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1 Introduction

Higher-order curvature corrections to four-dimensional N = 2 supersymmetric Wilsonian

actions are known to affect the duality transformations of the moduli fields. The full

transformation rules turn out to be much more complicated than their counterpart at the

two-derivative level. An additional complication arises at the level of the associated 1PI

effective action, where also non-holomorphic terms need to be incorporated in order to

obtain physical results that reflect the duality invariance. These issues have been discussed

in the context of four-dimensional N = 2 BPS black holes [1, 2], where it was described

how to incorporate non-holomorphic corrections into the free energy of BPS black holes

in the presence of a Weyl background. This free energy turns out to be given by the

generalized Hesse potential. Unlike the effective action, the Hesse potential is defined in

terms of variables whose duality transformations are not subject to the deformations in-

duced by higher-derivative couplings. The relation between the Hesse potential and the

effective action involves a Legendre transform. The Hesse potential can be regarded as the

’Hamiltonian’ version of the effective Lagrangian, and is invariant under possible duality

transformations. This is comparable to the generic situation for (abelian) gauge theories

and electric/magnetic dualities, where the Lagrangian is in general not invariant under

these dualities, while the Hamiltonian is invariant. Also the Lagrangian and the Hamil-

tonian are related by a Legendre transform and they are expressed in terms of different

dynamical variables.

It is suggestive to assume that the Hesse potential is directly related to the partition

function of the topological string [3]. The moduli of the topological string partition func-

tion correspond to moduli of the underlying Calabi-Yau moduli space and their duality
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transformations are defined in terms of monodromy transformations of the Calabi-Yau pe-

riod vector. These transformations are thus directly related to the transformations found

at the two-derivative level of the effective action. Therefore, both the topological string

partition function and the Hesse potential are expressed in terms of variables that trans-

form identically under the dualities, and moreover, both are duality invariant. In addition,

it has been established that certain string amplitudes are related to the twisted partition

functions of the topological string [3, 4]. String amplitudes correspond to connected field

theory graphs, and therefore these amplitudes must be encoded in both the corresponding

effective action and in the Hesse potential. Consequently the topological string is contained

in the Hesse potential. This leaves the possibility that the Hesse potential contains more

information than just the topological string in view of the fact that its dependence on

the topological string coupling, gs, which is inversely proportional to one of the complex

moduli, is in principle not holomorphic.

In general it is not possible to carry out the Legendre transform explicitly at the level

of a full effective action. This paper is therefore devoted to carrying out the Legendre trans-

form by iteration in order to subsequently study the possible relation between the Hesse

potential and the partition function of the topological string. Hence the BPS black holes

will only play an ancillary role in this work. The Legendre transform leads to new variables

for the Hesse potential which, under duality, transform precisely like the fields used in the

topological string. Unfortunately only in a few cases exact expressions are known for the

topological string, and for the effective action there is even less data. Consequently we will

have to rely on a restricted number of models with a high degree of symmetry. However,

in principle, our results will also be relevant for models without duality symmetries.

For a specific class of N = 2 models, which includes the FHSV [5] and the STU

model [6, 7], we explicitly compute the Hesse potential in terms of these new variables,

up to second order in the Weyl background. In the context of the FHSV model, we show

that the Legendre transform reproduces the associated non-holomorphic genus-2 partition

function of the topological string [8], starting from the expressions found in [2]. In addition,

we consider N = 4 supersymmetric models in this N = 2 description, for which we obtain

more detailed information on the higher-order contributions to the Hesse potential.

Some time ago it has been argued [1] that the exponent of the Hesse potential appears

in a fully duality invariant extension of the OSV integral [9]. A semiclassical evaluation

of this extension reproduces the original OSV integral with an additional measure factor.

At the semiclassical level this modified integral correctly reproduces all known results

for (large) black holes from both macroscopic and microscopic perspectives. Beyond the

semiclassical approximation the role of this integral has not been fully established as yet.

The results of this paper clarify a number of issues in the relation between the effective

action and the Hesse potential. The latter depends on a modulus that corresponds to the

inverse topological string coupling constant gs and on its complex conjugate. As it turns

out, the topological string partition functions are recovered when restricting to those terms

in the Hesse potential that depend holomorphically on gs, at least for genus g ≤ 2. This

sector of the Hesse potential is separately consistent with respect to duality. In view of

the earlier discussion this result is not unexpected, but the present lack of data on the
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higher-derivative terms in the effective actions forms an obstacle for uncovering the more

conceptual aspects of the relation between the Hesse potential and the topological string

partition function. In principle, the Hesse potential will also contain terms proportional to

mixed powers of gs and ḡs. It is important to realize that these are not primarily induced

by the non-holomorphic corrections associated with non-local terms in the effective action,

but they are present as a result of the Legendre transform. We observe that, at genus

2, these mixed terms can be absorbed by suitable contributions from the effective action.

Without detailed knowledge of the latter, it is not clear how to establish this in some

generality, especially because the consequences of (partially) absorbing these terms can

only be seen at higher genus. Perhaps the analysis can be strengthened eventually by

taking into account information on the asymptotic behaviour of the functions involved.

Admittedly, the situation remains rather complex, but it is clear that considerable progress

can be made on the basis of the case studies considered in this paper.

This paper is organized as follows. In section 2, after reviewing the construction of

the Hesse potential in the presence of non-holomorphic terms, we introduce new variables

Ỹ I for the Hesse potential that transform under duality according to the classical trans-

formation rules. Section 3 contains a brief review of the consequences of S- and T-duality

invariance for a class of N = 2 models that contain the FHSV and the STU model. In

section 4 we construct the variables Ỹ I for this class of N = 2 models. We derive a set

of equations that these new variables have to satisfy, and we solve them iteratively in the

Weyl background, up to second order. We verify that these new parameters satisfy the

required duality properties. Section 5 deals with models corresponding to heterotic N = 4

compactifications, for which we derive all-order results. In section 6 we compute the Hesse

potential for the more generic case, expressed in the new variables, to second order. Sec-

tion 7 summarizes the situation for specific models and compares the results to the twisted

partition functions of the topological string. In two cases we demonstrate that these par-

tition functions can be reproduced by the corresponding terms in the Hesse potential that

depend holomorphically on gs.

2 The Hesse potential

For N = 2 supergravity the part of the Lagrangian pertaining to the vector supermultiplets

is encoded in a holomorphic function F of the complex scalar fields XI belonging to these

multiplets, which is homogeneous of second degree. Here the index I = 0, 1, . . . , n labels the

various vector multiplets. The vector multiplets have an optional coupling to the square of

the Weyl tensor, which can be encoded in the function F by introducing a dependence on

another complex scalar field equal to the square of the anti-selfdual antisymmetric auxiliary

field that constitutes the lowest-weight field of the so-called Weyl supermultiplet. All these

scalars are defined projectively, but in the context of BPS black holes suitably normalized

fields have been introduced denoted by Y I and Υ [10]. In terms of these fields the attractor

equations for BPS black holes take the form,

Y I − Ȳ I = ipI , FI − F̄I = iqI , Υ = −64 , (2.1)
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where FI denotes the derivative of the function F with respect to Y I and F̄I is its complex

conjugate.1 The first two atractor equations can be obtained from extremizing the BPS

free energy. This observation will be relevant in the sequel.

The above does not yet account for the presence of non-holomorphic modifications.

These modifications signal departures from the Wilsonian action that originate from inte-

grating out the massless modes in order to obtain the full effective action. This integration

gives rise to non-local terms in the corresponding supergravity action. Unfortunately not

much is known about these non-localities, except that they are often required to preserve

physical symmetries that cannot be fully realized at the level of the Wilsonian action. An

early example of this phenomenon can be found in [11], where it was demonstrated that

the gauge coupling constants in heterotic string compactifications are moduli dependent

with non-holomorphic corrections. Also in the context of BPS black holes the need for

non-holomorphic modifications has been demonstrated to ensure that the ‘period vector’

(Y I , FI) transforms consistently under S-duality [12]. When these modifications are taken

into account an S-duality invariant entropy is obtained. The results of this analysis are in

accord with the results for the non-holomorphic terms found in the corresponding effective

action [13]. More recently, it has been shown [14, 15] how the same results emerge from a

semiclassical approximation of the microscopic degeneracy formula for N = 4 dyons [15–21].

In order to ensure that the attractor equations will still follow from a variational princi-

ple in the presence of non-holomorphic corrections, it turns out that these corrections must

be encoded in a real and homogeneous function of second degree denoted by Ω(Y, Ȳ ,Υ, Ῡ),

which is incorporated into the function F in the following way [2, 14],

F = F (0)(Y,Υ) + 2iΩ(Y, Ȳ ,Υ, Ῡ) . (2.2)

The attractor equations (2.1) retain the same form, irrespective of the presence of these

non-holomorphic terms. Although the explicit couplings in the Lagrangian corresponding

to this modification are unknown, it turned out that important progress can be made

without first constructing the full effective action. When the function Ω is harmonic, i.e.,

when it can be written as the sum of a holomorphic and an anti-holomorphic function, then

one may simply absorb the holomorphic part into the first term. The anti-holomorphic part

will then not contribute as it will vanish under the holomorphic derivatives which enter the

attractor equations as well as the black hole entropy. Consequently we can incorporate the

Υ-dependent terms in F (0) into Ω. In that case F (0)(Y ) will no longer depend on Υ, and

will refer to the classical contribution that pertains to the part of the Lagrangian quadratic

in space-time derivatives.

