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1 Introduction

The Wasserstein distance or earth mover’s distance (EMD) is a measure of similarity
between two probability distributions, see, e.g., [1] as well as appendix B. The value of
the EMD can be visualized as the work required to transport and reshape dirt (weighted
samples) in the form of one distribution into the form of a second distribution. Similar
distributions result in smaller values (≈ zero) of the EMD while dissimilar distributions
result in larger values. The EMD is thus sensitive to density asymmetries between samples
and therefore well suited to be used as a test statistic that quantifies the amount of CP
violation (CPV) in a physical system.
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Taking as an example the B0 decays to a final state f , the direct CP asymmetry Af is
defined as

Af = Br(B̄0 → f)− Br(B0 → f̄)
Br(B̄0 → f) + Br(B0 → f̄)

, (1.1)

where f̄ = CP(f) is the final state CP conjugated to f . For two body B0 decays such as
B0 → K+π−, the direct CPV is fully characterized by Af . In the rest frame of the parent
particle, the two final state particles are back to back and there is no dependence of the decay
rate on their emission angle. Direct CPV is then simply given by the difference of observed
B0 → f and B̄0 → f̄ decays as in eq. (1.1). This is not the case, however, for three-body
decays such as, for instance, B0 → K+π−π0 and its CP conjugate mode B̄0 → K−π+π0 [2].
In addition to the integrated CPV quantity, Af , there is a continuous set of CP violating
observables, namely the phase space dependent differential CP asymmetries

ACP(s12,s13) =
(
dΓ(B̄0→ f̄)

dp.s.
− dΓ(B0→ f)

dp.s.

)/(
dΓ(B̄0→ f̄)

dp.s.
+ dΓ(B0→ f)

dp.s.

)
, (1.2)

where s12, s13 are the two Dalitz plot variables. To measure ACP one can bin the Dalitz
plot in large enough bins such that they contain reasonably large numbers of events, say
ni, n̄i ∼ O(20), and define Af,i, eq. (1.1), for each bin. In this way one could probe
experimentally, if CP violation is present in the Dalitz plot distributions.

Such an approach is not optimal, however, since the measurements depend on the choice
of the binning. If the primary goal is to test for the presence of phase space dependent
CPV in the Dalitz plot distributions, not just in global Af , two tests were put forward
that improve on the binning method, the SCP test (or the Miranda method) [3, 4] and
the energy test [5–8], both of which have some drawbacks. The SCP test still relies on a
binning procedure that, like ACP, leads to some loss of sensitivity to CPV and the energy
test, while being quite sensitive to the presence of CPV in the Dalitz plot distributions, is
harder to interpret in terms of the underlying physics.

In this paper we propose an alternative approach — the use of the Wasserstein distance,
or EMD, as a measure of CPV in the Dalitz plot distributions. As we show below, the
EMD based statistic combines the high sensitivity to CPV with easier interpretability, since
it retains information about which part of the Dalitz plot the CPV originates from. The
use of EMD in measuring CPV is reminiscent but distinct from the use of EMD to quantify
the similarities between different LHC events, advocated in [9–12] (see also the related
results in refs. [13–16]). In particular, the optimal EMD based statistic for CPV involves
reweighting (or filtering) of individual datapoint contributions to the EMD as we discuss in
more detail in section 3.3.

The paper is organized as follows. In section 2 we review the Wasserstein distance and
introduce the relevant notation for its application to three body B and D decays. In section 3
we analyze three body B0 → K+π−π0 decays and show that the Wasserstein distance is a
sensitive probe of CP violation and introduce an optimized windowed Wasserstein distance
statistic. In section 4 we introduce two further Wasserstein distance based statistics, the
binned Wasserstein distance and the sliced Wasserstein distance, which have improved
computing complexity scalings and may be preferred when dealing with large datasets
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such as the three body D decay data samples. We draw conclusions in section 5, while
appendices contain details about the public code EMD4CPV (appendix A), on the computation
complexity of the optimal transport problem (appendix B), further examples for EMD using
Gaussian distributions (appendix C), further results for probing B → Kππ Dalitz plot CP
asymmetries using Wasserstein distance based statistics (appendix D), and a review of the
energy test (appendix E).

2 Earth mover’s distance as a measure of CPV

The Wasserstein distance, Wq(E , Ē), between the distributions of events, E , in B0 →
K+π−π0, and the distribution Ē of B̄0 → K−π+π0 decays is given by, see, e.g., [9, 17–19],

Wq(E , Ē) =
[

min
{fij≥0}

N∑
i=1

N̄∑
j=1

fij
(
d̂ij
)q]1/q

, (2.1)

where q ∈ (0,∞), with q = 1 defining the EMD.1 The minimization is over the weights

N∑
i=1

fij = 1
N̄
,

N̄∑
j=1

fij = 1
N
,

N,N̄∑
i,j=1

fij = 1, (2.2)

where N(N̄) are the number of events in sample E(Ē), and d̂ij is the distance between
the two events, i in E , and j in Ē . The interpretation of Wq(E , Ē) is the cost incurred by
moving in an optimal way the probability distribution corresponding to events in E into the
probability distribution of event Ē , where the penalty is the distance d̂ij between the events.

Assuming that N = N̄ , so that there is no integrated CP asymmetry, and that E
and Ē come from the same distribution (i.e. no CPV in distributions), then Wq(E , Ē)→ 0
for large N = N̄ . In contrast, if E and Ē differ (there is CPV), then Wq(E , Ē) will tend
to a nonzero value. For d-dimensional final phase space the parametric upper bound is
〈Wp(E , Ē)〉 . CN−1/d [21], with C a constant that does not depend on N .2 For the Dalitz
plot we have d = 2 since it is fully described by two Dalitz variables, s12, s13, and thus
〈Wp(E , Ē)〉 ∝ 1/

√
N , i.e., it scales in the same way as the variance of the global direct CP

asymmetry δAf ∝ 1/
√
N . Since we are mainly interested in CPV in distributions, we will

assume for simplicity that N = N̄ in the rest of the manuscript. However, the analyses
we present below extend trivially to the N 6= N̄ case, with Wq still probing the CPV in
distributions and Af the integrated CPV.

1In most works on the optimal transport q is restricted to the convex cost functions, q ∈ [1,∞), such
that its gradient is well defined everywhere, also at the d̂ij = 0 point. An extension to the concave case,
q ∈ (0, 1), requires an introduction of an approximate gradient, however, a unique optimal transport still
exists, see the discussion in chapter 3.3.2 of ref. [18]. The network simplex algorithm as implemented in the
Wasserstein Python library [9, 20] can then be used without change to solve the optimal transport problem,
in the same way as for q ≥ 1.

2Note that for decays that are dominated by intermediate resonances the effective dimensionality is
lower than the full dimensionality of the phase space. That is for a multibody decays where at most two
resonances overlap we expect the same scaling as for the Dalitz plot 〈Wp(E , Ē)〉 . CN−1/2.
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Figure 1. The nonzero displacement ∆µ of the two Gaussian distributions (left) can be probed by
using Wq, q = 1, as the test statistic (right), see main text for details.

For the 3D Dalitz plot we use the definition of the (dimensionless) distance d̂ij that is
symmetric in the Dalitz variables, s12, s13, s23,

d̂ij
∣∣∣
Dalitz

= 1
m2

{∣∣s12(i)− s̄12(j)
∣∣r +

∣∣s13(i)− s̄13(j)
∣∣r +

∣∣s23(i)− s̄23(j)
∣∣r}1/r

, (2.3)

where, for example in the B0 → K+π−π0 system, m = mB, and

s12 = (pK+ + pπ−)2, s13 = (pK+ + pπ0)2, s23 = (pπ− + pπ0)2, (2.4)
s̄12 = (pK− + pπ+)2, s̄13 = (pK− + pπ0)2, s̄23 = (pπ+ + pπ0)2, (2.5)

parametrize the B0 → K+π−π0 Dalitz plot and the CP conjugate variables in B̄0 →
K−π+π0 Dalitz plot, respectively. The normalization prefactor 1/m2 in eq. (2.3) was
chosen such that d̂ij < 1. We use the Euclidean distance, i.e., r = 2, in the remainder of
the paper. Other r-values were investigated but no significant changes to the sensitivity of
CP violation were found.

Before discussing the more complicated case of B and D decays, let us first briefly con-
sider a simpler toy example of two displaced Gaussian distributions, G(x) = N (x|∆µ/2, σ)
and Ḡ(x) = N (x| −∆µ/2, σ), i.e., two Gaussian distributions with equal widths, σ, but
with their centers at µ = ∆µ/2 and µ̄ = −∆µ/2 and thus displaced by ∆µ. In this toy
example the question about CPV in multibody B decays is replaced with a test whether
or not ∆µ 6= 0. Drawing N = 10 events E from G, as well as N̄ = 10 events Ē from Ḡ,
and taking d̂ij in eq. (2.1) to be the Euclidean distance in 1D, gives a W1 that is clustered
around 〈W1〉 ' ∆µ, see the grey distribution in figure 1 (right). This is appreciably larger
than the distribution of W1 values for ∆µ = 0 (blue), even for relatively small event samples.
In appendix C we show more illustrations of how the W1 probes a difference between
distributions, including an example of displaced 2D Gaussian distributions. In particular,
we show numerically that W1 can be used as a statistic, and that the CL intervals obtained
from a known ∆µ = 0 probability distribution for W1 coincide with the expected exclusion
intervals from negative log likelihood for ∆µ.
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Figure 2. The 2-dimensional B0 → K+π−π0 (left) and D0 → π−π+π0 (right) Dalitz plots and
their respective 1-dimensional histograms along the borders for 106 events.

