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1 Introduction

One of the most striking aspects of string theory is the manner in which it reorganizes

the perturbative calculation of amplitudes in the field theory limit. Perhaps the most

remarkable example of this is found in the Kawai-Lewellen-Tye (KLT) relations [1] that

link gauge field tree-level amplitudes based on a non-Abelian gauge group to tree-level

amplitudes in perturbative gravity. As it is based on a relationship between closed and

open strings [2], it immediately yields an even larger class of relations when considered

in the context of superstring theory: a whole set of relations between supergravity and

supersymmetry multiplets at tree level. For a comprehensive discussion, see, e.g., the

review by Bern [3]. These relations are puzzling from the point of view of field theory

itself, although there are attempts to see their origin at the Lagrangian level [4–11].
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Recently, three of the present authors have provided another example of how string

theory can be used to derive non-trivial amplitude relations that hold even in the field

theory limit, although their origin remains mysterious there [12]. The relations were con-

jectured earlier by Bern-Carrasco-Johansson [13], and we shall call them BCJ-relations

in what follows. The peculiar aspect in this case is that these BCJ-relations seemed to

follow from a new principle of Jacobi-like relations among tree-level amplitudes [13], re-

lations that hold on-shell for four-point amplitudes [14], but which do not hold off-shell.

Nevertheless, imposing these Jacobi-like relations even above four-point amplitudes yields

correct amplitude relations. It was subsequently shown that analogous amplitude relations

can be derived for external non-gluonic particles in the N = 4 massless supermultiplet [15],

a result that indeed also follows directly from the proof using superstring theory [12].

To understand the significance of a new set of amplitude relations one needs to consider

the factorial growth in n for color-ordered n-point amplitudes. For a tree-level n-point

amplitude An with legs in the adjoint representation of, say, SU(N) gauge group, one

defines the color-ordered n-point amplitude An(1, . . . , n) through

An = gn−2
YM

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))An(σ(1, . . . , n)) , (1.1)

where gY M is the coupling constant, and the T ’s are group generators of SU(N). The

relations we shall discuss all concern the color-ordered amplitudes An(1, . . . , n). Of course,

to obtain cross sections, these must be “dressed” with the appropriate color factors and

summed. The shorter the sum, the faster will routines work that do this sum automatically.

It is therefore not only of theoretical interest, but also of great practical value to have

exact relations available among the color-order amplitudes. Because of cyclicity of the

amplitudes, the basis is not of size n! but of size (n − 1)! Additional non-trivial generic

relations known before the BCJ-relations were the following. Reflections:

An(1, . . . , n) = (−1)nAn(n, n − 1, . . . , 2, 1) , (1.2)

the photon decoupling relation

0 =
∑

σ

An(1, σ(2, . . . , n)) , (1.3)

and the Kleiss-Kuijf relations [16]

An(β1, . . . , βr, 1, α1, . . . , αs, n) = (−1)r
∑

σ⊂OP{α}∪{βT }

An(1, σ, n) ,
(1.4)

where the sum runs over the ordered set of permutations that preserves the order within

each set. Transposition on the set {β} means that order is reversed.

It was shown in ref. [16, 17] that these relations reduce the basis of amplitudes from

(n−1)! to (n−2)! The BCJ-relations reduce the basis down to (n−3)! As follows from the

proof based on monodromy [12], no further reduction for arbitrary n will be possible. After

imposition of the BCJ-relations one has thus reached the minimal basis of amplitudes.

– 2 –



J
H
E
P
0
6
(
2
0
1
0
)
0
0
3

In this paper we confront some of the questions that are raised by the apparently

valid imposition of Jacobi-like relations among tree-level amplitudes. Given that the BCJ-

relations have now been proven based on monodromy [12] a natural question is whether

the Jacobi-like relations, conversely, follow from the BCJ-relations. Not unexpectedly, we

find that this is not the case. In fact, we find that a huge extension of these Jacobi-like

relations is possible,1 still leaving invariant the BCJ-relations.

The paper is organised as follows. In section 2, we briefly review monodromy relations

in string theory, and show how they give rise to string theory generalizations of both

the Kleiss-Kuijf and BCJ-relations. Section 3 contains a discussion of the connection

between monodromy and Jacobi-like relations. There are clearly some issues related to

gauge symmetry, and we choose in section 4 to consider this from the point of view of

string theory, which automatically imposes a specific gauge choice. In section 5, we turn to

gravity, and consider the extended Jacobi-like identities in the light of KLT-relations. All

of these issues concern tree-level amplitudes only. In section 6, we explore what these by

now established tree-level identities imply for loop amplitudes. A straightforward way to

attack this is through the use of cuts. We illustrate this in the most simple case of one-loop

amplitudes in N = 4 super Yang-Mills theory and comment on applications to theories

with less, or no, supersymmetry. Finally, section 7 contains our conclusions. Some details

about hypergeometric functions are relegated to an appendix.

2 Monodromy relations

In this section we will briefly recall how to derive monodromy relations for amplitudes

through string theory. The color-ordered amplitudes on the disc are given by [2]

An(a1, . . . , an) =

∫ n∏

i=1

dzi
|zab zac zbc|
dzadzbdzc

n−1∏

i=1

H(xai+1−xai
)

∏

1≤i<j≤n

|xi − xj|2α′ki·kj Fn , (2.1)

with

dzi = dxi and zij = xi − xj for the bosonic case and

dzi = dxidθi and zij = xi − xj + θiθj for the supersymmetric case .
(2.2)

The ordering of the external legs is enforced by the product of Heaviside functions such

that

H(x) =

{
0 x < 0 ,

1 x ≥ 0 .
(2.3)

The Möbius SL(2, R) invariance requires one to fix the position of three points denoted za,

zb and zc. A traditional choice is x1 = 0, xn−1 = 1 and xn = +∞, supplemented by the

condition θn−1 = θn = 0 in the superstring case.

1In the process of completing this manuscript a paper by H. Tye and Y. Zhang [18] appeared. They

consider amplitude relations from the viewpoint of heterotic string models. Some of their results overlap

with ours, in particular regarding the existence of extended (or generalized) Jacobi identities, which we

discuss in sections 3 and 4.
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0 1

Figure 1. The contour of integration from 1 to +∞.

The helicity dependence of the external states is contained in the Fn factor. For

tachyons Fn = 1. For n gauge bosons with polarization vectors hi one has

Fn = exp


−

∑

i6=j

(√
α′(hi · kj)

(xi − xj)
− 2

(hi · hj)

(xi − xj)2

)


∣∣∣∣
multilinear in hi

, (2.4)

for the bosonic string. For the superstring Fn reads (the ηi are anticommuting variables)

Fn =

∫ n∏

i=1

dηi exp


−

∑

i6=j

(
ηi

√
α′(θi − θj)(hi · kj) − ηiηj(hi · hj)

(xi − xj + θiθj)

)
 . (2.5)

We start with a review of the monodromy relations that appear at four

points [12, 19, 20]. For simplicity, we phrase the discussion in terms of tachyon ampli-

tudes. With the choice x1 = 0, x3 = 1 and x4 = +∞, all three different color-ordered

amplitudes A(i, j, k, l) are given by the same integrand

|x2|2α′ k1·k2|1 − x2|2α′ k2·k3 ,

but with x2 integrated over different domains:

A4(1, 2, 3, 4) =

∫ 1

0
dx x2α′ k1·k2(1 − x)2α′ k2·k3 , (2.6)

A4(1, 3, 2, 4) =

∫ ∞

1
dx x2α′ k1·k2(x − 1)2α′ k2·k3 , (2.7)

A4(2, 1, 3, 4) =

∫ 0

−∞
dx (−x)2α′ k1·k2(1 − x)2α′ k2·k3 . (2.8)

We indicate the contour integration from 1 to +∞ in figure 2.