In this context there exists the notion of a BPS free energy, which is defined as fol-

lows [1],

F(Y, Ȳ ,Υ, Ῡ) = −i
(

Ȳ IFI − Y I F̄I

)

− 2i
(

ΥFΥ − ῩF̄Ῡ

)

, (2.3)

where FΥ = ∂F/∂Υ. We recall that each of the two terms in (2.3) transform as a function

under electric/magnetic duality. This free energy, whose existence seems desirable based

1Hence F̄I equals the derivative of F̄ with respect to Ȳ I . We refrain from distinguishing holomorphic

and anti-holomorphic derivatives, ∂/∂Y I and ∂/∂Ȳ I , by the use of different types of indices.
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on semiclassical arguments, enters the BPS entropy function Σ, defined by

Σ(Y, Ȳ , p, q) = F(Y, Ȳ ) − qI(Y
I + Ȳ I) + pI(FI + F̄I) , (2.4)

where the black hole charges qI and pI couple to the corresponding electro- and magneto-

static potentials at the horizon, which are equal to [22],

φI = Y I + Ȳ I , χI = FI + F̄I . (2.5)

In [2] we have indicated how these expressions are consistent with electric/magnetic duality.

Requiring stationarity of the entropy function Σ with respect to Y I leads directly to the

attractor equations (2.1) while the value of Σ at the attractor point defines the macroscopic

(field-theoretic) entropy divided by π. In the absence of non-holomorphic modifications,

this entropy has been shown [10] to coincide with Wald’s entropy based on a Noether

charge [23–25]. Under electric/magnetic duality the charges (pI , qI) and the ‘period vector’

(Y I , FI) transform under symplectic (real) rotations, and so do the potentials (φI , χI).

In the presence of higher-order derivative actions in the effective action, the origi-

nal complex fields Y I transform in a complicated way under electric/magnetic duality.

Therefore it is advantageous to consider a variable change to the real coordinates φI and

χI , which transform linearly under dualities. This conversion is well defined whenever

det[FIJ − F̄IJ ] 6= 0, where FIJ denotes the second derivative of F with respect to Y I and

Y J . As we shall demonstrate shortly, the so-called Hesse potential, defined as the Legendre

transform of a linear combination of the imaginary part of F and Ω with respect to the

imaginary part of the Y I , is a function of φI and χI . It is a generalization of the Hesse

potential defined in the context of special geometry [26, 27]. To perform the conversion to

real variables φI and χI , we first decompose Y I and FI into their real and imaginary parts,

Y I =
1

2
(φI + iuI) , FI =

1

2
(χI + ivI) . (2.6)

The real parametrization is obtained by taking (φI , χI ,Υ, Ῡ) instead of (Y I , Ȳ I ,Υ, Ῡ) as

the independent variables. Although Υ is a spectator, note that the inversion of χI =

χI(φ, u,Υ, Ῡ) gives Im Y I = uI(φ, χ,Υ, Ῡ). To compare partial derivatives in the two

parametrizations, we need,

∂

∂φI

∣

∣

∣

u
=

∂

∂φI

∣

∣

∣

χ
+

∂χJ(φ, u,Υ, Ῡ)

∂φI

∂

∂χJ

∣

∣

∣

φ
,

∂

∂uI

∣

∣

∣

φ
=

∂χJ(φ, u,Υ, Ῡ)

∂uI

∂

∂χJ

∣

∣

∣

φ
,

∂

∂Υ

∣

∣

∣

φ,u
=

∂

∂Υ

∣

∣

∣

φ,χ
+

∂χI(φ, u,Υ, Ῡ)

∂Υ

∂

∂χI

∣

∣

∣

φ
. (2.7)

The homogeneity is preserved under the reparametrization because χ(φ, u,Υ, Ῡ) is a ho-

mogeneous function of first degree. This results in the equality,

φI ∂

∂φI

∣

∣

∣

u
+ uI ∂

∂uI

∣

∣

∣

φ
+ 2Υ

∂

∂Υ

∣

∣

∣

φ,u
+ 2 Ῡ

∂

∂Ῡ

∣

∣

∣

φ,u

= φI ∂

∂φI

∣

∣

∣

χ
+ χI

∂

∂χI

∣

∣

∣

φ
+ 2Υ

∂

∂Υ

∣

∣

∣

φ,χ
+ 2 Ῡ

∂

∂Ῡ

∣

∣

∣

φ,χ
. (2.8)
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The Hesse potential is defined as the Legendre transform of 4(Im F − Ω) with respect

to uI = 2 Im Y I ,2

H(φ, χ,Υ, Ῡ) = 4 Im F (Y, Ȳ ,Υ, Ῡ) − 4Ω(Y, Ȳ ,Υ, Ῡ) − χI uI , (2.9)

which is a homogeneous function of second degree. Note that δH = vI δφI − uI δχI , which

shows that the attractor equations (2.1) take the form,

∂H

∂φI
= qI ,

∂H

∂χI

= −pI . (2.10)

These equations follow from requiring that the entropy function

Σ(φ, χ, p, q) = H(φ, χ,Υ, Ῡ) − qI φI + pI χI , (2.11)

is stationary. Comparing this result to the entropy function (2.4) indicates that the Hesse

potential is just the BPS free energy (2.3). Indeed, using the homogeneity properties of F

and Ω, we establish the relation,

H(φ, χ,Υ, Ῡ) = −i(Ȳ IFI − Y I F̄I) − 2 i(ΥFΥ − ῩF̄Ῡ) = F(Y, Ȳ ,Υ, Ῡ) . (2.12)

Substituting the result of the attractor equations into the entropy function thus yields the

macroscopic BPS entropy, just as before (irrespective of the non-holomorphic modification).

In the spirit of [9] it has been proposed that the integral over exp[Σ(φ, χ, p, q)] yields the

entropy for BPS black holes, and this proposal has been verified in a variety of cases at

the semiclassical level [1]. Some of its implications have also successfully been confronted

with microscopic counting data, mainly from heterotic N = 4 supersymmetric models [14–

17, 28].3 However, we should note that no exact results are available as yet.

Under duality invariances the complex variables Y I transform in a complicated way,

which can be studied order-by-order in Υ [2]. To explicitly establish the invariance of the

BPS free energy is thus cumbersome, as both the transformation rules and the expression

for the free energy take the form of a power series in Υ. This was analyzed extensively

in [2], where arguments were put forward that show that the duality invariance persists in

the presence of the non-holomorphic modifications. The Hesse potential depends on fields

(φI , χI) that transform under the dualities with a real symplectic rotation, just as the

charges (pI , qI). These rotations, referred to as monodromies, are fixed from the start and

cannot be subject to any iterative procedure (because of the integer-valued charge lattice).

Therefore, it is in principle easier to consider the duality invariance of the Hesse potential,

but this quantity has to be evaluated by a Legendre transform which cannot be explicitly

performed and requires an iterative procedure.

In this paper we will evaluate the first few terms of the expansion of the Hesse potential

in terms of Υ for a class of N = 2 effective actions with S- and T-duality. Subsequently, we

will verify the duality invariance of the terms in the expansion and compare them to results

known for the topological string partition function. It is rather convenient to do this in

2See [1]; note that the conventions of this paper are not the same.
3For an N = 2 application, see [29].
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terms of different variables than the real potentials (φI , χI). Namely, we will re-express

the (φI , χI), which incorporate all the terms of the action, in terms of new complex fields

denoted by Ỹ I , which will coincide precisely with the fields Y I that one would obtain from

(φI , χI) by using only the lowest-order holomorphic function F (0). Hence the identification

proceeds as follows,

2Re Y I = φI = 2Re Ỹ I ,

2Re FI(Y, Ȳ ,Υ, Ῡ) = χI = 2Re F
(0)
I (Ỹ ) . (2.13)

At the classical level Ỹ I = Y I , but in higher orders the relation between these moduli is

complicated and will depend on Υ. The crucial point is that the duality transformations for

the fields Ỹ I will be independent of Υ and its complex conjugate, unlike the transformations

of the fields Y I , which depend non-trivially on Υ, Ῡ. Therefore, the moduli Ỹ I are expected

to be the appropriate variables for the topological string. We note that the passage from

the supergravity (or effective action) variables Y I to the topological string variables Ỹ I

induces a change of complex structure (which is thus not primarily induced by the non-

holomorphic terms contained in the function Ω). This will become evident in section 4,

where we compute the change for a class of models with a high degree of symmetry. Observe

that the left-hand side of the second equation (2.13) depends explicitly on the function Ω,

whereas the relation between (φ, χ) and the Ỹ I represents a simple change of variables.

As it turns out, this change of variables facilitates the calculations that we will perform in

later sections.