3 Application to three body B decays

As the first realistic example of using the Wasserstein distance to test for CP violation
we use the B0 → K+π−π0 and the CP conjugate B̄0 → K−π+π0 decays. The events
are generated from the amplitude model by BaBar [2] implemented in the AmpGen [22]
framework. We create two data samples: the CP conserving (CPC) and the CP violating
datasets. For the CPC datasets we use the central values of amplitudes and phases in the
B0 BaBar isobar model [2] for both B0 and B̄0 decays. For the CPV datasets, on the other
hand, the amplitudes and phases for B0 and B̄0 isobar models differ and are set to the
central values of the measurements in ref. [2]. The B − B̄ meson mixing is ignored in the
generation of the samples. The resulting B0 → K+π−π0 Dalitz plot with 106 events is
shown in figure 2 (left).

For three-body B decays we highlight the use of Wq(d̂ij) on the low statistic datasets
containing N = 103 events in each of the samples, the B and B̄ decays (N = N̄). This choice
was made to roughly match the reported experimental sensitivity [23]. The implementation
and computation of the Wasserstein distance is done in two steps: first, the distances d̂ij ,
eq. (2.3), are computed using the cdist method within the SciPy framework [24] which
utilizes optimized C code to efficiently compute the distances. The computations of Wq(d̂ij)
and the extraction of optimal transport data is then obtained using the EMD class within
the Wasserstein library [9, 20]. There are two continuous parameters in the definition
of Wq(d̂ij), r and q, cf. eqs. (2.1), (2.3). These can be chosen such that the sensitivity to
CPV is maximized. The optimal value of q = 0.1 was chosen by finding, for r = 2, the
minimum average CL p-value for which the CPC hypothesis is excluded given the toy model
CPV Dalitz plot distributions, as obtained from an ensemble of Ne = 500 distinct datasets
generated from the BaBar model [2], see further details in appendix D. In the analyzed
examples, changing r in the definition of the distance eq. (2.3) did not lead to significant
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changes in the sensitivity. Thus, in the numerical results below we use the optimized values
{r = 2, q = 0.1}, while in appendix D we also show the results for the non-optimal choices,
{r = 2, q = 1} and {r = 2, q = 10}.

To determine the p-value with which the CPC hypothesis is excluded for the particular
CPV Dalitz plot sample, one needs the Wq probability distribution functions (PDF) for the
CPC Dalitz plot distributions. In the experiment one can determine the CPC PDF using
the permutation method, which, as we show next, is estimated to lead to only a relatively
small bias compared to the true CP conserving PDF.

3.1 Testing for bias in the permutation method

In order to assign a p-value with which the CPC hypothesis is excluded, given two samples
of B and B̄ decays, one first calculates the Wasserstein distance between the two, W exp

q .
This encodes the dissimilarity between the two distributions of events. However, the value of
W exp
q by itself is not particularly informative, except that smaller W exp

q values indicate more
similar distributions. For a quantitative assessment of CPV we need the distribution of Wq

for the CP conserving case. We obtain this using two methods: 1. using the permutation
method, i.e., by permuting the original B and B̄ samples (which have non-zero direct CPV)
and then calculating Wq for each such permutation and 2. using the master method, which
is the true CP conserving PDF given our assumptions: we generate an ensemble of B
and B̄ decay event samples, using the B decay model for both, and then calculate the
corresponding Wq probability density function (that is, we assume for simplicity that all
the CP violating phases reside in the B̄0 decay amplitude). The permutation method can
be implemented with experimental data, since it involves only the measured B and B̄ event
samples. Alternatively, one may also use the untagged decay dataset to construct the CP
conserving PDF allowing for increased statistics and the elimination of potential bias from
the tagging procedure. The master method, on the other hand, is only possible given a
theoretical model of the decay amplitudes.

The PDFs for the two methods, the permutation (orange) and master (blue), are shown
in figure 4, as obtained from an ensemble of Ne = 10 datasets containing N = N̄ = 103

events in each sample. We see that the permutation method is a very good approximation of
the true CP conserving PDF forWq. Such a test of a possible bias in the permutation method
can be performed for any multibody B decay (or any multibody distribution in general) for
which a reasonable description is available in terms of a resonance amplitude model.

One can also test for a potential bias in the permutation method using only experimental
data, but in this case only for N that corresponds to a fraction, for instance half, of the
measured sample size. That is, from data one can construct several distinct hypotheses for
the CP conservingWq PDF. The first CP conservingWq PDF hypothesis can be constructed
by randomly splitting the measured B decay sample into two halves and calculating the
corresponding distribution of Wq. An alternative CP conserving Wq PDF hypothesis is
similarly obtained by randomly splitting the measured B̄ decay sample. These can then
be compared to the Wq PDF that is obtained using the permutation method (but again
using only half of the measured B and B̄ decay samples). The differences between the three
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Figure 3. The Wq probability distribution function (PDF), the cumulative distribution function
(CDF), and the survival factor (SF=1-CDF) for the CPC case and r = 2, q = 0.1, obtained using
the master method with a fit to the Johnson’s SU distribution. The orange bands (blue band on
top panel) denote the ±1σ fit errors (statistical errors). The vertical red line (band) denotes the
average Wq value (the ±1σ Wq ranges) obtained from 103 CPV datasets. We see that, on average,
the CPC hypothesis is in this example excluded at the ∼ 3σ level, i.e., with a p-value of ∼ 0.005.

PDFs should be a good proxy for the size of the possible bias in the permutation method
when applied to the full dataset.

In the numerical results below we use the master method, i.e., the true CP conserving
PDF for Wq shown in figure 3, even though this is not accessible from experimental data.
This choice was done for numerical expediency, and we expect it to introduce only small
bias in the comparisons.

3.2 Tracing CP violating phase space regions using EMD

A benefit of the Wasserstein distance based statistic is that it traces in a straightforward
fashion the variation of the CP asymmetry across the Dalitz plot. The standard definition
of direct CP asymmetry, eq. (1.1), also applies to the differential distributions, eq. (1.2),
repeated here for convenience,

ACP(s12, s13) = dΓ̄(s̄12, s̄13)− dΓ(s12, s13)
dΓ̄(s̄12, s̄13) + dΓ(s12, s13)

, (3.1)

where dΓ(s12, s13) is the B0 → K+π−π0 partial decay width into the region of the Dalitz
plot with s12 = (pK+ + pπ−)2 ≡ m2(K+π−), s13 = (pK+ + pπ0)2 ≡ m2(K+π0). Similarly,
dΓ̄(s̄12, s̄13) is the CP conjugate partial decay width for B̄0 → K−π+π0, with s̄12 =
(pK− + pπ+)2 ≡ m2(K−π+), s̄13 = (pK− + pπ0)2 ≡ m2(K−π0). The binned version of the
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Figure 4. The Wq distribution function (PDF, top panel), and the survival factor (SF=1-CDF,
where CDF is the cumulative distribution function, middle panel) obtained from the permutation
method (orange) compared to the true CP conserving distribution (the master method, in blue),
while the bottom panel shows the ratio of the SF obtained using the two methods. Each distribution
consists of 103 Wq values with the solid curves and bands representing the average ±1σ ranges for
the bin counts obtained over 10 distinct distributions.

CP asymmetry ACP for the CP violating dataset, where we used the central values of the
parameters for the BaBar amplitude model from [2], is shown in the upper-right panel in
figure 5. The lower-right panel in figure 5 shows the binned ACP for the CP conserving
case, i.e., assuming that the B0 → K+π−π0 inputs in the amplitude model [2] apply to
both the B0 and B̄0 decays. The panels in figure 5 show expected CP asymmetries in each
bin, obtained by averaging over an ensemble of Ne = 100 datasets containing N = N̄ = 103

B and B̄ pairwise samples.
Next, we define the Wasserstein asymmetry utilizing the Wasserstein statistic Wq,

eq. (2.1). We denote the contribution to Wq from each datapoint i in the B0 Dalitz plot
as δWq(i), and likewise δW̄q (̄i) denotes the contribution from datapoint ī in the B̄0 Dalitz
plot, such that

W q
q =

∑
i

δWq(i) =
∑
ī

δW̄q (̄i). (3.2)

We define the binned Wasserstein asymmetry Wq
CP within each bin in figure 5 as

Wq
CP(s12, s13) =

∑
ī δW̄q (̄i)−

∑
i δWq(i)∑

ī δW̄q (̄i) +∑
i δWq(i)

, (3.3)
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Figure 5. Binned Dalitz plot comparison between the Wasserstein asymmetry Wq
CP (left) and

direct CP asymmetry ACP (right), shown for CP violating B0 → K+π−π0 decays (top) and CP
conserving decays (bottom), i.e., decays in which the asymmetries in the amplitude model were
set to zero. The results shown are normalized and averaged over 100 datasets, each containing
2N = 2× 103 (B and B̄) events.

where the summation over i
(
ī
)
is only over the data-points contained in the bin centered at

(s12, s13) (the CP conjugated B̄0 bin centered at (s̄12, s̄13)). By construction, Wq
CP vanishes

when summed over the whole Dalitz plot, i.e., when there is only one bin encompassing the
whole Dalitz plot. The Wasserstein asymmetry Wq

CP is also statistically consistent with
zero in the regions of the Dalitz plot that have vanishing CP asymmetry. Comparison of left
and right panels in figure 5 shows that Wq

CP faithfully traces the variation of ACP over the
Dalitz plot, including the statistical fluctuations, most readily visible in the CP conserving
datasets shown in the lower panels in figure 5. This makes the Wq

CP easily interpretable in
terms of the underlying physics, i.e., which components of the resonant structure contribute
most to the CP violation.