Under the assumption that α′ ki · kj is complex and has a negative real part, we are

allowed to deform the region of integration so that instead of integrating between from 1

to +∞ on the real axis we integrate either on a contour slightly above or below the real

axis. By a deformation of each of the contours, one can convert the expression into an

integration from −∞ to 1. One needs to include the appropriate phases each time x passes

through y = 0 or y = 1 (when rotating the contours),

(x − y)α = (y − x)α ×
{

e+iπ α for clockwise rotation ,

e−iπ α for counterclockwise rotation .

– 4 –
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0 1

e
−2iα′

π(k2·k3)e
−2iα′

πk2·(k1+k3)

0 1
e

2iα′
π k2·(k1+k3) e

2iα′
π (k2·k3)

Figure 2. The contours I+ and I−.

0 1

e
2iα′

π(k1·k2)No phase

0 1No phase e
−2iα′

π(k1·k2)

Figure 3. The contours I+ and I− after multiplying with phases e2iα
′
πk2·(k1+k3) and

e−2iα
′
πk2·(k1+k3).

0 1

sin(−2α′
π(k1 · k2))

Figure 4. Another interpretation of the two contours.

One can thus deform the integration region in two equivalent ways I+ and I−, see figure 2.

We have I+ = I− = A4(1, 3, 2, 4). If now I+ is multiplied by e2iα′πk2·(k1+k3) and

I− by e−2iα′πk2·(k1+k3) we get for the contours as illustrated in figure 2. We thus have

I+ e2iα′πk2·(k1+k3) −I− e−2iα′πk2·(k1+k3) = 2iA4(1, 3, 2, 4) sin(2α′π k2 · (k1 + k3)). However,

the contour obtained after subtracting these two contours can also be interpreted as in

figure 2. This is equal to −2iA4(1, 2, 3, 4) sin(2α′πk1 · k2). In this way we arrive at the

following monodromy relation: sin(2πα′k1 · k2)A4(1, 2, 3, 4) = sin(2πα′k2 · k4)A4(1, 3, 2, 4)

where we have used momentum conservation and the on-shell condition. For other external

states of higher spin, the integrals change appropriately to restore the identities (including

sign factors for the fermionic statistics of half-integer spins).

By deforming the contour of integration of A4(2, 1, 3, 4) one finds in an equivalent

fashion: sin(2πα′k2 · k3)A4(1, 2, 3, 4) = sin(2πα′k2 · k4)A4(2, 1, 3, 4). This implies that all

– 5 –
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the amplitudes can be related to the A4(1, 2, 3, 4)

A4(1, 3, 2, 4) =
sin(2πα′k1 · k2)

sin(2πα′k2 · k4)
A4(1, 2, 3, 4) ,

A4(1, 3, 4, 2) = A4(2, 1, 3, 4) =
sin(2πα′k2 · k3)

sin(2πα′k2 · k4)
A4(1, 2, 3, 4) .

(2.9)

Taking the limit α′ → 0, we get the following relations between the field theory amplitudes

A4(1, 3, 2, 4) =
k1 · k2

k2 · k4
A4(1, 2, 3, 4) ,

A4(1, 3, 4, 2) = A4(2, 1, 3, 4) =
k2 · k3

k2 · k4
A4(1, 2, 3, 4) .

(2.10)

The string theory relations can immediately be checked to hold based on the explicit string

amplitude expression. In the low energy limit, the corresponding relations (2.10) coincide

with those of ref. [13].

As shown in ref. [12], one has the following n-point amplitude relations:

An(β1, . . . , βr, 1, α1, . . . , αs, n) = (−1)r

×ℜe
[∏

1≤i<j≤r

e
2iπα′(kβi

·kβj
)

∑

σ⊂OP{α}∪{βT }

s∏

i=0

r∏

j=1

e(αi,βj)An(1, σ, n)
]
, (2.11)

0 = ℑm
[ ∏

1≤i<j≤r

e
2iπα′(kβi

·kβj
)

∑

σ⊂OP{α}∪{βT }

s∏

i=0

r∏

j=1

e(αi,βj)An(1, σ, n)
]
, (2.12)

with

e(α,β) ≡
{

e2iπα′(kα·kβ) if xβ > xα ,

1 otherwise.

In these equations α0 denotes the leg 1 at point 0.

These string theory amplitude relations reduce in the field theory limit α′ → 0 to the

Kleiss-Kuijf [16, 17] and BCJ-relations [13], respectively.

Explicitly, using (2.12) as well as momentum conservation, the five-point amplitude

gives rise to the following four independent relations

0 = Sk3,k1+k2A5(1, 2, 3, 4, 5) − Sk3,k5A5(1, 2, 4, 3, 5) + Sk1,k3A5(1, 3, 2, 4, 5) ,

0 = Sk3,k2+k5A5(1, 4, 3, 2, 5) − Sk1,k3A5(1, 3, 4, 2, 5) + Sk3,k5A5(1, 4, 2, 3, 5) ,

0 = Sk4,k2+k5A5(1, 3, 4, 2, 5) − Sk1,k4A5(1, 4, 3, 2, 5) + Sk4,k5A5(1, 3, 2, 4, 5) ,

0 = Sk2,k4+k5A5(1, 3, 2, 4, 5) − Sk1,k2A5(1, 2, 3, 4, 5) + Sk2,k5A5(1, 3, 4, 2, 5) . (2.13)

Here we have used the notation Sp,q ≡ sin(2α′π p · q). There are of course various ways of

writing these monodromy relations, but they reduce to just four independent equations.

One can immediately verify these relations from the explicit form of the tree amplitudes

in string theory given by [21–29]. In the field theory limit they reduce to relations that are

equivalent to those discussed in ref. [13].

– 6 –
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3 Jacobi-like identities

The field theory limit of the monodromy relations were originally conjectured on the basis

of an observation for the four-point gluon amplitudes [13]. We start by briefly reviewing

the argument.

3.1 The four-point case

At four points, the photon decoupling identity reads

A4(1, 2, 3, 4) + A4(2, 1, 3, 4) + A4(2, 3, 1, 4) = 0 . (3.1)

It holds independently of polarization and external on-shell momenta. The natural way

this identity can be satisfied is through

A4(1, 2, 3, 4) + A4(2, 1, 3, 4) + A4(2, 3, 1, 4) = χ(s + t + u) = 0 , (3.2)

with χ being a common factor.2

In the amplitude A4(1, 2, 3, 4) both pairs of legs (1,2) and (1,4) are adjacent, and we

should thus treat the s and t factors on the same footing. The contribution of this color

ordering to eq. (3.2) must therefore be

A4(1, 2, 3, 4) = −χ(s + t) = χu . (3.3)

Likewise, one is led to

A4(2, 1, 3, 4) = χt, A4(2, 3, 1, 4) = χs . (3.4)

Eliminating χ one obtains

tA4(1, 2, 3, 4) = uA4(2, 1, 3, 4), sA4(1, 2, 3, 4) = uA4(2, 3, 1, 4),

sA4(2, 1, 3, 4) = tA4(2, 3, 1, 4) . (3.5)

These are of course just the monodromy relations eq. (2.10). To proceed further, one

can parameterize the three subamplitudes in terms of their possible pole structures and

unspecified numerators

A4(1, 2, 3, 4) =
ns

s
+

nt

t
, (3.6)

A4(2, 1, 3, 4) = −nu

u
− ns

s
, (3.7)

A4(2, 3, 1, 4) = −nt

t
+

nu

u
. (3.8)

It follows from (3.5) that nu − ns + nt = 0. This resembles the Jacobi identity for the

associated color factors. Bern, Carrasco and Johansson [13] took as hypothesis that this

can be extended iteratively for general n-point amplitudes. This is equivalent to assuming

that one can choose a parametrization in which Jacobi relations for numerator factors

2We will discuss the explicit expression for χ in the case of vector particles in section 4.
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can be imposed in one-to-one correspondence with the genuine Jacobi identities for the

color factors. Imposing this hypothesis gets quite involved as n grows, but it can be

carried through systematically; for details see ref. [13]. This leads to the BCJ-relations [13].

