,i3) ,

FA13,(i2,i3) = ψ3,(1,3,i2,i3) + ψ3,(3,1,i2,i3) , FA14,(i2,i3) = ψ4,(1,3,i2,i3) + ψ4,(3,1,i2,i3) ,

FS1,(i2,i3) = ψ3,(1,3,i2,i3) − ψ3,(3,1,i2,i3) , FS2,(i2,i3) = ψ4,(1,3,i2,i3) − ψ4,(3,1,i2,i3)
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In particular, substituting (C.7)–(C.10) in these expressions it is possible to check that

FSQ,(i2,i3) is identically zero, in agreement with the fact that, because of gauge invariance,

the symmetrics in this model cannot get a linear term in the superpotential.

Therefore, the non-perturbative superpotential reads,

Wn.p =
[

η(τ1)η(τ2)3η(τ3)3
]−1 ∑

i2,i3=0,1

14
∑

M=1

e2πiT̂3ÂM,(i2,i3) FAM,(i2,i3) (C.14)
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