The advantage of Wasserstein distance over direct CP asymmetry, eq. (3.1), as a
measure of CP violation in the Dalitz plot distributions is that Wq does not require binning.
It is a global quantity that encodes the cumulative differences between the B0 and B̄0

Dalitz plots. As such it can be used as a statistic sensitive to the CP violating Dalitz plot
distributions. In figure 6 we compare the sensitivity of Wq to CPV relative to another such
unbinned statistic, the energy test statistic T [5, 6, 8], see appendix E for further details on
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decays, calculated using either the Wq or T statistics (dots), with 1σ fit error bars shown as lines,
and setting q = {0.1, 1, 10} (from left to right). The fraction ε of points above the p(Wq) = p(T )
diagonal line denotes the fraction of ensembles for which Wq is more sensitive to CPV. The dotted
gray lines (solid bands) show the average (1σ ranges of) p-values for the ensemble.

the energy test. The energy test has already been successfully applied to search for CPV in
multibody decays [7]. On the other hand, we do not show comparisons with the SCP test,
a.k.a. the Miranda method [3, 4], which uses optimized bins. In our numerical studies we
found the SCP test to always be less sensitive.

From figure 6 we see that the Wasserstein distance and the energy test have comparable
sensitivity to CPV, but with Wq somewhat less sensitive on average. This can be quantified
by introducing

ε ≡ 1
Ne

Ne∑
i=1

+1 pi(Wq) < pi(T ),
0 otherwise,

(3.4)

where Ne = 500 is the ensemble size for which the CPC exclusion CL p-values were obtained
either using the Wq (giving p(Wq)) or the T statistic (giving p(T )). That is, ε gives the
fraction of randomly sampled datasets for which Wq statistic leads to stronger sensitivity
to CPV than the energy test. Since ε < 0.5 one may conclude that Wq is on average less
sensitive. However, the average p-values for Wq and T test statistics (dashed lines) agree
within 1σ ranges (gray bands). Similarly, many scatter points in figure 6 agree with the
p(Wq) = p(T ) line within the error bars that are reflecting the uncertainties with which
the p-values were determined from the fit. That is, for small p-values, p . O(10−4), we
estimate the significance of the exclusion using an extrapolation of a fit to corresponding
PDFs, where the fit distributions are chosen according to the minimization of a χ2. The
energy test statistic is fit with a gamma distribution while for q = 0.1, we fit the Wq master
distribution with Johnson’s SU distribution. Errors are assigned according to the 1σ bands
on the respective fit parameters, see appendix D.1 for further details. The ε ratio does not
take into account the error associated with our estimates of the p-value for each statistic.
These errors can be large especially for small p-values, and as such ε should only be used as
a cautious measure of performance.

The T statistic has a continuous parameter, σ, which defines the scale of correlations
probed by the energy test. For results shown in figure 6 the value of σ was set to its (close

– 10 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
8

to) optimal value σ = 0.2 GeV2, for which the energy test on average leads to the smallest
expected p-values. Similarly, the parameter q in Wq was optimized, with the results in
figure 6 shown for close to optimal value q = 0.1. Note that in the actual experiment the
above optimization should be performed on the mock data, using a model for B → Kππ

decay amplitudes, and not on actual experimental data, in order not to introduce bias. If the
amplitude model does not describe well the data, this would lead to suboptimal choice for
the continuous parameter and reduced sensitivity to CPV, but otherwise is not problematic.

We expect that the somewhat reduced sensitivity of Wq to CPV compared to the
energy test is because Wq also receives contributions from areas in the Dalitz plot that are
CP conserving. This is in contrast to the energy test statistic T , which has a vanishing
expectation value in those areas regardless of the number of events in the dataset. The
contributions to Wq from these regions, on the other hand, only slowly tend to zero with
increasing sample size N . That is, Wq may be written as the sum of two contributions

Wq =
∑
i

δWq(i) =
∑
i

[
δW signal

q (i)+δW noise
q (i)

]
where lim

N→∞

∑
i

δW noise
q (i) = 0. (3.5)

The term δW noise
q comes from CP conserving regions of the Dalitz plot, while δW signal

q is due
to the presence of CPV and tends to a nonzero value for N →∞. If the signal and noise
contributions preferentially occur at different length scales, one can construct a modified
Wasserstein distance test with higher sensitivity to CPV, as shown in the next subsection.

3.3 The windowed EMD

As discussed above, the disadvantage of the Wasserstein distance as a CPV test statistic is
that, because all δWq(i) are positive, it includes an abundance of small nonzero contributions
even in the absence of CPV, generating a long-tailed CP conserving PDF for Wq. Within
the Dalitz plot, CP violation manifests as local density differences between the B and B̄
datasets. If this CPV is either localized and/or relatively small, such as in B0 → K+π−π0

Dalitz plots, this translates into relatively small differences in the δWq(i) distributions
between CPV and CP conserving B0 decays.

This is illustrated in figure 7 (top), which shows binned counts of log(δWq), averaged
over the ensemble of Ne = 103 CPC (blue) and Ne = 103 CPV (orange) samples, each
containing N = N̄ = 103 events, with the bands denoting the 1σ ranges for bin counts.
Figure 7 (bottom) shows the difference between the average CPC and CPV bin counts, as
well as the 1σ ranges. We see that the δWq distributions for CPC and CPV cases overlap
significantly in many regions of pairwise δWq values. However, we also expect the CPC
distributions to be more likely to lead to smaller δWq, given that the B0 and B̄0 Dalitz
plot are more similar than in the CPV cases. Consequently, for the CPV case one would
expect an excess of datapoints with larger δWq and a related excess of CPC bin counts
at smaller δWq values, as shown in figure 7. Depending on the details of the Dalitz plot
the δWq distributions could exhibit other differences between the CPC and CPV cases not
present in the example in figure 7. For instance, if CPV is localized in a small region of the
Dalitz plot containing n events and of size d̂, cf. eq. (2.3), then we would expect an excess
of CPV δWq bin counts over CPC in figure 7 at δWq ∼ O(d̂/n). Once one sums over all
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Figure 7. Top: joined points (bands) represent the histogram of average (1σ range) log(δWq)
counts for 100 bins, i.e., the binned counts of the log of pairwise optimal transport distances between
B and B̄ sample events for N = N̄ = 103 sample sizes, averaged over ensemble of Ne = 103 samples,
for CPC (blue) and CPV (orange) datasets. Bottom: joined points in purple (purple band) denote
the average (1σ ranges of) differences between CPC and CPV log(δWq) counts, with the green band
denoting the [δWwin

min , δW
win
max] range for which sample events are used with positive weights in the

construction of the windowed Wasserstein distance statistic, cf. eqs. (3.6)–(3.7) (in this example the
range [δWwin

min , δW
win
max] for negative weights is taken to be zero).

δWq(i), and considers only the global Wasserstein distance Wq = ∑
iWq(i) as a measure of

CPV, the information about such differences in the δWq distributions is lost.
Since there is more information in the δWq(i) distributions than in the global Wq

observable, we can define an improved statistic Iq

Iq ≡
∑
i

w
(
δWwin

min , δW
win
max, δW

win
min , δW

win
max; δWi

)
, (3.6)

where for the example of B → Kππ decays we define the window function as

w(x) =


+1 x ∈ [δWwin

min , δW
win
max],

−1 x ∈ [δWwin
min , δW

win
max],

0 otherwise.
(3.7)

The window function w splits datapoints into three categories. The events in the high
δWq values window δWq ∈ [δWwin

min , δW
win
max], and the events in the anti-window of mid-range

δWq values, δWq(i) ∈ [δWwin
min , δW

win
max], are included in the windowed Wasserstein distance
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statistic Iq, but weighted with opposite signs, thus enhancing the difference between the
CPC and CPV distributions. The remaining events, for which the CPC and CPV δWq

distributions do not differ significantly, are instead not included in Iq. Keeping these events
would only dilute the sensitivity to CPV.

The optimization of window and anti-window ranges requires a model for B0 and B̄0

amplitudes. Importantly, the δWq values depend on the sample size N = N̄ , and thus
the optimization should be performed for the number of events actually measured in the
experiment. One could attempt a data driven optimization of w by splitting the measured
dataset into subsets, correcting for the effect of smaller sample sizes, but we did not explore
this further. For other decay channels, depending on the actual decay width distributions,
other forms of window function could be better suited than the one in eq. (3.7). For instance,
one could define multiple disjoint window and anti-window regions, or use weights that
are smooth functions of δWq, not just the discrete values {−1, 0,+1}. For B0 → K+π−π0

Dalitz plot and q = 0.1, N = N̄ = 103, there is on average an excess of CPC over CPV δWq

distributions in the mid-value region log(δWq) ∈ (−7.55, 7.3). However, it is accompanied
with a large variability in bin counts, and thus for this case it proves advantageous to define
Iq using only events in the window shown as the green band in figure 7, and drop all other
events (that is, the anti-window range is shrunk to zero). For other values of q both window
and anti-window ranges are nonzero, see appendix D.

Figure 8 shows, for q = 0.1, N = N̄ = 103, the comparison of p-values at which the
CPC hypothesis is excluded, when either the windowed Wasserstein statistic Iq or the global
Wasserstein statistic Wq are used, figure 8 (top), or if the energy test statistic, T , is used
instead, figure 8 (bottom). We see that the windowed Wasserstein distance statistics, Iq,
is as sensitive, or even slightly more sensitive, to the presence of CPV in the Dalitz plot
distributions than the energy test, while both outperform the global Wasserstein distance
statistic. Figure 8 also demonstrate that Iq, like Wq and the T test statistic, does not
introduce bias when CPC distributions are considered. As an additional confirmation that
the chosen windows are in fact selecting the relevant areas of the Dalitz plot associated
with CPV and CPC we plot in figure 9 the binned CP and Wasserstein asymmetries, but
in the later only keeping the events that contribute to Iq. That is, we define

IqCP(s12, s13) =
∑
īw(δW̄q (̄i))−

∑
iw(δWq(i))∑

īw(δW̄q (̄i)) +∑
iw(δWq(i))

, (3.8)

where each event is weighted according to the window function in eq. (3.7). The summation
over i

(
ī
)
is only over the data-points contained in the bin centered at (s12, s13) (the CP

conjugated B̄0 bin centered at (s̄12, s̄13)). The comparison of left and right panels in figure 9
shows that the chosen window from figure 7 does indeed correctly select the regions of the
Dalitz plot exhibiting CP violation and acts as a filter to better resolve CP asymmetries.