The same principle can be used to generate relations for scalar and fermionic matter in

the adjoint representation [15]. We of course now understand that this is because the

monodromy relations hold for the full N = 4 supermultiplet in four dimensions [12].

Since the BCJ-relations have been proven [12], one would like to understand the mean-

ing of these Jacobi-like identities for the numerators. In the four-point case the identities

are exact, but only on-shell [14]. In the view of this the validity of the ni parametrization

for n-point tree-level amplitudes (n ≥ 5) is surprising.

3.2 Generalized Jacobi-like relations

To see what is going on it suffices to focus on the 5-point case. We will simply derive

exactly what follows directly from the field theory BCJ-relations when expressed in terms

of the pertinent set of poles for each color-ordered amplitude. We use the parametrization

A5(1, 2, 3, 4, 5) =
n1

s12s45
+

n2

s23s51
+

n3

s34s12
+

n4

s45s23
+

n5

s51s34
, (3.9)

A5(1, 4, 3, 2, 5) =
n6

s14s25
+

n5

s43s51
+

n7

s32s14
+

n8

s25s43
+

n2

s51s32
, (3.10)

A5(1, 3, 4, 2, 5) =
n9

s13s25
− n5

s34s51
+

n10

s42s13
− n8

s25s34
+

n11

s51s42
, (3.11)

A5(1, 2, 4, 3, 5) =
n12

s12s35
+

n11

s24s51
− n3

s43s12
+

n13

s35s24
− n5

s51s43
, (3.12)

A5(1, 4, 2, 3, 5) =
n14

s14s35
− n11

s42s51
− n7

s23s14
− n13

s35s42
− n2

s51s23
, (3.13)

A5(1, 3, 2, 4, 5) =
n15

s13s45
− n2

s32s51
− n10

s24s13
− n4

s45s32
− n11

s51s24
. (3.14)

This can be easily illustrated by diagrams involving only anti-symmetric three-vertices.

However, since the coefficients ni may depend on the kinematic variables (and thus cancel

poles) there is no assumption of only three-vertices here. The listed subamplitudes are

related through the monodromy relations in the field limit of (2.13), i.e.,

0 = (s13 + s23)A5(1, 2, 3, 4, 5) − s35A5(1, 2, 4, 3, 5) + s13A5(1, 3, 2, 4, 5) , (3.15)

0 = (s23 + s35)A5(1, 4, 3, 2, 5) − s13A5(1, 3, 4, 2, 5) + s35A5(1, 4, 2, 3, 5) , (3.16)

0 = (s24 + s45)A5(1, 3, 4, 2, 5) − s14A5(1, 4, 3, 2, 5) + s45A5(1, 3, 2, 4, 5) , (3.17)

0 = (s24 + s25)A5(1, 3, 2, 4, 5) − s12A5(1, 2, 3, 4, 5) + s25A5(1, 3, 4, 2, 5) . (3.18)

Plugging the expressions for the amplitudes in terms of the ni’s into (3.15)–(3.18) we

immediately obtain:

1. From (3.15)

0 =
n4 − n1 + n15

s45
− n10 − n11 + n13

s24
− n3 − n1 + n12

s12
− n5 − n2 + n11

s51
, (3.19)

– 8 –
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2. From (3.16)

0 =
n7 − n6 + n14

s14
− n10 − n11 + n13

s24
− n8 − n6 + n9

s25
− n5 − n2 + n11

s51
, (3.20)

3. From (3.17)

0 =
n10 − n9 + n15

s13
+

n5 − n2 + n11

s51
− n4 − n2 + n7

s23
+

n8 − n6 + n9

s25
, (3.21)

4. From (3.18)

0 =
n4 − n1 + n15

s45
− n10 − n9 + n15

s13
− n5 − n2 + n11

s51
− n3 − n5 + n8

s34
. (3.22)

We thus see that the BCJ-relations can be written as kind of extended Jacobi identities

when expressed in terms of the numerators. Let us simplify the notation a bit by denoting

the nine numerator combinations as

X1 ≡ n3 − n5 + n8 , X2 ≡ n3 − n1 + n12 , X3 ≡ n4 − n1 + n15 ,

X4 ≡ n4 − n2 + n7 , X5 ≡ n5 − n2 + n11 , X6 ≡ n7 − n6 + n14 ,

X7 ≡ n8 − n6 + n9 , X8 ≡ n10 − n9 + n15 , X9 ≡ n10 − n11 + n13 .

(3.23)

Our four equations then take the form

0 =
X3

s45
− X9

s24
− X2

s12
− X5

s51
, (3.24)

0 =
X6

s14
− X9

s24
− X7

s25
− X5

s51
, (3.25)

0 =
X8

s13
+

X5

s51
− X4

s23
+

X7

s25
, (3.26)

0 =
X3

s45
− X8

s13
− X5

s51
− X1

s34
. (3.27)

These four equations describe the general constraints on the numerator factors dictated by

the monodromy relations at five points. As long as these equations are satisfied we have

numerator identities leading to eq. (3.15)–(3.18). Of course, the simplest solution is to put

all Xi = 0, but this is clearly not the most general solution.

3.3 Reparametrization invariance

To make the amount of freedom one has in the above parametrization of subamplitudes

more clear, let us write the most general solution by means of five arbitrary functions f1,

f2, f3, f4 and f5

X1 ≡ s34f1, X2 ≡ s12f2 , X3 ≡ s45f3, X4 ≡ s23f4 , X5 ≡ s15f5 , (3.28)

i.e. from eq. (3.24)–(3.27)

X1 ≡ s34f1 , X2 ≡ s12f2 , X3 ≡ s45f3 ,

X4 ≡ s23f4 , X5 ≡ s15f5 , X6 = s14(f1 − f2 + f4) ,

X7 = s25(f1 − f3 + f4) , X8 = s13(f3 − f1 − f5) , X9 = s24(f3 − f2 − f5) .

(3.29)
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Note that we have used the canonical set of kinematic variables (generalized Mandelstam

variables for the 5-point case) s12, s23, s34, s45, s51 in our definition of the fi. The sij

occurring in the expression for X6, X7, X8 and X9 are related to this canonical set by

s14 = s23 − s15 − s45, s25 = s34 − s12 − s15 ,

s13 = s45 − s12 − s23, s24 = s15 − s23 − s34 . (3.30)

The freedom we have to generalize the solution, i.e. eq. (3.29), is not just related to

gauge degrees or the freedom to absorb contact terms. It can be seen as the trivial freedom

to add a “zero” to the subamplitude and forcing it into a parametrization of the form

eq. (3.9)–(3.14).

As a simple example, imagine that we add 0 = g − g to eq. (3.9), with g being an

arbitrary function. We can then absorb the g’s in n1 and n3, i.e.