It is easy to verify that the covariant moduli proposed for the STU model in [30] do not

fall in the same class as the moduli Ỹ I , simply because they do not satisfy (2.13). It remains

to be seen what the relation between the two sets of covariant variables implies. At any

rate, the variables used in this paper exist generally, outside the context of a specific model.

3 S- and T-dualities

Following [2] we consider a class of models for which the lowest-order contribution of the

action is encoded in the holomorphic, homogeneous function,

F (0)(Y ) = −
Y 1Y aηabY

b

Y 0
, (3.1)

where a, b = 2, . . . , n, and the symmetric matrix ηab is an SO(n − 2, 1) invariant metric of

indefinite signature. To this expression we will add the homogeneous real function Ω as

specified in (2.2), which, as explained in the previous section, encodes certain higher-order

derivative as well as non-local interactions. Models of this type arise in type-II compacti-

fications on Calabi-Yau three-folds that are K3 fibrations. The number n depends on the

particular model that one is considering. Both the FHSV [5] and the STU model [6, 7]

belong to this class and have n = 11 and n = 3, respectively. For these models explicit

information is available for the terms of higher-order in Υ [2, 8]. Furthermore we use the

N = 2 supergravity description to also consider a number of heterotic string compactifica-

tions with N = 4 supersymmetry.
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In the absence of non-holomorphic corrections the function F (Y,Υ) takes the form of

a loop expansion with Y 0 as a loop-counting parameter,

F (Y,Υ) = i(Y 0)2 S T aηabT
b + Υ F (1)(S, T ) +

∞
∑

g=2

Υg

(Y 0)2g−2
F (g)(S, T ) , (3.2)

with ‘special coordinates’ defined in the usual fashion,

S = −iY 1/Y 0 , T a = −iY a/Y 0 . (3.3)

In the context of type-II models based on K3-fibered Calabi-Yau three-folds, these special

coordinates can be used to parametrize (half of) the moduli space of the associated string

compactification. An expansion such as (3.2) is also relevant for the topological string

on the same Calabi-Yau three-fold, where Y 0 is regarded as the inverse topological string

coupling constant and the functions F (g)(S, T ) are the genus-g twisted partition functions.4

The latter acquire non-holomorphic corrections encoded in the holomorphic anomaly equa-

tion, whose structure is such that the holomorphic dependence on the topological string

coupling constant is preserved [3]. As we already mentioned, non-holomorphic corrections

are also required to realize the relevant symmetries of the effective action [11], and it seems

likely that these two phenomena are in fact related. To clarify this in some detail was in

fact one of the motivations for the work described here. However, we should stress that in

spite of the fact that the same expansion (3.2) is relevant for both the effective action and

for the topological string, the two expansions should not be identified, as was demonstrated

in [2]. In the next section we will work out the precise correspondence in more detail by

explicitly performing the Legendre transform for the Hesse potential, up to g = 2.

In this section we will be reviewing the S- and T-duality transformations based on [2],

where the effect of the dualities was determined for the partial derivatives of Ω. For the

models based on (3.1) the duality group is given by SL(2;Z) × O(n − 1, 2; Z), where the

first factor refers to the S-duality group and the second one to the T-duality group. When

including the Υ-dependent terms according to (2.2), only a subgroup may be realized.

In [2] the requirements for the function Ω were derived based on the assumption that the

invariance was realized for a suitable arithmetic subgroup. Under this group the (Y I , FI)

transform as follows under S-duality,

Y 0 → dY 0 + c Y 1 ,

Y 1 → aY 1 + b Y 0 ,

Y a → dY a − 1
2c ηab Fb ,

F0 → aF0 − b F1 ,

F1 → dF1 − cF0 ,

Fa → aFa − 2b ηab Y b ,

(3.4)

where a, b, c, d are integer-valued parameters that satisfy ad− bc = 1 which parametrize (a

subgroup of) SL(2; Z).

For the T-duality group, general transformations are conveniently generated by prod-

ucts of a number of specific finite transformations. Those belonging to the O(n − 2, 1; Z)

4Hence F (g)(Y ) = (Y 0)2−2g F (g)(S, T ); when referring to the genus-g partition functions in the text, we

usually do not make a distinction between F (g)(Y ) and F (g)(S, T ).
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subgroup are manifest in the above description and do not need to be considered. Then

there are n − 1 abelian transformations generated by

Y 0 → Y 0 ,

Y 1 → Y 1 ,

Y a → Y a − λa Y 0 ,

F0 → F0 + λaFa + λaηabλ
b Y 1 ,

F1 → F1 + 2λaηabY
b − λaηabλ

b Y 0 ,

Fa → Fa + 2 ηabλ
b Y 1 ,

(3.5)

where the λa are integers. The full O(n − 1, 2; Z) group is generated upon including also

the following transformation,

Y 0 → F1 ,

Y 1 → −F0 ,

Y a → Y a ,

F0 → −Y 1 ,

F1 → Y 0 ,

Fa → Fa ,

(3.6)

which squares to the identity.

In the case that Ω is suppressed in (2.2), it is straightforward to evaluate the behaviour

of these transformations on the special coordinates S and T a, and on the remaining field

Y 0. Under S-duality we find,

S →
aS − ib

d + ic S
, T a → T a Y 0 → (d + ic S)Y 0 . (3.7)

The T-duality transformations (3.5) and (3.6) lead to, respectively,

S → S , T a → T a + iλa , T a →
T a

T bηbcT c
Y 0 → T bηbcT

c Y 0 . (3.8)

These S- and T-duality transformations become much more complicated when Ω is taken

into account in (2.2). Insisting on the same symmetry (i.e., characterized by the same trans-

formations acting on (Y I , FI)), or a subgroup thereof, severely restricts the Υ-dependent

contributions contained in Ω. These restrictions take the form of prescribed transformation

rules for the first-order derivatives Ω with respect to the fields. The crucial observation is,

however, that the fields S̃, T̃ a and Ỹ 0, based on (2.13), with

S̃ = −i Ỹ 1/Ỹ 0 , T̃ a = −i Ỹ a/Ỹ 0 , (3.9)

will still transform exactly as in (3.7) and (3.8). Of course, this is true provided the Υ-

dependent terms satisfy the correct symmetry properties. These will be summarized below.

Since the S- and T-duality transformations involve the derivatives FI , we note

the expressions,

F0 =
Y 1

(Y 0)2
Y aηabY

b −
2i

Y 0

[

−Y 0 ∂

∂Y 0
+ S

∂

∂S
+ T a ∂

∂T a

]

Ω ,

F1 = −
1

Y 0
Y aηabY

b +
2

Y 0

∂Ω

∂S
,

Fa = − 2
Y 1

Y 0
ηabY

b +
2

Y 0

∂Ω

∂T a
, (3.10)

where we regard Ω as a function of Y 0, S and T a (and their complex conjugates).
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With these results the S-duality transformations (3.4) take the form,

Y 0 → ∆S Y 0 ,

Y 1 → aY 1 + b Y 0 ,

Y a → ∆S Y a −
c

Y 0
ηab ∂Ω

∂T b
, (3.11)

with

∆S = d + ic S . (3.12)

On the special coordinates S and T a these transformations extend the previous result (3.7),

S →
aS − ib

ic S + d
, T a → T a +

ic

∆S (Y 0)2
ηab ∂Ω

∂T b
, (3.13)

and we note the useful relations

∂S′

∂S
= ∆S

−2 ,
1

S + S̄
→

|∆S|
2

S + S̄
=

∆S
2

S + S̄
− ic∆S . (3.14)

Assuming that the above transformations constitute an invariance of the model, we require

that the S-duality transformations of the Y I induce the expected transformations of the

FI upon substitution. This leads to the following result,5

(

∂Ω

∂T a

)

′

S

=
∂Ω

∂T a
,

(

∂Ω

∂S

)

′

S

− ∆S
2 ∂Ω

∂S
=

∂(∆S
2)

∂S

[

−
1

2
Y 0 ∂Ω

∂Y 0
−

ic

4∆S (Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b

]

,

(

Y 0 ∂Ω

∂Y 0

)

′

S

= Y 0 ∂Ω

∂Y 0
+

ic

∆S (Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b
. (3.15)

The same reasoning applies to T-duality. Under the transformation (3.5) it follows

from (3.10) that all the derivatives ∂Ω/∂Y 0, ∂Ω/∂S and ∂Ω/∂T a must be invariant under

integer shifts T a → T a + iλa. For the T-duality transformation (3.6) the analysis is more

subtle. Using (3.10) we derive,

Y 0 → ∆T Y 0 ,

Y 1 → ∆T Y 1 +
2i

Y 0

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

,

Y a → Y a , (3.16)

with

∆T = T aηabT
b +

2

(Y 0)2
∂Ω

∂S
. (3.17)

5(O)′S,T denotes the change of O under S- or T-duality induced by the transformation of all the arguments

on which O depends.
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On the special coordinates the transformation (3.16) extends the previous result (3.8),

S → S +
2

∆T(Y 0)2

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

,

T a →
T a

∆T
. (3.18)

When the ∂Ω/∂S term is suppressed in (3.17), one obtains the result,

(T + T̄ )aηab(T + T̄ )b →
1

|∆T|2
(T + T̄ )aηab(T + T̄ )b . (3.19)

Assuming again that the above transformations constitute an invariance of the model, so

that the T-duality transformation (3.16) of the Y I induces the expected transformations

of the FI upon substitution, leads to

(

∂Ω

∂S

)

′

T

=
∂Ω

∂S
,

(

∂Ω

∂T a

)

′

T

=
(

∆T δa
b − 2 ηacT

cT b
) ∂Ω

∂T b
+ 2 ηabT

b Y 0 ∂Ω

∂Y 0
,

(

Y 0 ∂Ω

∂Y 0

)

′

T

= Y 0 ∂Ω

∂Y 0
+

4

∆T (Y 0)2
∂Ω

∂S

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

. (3.20)

This completes the review of the requirements for the function Ω derived in [2]. We

stress once more that the central results, (3.15) and (3.20), hold in the presence of non-

holomorphic modifications. Furthermore, it should be clear that Ω is not an invariant func-

tion. While the fields Υ and Ῡ do not enter explicitly into the monodromies (3.4), (3.5)

and (3.6), the corresponding transformations induced on Y 0, S, and T a depend in a com-

plicated way on Υ and Ῡ.