The shown results could be improved further. First of all, we did not perform a full
optimization of the window function eq. (3.7), but rather only selected among several discrete,
manually chosen, forms. It would also be interesting to explore if the features observed in
the δWq distributions, figure 7, can further inform amplitude models, in particular about
the existence of CPV regions with resonances interfering.
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Figure 8. The comparison of estimated p-value exclusions of CP conserving hypothesis for CPV
(left) and CPC (right) B0 → K+π−π0 decays, comparing the windowed Wasserstein distance Iq

with either the global Wasserstein Wq (top) or the energy test T (bottom) statistic, for q = 0.1, on
500 distinct datasets.
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Figure 9. The comparison of binned Dalitz plot asymmetry: the windowed Wasserstein asymmetry
Iq

CP (left) and the fractional CP asymmetry ACP (right), cf. also top panel in figure 5. When
compared with the asymmetry significance’s shown in figure 25 we see that the chosen window is
correctly filtering CP conserving δWq values and retaining δWq values in the most significant regions
of CPV.
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4 Application to three body D decays

Next, we apply the analysis to larger datasets with small but nonzero amount of CP
violation. As a concrete example we consider the three body D decay D0 → π+π−π0 and
its CP conjugated channel, D̄0 → π−π+π0. The CP violation in D decays is expected
to be small, parametrically suppressed by O(VcbVub/VcdVud) ∼ 10−3 [25–33] and has only
recently been measured to be nonzero [34, 35]. Further searches for CP violation within the
charm sector are highly motivated, since the discovery of enhanced CPV in specific modes,
including multibody decays, could point to a discovery of new physics (for sum rules that
the SM needs to satisfy see [36–38]).

The D0 → π+π−π0 decays have been studied at the LHCb using the energy test, and
found that the CPC hypothesis is excluded at the p = (2.6± 0.5)% C.L. [7]. Below, we show
how the Wasserstein distance based statistics could be used as alternative analysis strategies
to search for CPV in this and other multibody charm decays, taking D0 → π+π−π0 as a
toy example.

We generate the two datasets, for D0 → π+π−π0 and D̄0 → π−π+π0 decays, using the
BaBar amplitude model [39] implemented within the Laura++ framework [40], similarly to
the case of B0 → K+π−π0 decays discussed in section 3. As a toy example of CP violation
in the D0 → π+π−π0 Dalitz plot we follow ref. [8] (where this was used to explore the
sensitivity of the energy test), and increase for the generation of CPV datasets the fit
fraction of the ρ(770)− by 2% and the phase of the corresponding decay amplitude by 2◦.
The D − D̄ meson mixing is ignored in the generation of the samples.

The present experimental D → πππ decay samples are roughly 102 − 103 times larger
than the B → Kππ decay samples. Because of the current implementation of the Wasserstein
distance calculation that we use [9, 20], large statistic datasets present a numerical problem.
To solve the optimal transport problem utilizing the current publicly available linear
programming libraries require the full cost matrix d̂ij as the input. The cost matrix scales
as NN̄ ∼ O(N2) and quickly demands more random access memory than available in an
average personal computer. For example, the cost matrix for datasets containing ∼ 106

events, i.e., comparable to the number of currently experimentally available D0 → π+π−π0

decays, requires roughly 7 TB of memory space.
There are a number of solutions to the above memory problem. Below we develop two

strategies, both of which use approximate calculations of (variants of) Wasserstein distance
between the D0 and D̄0 decay samples: a binned Wasserstein test in section 4.1 and a sliced
Wasserstein test in section 4.2. The two approximate approaches to the Wasserstein based
statistic can be applied to large datasets, while continuing to use the publicly available and
optimized software. Alternatively, one could attempt to create a new optimal transport
algorithm geared toward large datasets, such as the D decays, utilizing lazy evaluation and
the sparseness of the transport matrix that does not require the full form of the cost matrix
as an input. The latter, however, goes beyond the scope of the present manuscript.

4.1 Binned Wasserstein test

Since the resonances in the D0 → π+π−π0 Dalitz plot have typical decay widths of
O(100MeV) or so, cf. figure 2, we expect it is possible to capture well the change of the
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Figure 10. Pictorial comparison between unbinned (left) and binned (right) Wasserstein statistic
methods. Note how in the binned case, the optimal transport algorithm effectively sets to zero in the
last step the number counts in the bins that have the same counts between the two CP conjugate
datasets (red and blue).

CP asymmetry across the Dalitz plot already with relatively modest numbers of bins. One
can then apply the Wasserstein distance statistic to the binned Dalitz plot data in order to
obtain a global measure of CPV in the distributions. While there is some loss of information
due to binning compared to the Wasserstein distance statistic applied to full samples, we
expect the loss to be small, if the binning is fine enough. In the limit of infinitely small
bins one of course reverts to the case of unbinned statistic discussed in section 3.

The binned Wasserstein distance is given by

W bin
q (E , Ē) =

[
min
{fij≥0}

Nb∑
i,j=1

fij
(
d̂ij
)q]1/q

, (4.1)

where Nb is the total number of bins in the D (and D̄) Dalitz plot, with bin counts wi (w̄j)
in the i-th (j-th) bin. In the Dalitz plot we will use equal binning along each dimension,
with nbins in each direction, so that the number of bins with nonzero entries equals to
Nb ' nbins(nbins − 1)/2.3 The minimization of the weights fij (f̄ij) gives the optimal
transport from bins in D to D̄ Dalitz plot, subject to the constraints

nbins∑
i

fij = w̄j

N̄
,

nbins∑
j

fij = wi
N
,

nbins∑
i,j

fij = 1 (4.2)

with the distances d̂ij taken to be between the centers of the i-th and j-th bins. The
construction of the binned Wasserstein distance statistic W bin

q is illustrated in figure 10.
Since the binned versions of E and Ē event samples use the same binning, the optimal
transport algorithm will always ‘zero’ out the like counts in each bin between E and Ē , i.e.,
it takes no ‘work’ to transport mass by zero distance. What is left is a representation of
the local bin count density asymmetry between E and Ē . These count density asymmetries
then get re-distributed by the optimal transport algorithm. Thus, instead of encoding the

3The equality sign applies in the mπ → 0 limit or for large enough bins. In our numerical implementation
we use square nb × nb arrays that cover fully the Dalitz plot and take Nb = n2

bins to be the total number
of bins, including the ones containing zero events. The bins outside the kinematically allowed region are
trivially zero, and do not add any complexity to the calculation of the binned Wasserstein distance, while
this approach simplifies the encoding of the Dalitz plot in the binned array.
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Figure 11. Comparison between the binned Wasserstein asymmetry Wq,bin
CP (left), cf. eq. (4.4), and

the binned CP asymmetry ACP (right) for the D0 → π+π−π0 Dalitz plot with N = N̄ = 106 events
in a sample, and nbins = 20.

CPV information via the distances between events in each dataset, as is done in Wq, the
CPV is now encoded as the excess or overabundance of weight between datasets (as well as
how far these weight overabundances in D Dalitz plot are from overabundances in the D̄
Dalitz plot).

Denoting the contribution to W bin
q from the i-th bin in the D0 Dalitz plot as δW bin

q (i),
and likewise by δW̄ bin

q (̄i) the contribution to W bin
q from ī−th bin in the D̄0 Dalitz plot,

such that
(W bin

q )q =
∑
i

δW bin
q (i) =

∑
ī

δW̄ bin
q (̄i), (4.3)

we define in analogy with eq. (3.3) the binned Wasserstein asymmetry Wq,bin
CP as

Wq,bin
CP (i) =

δW̄ bin
q (̄i)− δW bin

q (i)
δW̄ bin

q (̄i) + δW bin
q (i)

, (4.4)

where the ī-th bin in the D̄ Dalitz plot is the CP-conjugate of the i-th bin in the D
Dalitz plot.

Figure 11 shows a comparison between the binned Wasserstein distance asymmetry
Wbin
q (left panels) and the CP asymmetry ACP (right panels). We find that the binning

results in enhanced asymmetries when data is represented using the Wbin
q compared to
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Figure 12. The CPC probability distribution function (PDF), the cumulative distribution function
(CDF), and the survival factor (SF=1-CDF) as functions of the binned Wasserstein statistic W bin

q

for r = 2, q = 1, and nbins = 50, as obtained from the numerical master method result for the
PDF, consequently fit to a gamma distribution, for N = N̄ = 105 events in the sample, using an
ensemble of Ne = 103 samples. The orange bands (blue band in the top panel) denote the ±1σ fit
errors (statistical errors). The vertical red line (band) denotes the average W bin

q value (the ±1σ
W bin

q ranges) obtained from an ensemble of Ne = 102 CPV datasets for our toy D0 → π+π−π0

amplitude model.

ACP. This is true both for the CPV dataset, as well as for statistical fluctuations in the
CPC example. Since direct CP violation in D decays is small, it is hard to discern by eye
whether or not there is CP violation in the Dalitz plot distributions, and one is forced to
rely on a statistic sensitive to CPV in distributions such as W bin

q or the energy test.
Figure 12 shows that the Wasserstein test statistic is still sensitive to CP violation

despite the binning procedure. The three panels show from top to bottom the probability
distribution function (PDF), the cumulative distribution function (CDF), and the survival
factor (SF=1-CDF) as functions of the binned Wasserstein statistic W bin

q , for r = 2, q = 1,
and using nbins = 50, for CP conserving D0 → π+π−π0 Dalitz plot with N = N̄ = 105

events in the sample. The average W bin
q value (red vertical line) for our CPV toy D decay

model example is well above the bulk of the CP conserving W bin
q PDF. We see that, on

average, the CPC hypothesis is in this example expected to be excluded at the ∼ 2.5σ level,
i.e., with a p-value of ∼ 0.01.