A5(1, 2, 3, 4, 5) =
(n1 + s12s45g)

s12s45
+

n2

s23s51
+

(n3 − s34s12g)

s34s12
+

n4

s45s23
+

n5

s51s34
. (3.31)

In no other amplitude than A5(1, 2, 3, 4, 5) does n1 appear, however, n3 appears in eq. (3.12)

so we add 0 = g − g to the amplitude, and absorb in the following way:

A5(1, 2, 4, 3, 5) =
(n12 − s12s35g)

s12s35
+

n11

s24s51
− (n3 − s34s12g)

s43s12
+

n13

s35s24
− n5

s51s43
. (3.32)

We have thereby redefined n1, n3 and n12

n1 → n1 + s12s45g , (3.33)

n3 → n3 − s34s12g , (3.34)

n12 → n12 − s12s35g , (3.35)

which changes X1, X2 and X3

X1 = s34f1 → s34(f1 − s12g) ≡ s34f
′
1 , (3.36)

X2 = s12f2 → s12(f2 − (s45 + s34 + s35)g) = s12(f2 − s12g) ≡ s12f
′
2 , (3.37)

X3 = s45f3 → s45(f3 − s12g) ≡ s45f
′
3 , (3.38)

and we now have

X1 = s34f
′
1 , X2 = s12f

′
2 , X3 = s45f

′
3 ,

X4 = s23f4 , X5 = s15f5 , X6 = s14(f
′
1 − f ′

2 + f4) ,

X7 = s25(f
′
1 − f ′

3 + f4) , X8 = s13(f
′
3 − f ′

1 − f5) , X9 = s24(f
′
3 − f ′

2 − f5) .

(3.39)

This trivial addition of zeros to the amplitudes illustrates the fact that we can find many

different representations of the numerators, all of which are perfectly consistent with the

monodromy relations. The freedom is that of general reparametrizations of the amplitude

and not just gauge symmetry.

The monodromy relations was proven in [12] to hold for all n amplitudes. Imposing

the monodromy relations following the above procedure lead to constraints of the form

eq. (3.24)–(3.27), with n-point Xis. Of course in the n-point case there will be more

constraint equations.
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4 String amplitudes

Let us consider tree-level open string amplitudes in superstring theory. We have already

given the needed formulas in section 2. We first focus on the color-ordered four-point

amplitude for vector particles

Aσ
4 =

∫

Dσ

dz2 |z2|2α′ k1·k2|1 − z2|2α′ k2·k3 F̃4(z2) , (4.1)

where the domain of integration Dσ for each color ordering are given by D1234 = {0 ≤ z2 ≤
1} , D1324 = {1 ≤ z2} , D2134 = {z2 ≤ 0} . Expanding the function F̃4 in (2.5) leads3 to

F̃4(y) =
a1

y
+

b1

y − 1
, (4.2)

where a1 and b1 are expressed in terms of the polarizations and the momenta. Their

expressions are particularly long but there is a relation between the two coefficients

s b1 − t a1 = α′ tm1···m8
8 F 1

m1m2
F 2

m3m4
F 3

m5m6
F 4

m7m8
, (4.3)

where F i are the field-strengths corresponding to the external legs. The tensor t8 is con-

tracting the Lorentz indices as defined in appendix 9.A of [2] (it is common to define

χ = tm1···m8
8 F 1

m1m2
F 2

m3m4
F 3

m5m6
F 4

m7m8
/(stu)). The quantity a1 and b1 are not gauge in-

variant but the combination in (4.3) is gauge invariant.

For the four-point color-ordered amplitudes we find

A4(1, 2, 3, 4) = Φ2,1(α
′ s, α′ t)

(
− a1

α′ s
+

b1

α′ t

)
, (4.4)

A4(1, 3, 2, 4) = Φ2,1(α
′ u, α′ t)

(
−a1 + b1

α′ u
− b1

α′ t

)
, (4.5)

A4(2, 1, 3, 4) = Φ2,1(α
′ s, α′ u)

(
a1

α′ s
+

a1 + b1

α′ u

)
, (4.6)

where we introduced the hypergeometric functions

Φ2,1(α
′s, α′t) ≡ 2F1(−α′ s, α′ t; 1 − α′ s; 1) =

Γ(1 − α′s)Γ(1 − α′t)

Γ(1 + α′u)
. (4.7)

In the convention of BCJ [13],

ns = −a1/α
′, nt = −b1/α

′, nu = −(a1 + b1)/α
′ , (4.8)

we immediately obtain the exact relation nu = nt − ns.

3This can be derived with a very tedious expansion [30] of the expression in eq. (2.5). The simplicity of

the expansion appears naturally in the pure spinor formalism [31, 32]. The tilde on Fn indicates that we

have fixed the three conformal points in the expression.
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4.1 Five points

Let us now consider the five point amplitude. Having fixed the position vertex operators

at positions z1 = 0, z4 = 1 and z5 = ∞, the integrand takes the compact form [32]

Aσ
5 =

∫

Dσ

dz2dz3

∏

i<j

|zij |2α′ki·kj

[
A

z12z13
+

B

z23z24
+

C

z12z34
+

D

z24z34
+

E

z23z13
+

F

z24z13
+

G

z2
23

]
. (4.9)

In this parametrization A to F are of order O(α′2) and G is of order O(α′). The twelve

domains of integration are given in eq. (4.13).

There is some freedom in which the OPEs leading to the expression (4.9) are per-

formed [32] that can give an equivalent form of the integrand of the amplitude. Let us

define the quantity

Cz
x,y =

1

(x − z)(z − y)
. (4.10)

Clearly this function satisfies the Jacoby identity

J(x, y, z) = Cz
x,y + Cy

z,x + Cx
y,z = 0 . (4.11)

The freedom in parameterizing the amplitude in (4.9) is given by the possibility of having

J(1, 2, 3) = 0 , J(4, 2, 3) = 0 . (4.12)

In the amplitude (4.9) we have made explicit the poles C1
2,3 and C3

1,2 and C2
3,4 and C4

2,3.

This freedom corresponds to local monodromy transformations exchanging the posi-

tion of neighboring vertex operators. There are as well global monodromy transformations

given by moving vertex operators from one side of the line to the other side which are not

captured by these local transformations.

The 12 color-ordered five-point amplitudes are given by specifying the range of inte-

gration over z2 and z3 over the following domains4 of integrations Dσ

D12345 = {0 ≤ z2 ≤ z3 ≤ 1} ,

D13245 = {0 ≤ z3 ≤ z2 ≤ 1} ,

D12435 = {0 ≤ z2 ≤ 1 ≤ z3} ,

D13425 = {0 ≤ z3 ≤ 1 ≤ z2} ,

D14235 = {0 ≤ 1 ≤ z2 ≤ z3} ,

D14325 = {0 ≤ 1 ≤ z3 ≤ z2} ,

D21345 = {z2 ≤ 0 ≤ z3 ≤ 1} ,

D31245 = {z3 ≤ 0 ≤ z2 ≤ 1} ,

D23145 = {z2 ≤ z3 ≤ 0} ,

D32145 = {z3 ≤ z2 ≤ 0} ,

D21435 = {z2 ≤ 0 ≤ 1 ≤ z3} ,

D31425 = {z3 ≤ 0 ≤ 1 ≤ z2} .