4 Performing the Legendre transform

In this section we will now consider the new variables Ỹ I , and the corresponding set of

variables consisting of Ỹ 0, S̃ and T̃ a. To explicitly evaluate the equations that determine

the new variables is a rather laborious task. They involve polynomials of fourth degree in

the various fields which we shall subsequently solve by iteration. This iteration leads to

infinite expansions, which in most cases we truncate at some order. The reader who is not

primarily interested in these manipulations, may skip this section upon first reading. At

the end of the section we also reconsider the S- and T-duality transformations in the two

sets of variables.

We start by noting that, at zeroth order in the Weyl background, the new variables

are equal to the original variables S, T a and Y 0, so that it is convenient to write

Ỹ 0 = Y 0 + ∆Y 0 ,

S̃ = S + ∆S ,

T̃ a = T a + ∆T a . (4.1)
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Here the changes ∆ are induced by the Weyl background, which is encoded in the depen-

dence on the field Υ. Observe that the changes ∆ will be non-holomorphic due to the

reality property of the map (2.13), thus leading to a change of complex structure. This

non-holomorphicity is thus not related to the fact that the function Ω is not necessarily

harmonic. Using (2.13) and the explicit expressions (3.10) we derive the following six real

equations for these changes,

Re
[

∆Y 0
]

= 0 , (4.2)

Im
[

Y 0 ∆S + S ∆Y 0 + ∆S ∆Y 0
]

= 0 , (4.3)

Im
[

Y 0 ∆T a + T a ∆Y 0 + ∆T a ∆Y 0
]

= 0 , (4.4)

and

Re
[

(Y 0 + ∆Y 0)(T + ∆T )aηab(T + ∆T )b − Y 0 T aηabT
b
]

=

1

Y 0

∂Ω

∂S
+

1

Ȳ 0

∂Ω

∂S̄
, (4.5)

Re
[

(Y 0 + ∆Y 0)(S + ∆S) (T + ∆T )a − Y 0S T a
]

=

1

2Y 0

∂Ω

∂Ta

+
1

2 Ȳ 0

∂Ω

∂T̄a

, (4.6)

Im
[

(Y 0 + ∆Y 0)(S + ∆S)(T + ∆T )aηab(T + ∆T )b − Y 0S T aηabT
b
]

=

−i

[

−
∂Ω

∂Y 0
+

∂Ω

∂Ȳ 0
+

S

Y 0

∂Ω

∂S
−

S̄

Ȳ 0

∂Ω

∂S̄
+

T a

Y 0

∂Ω

∂T a
−

T̄ a

Ȳ 0

∂Ω

∂T̄ a

]

, (4.7)

where here and henceforth indices a, b, . . . are lowered and raised with ηab and its inverse

ηab. The left-hand side of these equations are polynomials of at most fourth degree in ∆S,

∆T a, ∆Y 0, and their complex conjugates. The equations (4.3) and (4.4) can conveniently

be written as

(Y 0 + ∆Y 0)∆S − (Ȳ 0 − ∆Y 0)∆S̄ = −(S + S̄)∆Y 0 ,

(Y 0 + ∆Y 0)∆T a − (Ȳ 0 − ∆Y 0)∆T̄ a = −(T + T̄ )a ∆Y 0 . (4.8)

The six equations can be solved by iteration which will lead to explicit power expansions

in first-order derivatives of Ω.

Before proceeding we note that it is convenient to write all the Ω-dependent terms in

the form of one real and one complex combination,

Ta =
1

Y 0

∂Ω

∂T a
+

1

Ȳ 0

∂Ω

∂T̄ a
,

U =
∂Ω

∂Y 0
−

∂Ω

∂Ȳ 0
−

(S + S̄)

Y 0

∂Ω

∂S
+

(T + T̄ )a

Ȳ 0

∂Ω

∂T̄ a
. (4.9)

With these definitions, we first consider (4.6), which, with the help of (4.8), takes the form,

(S + S̄ + ∆S + ∆S̄)(Y 0 + ∆Y 0)∆T a + (T + T̄ )a Ȳ 0 ∆S̄ = T a . (4.10)
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Likewise (4.5) can be written, again with the help of (4.8), as

(Y 0 + ∆Y 0)∆Ta(2T + 2T̄ + ∆T + ∆T̄ )a =

−∆Y 0(T + T̄ )a(T + T̄ + ∆T̄ )a − 2 (S + S̄)−1
[

U + Ū − (T + T̄ )aTa

]

. (4.11)

Finally, (4.7) can be written in the form,

(Y 0 + ∆Y 0)∆S(T 2 − T̄ 2)

+(Ȳ 0 − ∆Y 0)∆T̄ a
[

(2T + ∆T )a(S + ∆S) − (2T̄ + ∆T̄ )a(S̄ + ∆S̄)
]

−∆Y 0 (T + T̄ )a
[

S(T + T̄ + ∆T )a + ∆S(2T + ∆T )a
]

=

2 (S + S̄)−1
[

− S U + S̄ Ū + (S T a − S̄ T̄ a)Ta

]

. (4.12)

By taking suitable linear combinations we now write these equations in a form such

that the first-order term is just proportional to either ∆S, ∆T a, or ∆Y 0. This will enable

us to directly obtain the first-order results, whereas the higher-order ones will follow from

iteration. The equation for ∆S is as follows,

Y 0
(

T + T̄
)2

∆S = 2 Ū + ∆Y 0 ∆S (T + T̄ )a (T + T̄ + ∆T )a (4.13)

−(Ȳ 0 − ∆Y 0)∆T̄ a
[

∆S (2T + 2 T̄ + ∆T )a − (S + S̄ + ∆S̄)∆T̄a

]

.

For ∆T a, the expression takes the form,

Y 0(S + S̄)(T + T̄ )2 ∆T a = (T + T̄ )2 T a − 2 (T + T̄ )a U (4.14)

+(T + T̄ )a ∆Y 0 ∆S̄ (T + T̄ )b(T + T̄ + ∆T̄ )b

+(T + T̄ )a(Y 0 + ∆Y 0)∆T b
[

∆S̄(2T + 2 T̄ + ∆T̄ )b − (S + S̄ + ∆S)∆Tb

]

−∆T a(T + T̄ )2
[

(Y 0 + ∆Y 0)(∆S + ∆S̄) + ∆Y 0(S + S̄)
]

,

and for ∆Y 0, one obtains,

(S + S̄)(T + T̄ )2∆Y 0 = 2 (U − Ū) (4.15)

−∆Y 0
[

2(∆S + ∆S̄) (T + T̄ )2 + (T + T̄ )a(∆Ta∆S + ∆T̄a∆S̄)
]

+(Ȳ 0 − ∆Y 0)∆T̄ a
[

∆S (2T + 2 T̄ + ∆T )a − (S + S̄ + ∆S̄)∆T̄a

]

−(Y 0 + ∆Y 0)∆T a
[

∆S̄ (2T + 2 T̄ + ∆T̄ )a − (S + S̄ + ∆S)∆Ta

]

.