In fact, figure 13 shows that the chosen binning size nbins = 50 (which was not
optimized) is already fine enough for N = N̄ = 104 that there is only little loss of sensitivity
to CPV compared to the unbinned Wq. In the scatter plot of p-values at which the CPC
hypothesis is excluded, we see that the exclusion levels obtained by either using the Wq

or the W bin
q statistic are comparable, and consistent within estimated errors (due to the
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Figure 13. The scatter plot of p-values at which the CP conserving hypothesis is excluded for our
toy D decay example. The plot shows an ensemble of Ne = 500 datasets with samples of N = 104

D0 → π+π−π0 (and N̄ = 104 CP conjugated D̄0 → π−π+π0) decays, with p-values calculated
either using the unbinned Wq, giving p(Wq), or using the binned W bin

q statistic with nbin = 50,
giving p(W bin

q ) (dots), where in both cases we set q = 1. The 1σ fit error bars on p− values are
shown as lines. The fraction ε of points above p(Wq) = p(W binned

q ) diagonal line denotes the fraction
of ensemble samples for which Wq is more sensitive to CPV than W binned

q is. The dotted gray
horizontal and vertical lines (solid bands) show the average (1σ ranges of) p-values for the ensemble.

systematic and statistical uncertainties in the extrapolation of the fit to the CPC PDF).
The binned Wasserstein statistic does have, however, the additional advantages of less
memory consumption (space complexity) and computational efficiency (time complexity)
due to the reduction of the dataset size from NN̄ to ∼ n2

bins. Whether nbins = 50 suffices
also for sample sizes 106, or whether fined binning will be required, should be tested when
the method is applied to the actual D decay data, however, we find the above results
quite encouraging.

4.2 Sliced Wasserstein test

The Sliced Wasserstein distance (SWq) is a variant of the Wasserstein distance, in which
the optimal transport in d-dimensions is replaced with a set of optimal transport problems
on 1D slices, with the data points projected onto them. That is, the sliced Wasserstein
distance SWq(g, f) between two distributions in d-dimension, g(x) and f(x), is given by [41]

SWq(g, f) =
(∫
Sd−1

Wq(Rg(·, θ), Rf(·, θ)dθ
) 1
q

, (4.5)

where Rg(·, θ) is the Radon transform of function g(x), defined to be the projection of
function g(x) onto the line in the direction of the unit vector θ, which then runs over the d−1
unit sphere Sd−1. The Wq in (4.5) is therefore a 1D Wasserstein distance between functions
Rg(·, θ) and Rf(·, θ). The 1D Wq has a closed form solution, given by the integrated
distance between the CDFs for the two functions, and can be efficiently calculated through
a simple sorting algorithm.
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Figure 14. Top: the approximate evaluation of SW q, eq. (4.6), as a function of the number of
slices used, Nslices, for a particular CPC D0 → π+π−π0 sample with N = N̄ = 104 events, setting
q = 1. The solid blue line (blue band) shows the mean (1σ range) of the SW q estimates obtained
from an ensemble of 50 different samplings of Nslices slices for each solid point. Bottom: the speed
up of calculating SWq compared to Wq defined as the ratio of computational times in the two cases,
tratio = tWq

/tSWq
.

The sliced Wasserstein distance can thus be efficiently calculated, at least approximately,
by performing a large enough number of slices, Nslices,

SWq(g, f) ≈
( 1
Nslices

Nslices∑
k=1

Wq(Rq(·, θk), Rfν(·, θk))
) 1
q

, (4.6)

where θk are random unit vectors uniformly distributed over the unit sphere Sd−1. In the
Nslices →∞ limit the l.h.s. approaches the r.h.s. in the above equation.

Importantly for our purposes, both Wq and SWq(g, f) are distances in the space of
functions and both measure dissimilarity of f and g distributions. The SWq can therefore
also be used as a test statistic, in the same way as we used the Wasserstein distance
Wq in the previous sections. Furthermore, SWq is closely related to the Wasserstein
distance, Wq. For instance, for q = 2 we have SW2(g, f) ≤ W2(g, f)/

√
d, and in general

SWq(g, f) ≤ cqWq(g, f) with a known constant cq ≤ 1 (for q ∈ [1,∞)).
The improved computational efficiency for SWq relative to Wq is shown in figure 14.

The ratio of the computing times, tratio = tWq/tSWq , where tWq(tSWq) denotes the time
required to calculate Wq (approximate calculation of SW q using eq. (4.6)) for a particular
D0 → π+π−π0 sample with N = N̄ = 104 events, where we take q = 1. For small number
of slices, Nslices ∼ O(10) the speed up is several orders of magnitude, however, at that
point also the approximate evaluation of SW q still has a large uncertainty. The latter
is denoted with the blue band, corresponding to 1σ range of SW q values obtained using
eq. (4.6), cycling through 50 iterations. We observe that in this example the SWq evaluation
is faster than the Wq one for Nslices . 7500. We also observe that the approximate SWq

evaluation converges to its limiting value for Nslices ≈ 1000, indicating a ∼ 7× speedup
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Figure 15. The scatter plot of p-values at which no CPV hypothesis is excluded, calculated using
SWq and Wq for Nslices = 102, 103, 104 (from left to right), for the ensemble of a Ne = 500 datasets
with samples of N = 104 D0 → π+π−π0 (and N̄ = 104 CP conjugated D̄0 → π−π+π0) decays. The
fraction ε of points above p(Wq) = p(SWq) diagonal line denotes the fraction of ensemble samples
for which Wq is more sensitive to CPV than SWq.

in the calculation of SWq compared to Wq. Beyond the speed-up, and maybe even more
importantly for the scaling to large sample sizes, the evaluation of SWq does not require
large memory resources. We have also checked that as the number of slices increases the
SWq and Wq distributions, obtained from an ensemble of N = N̄ = 104 event samples,
agree up to a scaling factor as expected. Finally, since we are interested in the sensitivity to
CPV and not in SWq itself, we show next that a high sensitivity to CPV can be achieved
already with relatively approximate estimate of SWq, relying on just a limited number
of slices.

Figure 15 shows the p-values at which the CPC hypothesis is excluded, either calculated
using Wq (giving p(Wq)) or via approximate evaluation of SWq using eq. (4.6) (giving
p(SWq)) for three different values of slices, Nslices = 102, 103, 104 (from left to right). The
fraction ε of points above p(Wq) = p(SWq) diagonal line denotes the fraction of Ne = 500
datasets ensemble of N = N̄ = 104 event samples for which Wq is more sensitive to CPV
than SWq. We see that even for Nslices = 102 the obtained p-values are already comparable
to the p-values obtained using fullWq, even though at that point the approximate evaluation
of SWq still has a rather large spread, cf. figure 14. This is quite encouraging, and it would
be interesting to explore in the future whether this feature remains for larger sample sizes.
Similarly, it would be interesting to explore where a windowed SWq, defined in analogy
with the windowed Wasserstein distance statistic Iq, would lead to a similar increase in
sensitivity to CPV that we saw in the case of full Wq.

5 Conclusions

The Wasserstein distance based test statistics are potentially powerful tools that can be
used to search for the presence of CP violation in multibody decays. They combine the
benefits of two alternative tests sensitive to CPV in distributions: (i) in a similar way as the
binned CP asymmetry, the Wasserstein distance based test statistics trace asymmetries to
the regions of phase space the CPV resides in, while at the same time (ii) being a sensitive
probe of CPV as an integrated measure, in a similar way as the energy test is.
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Figure 16. The expected 1σ, 2σ, 3σ C.L. contours (red shaded regions) in the (ACP, W̃q = Wq−W q)
plane, assuming CP conserving B0 → K+π−π0 decays. The black lines show the current global
average for ACP = 0.064± 0.050 as well as the 1σ range for W̃q that follows from our toy model of
CP violation in distributions, introduced in section 3. The data was generated by first randomly
sampling ACP via a Gaussian with mean µ = 0 and standard deviation σ = 0.05 to mimic the
uncertainty in the global average, selecting B and B̄ decays accordingly with the total number
of events fixed to 2× 103, and computing Wq. This was repeated with 103 distinct datasets and
contours drawn according to a numerical integration of a 2-dimensional joint PDF where W̃q and
ACP were assumed to be independent.

In this manuscript we introduced several such Wasserstein distance based test statistics,
taking the multibody B0 → K+π−π0 and D0 → π+π−π0 decays as concrete examples for
numerical studies. The simplest one is the Wasserstein distance, Wq, see eq. (2.1) for the
case of B0 and B̄0 decays. The use of Wq as a measure of CPV in principle requires no
tuning, though there are optimizations that can be made regarding the exact definition of
the distance in the Dalitz plot one uses, eq. (2.3), as well as the value of the continuous
parameter q in the definition of the Wasserstein distance, eq. (2.1). For instance, instead
of the fully symmetric definition of the distance in eq. (2.3) one could have used a simple
Euclidean distance in the Dalitz plot, or the Euclidean distance in the square Dalitz plot.
One can also tune the value of q using an amplitude model to obtain the highest expected
sensitivity to CPV, as we did in section 3 (see also appendix D.2). However, even without
an amplitude model, origins of CPV across the Dalitz plot can be identified. Such tests
allow for unbinned, model independent tests of CPV in the phase space of distributions,
thereby informing future analyses. Its use with weighted datasets is also straightforward, as
illustrated in section 4.1.