(4.13)

4We have (n−1)!/2 such domains corresponding to the different (n−1)! color-ordered amplitudes divided

by 2 by reflection.
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We now use the result for I(a, b, c, d, e) which is given in the appendix A. The integrals

are explicitly evaluated in appendix A. We here quote the field theory results. In the field

theory limit α′ → 0 we get

A5(1, 2, 3, 4, 5) =
A

s12s45
+

B − Gs34

s23s51
+

C

s34s12
+

E + Gs13

s45s23
+

D − Gs34

s51s34
, (4.14)

A5(1, 3, 4, 2, 5) =
A − E − F

s13s25
− D − Gs34

s34s51
+

−F

s42s13
− D − C

s25s34
+

B − D

s51s42
, (4.15)

A5(1, 2, 4, 3, 5) =
A − C

s12s35
+

B − D

s24s51
− C

s43s12
+

F + B − D

s35s24
− D − Gs34

s51s43
, (4.16)

A5(1, 3, 2, 4, 5) =
A − E − Gs13

s13s45
− B − Gs34

s32s51
− −F

s24s13
− E + Gs13

s45s32
− B − D

s51s24
, (4.17)

A5(1, 4, 3, 2, 5) =
D − C + A − E − F

s14s25
+

D − Gs34

s43s51
+

B − E + Gs35

s32s14

+
D − C

s25s43
+

B − Gs34

s51s32
, (4.18)

A5(1, 4, 2, 3, 5) =
D − C + A − F − B − Gs35

s14s35
− B − D

s42s51
− B − E + Gs35

s23s14

−F + B − D

s35s42
− B − Gs34

s51s23
. (4.19)

It is interesting to note that we could use monodromy relations for integrals on the indi-

vidual A, B, C etc. terms in (4.9). Thereby one would obtain the same relations as for

the full subamplitudes, but now just for the individual terms. Hence, the OPEs provide us

with expressions for the subamplitudes in which the relations are very explicitly reduced

to relations in the pole structure. This can also be checked explicitly for the five-point case

by use of (4.14)–(4.19).

4.2 The generalized parametrization (from strings)

In (4.14)–(4.19) we already wrote the amplitudes in terms of double poles. The quantities

A to F were naturally put into the double-pole form, but the G term, a single-pole term,

was forced into this representation by making a specific choice. Later we will come back to

the freedom in absorbing the G terms, but for now we just consider the form given above.

Comparing with Bern, Carrasco and Johansson’s [13] parametrization

(i.e. (3.9)–(3.14)) we identify from (4.14)–(4.19)

n1 = A , n6 = D − C + A − E − F , n11 = B − D ,

n2 = B − Gs34 , n7 = B − E + Gs35 , n12 = A − C ,

n3 = C , n8 = D − C , n13 = F + B − D ,

n4 = E + Gs13 , n9 = A − E − F , n14 = D − C + A − F − B − Gs35 ,

n5 = D − Gs34 , n10 = −F , n15 = A − E − Gs13 .

(4.20)
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The Jacobi-like identities then take the form

X1 = n3 − n5 + n8 = Gs34 ,

X2 = n3 − n1 + n12 = 0 ,

X3 = n4 − n1 + n15 = 0 ,

X4 = n4 − n2 + n7 = −Gs32 ,

X5 = n5 − n2 + n11 = 0 ,

X6 = n7 − n6 + n14 = 0 ,

X7 = n8 − n6 + n9 = 0 ,

X8 = n10 − n9 + n15 = −Gs13 ,

X9 = n10 − n11 + n13 = 0 . (4.21)

And from (3.24)–(3.27) it is easy to see that these amplitudes do indeed satisfy the BCJ-

relations. Moreover not all Xi’s vanish.

Note that the BCJ-relations could also be derived from (4.14)–(4.19) by expressing,

for instance, A and B in terms of two subamplitudes and the C to G terms. Using these

expressions for A and B in the remaining amplitudes leads directly to BCJ-relations (the

C to G terms vanish after the substitution).

4.3 Distributing the single-pole terms

There are many ways of arranging the G terms into the numerators of double poles. The

expressions given above correspond to just one specific choice. To see this more clearly let

us begin by defining ñi’s

ñ1 = A , ñ6 = D − C + A − E − F , ñ11 = B − D ,

ñ2 = B , ñ7 = B − E , ñ12 = A − C ,

ñ3 = C , ñ8 = D − C , ñ13 = F + B − D ,

ñ4 = E , ñ9 = A − E − F , ñ14 = D − C + A − F − B ,

ñ5 = D , ñ10 = −F , ñ15 = A − E .

(4.22)

The amplitudes can then, in all generality, be represented like

A5(1, 2, 3, 4, 5) ≡ ñ1 + Gg1

s12s45
+

ñ2 + Gg2

s23s51
+

ñ3 + Gg3

s34s12
+

ñ4 + Gg4

s45s23
+

ñ5 + Gg5

s51s34
, (4.23)

A5(1, 4, 3, 2, 5) ≡ ñ6 + Gg6

s14s25
+

ñ5 + Gg5

s43s51
+

ñ7 + Gg7

s32s14
+

ñ8 + Gg8

s25s43
+

ñ2 + Gg2

s51s32
, (4.24)

A5(1, 3, 4, 2, 5) ≡ ñ9 + Gg9

s13s25
− ñ5 + Gg5

s34s51
+

ñ10 + Gg10

s42s13
− ñ8 + Gg8

s25s34
+

ñ11 + Gg11

s51s42
, (4.25)

A5(1, 2, 4, 3, 5) ≡ ñ12 + Gg12

s12s35
+

ñ11+Gg11

s24s51
− ñ3 + Gg3

s43s12
+

ñ13 + Gg13

s35s24
− ñ5 + Gg5

s51s43
, (4.26)

A5(1, 4, 2, 3, 5) ≡ ñ14 + Gg14

s14s35
− ñ11 + Gg11

s42s51
− ñ7 + Gg7

s23s14
− ñ13 + Gg13

s35s42
− ñ2 + Gg2

s51s23
, (4.27)

A5(1, 3, 2, 4, 5) ≡ ñ15 + Gg15

s13s45
− ñ2 + Gg2

s32s51
− ñ10 + Gg10

s24s13
− ñ4 + Gg4

s45s32
− ñ11 + Gg11

s51s24
, (4.28)
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where the gi’s are new parameters representing the fractions of the G terms absorbed into

the specific double poles. Since these expressions must equal (4.14)–(4.19) in order to

express the actual amplitudes, we get six equations constraining the gi parameters

s13

s45s23
− s34

s23s51
− 1

s51
=

g1

s12s45
+

g2

s23s51
+

g3

s34s12
+

g4

s45s23
+

g5

s51s34
, (4.29)

s35

s14s23
− s34

s23s51
− 1

s51
=

g6

s14s25
+

g5

s43s51
+

g7

s32s14
+

g8

s25s43
+

g2

s51s32
, (4.30)

1

s51
=

g9

s13s25
− g5

s34s51
+

g10

s42s13
− g8

s25s34
+

g11

s51s42
, (4.31)

1

s51
=

g12

s12s35
+

g11

s24s51
− g3

s43s12
+

g13

s35s24
− g5

s51s43
, (4.32)

s34

s51s23
− s35

s23s41
− 1

s41
=

g14

s14s35
− g11

s42s51
− g7

s23s14
− g13

s35s42
− g2

s51s23
, (4.33)

s34

s15s23
− s13

s23s45
− 1

s45
=

g15

s13s45
− g2

s32s51
− g10

s24s13
− g4

s45s32
− g11

s51s24
. (4.34)

Any solution to these equations give a valid distribution of the G terms, i.e. provide us

with a representation of the form (3.9)–(3.14) that satisfy (3.24)–(3.27).

The representation written out explicitly in (4.14)–(4.19) corresponds to the solution

g1 = 0 , g6 = 0 , g11 = 0 ,

g2 = −s34 , g7 = s35 , g12 = 0 ,

g3 = 0 , g8 = 0 , g13 = 0 ,

g4 = s13 , g9 = 0 , g14 = −s35 ,

g5 = −s34 , g10 = 0 , g15 = −s13 .

(4.35)

A numerical check have shown that there do exits solutions for gi such that the nine

Jacobi identities (ni − nj + nk = 0) are satisfied, and in such a way that four of the gi’s

can be chosen arbitrarily. This correspond to the freedom Bern, Carrasco and Johansson

find in choosing their α1, α2, α3 and α4 arbitrarily.