These three equations constitute quartic polynomials in ∆S, ∆T a and ∆Y 0, which

can, in principle, be solved by iteration. Obviously, the full solution for ∆S, ∆T a and

∆Y 0 will then take the form of an infinite series of products of the functions U and Ta. To

simplify the iteration to higher orders, it is convenient to use (4.10) and (4.11) once more

for the higher-order terms of (4.13)–(4.15). We find, respectively,

Y 0
(

T + T̄
)2

∆S = 2

{

Ū +
∆S

[

U + Ū − (T + T̄ )aTa

]

S + S̄

}

+ ∆T̄ a
[

Ta − (T + T̄ )aY
0∆S

]

, (4.16)
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Y 0(S + S̄)(T + T̄ )2 ∆T a = (T + T̄ )2
[

T a − ∆T a (Y 0 + Ȳ 0)∆S̄
]

− 2 (T + T̄ )a

{

U +
∆S̄

[

U + Ū − (T + T̄ )bTb

]

S + S̄

}

− (T + T̄ )a ∆T b
[

Tb − (T + T̄ )bȲ
0∆S̄

]

, (4.17)

(S + S̄)(T + T̄ )2∆Y 0 = 2

{

U − Ū +
(∆S̄ − ∆S)

[

U + Ū − (T + T̄ )aTa

]

S + S̄

}

+ (∆T − ∆T̄ )aTa − (T + T̄ )2 ∆Y 0(∆S + ∆S̄)

− (T + T̄ )a
[

Ȳ 0∆Ta∆S̄ − Y 0∆T̄a∆S
]

. (4.18)

The lowest-order solution can be read off from (4.16)–(4.18), and takes the form,

Y 0
(

T + T̄
)2

∆S = 2 Ū ,

Y 0(S + S̄)(T + T̄ )2 ∆T a = (T + T̄ )2 T a − 2 (T + T̄ )a U ,

(S + S̄)(T + T̄ )2∆Y 0 = 2 (U − Ū) . (4.19)

Resubstituting this result on the right-hand side of (4.16)–(4.18), yields the results to

second order,

Y 0
(

T + T̄
)2

∆S ≈ 2 Ū +
4 Ū
[

U + Ū − (T + T̄ )aTa

]

Y 0(S + S̄)(T + T̄ )2

+
1

Ȳ 0(S + S̄)

[

T a −
2 (T + T̄ )a Ū

(T + T̄ )2

]2

, (4.20)

Y 0(S + S̄)(T + T̄ )2 ∆T a ≈ (T + T̄ )2 T a − 2 (T + T̄ )a U

−
2 (Y 0 + Ȳ 0)U

[

(T + T̄ )2 T a − 2 (T + T̄ )a U
]

|Y 0|2(S + S̄)(T + T̄ )2

− 4 (T + T̄ )a
U
[

U + Ū − (T + T̄ )bTb

]

Ȳ 0(S + S̄)(T + T̄ )2

−
(T + T̄ )a

Y 0(S + S̄)

[

T b −
2(T + T̄ )b U

(T + T̄ )2

]2

, (4.21)

(S + S̄)(T + T̄ )2∆Y 0 ≈ 2U +
4U
[

2 Ū − (T + T̄ )aTa

]

Ȳ 0(S + S̄)(T + T̄ )2

+
1

Y 0(S + S̄)

[

T a −
2 (T + T̄ )a U

(T + T̄ )2

]2

− h.c. . (4.22)

At the end of this section we briefly return to the transformation rules under S- and

T-duality of the new variables. Obviously the previous equations should be consistent with

these duality transformations. To verify this one first determines the transformation rules

of ∆S, ∆T a and ∆Y 0, which follow straightforwardly from their definition (4.1) and the
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transformations acting on the old and the new fields. In this way one obtains the following

results under S-duality,

∆S →
∆S

∆S(∆S + ic∆S)
,

∆T a → ∆T a −
i c

∆S(Y 0)2
∂Ω

∂Ta

,

∆Y 0 →
1

2
(∆S + ∆̄S)∆Y 0 +

1

2
i c
[

∆S(Y 0 + ∆Y 0) + ∆S̄(Ȳ 0 − ∆Y 0)
]

. (4.23)

Likewise, under T-duality one finds,

∆S → ∆S +
2

∆T(Y 0)2

[

Y 0 ∂Ω

∂Y 0
− T a ∂Ω

∂T a

]

,

∆T a →
∆T a

(T + ∆T )2
+

T a

(T + ∆T )2∆T

[

−2T b∆Tb − (∆T )2 +
2

(Y 0)2
∂Ω

∂S

]

,

∆Y 0 →
1

2
(T 2 + T̄ 2)∆Y 0

+
1

2

[

(Y 0 + ∆Y 0)∆T a(2T + ∆T )a − (Ȳ 0 − ∆Y 0)∆T̄ a(2 T̄ + ∆T̄ )a
]

−

[

1

Y 0

∂Ω

∂S
−

1

Ȳ 0

∂Ω

∂S̄

]

, (4.24)

where, in the T-duality transformation of ∆Y 0, we made use of (4.5) in order to write the

right-hand side in a form that is manifestly imaginary.

To verify the consistency we also need the transformations of the functions U and T a

under S- and T-duality, which follow from the results listed in section 3. Under S-duality

these transformations take the following form,

Ta →
1

∆SY 0

∂Ω

∂T a
+

1

∆̄SȲ 0

∂Ω

∂T̄ a
,

U →
U

∆̄S
+

ic

|∆S|2(Y 0)2
T a ∂Ω

∂T a
+

c2(S + S̄)

2 |∆S|2 ∆S (Y 0)3
∂Ω

∂T a
ηab ∂Ω

∂T b
. (4.25)

Under T-duality one derives the following transformations,

T a → T a +
2T a

∆T

(

∂Ω

∂Y 0
−

T b

Y 0

∂Ω

∂T b

)

+
2 T̄ a

∆̄T

(

∂Ω

∂Ȳ 0
−

T̄ b

Ȳ 0

∂Ω

∂T̄ b

)

,

U →
U

∆T
+

(T + T̄ )2

|∆T|2

(

∂Ω

∂Ȳ 0
−

T̄ a

Ȳ 0

∂Ω

∂T̄ a

)

−
2

(∆T)2 (Y 0)2
∂Ω

∂S

(

∂Ω

∂Y 0
−

T a

Y 0

∂Ω

∂T a

)

+
2

|∆T|2

(

1

(Y 0)2
∂Ω

∂S
+

1

|Y 0|2
∂Ω

∂S
+

1

(Ȳ 0)2
∂Ω

∂S̄

)(

∂Ω

∂Ȳ 0
−

T̄ a

Ȳ 0

∂Ω

∂T̄ a

)

. (4.26)

Here ∆S and ∆T were defined in (3.12) and (3.17). With the above results (4.23)–(4.26)

one can verify that the equations (4.16)–(4.18) for ∆S, ∆T a and ∆Y 0 are fully consistent

with S- and T-duality.
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5 Heterotic N = 4 supersymmetric string compactifications

As a first application we demonstrate the results of the previous section in a specific

example, which is relevant in the context of N = 4 supersymmetric models. Namely we

assume that Ω depends only on S and S̄. Homogeneity then implies that Ω will depend

linearly on Υ and its complex conjugate. In this case we have

U = −
S + S̄

Y 0

∂Ω

∂S
, Ta = 0 . (5.1)

By direct inspection it follows that the S-duality transformations take the simple form

given by (3.7) and that the equations (3.15) are satisfied provided that Ω is an S-duality

invariant function. For T-duality the situation is more subtle. The equations (3.20) are

manifestly satisfied, but the transformation rules under T-duality take a complicated form,

S → S , T a →
T a

∆T
, Y 0 → ∆T Y 0 , (5.2)

where ∆T is still given by (3.17). Hence this example is consistent with both dualities.

Under S- and T-duality U now transforms according to

U →
U

∆̄S
, U →

U

∆T
. (5.3)

respectively.

As it turns out, it is convenient to introduce an S-duality invariant variable V, de-

fined by

V = −
U

Y 0(S + S̄)(T + T̄ )2
=

1

(Y 0)2 (T + T̄ )2
∂Ω

∂S
, (5.4)

so that the definition (3.17) reads

∆T = T 2 + 2 (T + T̄ )2 V . (5.5)

Under T-duality V transforms non-trivially according to

V →
∆̄T

∆T
V

[

1 + 2(V + V̄) − 2

(

∆̄T

∆T
V +

∆T

∆̄T
V̄

)]−1

. (5.6)

To solve the various equations of the previous section, we note that ∆T a must be

proportional to (T + T̄ )a in this example. The proportionality factor turns out to be a

function of the variable V and its complex conjugate, and is therefore S-duality invariant.

The full expressions for ∆T a, ∆S and ∆Y 0 then take the form,

∆T a = f (T + T̄ )a ,

∆S = −
f̄ (S + S̄) Ȳ 0

(1 + f̄)Y 0 + f̄ Ȳ 0
,

∆Y 0 =
f̄ Ȳ 0 − f Y 0

1 + f + f̄
, (5.7)
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or, alternatively,

T̃ a = (1 + f)T a + f T̄ a ,

S̃ =
(1 + f̄)S Y 0 − f̄ S̄ Ȳ 0

(1 + f̄)Y 0 + f̄ Ȳ 0
,

Ỹ 0 =
(1 + f̄)Y 0 + f̄ Ȳ 0

1 + f + f̄
, (5.8)

where the function f(V, V̄) is defined by a quadratic equation,

|f |2 + f = 2V . (5.9)

From this result it follows that

(1 + f + f̄)2 = 1 + 4(V + V̄) + 4(V − V̄)2 ≥ 0 . (5.10)

The solution for f(V, V̄) reads as follows,

f = −
1

2
+ V − V̄ ±

1

2

√

1 + 4(V + V̄) + 4(V − V̄)2 , (5.11)

where one must adopt the plus sign in order to correctly reproduce the situation

where Ω vanishes.