Since Wq measures the cummulative presence of CPV in the Dalitz plot one therefore
needs only two observables to fully quantify the amount of direct CPV in a multibody B
decay: the total direct CP asymmetry, ACP, and the Wasserstein distance Wq (or a related
Wasserstein distance test statistic such as the windowed Wasserstein distance Iq). This is
illustrated in figure 16, which shows a contour plot of ACP vs W̃q = Wq −W q, where W q

is the median Wq expected for CP conserving B decays (in this case obtained using the
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amplitude model, but could be obtained using permutation method). For CP conserving
decays both ACP and W̃q are consistent with zero within statistical uncertainties, and would
be nonzero if there is significant CP violation. The two give complementary information:
ACP is nonzero if there is a difference in the partial decay widths between B0 → K+π−π0

and B̄0 → K−π+π0 decay channels, while W̃q is nonzero, if there is a difference between
the phase space distributions of the two CP conjugated decays.

For its simplicity, Wq does have a drawback — due to the CP conserving noise it
usually results in a lower sensitivity to CPV compared to the energy test with an optimized
regulator function. Applying filters on the optimal transports for each individual B0 and B̄0

decay datapoints in the Dalitz plot, however, gives an optimized version of the Wasserstein
test statistic, Iq, with sensitivity to CPV indistinguishable on statistical basis from the
optimized energy test. In section 3.3 we focused on windowed filtering, with Heavyside step
functions abruptly switching on and off (or assigning negative weights) to certain ranges of
optimal transport distances, however, one could have also used other filtering variants with
smooth versions of the window function eq. (3.7).

The windowed Wasserstein distance statistic Iq can match the extreme sensitivity of
the energy test to the presence of CPV, a feature which can ultimately be attributed to the
lack of long-tailed CP conserving probability distributions in both cases. That is, the energy
test statistic successfully mitigates superfluous contributions from CP conserving variations
among data samples. This comes at the price of additional N(N − 1) + N̄(N̄ − 1) ∼ O(N2)
computations (cf. the first two terms in eq. (E.1), encoding the CP conserving distance
variations within each sample), as well as the need for a regulator function ψ, which restricts
contributions to be only within a sphere of influence of radius σ, see appendix E. Such
suppression of CP conserving variations is expected to be necessary for any metric based
statistic with enhanced sensitivity to CPV. As we showed in section 3.3 the suppression
of CP conserving variation can be implemented for the case of the Wasserstein distance
based statistics by using windowed filtering. Again, this comes at the cost of additional
computations required for the optimization of the filtering window function.

The computation requirements may become prohibitive when faced with large datasam-
ples, such as the D decays with N & 106 events in a sample. In that case one can use
approximate versions of Wasserstein distance to construct test statistics that scale better
with N , at a rather small cost to sensitivity. In section 4 we discussed two such possibilities,
the binned Wasserstein test statistic, W bin

q , and the sliced Wasserstein test statistic, SWq.
Both were shown to give similar sensitivities to CPV as Wq, when either the binning is fine
enough (for W bin

q ) or for large enough number of slices (for SWq).
The work presented in this manuscript could be extended in several directions. The

extension to higher dimensional spaces, such as the n-body meson decays, n ≤ 4, is
straightforward with no changes to the formalism required. The main question in that
case is the scaling with the number of particles in the final state, where the usual curse of
dimensionality may be mitigated by the fact that the multi-body decays tend to have large
quasi-two-body resonant decay structure. Less trivial extensions include time dependent
weighting of decay rates in order to probe indirect CP violation. Finally, one could explore
other deviations from the Wasserstein distance. For instance, an interesting direction would
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Figure 17. Pictorial representation of the EMD4CPV program architecture. The largest box represents
the highest level class, delta_Wq, followed by lower level sub-classes contained within it. The arrows
represent the inheritance of each sub-class.

be to explore entropic smoothing of the Wasserstein distance, i.e., an entropic regularization
of the optimal transportation problem. The resulting Sinkhorn divergence depends on a
hyperparameter λ which interpolates between the Wasserstein distance (λ =∞) and the
energy test (λ = 0) [19].

Finally, we provide a public code EMD4CPV that allows a straightforward use of the
introduced Wasserstein based statistics for two-sample tests, with further details about the
code given in appendix A,
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A Public code EMD4CPV

The public code and repository for this project may be found at

https://github.com/adamdddave/EMD4CPV.

The program architecture is hierarchically structured, resembling a nested doll of classes
and subclasses, as shown schematically in figure 17,

delta_Wq(delta_Wq_statistics(delta_Wq_fit(delta_Wq_versus))). (A.1)

The delta_Wq is the highest level class and contains the sub-class delta_Wq_statistics,
which in turn contains the sub-class delta_Wq_fit, which finally contains the sub-class
delta_Wq_versus. This nested structure was implemented for three main reasons. Firstly,
the modularity improves readability and the ease of use, since the programs using the

– 24 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
8

classes are structured as function calls from a software library. Secondly, this class-subclass
structure follows the natural progression of the analysis pipeline used to compute and
compare different Wq based statistics. For example, a typical usage of the library will follow
a nested call of functions within each class,

delta_Wq→ delta_Wq_statistics→ delta_Wq_fit→ delta_Wq_versus. (A.2)

Finally, since each sub-class inherits all functions from the previous class this allows the
user to work at any level of the program architecture while only needing to initialize one
class instance. While the use case of the program is oriented toward 3-body decays, the
code is generic enough such that it can be used with any n-dimensional dataset.

Below we summarize briefly the software pipeline (see the documentation as well as
the example Python notebook example.ipynb within the repository for more details):

• The delta_Wq class contains functions which allow the user to input two n-dimensional
distributions and obtain the associated binned or unbinned δWq values chosen by
the optimization. Since in most cases the CP conserving distributions (functionals of
δWq) need to be calculated, the class is set up such that the generation of the CP
even distributions via the master or permutation methods can be done efficiently by
randomly selecting a subset of unique datapoints from a larger datapool provided by
the user in the form of a text file. In addition, this class may be used to compute the
sliced Wasserstein distance SWq.

• Once the δWq ensemble is obtained, the subclass delta_Wq_statistics can be used
to compute the Wq, Iq, or any other user defined statistical distributions.

• Oftentimes, when computing the p-values from the CPV datasets a fit is needed
in order to extrapolate outside the ranges of explicitly calculated CP conserving
distributions. These fits can be performed using the delta_Wq subclass which allows
the user to iteratively fit to any distribution within the SciPy.stats library and
return the associated PDFs, CDFs, SFs, χ2-values, as well as the PDFs, CDFs, and
SFs associated with the ±1σ errors on the fit parameters.

• Finally, the delta_Wq_versus4 subclass may be used to iteratively compare the
sensitivity of different statistics on ensembles of like datasets.

• Additionally, for convenience, the script energy_test.py provides a Python imple-
mentation of the energy test statistic, i.e., the computation of the test statistic T
(see eq. (E.1)) between two n-dimensional distributions for use when computing CPV
statistic values in delta_Wq_versus. The program also includes an interface with
Manet [8] (which utilizes the CUDA API to parallelize the computation on NVIDIA
GPUs) such that the user can efficiently generate large statistic CP conserving T
distributions if desired.

4This subclass requires Python 3.10+ while all other classes require Python 3+.
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B The optimal transport problem

Consider two discrete samples P and P̄ , the first consisting of n points sampled from
probability distribution p, each with weight wi such that total weight is W = ∑

iwi, and the
second consisting of n̄ points sampled from p̄ with weights w̄i and total weight W̄ = ∑

i w̄i.
The problem optimal transport consists of transporting the weight W of P into the weight
of W̄ of P̄ , i.e., P → P̄ , as efficiently as possible given some cost function related to the
distances among the points.

This requires minimizing an n× n̄ transport plan matrix T , which contains information
about the amount of work required to transporting P → P̄ , such that the work required is
minimal. The transport matrix thus requires knowledge of both the distances between i-th
and j-th points as well as the amount of weight to be transported between the points of P
and P̄ . The distances between each point in P and P̄ can be encoded in an n× n̄ matrix C.
The information about the transportation of weights can be encoded via the n× n̄ ‘flow’
matrix F subject to ∑i Fij = w̄j ,

∑
j Fij = wi. That is, F specifies the fractional amount of

weight to be transferred from i-th point in P to the j-th point in P̄ , subject to the condition
that the total weight from each point must be conserved.5

The total work or ‘cost’ of a given configuration is then given by the inner product
of the flow and distance matrices T = 〈F,C〉. Finding the most efficient plan amounts to
finding the transport plan F which minimizes the total cost. We denote the optimal flow
matrix as F∗ and define the Wasserstein distance as

Wq = 〈F∗,Cq〉1/q ≡

 n∑
i

n̄∑
j

F ∗ijC
q
ij

1/q

(B.1)

Solving for Wq optimally takes super-cubical time complexity with respect to the size of
the input datasets O(N3) [42].

C EMD analysis of Gaussian distributions

In this appendix we give further details on how the Wasserstein distance Wq can be used as
a statistic sensitive to dissimilarities between two distributions. We use the toy example
of two displaced Gaussian distributions, either in 1D or 2D, where the difference between
distributions is taken to be controlled by a single “CP violating” parameter. We consider
two limits: i) the two Gaussian peaks do not overlap, but are rather displaced by ∆µ, and
ii) the peaks of the two Gaussian distributions overlap, while their widths differ, ∆σ 6= 0.