An example of a (valid) choice of gi’s which generate ni’s that satisfy the Jacobi

identities is

g1 = −s12 , g6 = −s25 , g11 = 0 ,

g2 = −s12 − s25 , g7 = −s25 , g12 = 0 ,

g3 = −s12 , g8 = −s25 , g13 = 0 ,

g4 = −s12 , g9 = 0 , g14 = 0 ,

g5 = −s12 − s25 , g10 = 0 , g15 = 0 ,

(4.36)

with, e.g.

n3 − n5 + n8 = (ñ3 − ñ5 + ñ8) + G(g3 − g5 + g8)

= (C − D + D − C) + G(−s12 − (−s12 − s25) − s25)

= 0, etc . . . (4.37)

From the expansion given by the OPE this might not be the most simple or natural way

of absorbing the G terms into double-poles, but it does show that the assumption of Bern,

Carrasco and Johansson is allowed for (at least) the five-point case.
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5 Monodromy and KLT relations

As a direct application of the monodromy relations in Yang-Mills theory, we can rewrite

the Kawai-Lewellen-Tye relations at four-point level in the following manner

M4 =
κ2

(4)

α′

Sk1,k2Sk1,k4

Sk1,k3

AL
4 (1, 2, 3, 4)AR

4 (1, 2, 3, 4) . (5.1)

The field theory limit of the string amplitude (5.1), α′ → 0 gives the symmetric form of

the gravity amplitudes of [13]

M4 = κ2
(4)

st

u

(ns

s
+

nt

t

) (
ñs

s
+

ñt

t

)
= −κ2

(4)

(
nsñs

s
+

ntñt

t
+

nuñu

u

)
. (5.2)

Here we have made use of the on-shell relation s + t + u = 0 and the four-point Jacobi

relation nu = ns − nt.

At five point order Bern, Carrasco and Johansson [13] showed that if the subamplitudes

are parameterized by numerators like in eqs. (3.9)–(3.14), and we assume the numerators

satisfy the Jacobi-like identities, then the KLT relation

−iM5(1, 2, 3, 4, 5) = s12s34A5(1, 2, 3, 4, 5)Ã5(2, 1, 4, 3, 5)

+ s13s24A5(1, 3, 2, 4, 5)Ã5(3, 1, 4, 2, 5) , (5.3)

implies the following form of M5

−iM5(1, 2, 3, 4, 5) =
n1ñ1

s12s45
+

n2ñ2

s23s51
+

n3ñ3

s34s12
+

n4ñ4

s45s23
+

n5ñ5

s51s34

+
n6ñ6

s14s25
+

n7ñ7

s32s14
+

n8ñ8

s25s43
+

n9ñ9

s13s25
+

n10ñ10

s42s13

+
n11ñ11

s51s42
+

n12ñ12

s12s35
+

n13ñ13

s35s24
+

n14ñ14

s14s35
+

n15ñ15

s13s45
. (5.4)

If we instead use the more general solution for A5 and Ã5, i.e.

X1 ≡ s34f1 , X2 ≡ s12f2 , X3 ≡ s45f3 ,

X4 ≡ s23f4 , X5 ≡ s15f5 , X6 = s14(f1 − f2 + f4) ,

X7 = s25(f1 − f3 + f4) , X8 = s13(f3 − f1 − f5) , X9 = s24(f3 − f2 − f5) ,

(5.5)

and

X̃1 ≡ s34g1 , X̃2 ≡ s12g2 , X̃3 ≡ s45g3 ,

X̃4 ≡ s23g4 , X̃5 ≡ s15g5 , X̃6 = s14(g1 − g2 + g4) ,

X̃7 = s25(g1 − g3 + g4) , X̃8 = s13(g3 − g1 − g5) , X̃9 = s24(g3 − g2 − g5) .

(5.6)
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Here X1 = n′
3 − n′

5 + n′
8 and X̃1 = ñ′

3 − ñ′
5 + ñ′

8, see eq. (3.23), and we obtain

−iM5(1, 2, 3, 4, 5) =
n′

1ñ
′
1

s12s45
+

n′
2ñ

′
2

s23s51
+

n′
3ñ

′
3

s34s12
+

n′
4ñ

′
4

s45s23
+

n′
5ñ

′
5

s51s34

+
n′

6ñ
′
6

s14s25
+

n′
7ñ

′
7

s32s14
+

n′
8ñ

′
8

s25s43
+

n′
9ñ

′
9

s13s25
+

n′
10ñ

′
10

s42s13

+
n′

11ñ
′
11

s51s42
+

n′
12ñ

′
12

s12s35
+

n′
13ñ

′
13

s35s24
+

n′
14ñ

′
14

s14s35
+

n′
15ñ

′
15

s13s45

−
[
f1g1 + f2g2 + f3g3 + f4g4 + f5g5

+ f1(g4 − g3) + g1(f4 − f3)

+ f2(g5 − g4) + g2(f5 − f4)

− f3g5 − g3f5

]
. (5.7)

This representation of the gravity is of course guaranteed to be exact due to the KLT-

construction. We obtain the simple factorized form (5.4) only when we choose

f1g1 + f2g2 + f3g3 + f4g4 + f5g5 + f1(g4 − g3) + g1(f4 − f3)

+ f2(g5 − g4) + g2(f5 − f4) − f3g5 − g3f5 = 0 . (5.8)

This is evidently satisfied when the numerators fulfill the simple Jacobi-like relations. How-

ever, more general parameterizations are consistent with this equation as well. For instance,

eq. (4.14)–(4.19) implies

f1 = G, f4 = −G, and f2 = f3 = f5 = 0 , (5.9)

and using the same parametrization for Ã5, eq. (5.8) is seen to be satisfied:

f1g1 + f4g4 + f1g4 + g1f4 = G2 + G2 − G2 − G2 = 0 . (5.10)

Again, the freedom in choosing different representations of the KLT-relations arise from the

freedom to pick parameterizations of the gauge invariant amplitudes in terms of different

pole structures. These pole structures are not gauge invariant by themselves and we see

that this arbitrariness in the gauge theory is inherited in the gravity amplitude.

6 One-loop coefficient relations

We end this paper with an obvious application of the monodromy relations in the field

theory limit. We illustrate how these relations can imply relations between coefficients

of integrals in one-loop gluon amplitudes. For simplicity we will focus on amplitudes in

N = 4 super Yang-Mills, but it will be evident that most of the considerations here will

apply also to the case of less supersymmetric or even non-supersymmetric amplitudes.
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6.1 Preliminaries

Our starting point will be the one-loop gluon amplitudes which can be color decom-

posed [33] as follows

A1−loop
n = gn

[n/2]+1∑

c=1

∑

σ∈Sn/Sn;c

Grn;c(σ)An;c(σ) . (6.1)

Here [x] is the largest integer less than or equal to x. The leading color factor is

Grn;1(σ) = NcTr(T aσ(1) · · ·T aσ(n)) , (6.2)

and the subleading color factors (c > 1) are

Grn;c(σ) = Tr(T aσ(1) · · ·T aσ(c−1))Tr(T aσ(c) · · ·T aσ(n)) . (6.3)

Sn here denotes the set of all permutations of n objects. Sn;c is the subset leaving

Grn;c invariant.

It is sufficient to consider the subamplitude An;1 which is leading in color counting,

since the remaining An;c subamplitudes with c > 1 can be obtained as a sum over different

permutations of An;1 [33, 34].