The new fields (5.8) transform indeed as required. With regard to T-duality the

following transformation of f under T-duality,

f →
∆̄T

∆T
f

[

1 + f −
∆̄T

∆T
f

]−1

, (5.12)

is sufficient to ensure the correct T-duality transformations for the fields (5.8). Inciden-

tally, (5.12) can be rewritten as

f →
∆̄T

T̃ 2
f , (5.13)

by making use of

T̃ 2 = (1 + f)T 2 − f T̄ 2 + f(1 + f)(T + T̄ )2

= (1 + f)∆T − f ∆̄T . (5.14)

Subsequently we evaluate the first term of the Hesse potential (2.12),

− i(Ȳ IFI − Y I F̄I) = −|Ỹ 0|2(S̃ + ¯̃S)(T̃ + ¯̃T )2
[

1 +
2 |f |2

1 + f + f̄

]

= −|Ỹ 0|2(S̃ + ¯̃S)(T̃ + ¯̃T )2
1 + 2 (V + V̄)

√

1 + 4(V + V̄) + 4(V − V̄)2
, (5.15)

where the sign adopted in the last expression is consistent with the sign choice noted

below (5.11). To evaluate this result we used the following equations,

Y 0 = (1 + f)Ỹ 0 − f̄ ¯̃Y 0 ,

(T̃ + ¯̃T )a = (1 + f + f̄)(T + T̄ )a ,

S̃ + ¯̃S =
(1 + f + f̄) |Y 0|2 (S + S̄)

|(1 + f̄)Y 0 + f̄ Ȳ 0|2
. (5.16)
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Subsequently it is convenient to introduce a quantity λ,

λ =
f̄

1 + f

¯̃Y 0

Ỹ 0

= −
1 + 2(V − V̄) −

√

1 + 4(V + V̄) + 4(V − V̄)2

1 + 2(V − V̄) +
√

1 + 4(V + V̄) + 4(V − V̄)2

¯̃Y 0

Ỹ 0
, (5.17)

so that

∆S = −(S̃ + ¯̃S)
λ

1 − λ
. (5.18)

The newly defined quantity λ is invariant under T-duality, while under S-duality it trans-

forms with a phase factor,

λ →
¯̃∆S

∆̃S

λ , (5.19)

where ∆̃S = d + ic S̃.

We thus obtain the following expression for V,

V =

(

1

Ỹ 0
+

λ
¯̃Y 0

)2 1

(T̃ + ¯̃T )2

1

(1 − λ)2
∂Ω

∂S
. (5.20)

It remains to write the derivative of Ω(S, S̄) as a function of the new field S̃ and its complex

conjugate. This can simply be done by writing Ω as

Ω(S, S̄) = Ω

(

S̃ +
(S̃ + ¯̃S)λ

1 − λ
, ¯̃S +

(S̃ + ¯̃S)λ̄

1 − λ̄

)

, (5.21)

and Taylor-expanding (1 − λ)−2 ∂SΩ in λ and λ̄. This leads to a double expansion in

multiple covariant derivatives,

∂SΩ(S, S̄)

(1 − λ)2
=

∞
∑

m=1,n=0

c(m,n)(|λ|) λm−1λ̄n (S̃ + ¯̃S)m+n−1 (DS̃)m (D̄ ˜̄S
)n Ω(S̃, ˜̄S) , (5.22)

with respect to the new fields. Here the c(m,n)(λ) are functions of |λ|. The covariant

derivatives are defined as follows. A modular form ωp,q(S, S̄) of degree (p, q) transforms

according to ωp,q(S, S̄) → [∆(S)]p [∆̄(S̄)]q ωp,q(S, S̄). Its covariant derivative DS is then

defined by

DS ωp,q(S, S̄) =

(

∂S +
p

S + S̄

)

ωp,q(S, S̄) , (5.23)

and transforms as DS ωp,q(S, S̄) → [∆(S)]p+2 [∆̄(S̄)]q DS ωp,q(S, S̄). The covariant deriva-

tive with respect to S̄ is defined likewise.

To obtain the Hesse potential (2.12), it remains to add 4Ω to (5.15). Using the same

strategy as above, we can derive an expression similar to (5.22) for Ω expressed in S̃ and

its complex conjugate,

Ω(S, S̄) =

∞
∑

m,n=0

d(m,n)(|λ|) λmλ̄n (S̃ + ¯̃S)m+n (DS̃)m (D̄ ˜̄S
)n Ω(S̃, ˜̄S) . (5.24)
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As an illustration we have evaluated all contributions up to third order in Υ, Ῡ. The

first term in the Hesse potential (2.12), which in the case at hand is given by (5.15), can

be expanded in powers of V and λ, making use of (5.17) and (5.20). In this way the result

is expressed in terms of the new fields Ỹ 0, S̃ and T̃ a. Up to third order one obtains (where

on the right-hand side we have suppressed the tilde for clarity of notation),

− i(Ȳ IFI − Y I F̄I) ≈ −|Y 0|2(S + S̄)(T + T̄ )2

−
8 (S + S̄)

∣

∣∂SΩ
∣

∣

2

|Y 0|2(T + T̄ )2

(

1 +
4 (S + S̄) ∂S∂S̄Ω

|Y 0|2(T + T̄ )2

)

−
16 (S + S̄)2

|Y 0|4[(T + T̄ )2]2

(

(∂SΩ)2D̄S̄∂S̄Ω + (∂S̄Ω)2DS∂SΩ
)

. (5.25)

This expression is manifestly invariant under both S- and T-duality. Subsequently we

evaluate (5.24), and obtain the following result, after again suppressing the tildes on the

right-hand side,

Ω(S, S̄) ≈ Ω(S, S̄)

+
4 (S + S̄)

∣

∣∂SΩ
∣

∣

2

|Y 0|2(T + T̄ )2

(

1 +
3 (S + S̄)

|Y 0|2(T + T̄ )2
∂S∂S̄Ω

)

+
6 (S + S̄)2

|Y 0|4[(T + T̄ )2]2

(

(∂S̄Ω)2 DS∂SΩ + (∂SΩ)2 D̄S̄∂S̄Ω
)

. (5.26)

This is manifestly invariant under S- and T-duality. We observe that both (5.25) and (5.26)

depend non-holomorphically on Ỹ 0 (we reinstate the tilde to indicate that we are discussing

the new variables). The only exception is the first term in (5.26), which is equal to Ω and

does not depend on Ỹ 0, nor on its complex conjugate. All the terms arising in higher orders

will always depend on |Ỹ 0|, and not on Ỹ 0 or ¯̃Y 0, separately. This is because invariance

under T-duality dictates that each power of (T̃ + ¯̃T )2 (arising by power expanding in V)

has to appear multiplied by |Ỹ 0|2. We return to the significance of this observation in

later sections.

6 The Hesse potential at second order

In this section, we return to the general case based on (3.10) and we consider the Hesse

potential, using the representation (2.12). It consists of two parts which both transform as

proper functions under electric/magnetic duality. The first term is equal to

− i(Ȳ IFI − Y IF̄I) = −|Y 0|2(S + S̄)(T + T̄ )2 + 2

(

Y 0 ∂Ω

∂Y 0
+ Ȳ 0 ∂Ω

∂Ȳ 0

)

+ 2 (Ȳ 0 U + Y 0 Ū) − 2 (Y 0 + Ȳ 0) (T + T̄ )a Ta , (6.1)

where we made use of (3.10). The second term contributing to the Hesse potential is equal

to 4 (Υ∂ΥΩ + Ῡ∂ῩΩ). This term is separately invariant under the dualities. Combining

both terms and making use of the homogeneity of the function Ω, i.e., 2Ω = 2Υ ΩΥ +
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2Ῡ ΩῩ + Y I ΩI + Ȳ I ΩĪ , it follows that the Hesse potential takes the form,

H(Ỹ , ¯̃Y,Υ, Ῡ) = −|Y 0|2(S + S̄)(T + T̄ )2 + 4Ω(Y 0, Ȳ 0, S, S̄, T, T̄ ,Υ, Ῡ)

+2 (Ȳ 0 U + Y 0 Ū) − 2 (Y 0 + Ȳ 0) (T + T̄ )a Ta . (6.2)

This result is written as a function of the old fields Y 0, S, and T a, which can be expressed

in terms of the new fields by using (4.1). Expressing the first term in the new fields Ỹ 0,

S̃ and T̃ a, generates contributions up to fifth order in ∆Y 0, ∆S and ∆T a, which, upon

iteration, can be expressed as a power series in U and Ta. Here we will consider terms of

first- and second-order. As it turns out, the first-order term cancel against those explicitly

given in (6.1). This is a general phenomenon which applies also to other models than the

ones based on (3.1). Making use of (4.20), (4.21) and (4.22), we obtain,

H(Ỹ , ¯̃Y,Υ, Ῡ) ≈ −|Ỹ 0|2(S̃ + ¯̃S)(T̃ + ¯̃T )2 + 4Ω(Y 0, Ȳ 0, S, S̄, T, T̄ ,Υ, Ῡ)

+
2Taη

abTb

S + S̄
−

8 |U|2

(S + S̄)(T + T̄ )2
+ · · · , (6.3)

where the ellipses denote terms of third and higher order in derivatives of Ω. In this

approximation the result is invariant under S- and T-duality, as it should. The first term

is manifestly invariant. The invariance of the remaining three terms follows directly from

application of the relevant equations in (3.15), (3.20), (4.25) and (4.26).