In the main text we showed an example for the first choice where we considered two 1D
Gaussians displaced by ∆µ = 40 and with widths σ = 10, cf. figure 1, where d̂ij in eq. (2.1)
here and below is taken to be the Euclidean distance. Since the optimal transport needs to
move the points in the datasets sampled from the two distributions by a distance ∼ ∆µ,
the Wasserstein distance coincides with ∆µ, W1 → ∆µ, for large N (this is true to quite a
good degree even for rather small values of N , cf. figure 1). This is also shown in the top

5Note that a particular transport configuration is not required to be a bijective map, i.e., the weight of a
particular point in P can be partitioned to different points in P̄ .
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Figure 18. The dependence of W1 on the displacement ∆µ (top row) or the width difference ∆σ
(bottom) of the two Gaussian distributions. Middle panels show the corresponding W1 distributions,
while the right panels show the linear dependence of the average value W̄1 on the displacement ∆µ
and width difference ∆σ. The error bars shown in the right panels denote the 1σ bands of the W1
distributions shown in the middle panels.

panels in figure 18, where we consider 11 different values ∆µ = 0, . . . , 10, while σ = 1, cf.
figure 18 (top left). The distributions of W1 straddle ∆µ for ∆µ sufficiently far away from
zero (for ∆µ = 0, W1 ≥ ∆µ since W1 is nonnegative), shown for N = N̄ = 103 in figure 18
(top middle). Figure 18 (top right) shows that the average value of the Wasserstein distance,
W̄1, linearly increases with ∆µ, where for small values of ∆µ/σ there is a deviation from
this linear behavior, which however is almost imperceptible on the plot.

The lower panels in figure 18 show the dependence of Wasserstein distance on the
width of the distributions. In this example one Gaussian distribution is held fixed, G(x) =
N (x|µ = 0, σ = 1) while the other is taken to have different widths but a coinciding peak,
Ḡ(x) = N (x|µ̄ = 0, σ̄), σ̄ = 1, . . . , 7, see figure 18 (bottom left). With increasing σ̄ the
typical value of Wasserstein distance W̄1 increases, since the two distributions differ more
and more, see figure 18 (bottom middle). The values of theW1 also form a wider distribution
for larger values of σ̄, since the larger difference between the two Gaussians translates to a
larger scatter of optimal transportation distances. The increase in the average value of the
Wasserstein distance, W̄1, is linear in ∆σ = σ̄ − σ, cf. figure 18 (bottom right).

Next, we check that the W1 statistic leads to the same CL intervals as the negative log
likelihood. Figure 19 (left) shows the expected 90%, 3σ and 5σ CL for ∆µ as a function of
N (solid contours) that follow from a known ∆µ = 0 probability distribution for W1. These
coincide with the expect CL exclusion intervals obtained from the negative log likelihood for
∆µ (dotted contours). We see that in this case the W1 statistic gives the correct coverage
for all considered values of N and ∆µ.
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Figure 19. The expected 90% C.L., 3σ, and 5σ exclusion lines for different Gaussian peak
displacements, ∆µ/σ, and sizes of statistical samples Nstat using EMD W1 statistic (negative log-
likelihood) are denoted with dashed (solid) lines, where one uses either true (left) or modeled (right)
∆µ = 0 probability distributions.

In figure 19 (right) we also show the estimates of the exclusion contours that follow
from a permutation (or re-randomization) test, i.e., where the symmetric “CP-even” W1
probability distribution is modeled by randomly sampling events from E and Ē . We see that
the re-randomization estimate of the true ∆µ = 0 probability distribution for W1 results in
a bias and thus in underestimated exclusion p-values. The benefit of the re-randomization
is that such modeling of “CP-even” W1 probability distribution is always possible, however
it also means that the use of Wq statistics is best suited for the cases where one has already
a reasonable model of the distributions and can check potential bias due to the use of
permutation test. The multi-body B and D decays fall in this category since one can use
the fitted for amplitude models to estimate the potential bias in the permutation method
for Wq statistic. This was found to be small for the two B and D decays considered in the
main text.

A toy example that is closer to the case of three body B and D decay Dalitz plots is the
example of two displaced 2D Gaussian distributions, g(x, y) ∼ N (x|µx−∆µx/2, σ)N (y|µy−
∆µy/2, σ), and ḡ(x, y) ∼ N (x|µx + ∆µx/2, σ)N (y|µy + ∆µy/2, σ). For simplicity we take
the widths of all the Gaussian distributions to be the same, so that there is no CP violation
(the two distributions are the same) if and only if ∆µx = ∆µy = 0. The statistical analysis
of this case is a trivial extension of the case of a 1D Gaussian toy model. Using the true
“CP-even” W1 distribution for ∆µx = ∆µy = 0 leads to the correct coverage, while the
permutation method gives some bias, as in the 1D case.

For two-dimensional distributions there are additional observables and visualization
tools that prove to be useful. First of all, for arbitrary two-sample 2D distributions one
can define a Wasserstein distance asymmetry distribution Wq

CP in the same way as for the
Dalitz plot, eq. (3.3),

Wq
CP(x, y) =

∑
ī δW̄q (̄i)−

∑
i δWq(i)∑

ī δW̄q (̄i) +∑
i δWq(i)

, (C.1)

where the summation over i (̄i) is only over the data-points from g(x, y) sample contained
in the bin centered at (x, y) (from ḡ(x, y) data in the bin centered at (x, y)). In addition,
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Figure 20. The Wasserstein distance asymmetry heatmap ωq
CP, q = 1, for two 2D Gaussian

distributions with equal widths, σ = 1, but displaced by ∆µx = ∆µy = 3, where the sample sizes
are N = N̄ = 103. Changing the binning size, from 50× 50 bins (left) in the range shown to 25× 25
bins (right) does not change the overall size of the asymmetry heatmeap, just coarse-grains it, since
the asymmetry is an intensive quantity normalized to the area.

we can also define a Wasserstein distance asymmetry heatmap

ωqCP(x, y) = 1
si

(∑
ī

δW̄q (̄i)−
∑
i

δWq(i)
)
, (C.2)

where si = ∆xi∆yi is the area of the bin center at (x, y).
Both Wq

CP(x, y) and ωqCP(x, y) are intensive quantities. That is, in the large Nstat limit
and small bin sizes the Wq

CP(x, y) and ωqCP(x, y) become independent of the sizes of the
bins (that is as long as bins are small enough such that the variation of Wq

CP(x, y) and
ωqCP(x, y) from bin to bin is negligible). A numerical example for ωqCP(x, y) is shown in
figure 20, where we see that changing the size of the bins simply corresponds to averaging
the Wasserstein distance heatmap over a larger area.

For relatively small samples it is also possible to visualize the optimal transport for each
individual point, an example of which is shown in figure 21 for two-sample 2D Gaussian
distributions displaced by ∆µx = 40,∆µy = 40, and a sample size of N = N̄ = 150. The
optimal transport moves the datapoints sampled from distribution G (blue) to data sampled
from Ḡ (red) shown with lines connecting pairwise the two samples. Since the two samples
are of the same size, the optimal transport is a bijective map between G and Ḡ datasets.
We see that the typical shift is of order ∆µ = (∆µ2

x + ∆µ2
y)1/2, with datapoints on the far

(near) side of G distribution transported to near (far) side of Ḡ distribution, where near/far
is defined with respect to the barycenter of G and Ḡ.

D Details on EMD-test for three body decays

In this appendix we give further details on the implementation of Wasserstein distance as a
measure of CPV in three body B and D decays. In section D.1 we discuss the details of the
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Figure 22. The CP conserving PDF, CDF and SF distributions for Wq (left) and Iq (right) obtained
using the master method for B0 → K−π+π0 decays with q = 0.1 and N = N̄ = 103. The different
fit functions are denoted in the legend, along with respective χ2 values.

error analysis on the quoted p-values, in section D.2 the optimization of the q parameter,
while in section D.3 we collect the additional results for q = {0.1, 1, 10}, supplementing the
results shown in the main text.
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Figure 23. Same as figure 22 but for q = 1 (top panels) and q = 10 (bottom panels).

D.1 The p−value error analysis

In the numerical results in the main text we determine the p-value at which the hypothesis
of CP conservation is excluded from the master Wq distribution. This is numerically
advantageous since it does not need to be recalculated for each dataset of B and B̄ or D
and D̄ events, while given the results in figure 4 we do not expect to introduce a significant
difference to the estimates using the permutation method.

For B decays we calculate the master Wq distribution from 104 unique samplings of B
and B̄ datasets, each with 103 events, while for D decays we use 103 unique samplings of
D and D̄ datasets, each containing 105 events. The master Wq PDF is fit with a smooth
curve. First, the data is binned such that each bin is populated with at least one event. An
initial fit is then performed using the SciPy’s non-linear least squares fitter, from which
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we obtain the initial values of the fit parameters. These parameters are then passed to
the SciPy’s curve_fit function along with statistical errors on the ith bin according to
δNi =

√
Ni(1−Ni/N). This returns an updated list of fit parameters along with the

parameter covariance matrix. The 1σ parameter fit values are given as the square root of
the diagonal elements of the covariance matrix. Errors on p-values are then estimated by
considering the one sigma confidence bands on the SF distribution as shown in figure 7.
From the fit of the PDF we compute the survival factor distribution, SF=1-CDF, from
which one can directly read off the p-value with which the no CPV hypothesis is excluded,
for each value of the measured W exp

q , as seen in figure 3. For many of the CPV datasets we
consider the value of the statistic W exp

q falls well outside the range for which the master
distribution was computed. For these cases we use the fit to extrapolate to smaller p-values,
where the error on the extrapolation is estimated from errors on the fit parameters as
described above.

The results of the above procedure for B0 → K+π−π0 decay samples of size N =
N̄ = 103 are shown in figures 22, 23 for the Wasserstein statistic Wq and windowed
Wasserstein statistic Iq for q = 0.1, 1, and 10. The CPC PDFs are iteratively fit to built-in
continuous distributions contained in the SciPy statistics library, as listed in the legend of
the corresponding panels. In most cases, the best fit is chosen according to the minimum of
a χ2 statistic, however, in cases where multiple distributions achieve similar χ2 values, the
distribution that best matches the tail of the distribution is chosen. In particular, for Iq we
use the skewnorm fit for the extrapolation to small p-values.

D.2 Optimizing the q value

The Wasserstein distance weighting exponent parameter q, eq. (2.1), may be tuned to
maximize the expected sensitivity to CPV in a particular distribution, such as the B0 →
K+π−π0 Dalitz plot. Such an optimization of course depends on the assumed model for
B0 → K+π−π0 decay amplitudes and in particular on the assumed values of the strong
and weak phases that are hard to calculate but can in principle be fit from data.