In N = 4 super Yang-Mills theory we can always write the one-loop gluon amplitude

(using a Passarino-Veltman reduction [35]) as a linear combination of scalar box integrals

with rational coefficients [34, 36]. For the leading subamplitude the expression becomes

An;1 =
∑ (

b̂I1m + ĉI2m e + d̂I2m h + ĝI3m + f̂ I4m
)

. (6.4)

Here the sum runs over color-ordered box diagrams, and the integrals (defined in dimen-

sional regularization) are given by

I = −i(4π)2−ǫ

∫
d4−2ǫl

(2π)4−2ǫ

1

l2(l − K1)2(l − K1 − K2)2(l + K4)2
. (6.5)

The external momenta Ki are given by the sum of momenta of consecutive external legs,

and all momenta are taken to be outgoing. The labels 1m, 2m, 3m and 4m refer to the

number of “massive” corners, i.e. the number of K2
i 6= 0. This is equivalent to the number of

corners with more than one external gluon. The 2m case is separated into adjacent massive

corners I2m h (h for hard), and diagonally opposite massive corners I2m e (e for easy).

Since the scalar box integrals are all known explicitly [36], calculation of one-loop

amplitudes is reduced to finding the coefficients. From that general setting the existence of

relations between coefficients of different one-loop amplitudes is surprising. The indication

of such structures does not appear until we introduce unitarity cuts [34, 37]. Working

in complex momenta it is possible to do quadruple cuts and derive formulas for general

coefficients [38]

âα =
1

2

∑

S,J

nJAtree
1 Atree

2 Atree
3 Atree

4 . (6.6)
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Here α represent a specific ordering of external legs, J the spin of a particle (running in

the loop) in the N = 4 multiplet, nJ the number of particles in the multiplet with spin J

and S is the set of the two solutions to the on-shell conditions

S = { l | l2 = 0, (l − K1)
2 = 0, (l − K1 − K2)

2 = 0, (l + K4)
2 = 0 } . (6.7)

It turns out that for many amplitudes eq. (6.6) simplifies significantly. The helicity

configuration often kills the sum over non-gluonic states and one of the S solutions. These

coefficients are therefore only given by a single term of four tree-level gluon amplitudes

multiplied together. Monodromy relations on these tree amplitudes then leads to relations

among coefficients for one-loop amplitudes. Most interesting is probably the possibility of

relating coefficient for split-helicity loop amplitudes to mixed-helicity loop amplitudes. For

some reviews of the work at tree and loop level involving helicity amplitudes for gluons,

see e.g. refs. [39–42].

6.2 Six-point examples

In the following section we give two explicit examples of how the monodromy relations,

in combination with unitarity cuts, can be used to obtain relations between scalar box

integral coefficients of different one-loop amplitudes. These should be sufficient to get the

idea for more general one-loop amplitudes.

6.2.1 Two-mass (easy) coefficient relation

Let us begin by considering the ĉ1 coefficient to the A6;1(1
+, 2−, 3−, 4+, 5+, 6+) one-loop

amplitude, i.e. the coefficient to the I2m e integral for a specific ordering of the legs. Here we

choose the one illustrated in figure 5. Note that with this helicity configuration figure 5 is

the only diagram that contributes to ĉ1. Any other assignment of helicities to the loop-legs

makes at least one of the corners vanish. In addition, only gluons can run in the loop for

this helicity configuration — fermions and scalars would make the two corners with equal

helicity vanish.

Since the four corners are just given by the appropriate (on-shell) tree-level ampli-

tudes, we can use the four-point monodromy relations to flip the legs around. One of the

advantages of the monodromy relations is that we can always keep two of the legs fixed.

This is important here since we do not want to change the position of legs in the loop. The

diagram in figure 5, which we denote D2m e
12 , is therefore related to the diagram of same

type, but with legs 1 and 2 interchanged, through

D2m e
21 =

s(−l1)1

sl21
D2m e

12 . (6.8)

The helicity configuration (+ + −) of the two three-point corners is only consistent with

one of the S solutions [38], and the coefficient is simply given by ĉ1 = D2m e
12 /2. The same

is of course true in the case of leg 1 and 2 interchanged, which imply that

ĉ1 =
s(−l1)1

sl21
ĉ′1 , (6.9)
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6+
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+
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−

l1

l2

l3

l4

Figure 5. Two-mass (easy) cut diagram.

where ĉ′1 is the coefficient to the I2m e scalar box integral for the one-loop amplitude

A6;1(2
−, 1+, 3−, 4+, 5+, 6+). This is a very simple relation between coefficients for split-

helicity and mixed-helicity loop amplitudes.

For completeness, we show how to solve for the loop-momenta and express the fraction

in front of ĉ′1 solely in terms of external momenta. For this we will be using the spinor

helicity formalism. From momentum conservation and on-shell conditions we have

l2 = l1 − p1 − p2, (l1 − p1 − p2)
2 = 0 ,

l3 = l2 − p3 = l1 − p1 − p2 − p3, (l1 − p1 − p2 − p3)
2 = 0 ,

l4 = l3 − p4 − p5 = l1 + p6, (l1 + p6)
2 = 0 ,

(6.10)

and in terms of spinor products

s(−l1)1

sl21
=

s(−l1)1

s(−l1)2
=

〈1l1〉[l11]
〈2l1〉[l12]

. (6.11)

Since the three-point corners have helicity configuration (++−) we must take the holomor-

phic spinors at these corners to be proportional and hence having vanishing 〈•〉 product (re-

member, we are working with complex momenta, so the [•] product can be non-vanishing).

In particular we get

〈l16〉 = 0 =⇒ |l1〉 = α|6〉 . (6.12)

The proportionality factor α can be obtained from

(l1 − p1 − p2)
2 = 0 =⇒ 2l2 · (p1 + p2) = (p1 + p2)

2 , (6.13)

and since 2l2 · (p1 + p2) = 〈l1|1 + 2|l1] = α〈6|1 + 2|l1],

α =
(p1 + p2)

2

〈6|1 + 2|l1]
. (6.14)
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Figure 6. One-mass cut diagram.

To express the anti-holomorphic spinor of l1 we use

(l1 − (p1 + p2 + p3))
2 = 0 =⇒ 2l1 · (p1 + p2 + p3) = (p1 + p2 + p3)

2 , (6.15)

and

2l1 · (p1 + p2 + p3) = 〈l1|1 + 2 + 3|l1] = α〈6|1 + 2 + 3|l1] , (6.16)

from which follows

(p1 + p2)
2〈6|1 + 2 + 3|l1] = 〈6|1 + 2|l1](p1 + p2 + p3)

2 ⇐⇒
[
(p1 + p2)

2〈6|(1 + 2 + 3) − (p1 + p2 + p3)
2〈6|(1 + 2)︸ ︷︷ ︸

≡[γ|

]
|l1] = 0 , (6.17)

i.e. |l1] = β|γ]. We are not interested in the proportionality factor β since it cancels out

from eq. (6.11) anyway. Using these expressions for the spinors of l1, we get, after a bit of

rewriting,
s(−l1)1

sl21
= −〈16〉〈23〉

〈26〉〈13〉 . (6.18)

6.2.2 One-mass coefficient relation

Let us now consider a one-mass box integral coefficient. As in the example above we just

use the A6;1(1
+, 2−, 3−, 4+, 5+, 6+) one-loop amplitude to illustrate the idea. The diagram

is given in figure 6, which we denote as D1m
612. Again this helicity configuration kills all

other diagrams and allow only gluons to run in the loop.