Subsequently we express Ω in terms of the new variables. This can be done by Taylor

expanding, using (4.1),

Ω(Y 0, Ȳ 0, S, S̄, T, T̄ ) ≈ Ω(Ỹ 0, ¯̃Y 0, S̃, ¯̃S, T̃ , ¯̃T ) − ∆Y 0

(

∂Ω

∂Y 0
−

∂Ω

∂Ȳ 0

)

∣

∣

∣

∗

− ∆S
∂Ω

∂S

∣

∣

∣

∗

− ∆S̄
∂Ω

∂S̄

∣

∣

∣

∗

− ∆T a ∂Ω

∂T a

∣

∣

∣

∗

− ∆T̄ a ∂Ω

∂T̄ a

∣

∣

∣

∗

+ · · · , (6.4)

where we have suppressed the variables Υ. The notation |∗ indicates that the derivatives

are taken at Ỹ 0, S̃ and T̃ . However, in the approximation that we adopted, this aspect is

only relevant in higher orders. The terms generated by the Taylor expansion turn out to

be proportional to |U|2 and Taη
abTb. Substituting the above result into (6.3), we obtain

H(Ỹ , ¯̃Y,Υ, Ῡ) ≈ −|Ỹ 0|2(S̃ + ¯̃S)(T̃ + ¯̃T )2 + 4Ω(Ỹ 0, ¯̃Y 0, S̃, ¯̃S, T̃ , ¯̃T )

−
2Taη

abTb

S + S̄
+

8 |U|2

(S + S̄)(T + T̄ )2
, (6.5)

which holds to second order in Ω and derivatives thereof.

In order to compare with other results we write Ω as a power series in the Weyl

background Υ (just as in (3.2)) and/or Ῡ, so that we may write,

Ω(Y 0, Ȳ 0, S, S̄, T, T̄ ,Υ, Ῡ) =

∞
∑

g=1

Ω(g)(Y 0, Ȳ 0, S, S̄, T, T̄ ) , (6.6)

where Ω(g) is real and decomposable in monomials of the form Υn Ῡg−n, with 0 ≤ n ≤ g.

For conciseness, we will refrain from explicitly indicating the dependence of the functions
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Ω(g) on Υ and Ῡ. In the approximation that we retain terms of second order of Υ, Ῡ, we

will only have contributions from Ω(1) and Ω(2) which we can regard as functions of the new

fields Ỹ I . Since the result depends then only on the new fields Ỹ I , we can now consistently

drop the distinction between the variables Ỹ I and Y I to simplify our notation. Therefore,

we suppress the tilde on the right-hand side in the formula below,

H(Ỹ , ¯̃Y,Υ, Ῡ) ≈ −|Y 0|2(S + S̄)(T + T̄ )2 + 4Ω(1)(S, S̄, T, T̄ )

+ 4Ω(2)(Y 0, Ȳ 0, S, S̄, T, T̄ )

−

{

2

(Y 0)2

(

∂Ω(1)

∂T a

[

1

S + S̄

∂Ω(1)

∂Ta

+
4 (T + T̄ )a
(T + T̄ )2

∂Ω(1)

∂S

])

+ h.c.

}

+
4 (T + T̄ )a(T + T̄ )b

|Y 0|2 (S + S̄)(T + T̄ )2

(

2
∂Ω(1)

∂T a

∂Ω(1)

∂T̄ b
− ηab

∂Ω(1)

∂Tc

∂Ω(1)

∂T̄ c

)

+
8 (S + S̄)

|Y 0|2 (T + T̄ )2
∂Ω(1)

∂S

∂Ω(1)

∂S̄
. (6.7)

Note that Ω(1) does not depend on Y 0 and Ȳ 0 because of homogeneity. The above result

represents the Hesse potential to second order in Υ, Ῡ and is the basis for our discussion in

the next section. Higher-order terms have a similar characteristics as the terms we derived

in section 5. They always consist of the product of a number of first-order derivatives of

Ω, times a number of higher-order derivatives of Ω.

Let us comment on the various terms in (6.7) (we again reinstate the tildes to stress

that we are dealing with the new variables). First we note that Ω(1) and Ω(2) define the

higher-derivative corrections to the effective action, but their arguments are not the moduli

defined in that perspective, as they are based on the Legendre transform. By construction

the expression should be duality invariant where the transformation rules are the ones that

pertain to the classical action (i.e. without higher-derivative couplings), specified in (3.7)

and (3.8).

The first Ω-independent term in (6.7) is duality invariant and so is Ω(1) (provided we

take Υ real). This result applies to all orders, because of the new variables that have

been employed. It is known that Ω(2) is not duality invariant [2], and neither are the terms

proportional to (Ỹ 0)−2 or ( ¯̃Y 0)−2. On the other hand the two terms proportional to |Ỹ 0|−2

are both S- and T-duality invariant. The relevance of this decomposition will be explained

in the next section.

As we emphasized already in section 1, we concentrate on S- and T-duality here in

view of the fact that we have only explicit information about models with a high degree

of symmetry. The decomposition in terms of (Ỹ 0)−2, ( ¯̃Y 0)−2 and |Ỹ 0|−2 remains rele-

vant in the more general case, as Ỹ 0 is the inverse holomorphic coupling constant of the

topological string. Consequently, the terms proportional to |Ỹ 0|−2 cannot be part of the

twisted partition function of genus g = 2, irrespective of whether the model has certain

duality invariances.

– 21 –



J
H
E
P
0
6
(
2
0
1
0
)
0
5
2

7 The Hesse potential for specific models

In this section we consider the consequences of the results of the previous sections in the

context of a few specific models. As was already mentioned in section 1, there are only

a few models for which explicit results have been obtained for the effective action and/or

the topological string. The models that we discuss are models with N = 4 supersymmetry,

cast in an N = 2 description, and the FHSV model [5] (another possible model is the STU

model [6, 7], but this is qualitatively similar to the FHSV model). As it turns out the

expression for Ω(1)(S, S̄, T, T̄ ) coincides for both the effective action, the Hesse potential

and the topological string.

We begin with the N = 4 supersymmetric model discussed in section 5 for which Ω =

Ω(S, S̄) depends only on S and S̄. Particular examples are the so-called CHL models [31].

Using (5.15), we obtain the following exact expression for the Hesse potential,

H(Ỹ , ¯̃Y,Υ, Ῡ) = −|Ỹ 0|2(S̃ + ¯̃S)(T̃ + ¯̃T )2
1 + 2 (V + V̄)

√

1 + 4 (V + V̄) + 4 (V − V̄)2

+ 4Ω(S, S̄) . (7.1)

Note that we have not constrained Ω(S, S̄) other than that it should be invariant under the

S-duality group. The definition of V is subtle and follows from (5.20) and (5.17). The result

was evaluated up to terms cubic in Ω-derivatives, and combining the explicit results (5.25)

and (5.26), one obtains the following expression (where, again, we suppressed the tildes on

the right-hand side of the equation),

H(Ỹ , ¯̃Y,Υ, Ῡ)≈ − |Y 0|2(S + S̄)(T + T̄ )2 + 4Ω(S, S̄)

+
8 (S + S̄)

∣

∣∂SΩ
∣

∣

2

|Y 0|2(T + T̄ )2

(

1 +
2 (S + S̄) ∂S∂S̄Ω

|Y 0|2(T + T̄ )2

)

+
8 (S + S̄)2

|Y 0|4[(T + T̄ )2]2

(

(∂SΩ)2D̄S̄∂S̄Ω + (∂S̄Ω)2DS∂SΩ
)

, (7.2)

to third order in Ω and derivatives thereof. This expression exhibits the dependence of the

Hesse potential on both Ỹ 0 and its complex conjugate (here we again reinstated the tilde).

As we already argued in section 5, the higher-order terms will depend only on |Ỹ 0|, and

no longer on Ỹ 0 and ¯̃Y 0 separately.

For completeness we recall the expression for Ωk for the CHL models distinguished by

an integer label k. As discussed in [15] the function Ωk can be expressed in terms of the

unique cusp forms of weight k + 2 associated with the S-duality group Γ1(Ñ) ⊂ SL(2; Z),

defined by f (k)(S) = ηk+2(S) ηk+2(ÑS) where,

f (k)(S′) = ∆ k+2
S f (k)(S) . (7.3)

The result for Ωk then takes the following form [1],

Ωk(S, S̄,Υ, Ῡ) =
1

256π

[

Υ ln f (k)(S) + Ῡ ln f (k)(S̄) +
1

2
(Υ + Ῡ) ln(S + S̄)k+2

]

. (7.4)
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Note that this result agrees with the terms obtained for the corresponding effective actions

(see, for instance, [13, 32]). These models are invariant under the S-duality group Γ1(Ñ) ⊂

SL(2; Z), which is generated by (3.13) with the transformation parameters restricted to

c = 0 mod Ñ and a, d = 1 mod Ñ .