In the example shown in figure 24 we used the nominal toy model for CPV in B0 →
K+π−π0 Dalitz plot that we used throughout section 3, with the amplitudes and phases for
B0 and B̄0 isobar models set to the central values of the measurement in ref. [2]. Similarly,
for the CPC datasets we use the central values of amplitudes and phases in the B0 BaBar
isobar model [2] for both B0 and B̄0 decays. Figure 24 shows the variation with q of
the expected C.L. p(Wq) for exclusion of the CPC hypothesis, given our CPV model,
for N = N̄ = 103 event sample sizes. The blue bands give a 1σ range of expected C.L.
exclusions as obtained form an ensemble of Ne = 500 CPV samples. We see that for q . 0.1
the expected p(Wq) remains unchanged when lowering q within the range considered, while
for higher q there is in general diminished sensitivity to CPV, with the exception of the
region around q ∼ O(10). We suspect that these ranges of q correspond to typical scales in
the problem, i.e., the typical widths of the resonances (relative to the mass of B quark),
but did not explore this hypothesis further.

In the numerics in the main text we chose q = 0.1, which roughly optimizes the
sensitivity to CPV, but show in section D.3 below also the results for q = 1, 10.
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Figure 24. The q dependence of expected exclusion C.L., p(Wq) (blue dots joined by a solid line),
at which the CP conserving hypothesis is excluded for N = N̄ = 103 event sample sizes, obtained
by performing ensemble averages over Ne = 500 CPV datasets, with the blue band indicate the 1σ
spread of p-values over the ensemble.

D.3 Further results for q = 0.1, 1, 10

In this appendix we list further results for Wasserstein distances with q = 0.1, 1, 10 both for
B and D decays, supplementing the results discussed in sections 3, 4.

Figure 25 shows the CP asymmetry significance, ACP/δACP, where the error on the
CP asymmetry is given by

δACP =
√

1−A2
CP

N + N̄
. (D.1)

The upper panels in figure 25 show the CP asymmetry for the case of B0 → K+π−π0 decay,
with our toy example CPV amplitude model (left panel) leading to clearly identifiable regions
in the Dalitz plot with CPV, and only noise in the Dalitz plot for the CPC case (right).
The difference between CPV and CPC decays is less pronounced in the D0 → π+π−π0.
Even so the Wasserstein distance based test statistics can still lead to exclusions of CPC
hypothesis (cf. figure 12, where the analysis was done for a sample size of N = N̄ = 105).

Figure 26 shows the relative difference between the binned Wasserstein distance asym-
metry, Wq

CP, defined in eq. (3.3), and the CP asymmetry, ACP, eq. (3.1). This complements
figure 5 and figure 27, which show the actual values of the binned Wasserstein distance
asymmetry, Wq

CP, and the CP asymmetry, ACP for q = 0.1 and q = 1, 10, respectively.
We see that for the optimal value of q = 0.1 the binned Wasserstein distance asymmetry,
Wq

CP almost completely matches ACP up to ∼ 10% relative differences, where the differ-
ences are even closer to just a few percent in the regions of the Dalitz plot where the CP
asymmetry significance is large, cf. figure 25. The Wq

CP still tracks well the CP asymmetry
ACP, however with exaggerated differences in the regions of the Dalitz plot with lower CP
asymmetry significance.

Figure 28 shows the binned Wasserstein asymmetry Wq
CP and direct CP asymmetry

ACP for q = {1, 10} both for CPV and CPC B0 → K+π−π0 decays, where the same inputs
for the B0 decays were used as in the main text. The results shown were averaged over
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Figure 25. The binned CP asymmetry significance ACP/δACP, with δACP given in eq. (D.1), for
B0 → K+π−π0 (D0 → π+π−π0) Dalitz plot are shown in the top (bottom) panels for N = N̄ =
103(106) event samples averaged over an ensemble of Ne = 100 (Ne = 1) datasets with CPV toy
example show on the left and CP conserving datasets on the right.

an ensemble of Ne = 100 datasets, each containing N = N̄ = 103 events. This figure
supplements figure 5 for q = 0.1 in the main text. We see that in all cases, q = {0.1, 1, 10},
the Wq

CP faithfully traces ACP for q = {1, 10} throughout the Dalitz plot, especially where
the CP asymmetries are statistically most significant.

Figure 7 shows log(δWq) distributions and the difference between CPV and CPC
log(δWq) distributions for q = 1, 10. Compared to the q = 0.1 case, shown in figure 7, there
is a more pronounced deficit of δWq counts in CPV distribution relative to the CPC one
for the intermediate log(δWq). The window function w(x), eq. (3.7), is therefore chosen to
have support both for the +1 (green bands in figure 7) and −1 (red bands) weights.

Figure 29 is the q = 1, 10 complement of figure 8 in the main text. It shows, 500
distinct datasets each with N = N̄ = 103 events, the confidence levels with which the
CP conserving hypothesis is excluded when applying different tests, either the energy test,
giving CLs denoted with p(T ), the Wasserstein distance statistic test, giving p(Wq), or the
windowed Wasserstein distance statistic, giving p(Iq). The windows and anti-windows for
q = 1, 10 are shown in figure 28. For q = 10 the performance of the windowed Wasserstein
distance is comparable yet slightly less sensitive than the energy test, while for q = 1 the
sensitivity of windowed Wasserstein distance statistic is significantly reduced. For q = 10
the use of windowed Wasserstein distance is comparable to the simple Wasserstein distance
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Figure 26. We show 1−Wq
CP/ACP for each bin within the two-dimensional Dalitz plot. Smaller

values indicate better agreement. This is shown for CP violating B0 → K+π−π0 decays with
nbins = 50, q = {0.1, 1, 10}, and averaged over an Ne = 100 dataset ensemble where each dataset
contains N = N̄ = 103 B0 and B̄0 events.

statistic, i.e., it does not lead to any real gain, while for q = 1 case, the selected windows
and anti-window reduce sensitivity of Iq compared to Wq. However, additional tuning of
the window and anti-window regions could be conducted to maximize significance.

E Energy test

The energy test, introduced in [5], is an unbinned two-sample test utilizing a test statistic,
T , to analyze average distances between data points in phase space. The first proposal
to utilize the energy test in searches for CP violation was described in [6] and subsequent
analyses performed in [7, 8].

The statistic utilizes a weighting (distance) function ψij dependent on the distance dij
between the ith and jth event in the first and second sample, respectively. For searches of
CP violation the two samples are distinguished by flavor (B0 and B̄0). The test statistic is
defined as [5, 6]

T =
N∑
i,j>i

ψij
N(N − 1) +

N̄∑
i,j>i

ψij

N̄(N̄ − 1)
−
N,N̄∑
i,j

ψij

NN̄
, (E.1)

where N , N̄ denote the total number of events in the B0 and B̄0 samples, respectively. The
weighting function ψij is chosen such that the weight decreases with increasing distance,
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Figure 27. Binned Dalitz plot comparison between the Wasserstein asymmetry Wq
CP (left) for

q = {1, 10} (shown in top two and bottom two rows) and direct CP asymmetry ACP (right), shown
for CP violating B0 → K+π−π0 decays (1st and 3rd row) and CP conserving decays, i.e., the
decays in which the asymmetries in the amplitude model were set to zero (2nd and 4th row). The
results shown are normalized and averaged over an ensemble of Ne = 100 datasets, each containing
N = N̄ = 103 events.
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dij , between points. The summations in eq. (E.1) are, from left to right, over B0 sample,
B̄0 sample and over both B0 (index i) and B̄0 (index j) samples, respectively. The form
of the test statistic T is motivated by the form of the electrostatic energy for overlapping
distributions of positive and negative charges, in which case ψij ∝ 1/dij . If the two charge
distributions are exactly the same, the net charge distribution is zero, and T vanishes.

The functional form on the weighting function ψij can be freely chosen, for instance
in order to increase the sensitivity to local asymmetries at some typical length-scales,
minimizing dilutions due to averaging over large Dalitz plot areas. We follow refs. [7, 8]
and choose a Gaussian weighting function

ψij ≡ ψ(dij ;σ) = e−d
2
ij/2σ

2
, (E.2)

where σ is a tunable parameter describing the effective radius between data points where
asymmetry is measured, while dij is the Euclidean distance in the Dalitz plot.

For events sampled from two identical distributions T is expected to fluctuate close to
zero, while for samples drawn from dissimilar distributions T will tend to a nonzero value.
To obtain the null hypothesis PDF for T we use the master method described in section 3.1.
The labels for B0 and B̄0 samples are ignored, and the N+N̄ events randomly assigned to E
and Ē samples, each with N = N̄ events, thus simulating the CP even datasets. Repeating
this n times give a null hypothesis PDF for T , which is then fitted to a gamma distribution,
used finally to obtain the p-values corresponding to the “measured” value of T .

The computation of CP conserving T distributions was done with the Manet software
package [8] (while for single computations our own implementation was used, see appendix A).
The analysis was performed on N = N̄ = 103 B0 and B̄0 events generated by AmpGen [22].
The null hypothesis T -distributions were computed with N = 103 permutations, while the
tunable parameter in the weighting function, σ ≈ 0.2 GeV2, was chosen to maximize the
significance (minimize p-value) in the case of a CP violating sample.
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Figure 29. The comparison of CL exclusion of the CP conserving hypothesis either using energy
test (p(T )), the Wasserstein distance (p(Wq)), or the windowed Wasserstein distance (p(Iq)), with
the window function w(x) as denoted in figure 28. The top (bottom) two rows are for q = 1(10),
with 500 distinct CP violating (conserving) B0 → K+π−π0 decay datasets shown on the right (left).
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