This time we can use the five-point monodromy relations to connect a diagram of

mixed helicity to two diagrams of split helicities

D1m
621 =

(s16 + s(−l1)1)D1m
612 + s(−l1)1D1m

162

sl21
, (6.19)
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with obvious notation for the different diagrams. Like above, the coefficients related to

these diagrams only consist of these single terms, and we can therefore equally well write

it as

b̂621 =
(s16 + s(−l1)1)̂b612 + s(−l1)1b̂162

sl21
, (6.20)

where we have a one-mass integral coefficient belonging to the mixed-helicity amplitude

A6;1(2
−, 1+, 3−, 4+, 5+, 6+) related to one-mass coefficients of the split-helicity amplitudes

A6;1(1
+, 2−, 3−, 4+, 5+, 6+) and A6;1(6

+, 2−, 3−, 4+, 5+, 1+).

Using very similar methods as for the two-mass case we could again express the kine-

matic invariants in terms of external momenta. However, this is not our focus here.

7 Conclusion

We have reconsidered the BCJ-relations in gauge theories from several points of view.

Based on the monodromy proof, we have explored the extent to which Jacobi-like relations

for residues of poles (and multiple poles) can be derived. We have found that Jacobi-like

relations can be introduced consistently with the constraints of the monodromy relations.

But extended Jacobi-like identities are also perfectly consistent with the gauge invariant

relations. We have demonstrated this explicitly from both field and string theoretic angles.

We have also considered the implications for gravity amplitudes. Very symmetric

forms follows in a simple manner through using the KLT-relations together with the link

posed by monodromy in the gauge theory side. This direction appears worthwhile to

pursue in the future.

As an application of monodromy relations, we have explicitly illustrated how these

tree-level relations give rise to non-trivial identities at loop level. The simplest case is that

of N = 4 super Yang-Mills theory where relations between one-loop box functions are

directly derivable through quadruple cut techniques. Similar considerations are valid for

less supersymmetric or non-supersymmetric amplitudes as well, although in such cases the

relations are rather more complicated. There are thus clearly several interesting directions

for future work that will exploit these relations.
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A Evaluation of the five-point integrals

In this appendix we evaluate the five point amplitudes (4.9) for the ordering (1, 2, 3, 4, 5).

We use the result

I(a, b, c, d, e) =

∫ 1

0
dz3

∫ z3

0
dz2 za

2(z3 − z2)
b(1 − z2)

c(1 − z3)
dze

3 (A.1)

=
Γ(a + 1)Γ(b + 1)Γ(d + 1)Γ(a + b + e + 2)

Γ(a + b + 2)Γ(a + b + d + e + 3)

× 3F2(a + 1,−c, a + b + e + 2; a + b + 2, a + b + d + e + 3; 1) ,

that expresses the integral in terms of the hypergeometric function 3F2. We introduce the

notation

I5(a, b, c, d, e) =
Γ(α′ s12+ a+1)Γ(α′ s23+ b +1)Γ(α′ α′ s34+ d+1)Γ(α′ s45+ a + b + e+2)

Γ(s2,13 + a + b + 2)Γ(α′ s4,35 + a + b + d + e + 3)

×3F2(α
′s12+a+1,−s24−c, α′s45+a+b+e+2;α′s2,13+a+b+2, α′s4,35+a+b+d+e+3; 1),

(A.2)

Setting ŝi,j = α′ si, we have

Contribution A

The integral is

I5(−1, 0, 0, 0,−1) =
1

ŝ1,2ŝ1,5

Γ(ŝ1,2 + 1)Γ(ŝ1,5 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)

Γ(ŝ1,2 + ŝ2,3 + 1)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 1)

×3F2(ŝ1,2,−ŝ2,4, ŝ1,2 + ŝ1,3 + ŝ2,3; ŝ1,2 + ŝ2,3 + 1, ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 1; 1) ,

(A.3)

Contribution B

I5(0,−1,−1, 0, 0) =
1

ŝ2,3ŝ3,4

Γ(ŝ1,2 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ4,5 + 1)

Γ(ŝ1,2 + ŝ2,3 + 1)Γ(ŝ3,4 + ŝ4,5 + 1)[
3F2(ŝ1,2 + 1,−ŝ2,4, ŝ4,5 + 1; ŝ1,2 + ŝ2,3 + 1, ŝ3,4 + ŝ4,5 + 1; 1)

− ŝ2,3(ŝ4,5 + 1)

(ŝ1,2+ŝ2,3+1)(ŝ3,4+ŝ4,5+1)

3F2(ŝ1,2+1, 1−ŝ2,4, ŝ4,5+2; ŝ1,2+ŝ2,3+2, ŝ3,4+ŝ4,5+2; 1)
]
, (A.4)

Contribution C

I5(−1, 0, 0,−1, 0)=
1

ŝ3,4

Γ(ŝ1,2 + 2)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + 3)

Γ(ŝ1,2 + ŝ2,3 + 3)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 3)

×3F2(−ŝ2,4, ŝ1,2+2, ŝ1,2+ŝ1,3+ŝ2,3+3; ŝ1,2 + ŝ2,3+3, ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4+3; 1),

(A.5)
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Contribution D

I5(0, 0,−1,−1, 0)=
1

ŝ3,4

Γ(ŝ1,2 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + 2)

Γ(ŝ1,2 + ŝ2,3 + 2)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 2)

× 3F2(ŝ1,2+1, ŝ1,2 + ŝ1,3+ŝ2,3+2, 1−ŝ2,4; ŝ1,2 + ŝ2,3+2, ŝ1,2+ŝ1,3+ŝ2,3+ŝ3,4+2; 1),

(A.6)

Contribution E

I5(0,−1, 0, 0,−1) =
1

ŝ2,3ŝ4,5

Γ(ŝ1,2 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ4,5 + 1)

Γ(ŝ1,2 + ŝ2,3 + 1)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 1)

× 3F2(−ŝ2,4, ŝ1,2 + 1, ŝ1,2 + ŝ1,3 + ŝ2,3; ŝ1,2 + ŝ2,3+1, ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4+1; 1),

(A.7)

Contribution F

I5(0, 0,−1, 0,−1) =
Γ(ŝ1,2 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + 1)

Γ(ŝ1,2 + ŝ2,3 + 2)Γ(ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 2)

× 3F2(ŝ1,2+1, ŝ1,2+ŝ1,3+ŝ2,3+1, 1−ŝ2,4; ŝ1,2+ŝ2,3+2, ŝ1,2+ŝ1,3+ŝ2,3+ŝ3,4+2; 1),

(A.8)

Contribution G

I5(0,−2, 0, 0, 0) =
ŝ1,2 + ŝ2,3

(ŝ2,3 − 1)ŝ2,3 ŝ4,5

Γ(ŝ1,2 + 1)Γ(ŝ2,3 + 1)Γ(ŝ3,4 + 1)Γ(ŝ4,5 + 1)

Γ(ŝ1,2 + ŝ2,3 + 1)Γ(ŝ4,5 + ŝ3,4 + 1)

× 3F2(−ŝ2,4, ŝ1,2 + 1, ŝ1,2 + ŝ1,3 + ŝ2,3; ŝ1,2 + ŝ2,3, ŝ1,2 + ŝ1,3 + ŝ2,3 + ŝ3,4 + 1; 1) ,
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[31] N. Berkovits, Super-Poincaré covariant quantization of the superstring,

JHEP 04 (2000) 018 [hep-th/0001035] [SPIRES].

[32] C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude,

JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].

[33] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories,

Nucl. Phys. B 362 (1991) 389 [SPIRES].

[34] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory

Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217

[hep-ph/9403226] [SPIRES].

[35] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ−

in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

[36] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals,

Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].

[37] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

[38] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4

super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].

[39] M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories,

Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].

[40] L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD & Beyond: Proceedings of

TASI’95, ed. D.E. Soper, World Scientific Singapore (1996) hep-ph/9601359 [SPIRES].
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