Next, we consider the N = 2 supersymmetric FHSV model. Its type-II realization cor-

responds to the compactification on the Enriques Calabi-Yau three-fold, which is described

as an orbifold (T2 ×K3)/Z2, where Z2 is a freely acting involution. The massless sector of

the four-dimensional theory comprises 11 vector supermultiplets, 12 hypermultiplets and

the N = 2 graviton supermultiplet. The classical moduli space of the the vector multiplet

sector equals the special-Kähler space,

Mvector =
SL(2)

SO(2)
×

O(10, 2)

O(10) × O(2)
. (7.5)

Its two factors are associated with T2/Z2 and the K3 fiber, and the special coordinates for

these two spaces will be denoted by S and T a, respectively.

At first order in the Weyl background, the solution to (3.15) and (3.20) for the FHSV

model is known from threshold corrections and from the topological string side [33, 34]. It

takes the form [2],

Ω(1)(S, S̄, T, T̄ ,Υ, Ῡ) =
1

256π

[

1

2
Υ ln[η24(2S)Φ(T )] +

1

2
Ῡ ln[η24(2S̄)Φ(T̄ )]

+ (Υ + Ῡ) ln[(S + S̄)3(T + T̄ )aηab(T + T̄ )b]

]

. (7.6)

For real values of Υ, this result is invariant under S-duality, which constitute the Γ(2)

subgroup of SL(2; Z), defined by a, d = 1 mod 2 and b, c = 0 mod 2 in (3.7). The re-

sult is also invariant under the T-duality group O(10, 2; Z) in view of the fact that Φ(T )

is a holomorphic automorphic form of weight 4 [35], transforming under the T-duality

transformation T a → T a [T 2]−1 as

Φ(T ) → [T 2]4 Φ(T ) . (7.7)

Clearly, (7.6) can be written as the sum of two invariant functions, one of S and S̄ and

one of T a and T̄ a, respectively, which both contain non-holomorphic terms that are crucial

for the duality invariance. Observe that the duality invariance of Ω(1) is only realized for

real values of Υ. Therefore we do not know a priori whether to write Υ or its complex

conjugate. The way in which this potential ambiguity has been resolved, is by assuming

that purely holomorphic terms are always accompanied by a power of Υ and purely anti-

holomorphic terms by a power of Ῡ, whereas for the mixed terms we assign Υ and Ῡ such

as to preserve the reality properties of Ω for complex Υ.

At second order in the Weyl background, the solution to (3.15) and (3.20) for the

FHSV model takes the following form [2], up to an S- and T-duality invariant function,

Ω(2) = −
G2(2S)

(Y 0)2
∂Ω(1)

∂T a

∂Ω(1)

∂Ta

−
1

4(Y 0)2
∂ ln Φ(T )

∂Ta

∂Ω(1)

∂T a

∂Ω(1)

∂S
+ c.c , (7.8)
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where G2(2S) = 1
2∂S ln η2(2S). Observe that Ω(2) is not duality invariant. Inserting it

into (6.7), one obtains (the right-hand side is expressed exclusively in terms of the new

variables but we again suppress the tilde on the right-hand side for clarity),

H(Ỹ , ¯̃Y,Υ, Ῡ) ≈ −|Y 0|2(S + S̄)(T + T̄ )2 + 4Ω(1)(S, S̄, T, T̄ )

−

[

4 Ĝ2(2S, 2S̄)

(Y 0)2
∂Ω(1)

∂Ta

∂Ω(1)

∂T a

+
1

(Y 0)2
∂ log

[

Φ(T ) [(T + T̄ )2]4
]

∂Ta

∂Ω(1)

∂T a

∂Ω(1)

∂S
+ c.c.

]

+
4 (T + T̄ )a(T + T̄ )b

|Y 0|2 (S + S̄)(T + T̄ )2

(

2
∂Ω(1)

∂T a

∂Ω(1)

∂T̄ b
− ηab

∂Ω(1)

∂Tc

∂Ω(1)

∂T̄ c

)

+
8 (S + S̄)

|Y 0|2 (T + T̄ )2
∂Ω(1)

∂S

∂Ω(1)

∂S̄
, (7.9)

where Ĝ2(2S, 2S̄) = G2(2S) + [2 (S + S̄)]−1. In this expression, Ω(1) is given by (7.6), with

the old variables replaced by the new ones. This result is manifestly invariant under S- and

T-duality, as it should. Furthermore, the terms proportional to (Y 0)−2 can be combined

by noting that, for real values of Υ, we have the identities,

∂Ω(1)

∂S
=

24Υ

512π
Ĝ2(2S, 2S̄) ,

∂Ω(1)

∂T a
=

Υ

512π

∂ log
[

Φ(T ) [(T + T̄ )2]4
]

∂T a
. (7.10)

Therefore these terms can be rewritten as (suppressing the tildes on both sides),

H(Y, Ȳ ,Υ, Ῡ)
∣

∣

∣

(Y 0)−2
=

28 Ĝ2(2S, 2S̄)

(Y 0)2
∂Ω(1)

∂Ta

∂Ω(1)

∂T a
. (7.11)

This is consistent with the result found for the topological string [8], apart from the overall

normalization. However, we can change the normalization by including the same duality

invariant expression into Ω(2) with a different coefficient. Since (7.8) has only been deter-

mined up to a duality invariant function, and since we have no independent knowledge of

the invariant parts in Ω(2), the overall normalization given in (7.11) is therefore ambiguous.

At this point we should recall that the topological string partition functions are derived

from integrating the holomorphic anomaly equations [8], so that the results are in principle

determined up to holomorphic contributions. On the other hand, results such as (7.8)

have been obtained from requiring covariance under duality transformations, and therefore

they determine the Ω(g) up to duality invariant terms. Usually the invariant terms are

non-holomorphic, so that combining the two methods could potentially remove the am-

biguities. However, there can also be holomorphic, invariant functions, which would be

missed in both approaches. As in [8], one may be able to remove some of these ambiguities

by making use of knowledge of the boundary behaviour or certain asymptotic conditions,

but at present this is not really known.
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Based on the previous arguments, and modulo the ambiguity noted above in the nor-

malization of the genus-2 contribution, the topological string partition function would

correspond to the following function F top, which can be viewed as the analogue of (2.2) for

the effective action,

F top ≈ i(Y 0)2S T 2 −
i

2π
ln
[

|η24(2S)| (S + S̄)6 |Φ(T )| [(T + T̄ )2]2
]

+ a
i Ĝ2(2S, 2S̄)

(2π Y 0)2
∂ ln

[

|Φ(T )| [(T + T̄ )2]2
]

∂Ta

∂ ln
[

|Φ(T )| [(T + T̄ )2]2
]

∂T a
, (7.12)

where we set Υ = −64. Here the real constant a represents the ambiguity discussed above,

which can be fixed by imposing the holomorphic anomaly equation. We stress that the

arguments used in (7.12) refer to the new variables Ỹ 0, S̃ and T̃ a, and that the topological

string coupling constant gs is inversely proportional to Ỹ 0.

One may now wonder what the role is of the contributions to the Hesse potential that

do not depend holomorphically on Ỹ 0. These are the terms in (7.9) proportional to |Ỹ 0|−2,

which are not part of the topological string partition function, as they do not depend holo-

morphically on the topological string coupling. Here we reinstated the tilde to emphasize

that we are dealing with the new variables. Obviously these terms are duality invariant,

and therefore their normalization factors can in principle be changed upon including simi-

lar invariant terms into Ω(2). Hence the normalization remains ambiguous, which makes it

hard to assess the relevance of these terms.

At this point let us return to the N = 4 supersymmetric models and consider the

expression for the Hesse potential (7.2). In this case there is only a dependence on |Ỹ 0|

and the only contribution to the topological string originates from Ω(S̃, ¯̃S). This result

is in agreement with known results for the topological string partition function [3]. The

normalization of this genus-1 term is unambiguous, which lends support to the discussion

of the FHSV model given above. Concerning the terms that depend on negative powers

of |Ỹ 0|, in principle such duality invariant terms can also be present in Ω as contributions

to the effective action, and their presence would affect the normalization factors of the

corresponding terms in the Hesse potential. However, in that case the result would no

longer be consistent with the initial assumption that was made in section 5, namely that

we assumed from the beginning that Ω depends only on S and S̄, thus excluding any other

additional terms in the effective action. This initial assumption was partly a matter of

convenience, and it is difficult to fully exclude other starting points at this stage.

In closing we conclude that, generically, the Hesse potential may contain terms that

are non-holomorphic in the topological string coupling constant, and that these do not

exclusively originate from the non-holomorphic corrections in the effective action. However,

due to lack of data on both the effective action and on the topological string side, we

cannot at present draw a definite conclusion about the presence of such terms in the Hesse

potential. Our findings do not, at this stage, contradict the idea that the Hesse potential

could actually coincide with the topological string. Should this be the case, this will

have calculable implications for the effective action, which in principle can be worked out

explicitly by means of the iterative method proposed in this paper.
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